
DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

1

AXMEDIS

Automating Production of Cross Media Content
for Multi-channel Distribution

www.AXMEDIS.org

DE5.1.3.1
AXMEDIS Framework Guidelines

Version: 2.0
Date: 31/07/2006
Responsible: L. Ortimini, S. Chellini of DSI (revised and approved by coordinator)
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: public
Visible to User Groups: Yes
Visible to Affiliated: Yes
Visible to Public: Yes

Deliverable Number: DE5.1.3.1
Contractual Date of Delivery: M22
Actual Date of Delivery:31/07/2007
Work-Package contributing to the Deliverable: WP5
Task contributing to the Deliverable: all tasks of WP5
Nature of the Deliverable: report
Author(s): acronyms of the partners involved

Abstract:
This document contains the collection of all major guidelines of AXMEDIS and in some cases
refers to other AXMEDIS document. Relevant guidelines are those on: components validation,
AXMEDIS plug in production, regression testing, performances and optimisation, demonstrator
video production, etc.
Keyword List: AXMEDIS, framework, validation, testing, performance, optimisation, etc.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

2

AXMEDIS Copyright Notice
The following terms (including future possible amendments) set out the rights and obligations licensee will be requested
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by
any other means.

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT.

1. DEFINITIONS

i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the
document have been accepted.

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a
Document.

iii. "Licensor" is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in
terms of companies and/or associations, see www.axmedis.org

iv. "Document" means the information contained in any electronic file, which has been published by the
Licensor’s as AXMEDIS official document and listed in the web site mentioned above or available by any
other means.

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.

2. LICENCE

1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to
present terms and conditions (the Licence) for the parts that are own and proprietary property the of
AXMEDIS consortium or its members.

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and
conditions.

3. TERM AND TERMINATION

1. Granted Licence shall commence on Acceptance Date.
2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions

of this Licence.
3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of

termination.
4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the

accessed Copyright.
5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or

obligations, shall survive termination of this Licence and shall continue in full force and effect.
6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it

as stated in the document itself will remain in force for a period of 5 years after license issue date or the
period stated in the document whichever is the longer.

4. USE

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:
i. remove this Copyright Notice on a Document or any of its reproduction in any form in which those

may be achieved;
ii. change or remove the title of a Document;
iii. use all or any part of a Document as part of a specification or standard not emanating from the

Licensor without the prior written consent of the Licensor; or
iv. do or permit others to do any act or omission in relation to a Document which is contrary to the

rights and obligations as stated in the present license and agreed with the Licensor

5. COPYRIGHT NOTICES

1. All Works shall bear a clear notice asserting the Licensor’s Copyright. The notice shall use the wording
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.

6. WARRANTY

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.

2. For the avoidance of doubt the licensee should be aware that although the Copyright in the documents is
given under warranty this warranty does not extend to the content of any document which may contain

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

3

references or specifications or technologies that are covered by patents (also of third parties) or that refer
to other standards. AXMEDIS is not responsible and does not guarantee that the information contained in
the document is fully proprietary of AXMEDIS consortium and/or partners.

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of action which
the Licensor may have, at all times keep the Licensor fully and effectively indemnified against all and any
liability (which liability shall include, without limitation, all losses, costs, claims, expenses, demands,
actions, damages, legal and other professional fees and expenses on a full indemnity basis) which the
Licensor may suffer or incur as a result of, or by reason of, any breach or non-fulfilment of any of his
obligations in respect of this Licence.

7. INFRINGEMENT

1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the
Copyright which comes to licensee notice and shall, at the Licensor’s request and expense, do all such
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.

8. GOVERNING LAW AND JURISDICTION

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.
2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.

Please note that:

• You can become affiliated with AXMEDIS. This will give you the access to a huge amount of
knowledge, information and source code related to the AXMEDIS Framework. If you are interested
please contact P. Nesi at nesi@dsi.unifi.it. Once affiliated with AXMEDIS you will have the
possibility of using the AXMEDIS specification and technology for your business.

• You can contribute to the improvement of AXMEDIS documents and specification by sending the
contribution to P. Nesi at nesi@dsi.unifi.it

• You can attend AXMEDIS meetings that are open to public, for additional information see
WWW.axmedis.org or contact P. Nesi at nesi@dsi.unifi.it

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

4

Table of Contents

1 EXECUTIVE SUMMARY AND REPORT SCOPE .. 8
2 INTRODUCTION ON AXMEDIS FRAMEWORK (DSI) .. 9
3 GUIDELINES ON AXMEDIS FRAMEWORK IMPLEMENTATION (DSI) ... 12

3.1 DECISIONS ON DESIGN, IMPLEMENTATION AND SPECIFICATION TOOLS (ALL) ... 12
3.2 IDENTIFICATION OF A FRAMEWORK FOR CROSS PLATFORM C++ APPLICATIONS DEVELOPMENT TO BE USED
AS BASE OF AXMEDIS FRAMEWORK .. 12

3.2.1 Requirements for the C++ Framework.. 13
3.2.2 WxWidget .. 13

3.3 SUPPORTED PLATFORMS (ALL PARTNERS).. 14
3.4 DEVELOPMENT FRAMEWORKS... 15
3.5 USER INTERFACES (ALL PARTNERS) ... 15
3.6 COMMUNICATION (ALL PARTNERS).. 16
3.7 INFORMATION EXCHANGE (EXITECH, ALL PARTNERS).. 16
3.8 SPECIFIC NOTES ON DEVELOPMENT OF AXMEDIS TOOLS FOR PDA (DSI: VALLOTTI, TISCALI: NATERI) . 16
3.9 SPECIFIC NOTES ON DEVELOPMENT OF AXMEDIS TOOLS FOR MOBILES (DSI: VALLOTTI, ROGAI, TISCALI:
NATERI) 17

4 GUIDELINES ON AXMEDIS FRAMEWORK SOURCE CODE (DSI) .. 18
4.1 DOC GENERATION... 21
4.2 ADOPTION OF LIBRARIES... 21

4.2.1 Licensing terms (All Partners)... 22
5 GUIDELINES ON AXMEDIS FRAMEWORK MULTILINGUAL ON TOOLS (DSI) 23
6 GUIDELINES FOR ADDING EXTERNAL LIBRARIES (DSI) ... 23

6.1 AXMEDIS PLUG IN PURPOSES AND USAGES .. 23
6.2 AXMEDIS PLUG IN MODEL... 23
6.3 AXMEDIS PLUG IN DEVELOPMENT.. 23
6.4 AXMEDIS PLUG-IN EXAMPLES.. 23
6.5 AXMEDIS PLUG IN CONTENT PROCESSING AND PROTECTION TOOLS.. 24

6.5.1 Content Processing... 24
6.5.2 Protection Tools ... 24

7 GUIDELINES ON AXMEDIS COMPONENT VALIDATION AND ACCEPTANCE (FUPF) 25
7.1 COMPONENT VALIDATION ... 25
7.2 COMPONENT SUBMISSION ... 26
7.3 REVIEW AND ACCEPTANCE REPORT FORM.. 26
7.4 VERIFICATION REPORT FORM .. 27
7.5 COMPONENT ACCEPTANCE .. 27
7.6 START UP OF COMPONENT VALIDATION AND ACCEPTANCE .. 27
7.7 PERIODIC VERIFICATION.. 28
7.8 ACCEPTANCE TESTING... 28

8 GUIDELINES ON AXMEDIS FRAMEWORK VALIDATION (EXITECH) ... 30
8.1 SOURCE CODE REPOSITORY MODEL .. 30

8.1.1 Premises ... 30
8.1.2 Repository Structure .. 30
8.1.3 General Guidelines... 34

8.1.3.1 Directory include (optional: only for C/C++)...34
8.1.3.2 Directory source (mandatory) ...34
8.1.3.3 Directory doc/specification ...34

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

5

8.1.3.4 Directory doc/code (mandatory) ...35
8.1.3.5 Directory doc/test (mandatory) ...35
8.1.3.6 Directory doc/configuration-deployment (optional: only for modules requiring deployment)...............................35
8.1.3.7 Directory doc/other (optional)...35
8.1.3.8 Directory lib (mandatory)..35
8.1.3.9 Directory bin (mandatory)...36
8.1.3.10 Directory project (optional: only for modules requiring building) ...36

8.1.4 C/C++ Application... 36
8.1.4.1 Directory include ...36
8.1.4.2 Directory source ..36
8.1.4.3 Directory doc/specification ...36
8.1.4.4 Directory doc/test ..36
8.1.4.5 Directory doc/configuration-deployment..36
8.1.4.6 Directory doc/other..36
8.1.4.7 Directory lib...36
8.1.4.8 Directory bin..36

8.1.5 C/C++ Dynamic Library.. 36
8.1.5.1 Directory include ...36
8.1.5.2 Directory source ..36
8.1.5.3 Directory doc/specification ...36
8.1.5.4 Directory doc/code ..37
8.1.5.5 Directory doc/test ..37
8.1.5.6 Directory doc/configuration-deployment..37
8.1.5.7 Directory doc/other..37
8.1.5.8 Directory lib...37
8.1.5.9 Directory bin..37

8.1.6 C/C++ Static Library ... 37
8.1.6.1 Directory include ...37
8.1.6.2 Directory source ..37
8.1.6.3 Directory doc/specification ...37
8.1.6.4 Directory doc/test ..37
8.1.6.5 Directory doc/configuration-deployment..37
8.1.6.6 Directory doc/other..37
8.1.6.7 Directory lib...37
8.1.6.8 Directory bin..37

8.1.7 C/C++ WebService .. 37
8.1.7.1 Directory include ...37
8.1.7.2 Directory source ..37
8.1.7.3 Directory doc/specification ...38
8.1.7.4 Directory doc/code ..38
8.1.7.5 Directory doc/test ..38
8.1.7.6 Directory doc/configuration-deployment..38
8.1.7.7 Directory doc/other..38
8.1.7.8 Directory lib...38
8.1.7.9 Directory bin..38

8.1.8 Java Application... 38
8.1.8.1 Directory include ...38
8.1.8.2 Directory source ..38
8.1.8.3 Directory doc/specification ...38
8.1.8.4 Directory doc/code ..38
8.1.8.5 Directory doc/test ..38
8.1.8.6 Directory doc/configuration-deployment..38
8.1.8.7 Directory doc/other..38
8.1.8.8 Directory lib...38
8.1.8.9 Directory bin..39

8.1.9 Java Library (JAR)... 39
8.1.9.1 Directory include ...39
8.1.9.2 Directory source ..39
8.1.9.3 Directory doc/specification ...39
8.1.9.4 Directory doc/code ..39
8.1.9.5 Directory doc/test ..39
8.1.9.6 Directory doc/configuration-deployment..39
8.1.9.7 Directory doc/other..39
8.1.9.8 Directory lib...39
8.1.9.9 Directory bin..39

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

6

8.1.10 Java WebService .. 39
8.1.10.1 Directory include..39
8.1.10.2 Directory source ...39
8.1.10.3 Directory doc/specification..39
8.1.10.4 Directory doc/code ...39
8.1.10.5 Directory doc/test ...39
8.1.10.6 Directory doc/configuration-deployment ..40
8.1.10.7 Directory doc/other ..40
8.1.10.8 Directory lib ...40
8.1.10.9 Directory bin ..40

8.2 GUIDELINES FOR THE SUBMISSION PROCESS ... 40
8.3 GUIDELINES FOR CHECKING-OUT, UPDATING COMMITTING.. 41
8.4 GUIDELINES FOR ADDING NEW EXTERNAL LIBRARIES TO THE AXFW (ALL) .. 45

8.4.1 Addition of external libraries... 45
8.4.2 Authorisation of external libraries use .. 45

8.5 SOURCE CODE REPOSITORY PRESENT STATUS ... 45
8.5.1 WebService Formal Validation (Revision 1312 of the repository) .. 45
8.5.2 Application Formal Validation (Revision 1312 of the repository)... 46
8.5.3 Framework Formal Validation (Revision 1312 of the repository) ... 48

9 GUIDELINES ON AXMEDIS FRAMEWORK INTEGRATION AND MAINTENANCE (FUPF)............. 50
9.1 LINKED MODULES ... 50
9.2 INTEGRATION TESTING HOW TO ... 50
9.3 INTEGRATION REVIEW REPORT FORM.. 50
9.4 VERIFICATION REPORT FORM .. 51

10 GUIDELINES ON AXMEDIS FRAMEWORK REGRESSION TESTING (FUPF) 52
10.1 UNIT TEST TOOLS... 52
10.2 REGRESSION TESTING GUIDELINES.. 52
10.3 TESTING USING CPPUNIT... 53

11 GUIDELINES ON PERFORMANCE ASSESSMENT AND OPTIMISATION (DSI) 54
11.1 REFERENCE VALUES .. 54
11.2 LOAD TESTS MEANING FOR DATABASES AND WEBSERVICES... 55
11.3 AXMEDIS AXCS (DSI)... 58

11.3.1 AXCS Registration and Certification database (DSI)... 58
11.3.1.1 Table size / # of tuple ...58
11.3.1.2 Search Time / # of tuple..59
11.3.1.3 Single and Multiple access tests comparison ..60

11.3.2 AXCS – ObjectsID (DSI) .. 62
11.3.2.1 Database size / # of tuple ...62
11.3.2.2 Search Time / # of tuple..62
11.3.2.3 Single and Multiple access tests comparison ..63

11.3.3 AXCS – Accounting (DSI) .. 65
11.3.3.1 Database size / # of tuple ...65
11.3.3.2 Search Time / # of tuple..65
11.3.3.3 Single and Multiple access tests comparison ..66

11.3.4 Users Registration Web Service (DSI).. 68
11.3.4.1 Time Tests\ ...68
11.3.4.2 Capacity Tests ..68
11.3.4.3 Concurrency Tests..70

11.3.5 Objects Registration Web Service (DSI)... 70
11.3.5.1 Time Tests\ ...70
11.3.5.2 Capacity Tests ..71
11.3.5.3 Concurrency Tests..72

11.3.6 Reporting Web Service (DSI).. 73
11.3.6.1 Time Tests\ ...73
11.3.6.2 Capacity Tests ..73
11.3.6.3 Concurrency Tests..75

11.3.7 Statistics Web Service (DSI) ... 75
11.3.7.1 Time Tests\ ...75
11.3.7.2 Capacity Tests ..76

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

7

11.3.7.3 Concurrency Tests..77
11.3.8 AXMEDIS AXCV and AXS Web Services (FUPF) .. 78

11.3.8.1 Time Tests ..78
11.3.8.2 Capacity Tests ..78
11.3.8.3 Concurrency Tests..80

11.4 AXMEDIS PMS (FUPF) .. 80
11.4.1 AXMEDIS PMS Server License database (FUPF)... 80

11.4.1.1 Database size / # of tuple ...80
11.4.1.2 Search Time / # of tuple..81
11.4.1.3 Single and Multiple access tests comparison ..82

11.4.2 AXMEDIS PMS Server Web Service (FUPF) ... 83
11.4.2.1 Time Tests ..83
11.4.2.2 Capacity Tests ..84
11.4.2.3 Concurrency Tests..86

11.5 AXMEDIS DATABASE (EXITECH, FUPF) ... 86
11.5.1 Loader Web Service [EXITECH].. 86

11.5.1.1 Response Time for Number of connection..86
11.5.2 Saver Web Service [EXITECH].. 87

11.5.2.1 Response Time for Number of connection..87
11.5.3 Quey Support Web Service for Metadata [EXITECH]... 88

11.5.3.1 Response Time for Number of connection..88
11.5.4 Query Support Web Service for PAR [FUPF] .. 89

11.5.4.1 Time Tests ..89
11.5.4.2 Capacity Tests ..90
11.5.4.3 Concurrency Tests..92

11.6 AXMEDIS CONTENT PROCESSING GRID (DSI) .. 92
11.6.1 AXMEDIS Rule Scheduler.. 92
11.6.2 AXMEDIS Rule Executor, or Engine ... 93

11.7 AXMEDIS CONTENT PROCESSING ALGORITHMS (DSI, FHGIGD)... 93
11.8 AXMEDIS P2P SERVER FOR QUERIES (EXITECH)... 93
11.9 AXMEDIS P2P AXEPTOOL AND AXMEDIA TOOLS (DSI, HEXAGLOBE) .. 93

11.9.1 AXMEDIS P2P Tracker (DSI, HEXAGLOBE) ... 93
12 GUIDELINES FOR VIDEO DEMONSTRATION ACQUISITION (DSI: NICOLA MITOLO).............. 95

12.1 HOW TO RECORD WITH BBFLASHBACK RECORDER... 95
12.2 STRUCTURE OF VIDEO PRESENTATIONS... 99

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

8

1 Executive Summary and Report Scope

This document concerns:

♣ Implementation guidelines

This section describe and specify all postulates regarding AXMEDIS Framework creation, including
coding language, project tools and behavior, wide used libraries and environmental issues.

♣ Guidelines for code development
This section describe how an AXMEDIS code module should look in terms of code organization

♣ Guidelines on AXMEDIS Framework Multilingual on Tools
This section describe guidelines for localization of tools in AXMEDIS Framework

♣ Guidelines on adding new external libraries
This section describes how to develop plug-ins to add new Content Process and Protection Tools

functionalities to AXMEDIS Framework

♣ AXMEDIS component validation and acceptance,
This section describes guidelines to validate an AXMEDIS module and acceptance test each module
should pass to assure its quality level.

♣ AXMEDIS framework validation
This section describes validation methods for the whole AXMEDIS Framework

♣ AXMEDIS framework integration and maintenance,
This section describes behaviors to test integration and compatibility among AXMEDIS Modules

♣ Regression testing guidelines
This section describes behaviors to perform regression testing activities on AXMEDIS Modules

♣ Assessment optimisation of components
This section involves guidelines for realization of stress tests to be used in the optimization of
AXMEDIS Modules.

♣ Guidelines for Video demonstrator acquisition

This section describes how to use specific tools to realize video demonstrators

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

9

2 Introduction on AXMEDIS Framework (DSI)

AXMEDIS is an ambitious Integrated Project of Research and Development partially founded by the
European Commission in IST FP6 and including about 20 partners such as University of Florence, HP,
EPFL, FHGIGD, ACIT, AFI, TISCALI, University Pompeo Fabra, University of Leeds, CPR, EXITECH,
XIM, University of Reading, etc. The duty of AXMEDIS is to work on research activities, develop new tools
and products and trial them as effective demonstrators.

AXMEDIS is creating and developing the AXMEDIS Framework, an open solution exploiting a set of new
technologies and tools, which can be used by your solutions and applications for:
• reduction of costs and increasing efficiency for content production, protection, management and

distribution; better pricing and value-for-money for industry products and services, containing costs to
set up sustainable business ventures in the digital cross media content:

o integrating your Content Management Systems, CMSs, with the distribution systems by
automating the communication and update of content and information between the two
systems;

o automating content gathering and ingestion processes from local or remote CMSs and file
systems;

o automating composition, allowing parallel processing, exploiting GRID technology, and
optimization techniques for content ingestion, production, protection and formatting;

o managing the workflow at level of the content factory and among different content factories
sharing the same content production objectives;

o automating the whole process allowing content production on demand;
• support for the whole value chain: composition, packaging, integration, aggregation, synchronization,

formatting, adaptation, transcoding, indexing, integration in the same objects protected and non protected
components, definition of relationships with other resources, metadata integration and
remapping/transcoding, protection, license production and verification;

• convergence of the media, interoperability of content supporting the multichannel distribution, support
content distribution:

o on different channels such as satellite data broadcast, Internet, cellular network, wireless,
traditional supports as DVDs, internet, mobiles networks, local and wireless networks;

o including Peer-to-Peer (P2P) in both B2B (Business-to-Business) and B2C (Business-to-
Consumer) levels;

o on different devices such as PC, PDA, i-TV, STB, etc.;

AXMEDIS goals

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

10

o with different transaction models on the same channels and content with flexibility in the
business and transaction models;

• adoption of new methods and tools for innovative, flexible and interoperable Digital Rights Management
(DRM), including

o exploitation of MPEG-21 REL (Right Expression Language) and overcoming its limitations
with specific extensions,

o supporting different business and transactions models and their integration,
o supporting the integration/interoperation of different DRM models such as MPEG-21 REL

and ODRL OMA (Open Mobile Alliance);
• harmonization of B2B and B2C areas for DRM, bringing the DRM model in the B2B area, supporting

production and protection models in the whole value chain;
• increment of content accessibility with a P2P platform at B2B level, which can integrate content

management systems and workflows.

AXMEDIS implements the AXMEDIS Framework for all, and especially for small and large industries
sharing a common interest in the exploitation of new technologies and solutions. The AXMEDIS Framework
can be used to setup and built a set of complete applications and services in the area of content production,
protection and distribution. With the flexibility of AXMEDIS dynamic Plug-In technology, you can
customize your applications and processes according to your needs.

The AXMEDIS digital content and content components is an open format capable of integrating any kind of
cross media format (video, images, animations, games, learning objects, multimedia, audiovisual, document,
audio, etc.) in any digital format, any kind of metadata including identification, classification, categorization,
indexing, descriptors, annotation, relationships and play activities and protection aspects.
The AXMEDIS format permits the combination of content components and their secure distribution in
respect of the copyright laws, supporting a large variety of DRM rules and models according to concepts of
interoperability among DRM models (mainly, but not only, based on MPEG-21, with both binary and XML
low level formats). AXMEDIS is open to any DRM model and solution.
Within the AXMEDIS content any type of cross media content can be included from simple multimedia files
to games or software components, for leisure and entertainment, infotainment, and also for managing
protected governmental content, healthcare information, business of value information, etc.

The AXMEDIS framework is an environment for integrating and validating the new enabling technologies
and new knowledge invented with WP4, WP5, and WP8. In this section the guidelines for creating software
components for the AXMEDIS framework is reported. These software components are created by exploiting
and including research algorithms as described in WP4. The guidelines and most of the components are
accessible to the whole community together with the components developed by partners, and accessible in
the AXMEDIS Framework: http://www.axmedis.org .

This document describes the AXMEDIS open architecture and framework. It is open since:
• all the AXMEDIS specification is public and its specific use is royalty free. Any company or third party

can use the document to create an AXMEDIS compatible solution;
• all the source code of AXMEDIS Framework is accessible by getting affiliated with AXMEDIS. The

affiliation fee is low and affordable for all;
• all the algorithms of the same type will be interchangeable, any innovation in the format, in the process,

in the workflow, in the business model, in the DRMs, can be added into the framework without
restructuring;

• The structure of the AXMEDIS framework is well finalised in terms of interfaces and protocols among
its components. They are mainly algorithms and software modules for managing content: composition,
formatting protection, query, etc.;

• the affiliation to AXMEDIS can be obtained also providing work or results to the community. So that
you can have the access to the AXMEDIS Framework in change of your contribution in improving and
extending it;

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

11

• the AXMEDIS plug-in technology is public, and the source code for creating new plug-in is public
without needs to be affiliated;

• in AXMEDIS the focus is on interoperability and openness of content model, including multichannel
distribution;

• in AXMEDIS the focus is on interoperability of DRM model, including multichannel distribution.
• Other distribution channels can be added according to the above solutions: direct channels such as those

towards PCs or PDAs or, mediate via Channel Distributors such as those towards i-TVs;
• The same channel structure can be duplicated without any problem. You may have more Channel

Distributors for i-TV, pay per view, etc. They can be set up for localization of content and services, for
language and cultural differences, for providing content towards different technologies for providing
different content;

• No limitation about the number of clients;
• No limitation about the number of transactions;

More technical information on AXMEDIS architecture and framework and about how to access at the
AXMEDIS framework getting affiliated to AXMEDIS are available on http://www.axmedis.org .

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

12

3 Guidelines on AXMEDIS Framework implementation (DSI)
The AXMEDIS framework is an environment for integrating and validating the new enabling technologies
and new knowledge invented with WP4, WP5, and WP8. In this section the guidelines for creating software
components for the AXMEDIS framework is reported. These software components are created by exploiting
and including research algorithms as described in WP4. The guidelines and most of the components are
accessible to the whole community together with the components developed by partners, and accessible in
the AXMEDIS Framework: http://www.axmedis.org .

3.1 Decisions on Design, Implementation and Specification Tools (ALL)

• UML: a tool will be selected, VISIO 2003 professional is one of the most largely used in AXMEDIS,

other possibilities are UML free tools, etc. They have to be capable of processing UML, verification of
consistency and managing packages, action diagrams, IDL, etc….

• Model for API is based on IDL, which in turn is based on UML formalisation
• All the tools including the AXMEDIS Object Manager have to be developed in C++
• AXCS and AXMEDIS object database have to provide for the database access some ODBC or JDBC,

this has still to be decided [DSI Chellini-Martini] At the present time, AXCS database accesses are
performed by means of JDBC technology

• Technology for AXMEDIS PMS has been fixed to be C++ for Servers
• Communications with AXCS and PMS and clients and tools is in SSL
• Database technology is scalable: SQL, MYSQL, DB2, Postgress, etc.
• AXEPTool has to be based on non proprietary protocol such as HTTP

o The same DB used in the AXMEDIS database has to be used in the AXEPTool
• AXMEDIS content processing and editing tools have to be realized in C++, firstly for WINDOWS but

taking into account of porting them on MAC/LINUX. So that a GUI abstraction is needed such as
Mozilla or WXwin, a scripting tool for the GUI can be taken into consideration..

• AXMEDIS Protection tools have to be realized in C++, firstly for WINDOWS but taking into account of
porting them on MAC/LINUX. So that a GUI abstraction is needed such as Mozilla or WXwin, a
scripting tool for the GUI can be taken into consideration..

3.2 Identification of a Framework for Cross Platform C++ Applications
Development to be used as base of AXMEDIS Framework

In this section a Framework for Cross Platform C++ Applications Development to be used as base of
AXMEDIS Framework is identified.

The work performed is sketched in the following steps:
1. Identification of requirements for the C++ Framework
2. Selection of candidates
3. Evaluation of candidates

AAXXMMEEDDIISS FFrraammeewwoorrkk

CCrroossss PPllaattffoorrmm CC++++ FFrraammeewwoorrkk

GGUUII NNeettwwoorrkk FFiilleeSSyysstteemm TThhrreeaaddss XXMMLL//RRDD
FF

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

13

3.2.1 Requirements for the C++ Framework
The requirements identified for the C++ Framework to be used as the basis of AXMEDIS Framework are the
following.

The C++ Framework has to:
1 be multiplatform supporting at least: MS Windows (98?, 2000, XP), MACOS X, Linux
2 NOT be under GPL license
3 NOT be under commercial license (NOT MANDATORY)
4 be rather wide spread
5 be usable from a C++ Application
6 allow the realization of standard user interfaces as well as MDI, drag&drop support, tree view, details

view, clip board,…
7 allow run-time generation of user interfaces
8 allow the realization of custom views, where the application can control the visualization and the

interaction with the view.
9 allow cross platform access to basic resources like: File system, Network (TCP & UDP), Threads, XML

Parsing, RDF.
10 render multimedia information (video, audio, images) (RELEVANT)
11 allow the realization of applications with skin (like Windows Media Player) (OPTIONAL) or

not prevent its realization on some platforms (MANDATORY).

3.2.2 WxWidget

For the candidates will be evaluated:

• platforms supported
• licence
• diffusion
• GUI capabilities

o basic user interfaces
o advanced user interfaces
o support for automatic run-time generation of user interfaces
o custom user interfaces
o support for multimedia
o skin support

• Platform abstraction
o file system
o network
o threads

• Tools
o xml support
o rdf support

wxWidgets
General
Platforms Win32, MAC OSX, Linux, OS2, palmOS, winCE
Licence LGPL
Diffusion Good
GUI capabilities
Basic GUI Good
Advanced GUI Good
Custom GUI Good
Automatic GUI Feasible but not directly supported (XRC is used for XML description of GUI)

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

14

Multimedia
Support

Native support for images (jpg, png, tiff), contributions are present for some multimedia
support

Skin support Feasible but not directly supported
Platform abstraction
File system Ok, it supports also zip files
Network Ok (not UDP)
Thread Ok
XML Marginal, a non validating parser is present
RDF No
Notes
A library for XML parsing may be used (XERCES)

In the above evaluation of candidates, are marked in red/orange/yellow the features that are problematic.
The features marked in red strongly discourage the adoption of the framework, the ones marker in orange
suggest to avoid to use it.
It results that wxWidgets, wxPython, and GTK+ are the frameworks that could be adopted. However it
seems that wxWidgets gives more coverage especially since it can be used also in PDAs.

3.3 Supported platforms (All Partners)

The components produced by the research activities will have to be compliant with the languages and
platform identified in the specification and in particular:

• Content production tools, editors, publication tools, engines, protection tool editor, etc.:
o Language: C++
o OS: Windows XP and 2000, and viable as a second choice also for MACOS X
o GUI: WxWidget (the new version of the WxWindows)
o XML Parser: XERCES
o WebServices/SOAP: gSoap
o TCP/IP library: that of WxWidget
o STL can be used but a particular attention has to be given on using only functionalities and

data structures that are supported in the STL for PDA (Pocket PC 2003)
o Avoiding the usage of functionalities that are Microsoft specific

• Protection Manager Support
o Client: all features as above in C++
o Domain Home, Domain Factory and Server: Java and C++

• AXEPTool:
o Publication and loading engines: as the editor area above
o C++ for the tools
o P2P virtual database: Java if needed
o Graphic User Interface: WxWidgets

• AXMEDIS Database and Query Support and AXCS:
o Database technology: MySQL or Postgres
o Technology for coding logic: Java
o DBC: JDBC for the access
o Operating system: Windows and Linux.
o User Interface: JSP or PHP, probably better the JSP formalization in classes and graphic

design
o Web Server: Apace, TOMCAT

• Scripting language:
o Java Script (ECMA Script)

• Workflow Manager:

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

15

o based on OpenFlow or BizTalk
o Plug in of the workflow: the same as the content production area

• The usage of AXMEDIS Error Manager for all the tools in C++ that use an AXOM
• The usage of AXMEDIS Configuration Manager for all the tools in C++ that use an AXOM
• Fingerprint and Metadata/Descriptors extractors:

o the same as the content production area

Other information is collected into the AXFW specification document.

3.4 Development frameworks
Development should be done using C/C++ for all code-sharing components, whereas all internal components
may be developed using other languages with related tools.

Since the source code of all the tools and components will be accessible to all partners, the choice of a
preferred development framework will not limit the possibility to use a different one for regular development
and to build for the preferred development framework before upload or on less regular basis.

The following are the preferred development platforms for the project partners under windows:

Partner Preferred Development Framework
DSI MS Visual Studio .NET 2003
DIPITA gcc/CygWin
COMVERSE MS Visual Studio .NET 2003, MS Visual Studio 6 (Service Pack 5)
EPFL MS Visual Studio .NET 2003
EUTELSAT gcc/CygWin
FHGIGD MS Visual Studio .NET 2003 (MS VS 6.0 and gcc+eclipse as secondary frameworks)
ILABS MS Visual Studio .NET 2003
HP
TISCALI
FUPF MS Visual Studio 6.0 or gcc (linux tools)
XIM gcc or MS Visual Studio .NET 2003
CRS4 gcc
SEJER gcc/CygWin
UNIVLEEDS MS Visual Studio .NET 2003
IRC MS Visual Studio .NET 2003
EXITECH MS Visual Studio .NET 2003 or gcc

Thus the most preferred development framework is MS Visual Studio .NET 2003.

For Java development the choice of a uniform virtual machine will allow to reduce the possibility of
integration problems. The chosen JVM is Sun 1.4.2. The migration to a new JVM (1.5.0) will be made all
together.
The use of a specific Integrated Development Environment for Java development is not set, but it is
mandatory the adoption of ANT for having an easier integration (some IDE use ANT as integrated building
system). For testing the use of JUNIT is appreciated. For development of WebServices Java WSDP 1.5 has
to be used.

3.5 User Interfaces (All Partners)
For the user interface in C++ applications wxWidgets should be used.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

16

3.6 Communication (All Partners)
For the communications among modules in different processes/machines WebServices is the preferred
technology to be used. However in some cases other solutions like XML-RPC or custom protocols could be
used, for example for the interaction with existing tools or for performance reason.

For the interaction with modules in the same process static or dynamic libraries should be used.
COM/ActiveX technology could be used to interact with existing components.

3.7 Information exchange (EXITECH, All Partners)
This section contains guidelines on the way in which information will be exchanged, through documents
posted on the WEB AXMEDIS portal and by synchronizing source code and test cases updates

The main mode for information exchange between the AXMEDIS members is the use of document
repository on the WEB PORTAL. Refer to the portal specification for the operative procedures.

The documents editing has to follow the rules defined by the AXMEDIS consortium. The templates to be
followed for the document editing have to be posted on the WEB site into the management activity in a
dedicated folder. New templates have to be created any time a new type of document has to be produced (i.e.
slide template, deliverable template, reports and management reports, UML diagrams, etc.). The document
responsible and the activity coordinators have to verify if the received/posted content comply with the
template.

In case a new document type is needed, the template can be proposed to the project coordinator, who, if
accept it, will post it on the portal.

It is strongly advised against sending documents in attach to the reflector

Also for the code editing a “template” can be created. The programming style template can be based on some
standard guidelines as:

• C++ Coding Standard defined at http://www.possibility.com/Cpp/CppCodingStandard.html
• Mozilla Coding Style Guide at http://www.mozilla.org/hacking/mozilla-style-guide.html
• Code Conventions for the JavaTM Programming Language defined by SUN at

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
• Apache coding standards at http://jakarta.apache.org/turbine/common/code-standards.html

The standard guideline can be adapted for the project needs.

3.8 Specific Notes on Development of AXMEDIS Tools for PDA (DSI: Vallotti,
TISCALI: Nateri)

Pocket PC 2003 with Windows CE version 4.20 (WCE420) has been chosen as main testing platform. It is
not the last version of Microsoft mobile operative system but it is quite new therefore it is widespread and
provides a good set of basic functionalities. Moreover, it is compatible with new version of Microsoft OS for
mobiles.
Microsoft eMbedded Visual C++ 4.0 (eVC4) has been chosen as reference development environment since it
provides a quite new C++ compiler and it can be enriched with a wide set of Standard Development Kit for
different OSs and hardware platforms. The following libraries have to be used (and eventually ported) for
PDA developing:

• STLPort version 5.0.1 or greater;
• Xerces-C++ version 2.7.0;
• OpenSSL version 0.9.8a or greater with WCECompat version 1.2;
• Libcurl version 7.15.0.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

17

Some workarounds have to be provided in order to fill the gap due to some missed functionalities in the
Windows CE operative system. For example, Windows CE does not support the concept of “current
directory”. For that reason, utility function will be provided by the AXMEDIS framework in order to enable
installation of AXMEDIS tools on PDAs.

3.9 Specific Notes on Development of AXMEDIS Tools for Mobiles (DSI: Vallotti,
Rogai, TISCALI: Nateri)

Since C++ development on mobile is not as flexible as on other platforms, it is feasible to adopt other
solution to provide AXMEDIS tools for mobiles. In particular, the main effort has be done in creating a Java-
based core library to enable playing of streamed content on J2ME virtual machines. From this point of view,
some restriction have to be defined for content which can be used on mobiles. Since mobile platforms have a
footprint lower than PDA ones, it is suitable realizing a very simple version of basic libraries such as AXOM
and PMS Client. In particular, the mobile version of the AXOM should be able to manage simple AXMEDIS
objects, protected in simple manner and it should not provide advanced functionalities such as referred
objects, dynamic commands, etc. On the other hand, PMS Client should provide only “online”
functionalities, i.e. it should not provide license and protection information caching or context related
features.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

18

4 Guidelines on AXMEDIS Framework source code (DSI)

For Java source code use guidelines http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
For C++ source code:
Source files

• Header files have to have .h extension.
• Implementation source files have to have .cpp extension.
• All file names have to be lowercase (e.g. axobject.h).
• A header file should normally contain the definition of one class, more than one class can be defined

in one .h file if they are strongly dependent.
• When including files from directories use forward slash “/”and not back slash “\” (e.g. #include

“wx/dc.h”)
• Don’t use tabs to indent code, use 4 spaces.
• Use 76 columns for coding

Naming conventions
• class names should begin with capital letter (e.g. AxObject)
• class attributes and methods should begin with lower case (e.g. model, getModel())
• local variables and functions should begin with lower case;
• macro, enum values and constants should be in all capital letters with “_” as word separator (e.g.

READ_ONLY)
• namespaces should be in all lower case letters
• typedefs names should end with Type suffix (e.g. typedef ParamValueType<int> ParamIntType)
• for accessors use get/set prefixes (e.g. getModel(), setValue(x))
• for classes belonging to the AXMEDIS Framework that are exposed to the framework user use the

“Ax” prefix (e.g. AxObject), for classes that are not exposed this is not mandatory.
Code formatting

• for brace placement follow one of the following rule, but use the same for the whole module

• Place brace under and inline with keywords:

 if (condition) while (condition)
 { {

 } }

• Traditional Unix policy of placing the initial brace on the same line as the keyword and the
trailing brace inline on its own line with the keyword:

 if (condition) { while (condition) {

 } }

• in case a line is too long split it leaving the operator at the end of the previous line and align the
starting of the continuing line with the expression start, examples:

if (aaaaaaaaaa &&
 bbbbbbbbbb &&
 cccccccccc &&
 dddddddddd &&
 eeeeeeeeee)
{
 ...
}

aFunction(aaaaaaaaa,

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

19

 bbbbbbbbb,
 ccccccccc,
 ddddddddd);

Class Header Template

/**
 * A one line description of the class.
 *
 * #include "XX.h"

 * -llib
 *
 * A longer description.
 *
 * @see something
 */

#ifndef XX_h
#define XX_h

// SYSTEM INCLUDES
//

// PROJECT INCLUDES
//

// LOCAL INCLUDES
//

// FORWARD REFERENCES
//

class XX
{
public:
 // LIFECYCLE

 /**
 * Default constructor.
 */
 XX(void);

 /**
 * Copy constructor.
 *
 * @param from The value to copy to this object.
 */
 XX(const XX& from);

 /**
 * Destructor.
 */
 ~XX(void);

 // OPERATORS

 /**
 * Assignment operator.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

20

 *
 * @param from The value to assign to this object.
 *
 * @return A reference to this object.
 */
 XX& operator=(XX& from);

 // OPERATIONS
 // ACCESS
 // INQUIRY

protected:
private:
};

// INLINE METHODS
//

// EXTERNAL REFERENCES
//

#endif // XX_h_

Class Implementation Template

// SYSTEM INCLUDES
//

// PROJECT INCLUDES
//

// LOCAL INCLUDES
//

#include "XX.h" // class implemented

/////////////////////////////// PUBLIC /////////////////////////////////////

//============================= LIFECYCLE ==================================

XX::XX()
{
}// XX

XX::XX(const XX&)
{
}// XX

XX::~XX()
{
}// ~XX

//============================= OPERATORS ==================================

XX&
XX::operator=(XX&);

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

21

{
 return *this;

}// =

//============================= OPERATIONS =================================
//============================= ACCESS ================================
//============================= INQUIRY =================================
/////////////////////////////// PROTECTED /////////////////////////////////

/////////////////////////////// PRIVATE /////////////////////////////////

for what not explicitly stated try to follow the guidelines provided in:
http://www.possibility.com/Cpp/CppCodingStandard.html

4.1 DOC generation
Documentation of source code (C++ and Java) will be integrated in the code using JavaDoc comments style.

4.2 Adoption of Libraries
Libraries used in the project are:

Library and version Area Licence
wxWidget – 2.4.2 GUI LGPL
FL C++ Lib contribution to
wxWidgets Lib

GUI LGPL

STC C++ based on Scintilla
editor, contribution to the
wxWidgets Lib

GUI LGPL

wxImagick Image processing LGPL
Imagick Image processing LGPL
openssl Protection LGPL
cryptlib Protection GPL and standard commercial

license
xerces-C++ - 2.6.0 XML parser Apache Licence 2.0
gSoap Web services LGPL
CURL – 7.12.13 Crawler BSD
easysoap Crawler LGPL
expat Crawler LGPL
libxml2 Crawler LGPL
IODBC Crawler LGPL
PEAR Library Database LGPL
Xerces Database Apache Licence 2.0
Xalan Database Apache Licence 1.1
XPath Database
OpenFlow – 1.1 Workflow GPL 2.0
Zope – 2.7.3 Workflow ZPL 2.0
Phyton -2.3 Worflow
Xmlrpclib Workflow
Cexpat Workflow
Microsoft ASP Workflow Microsoft licence
Microsoft .NET Workflow Microsoft licence
DirectX SDK Players
splay Players LGPL

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

22

faac Players LGPL
im1_dmif_mp4 Players ISO
im1_dmif_trif Players ISO
im1_dmif_remote Players ISO
im1_dmifclientfilter Players ISO
DOCFRAC Fingerprints LGPL
GNU ghostscript Fingerprints GPL
XPDF Fingerprints GPL
HTMLDOC Fingerprints GPL
WordNet (Emglish, Italian,
Spanish, French, German)

Fingerprints Free for English, proprietary for
other languages

TreeTagger Fingerprints Free for research. Proprietary for
commercial use.

CLAM (0.7) Fingerprints GPL
Torch3 Fingerprints BSD
LibSVM – 2.71 Fingerprints LGPL
Libsndfile – 1.0.11 Fingerprints LGPL
BeeCrypt Fingerprints LGPL
Botan Fingerprints BSD-style
CryptLib (?) Fingerprints GPL and standard commercial

license
RtAudio – 3.0 Fingerprints BSD-style open source
PortAudio – 18 Fingerprints BSD-style open source
Libsndfile – 1.0.11 Fingerprints LGPL
FFTW – 3.0.1 Fingerprints GPL and Non-free license (see

http://web.mit.edu/tlo/www/)
FFMPEG Fingerprints LGPL
FOBS Fingerprints LGPL
SpiderMonkey JavaScript Engine
ver. 1.5 by Mozilla

Engine LGPL

SoundTouch Adaptation LGPL

4.2.1 Licensing terms (All Partners)
• license for libraries and access to code modality as stated in the CA for each module produced and

reused

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

23

5 Guidelines on AXMEDIS Framework Multilingual on Tools (DSI)

The multilingual requirements on AXMEDIS tools is not one of the mandatory requirements in this phase.
The tools developed should take into account that in the life of the product tool it would be possible and need
to have multilingual tools.

6 Guidelines for Adding External Libraries (DSI)

6.1 AXMEDIS Plug in purposes and usages
AXMEDIS plug-ins aim to enable the enrichment of AXMEDIS framework functionalities. In fact, using the
plug-in technology, the AXOM, the basic library in the AXMEDIS framework, can be enriched with new
functionalities in order to manipulate and protect AXMEDIS Objects. The two main application fields
currently supported are the creation of new Protection Tools and Content Processing Functions.
Plug-ins are loaded, independently by their category, by the Plug-in Manager. It organizes them on the basis
of their category allowing specific modules easily retrieving them. This specific modules (such as Content
Processing and Protection Processor) provides specific functions to invoke functionalities provided by the
loaded plug-ins.

6.2 AXMEDIS plug in model
A plug-in is a couple a file. One profile which describes the plug-in itself and a dynamic library (DLL on
Windows or SO on linux) which provides the functionalities described in the profile.
Each plug-in is described by a XML file (the profile) which contains the following common information:

• the category of the plug-in, e.g. content processing;
• the unique identifier of the plug-ins, e.g. an URI like a XML namespace;
• the signature of the plug-in evaluated by an AXCS;
• data specific for the kind of plug-in (see below);
• the signature, estimated by the AXCS, of the whole XML file.

The profile provides a placeholder for custom information which can vary on the basis of plug-in category.
The definition of general plug-in profile schema is reported in section 29 of DE3.1.2.2.4. The category-
dependant descriptions of the plug-ins are reported in section 30 of DE3.1.2.2.4 (Content Processing) and in
section 20 of DE3.1.2.2.3 (Protection Tool).

6.3 AXMEDIS Plug in development
In order to develop a plug-in, a developer has simply to create dynamic libraries which respect given
interfaces (see section 6.5). These dynamic libraries are container of classes which implement given interface
(which interface has to be implemented depend on the category of the plug-in). A library simply acts as
factory for the implemented classes. Once created the dynamic libraries classes the developer can easily
creates the profile of the plug-in on the basis of the implemented functionalities. The profiles have to respect
the schemas described in the specification.

6.4 AXMEDIS Plug-in examples
An example of content processing plug-in can be found in the following folders in the repository:
https://cvs.axmedis.org/repos/Framework/source/adaptation/image/
https://cvs.axmedis.org/repos/Framework/bin/adaptation/image/
The first folder contains the source code of the dynamic library. The second one contains the XML profile of
the plug-in.
An example of protection tool plug-in can be found in the following folder in the repository:
https://cvs.axmedis.org/repos/Framework/doc/test/axom/ppplugin1/
The folder contains the XML profile of the plug-in and the source code for the related dynamic library.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

24

6.5 AXMEDIS Plug in Content Processing and Protection Tools
6.5.1 Content Processing
Content Processing Plug-in have to export the following functions:
extern "C" AxCPFunction* GetPluginFunction(std::string funcName)
extern "C" void releasePluginFunction(AxCPFunction* function)
GetPluginFunction allows creating Content Processing Function instances by providing the function
name (funcName).
releasePluginFunction releases the given function instance. This function has been introduced for
the function instances are created by the dynamic library and they have to be deleted by it.
AxCPFunction is the base class for Content Processing Function classes. It provides some default methods
for setting parameters and requires to implement the execution method of the function itself. Therefore the
only method which has to be implemented in order to develop a Content Processing Function is execute.

An example of content processing plug-in can be found in the following folders in the repository:
https://cvs.axmedis.org/repos/Framework/source/adaptation/image/
https://cvs.axmedis.org/repos/Framework/bin/adaptation/image/
The first folder contains the source code of the dynamic library. The second one contains the XML profile of
the plug-in.

6.5.2 Protection Tools
Protection Tools used by the Protection Processor are distributed as AXMEDIS Plug-ins. Each plug-ins
contains a set of Protection Tools. Moreover, the manifest of the plug-in contains a specific description
which reports the identifiers of the provided tools and their main features.
In particular, an AXMEDIS Plug-in containing some protection tools has to export the following functions:

extern "C" Alg* createIPMPTool(const std::string& toolID, bool encoding)
extern "C" void releaseIPMPTool(Alg* tool)

createIPMPTool allows creating Protection Tool instances by providing the tool identifier (toolID).
When the encoding parameter is true, the function has to return the encoding version of the tool itself.
Otherwise, the function has to return the decoding part of the required tool. That is, a tool identifier identifies
the couple of encoding and decoding algorithms.
realeaseIPMPTool releases the given tool instance. This function has been introduced for the tool
instances are created by the dynamic library and they have to be deleted by it.
Alg is an abstract class which is the base class of all Protection Tools. That is, each Protection Tool has to
expose the interface provided by Alg. In particular, a given Protection Tool has to implement its own
specific BlockProcess function which, given a block of bytes, has to produce the clear-text version of this
block w.r.t. the implemented algorithm. In this way, different Protection Tools can be treated in a common
manner.

An example of protection tool plug-in can be found in the following folder in the repository:
https://cvs.axmedis.org/repos/Framework/doc/test/axom/ppplugin1/
The folder contains the XML profile of the plug-in and the source code for the related dynamic library.

Please contact the AXMEDIS coordinator if you are interested in
creating your own AXMEDIS compliant plug-ins for your algorithms and
you would like to get the source code examples.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

25

Guidelines on AXMEDIS Component Validation and Acceptance (FUPF)

In order to correctly set up the AXMEDIS framework, each implemented and supplied component should be
validated and certified before allowing its use by content creators, content providers and final users inside
AXMEDIS. This will help in guaranteeing that the implemented component meets the requirements.

The validation will depend on several issues and will seek to establish the degree to which a given
component fulfils the following performance criteria:

• It does what it is supposed to do
• It does its job in a reasonable time
• It can be integrated with other components
• It is reliable
• It is robust
• It accomplishes test cases
• It is conformant with the AXMEDIS framework

In the following sections we will describe the general guidelines for component validation and acceptance in
the AXMEDIS framework.

6.6 Component validation

The component validation process should involve the checking and analysis of the component in order to
verify that the component meets the requirements demanded of it.

The main validation activities are the revision and testing of the component.

Review phase main steps:
• Review phase involves the manual review of the component, directly evaluating it. It will help in

determining that the requirements, design concepts and specifications have been met. The revision of a
component can include several activities, like peer reviewing or code inspection.

• The result of the review should be a report where the reviewing team explains the revision performed,
the errors found and other.

Testing phase involves the testing of the component at different levels, from unit test through to system test.

The main steps in the testing phase are the following ones:

• During development phase of the component, unit tests should be done in order to check that the

functionality being implemented is the correct one.
o This task should be done by the development team of the component, as they have the

complete knowledge over it.
� Modifications over the specification should be reported

• When the development of a component has been completed, an initial unit testing phase and an
integration test is needed to evaluate how the unit performs and how it interacts with other units.

o This task should be done with the cooperation of the development teams of the integrated
components. The result of this task should be reported in order to perform the needed actions
for solving the problems found.

o This task also needs to evaluate the following aspects, and report on them:
� Documentation provided
� Differences with the specification, if any
� Interfaces among components

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

26

• The rest of tests should involve the whole system and it will be different depending on the demonstrator.
So system testing should be demonstrator testing for the AXMEDIS framework, at least in a first phase.

In order to perform the above tests, the test cases identified and described in WP2 and the content for test
cases created and described in WP8 should be taken into account.

Apart from tests and reviews, component validation should also include the examination of the degree to
which the component is properly documented, including updates in the specification documents,
documentation of the programming interface, usage manual (specially for end-user or business-user
applications) or installation manual. This information should be included in the AXMEDIS framework part
associated to this component.

The major requirements and functionalities of the component need to be mapped to the component under
validation, in order to check that the component accomplishes them.

6.7 Component Submission
This section describes what has to be reported when a component is submitted into the AXMEDIS
framework.

Module name Name of the module being reviewed.
Module description General purpose of the module.
Major requirements To be provided by the component owner
Major related
components

To be provided by the component owner

List of Use Cases To be provided by the component owner
List of Test Cases • To be provided by the component owner

• Accepted by the validators
• Additional test cases may be provided.

Used Libraries To be provided by the component owner
Versions and library related information should be provided

Languages Programming languages
Operating system(s) A list and information to compile for different OS
Author Organisation that has the responsibility of the implementation of the module.

The name of the person involved in the implementation can also be given.

6.8 Review and Acceptance report form
This section gives an example of what has to be reported when a module is being reviewed. The main
information to be reported is described in the following table.

Review ID Identifier of the review.
Module names Name of the modules being reviewed.
Integration description General purpose of the integration test review.
List of use cases Related Use Cases
List of Test Cases Related Test Cases
Author Organisation that has the responsibility of the implementation of the module.

The name of the person involved in the implementation can also be given.
Participants Names, organisations and roles of people involved in the review.

ID Who Date Issue location and description
Issue Name and Date Part of the module where the issue is found and description of the

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

27

number organisation
of the
person who
finds the
issue

when the
issue is
found

issues found in the module during revision and. The location could be
the source code file, web page, etc; it will depend on the type of
application.

6.9 Verification report form
This section gives an example of what has to be reported when a module is verified, after it has been
reviewed and some issues have been found. The information to be reported is described in the following
table.

Verification ID Identifier of the verification.
Review ID Identifier of the review to which this verification refers.
Module names Name of the modules being verified.
Author Organisation that has the responsibility of the implementation of the module.

The name of the person involved in the implementation can also be given.

ID Who Date Status Issue description and resolution
Related
Review
Issue
number

Name and
organisation
of the
person who
verifies the
issue

Date when
the
verification
is
performed

Solved,
Proposed
or Not
Solved

How the issue found during the revision process has to be
solved or has been solved

Regarding the Status column, it has to be filled in the following manner:

- Solved: when the issue in the review report has been solved
- Proposed: when the issue in the review report has been proposed but not solved
- Not solved: when the issue in the review report has neither been proposed nor solved

6.10 Component acceptance
Component acceptance mostly involves those components, which are addressed to application users, either
business or final users.

Acceptance testing allows users (or project partners which can assume this role), to test the functionality of
the system against the requirements and use cases. Each kind of tool should be tested by a key user on this
area. For instance, the component acceptance test of a content production tool should be done by a user that
is skilled in the area together with part of the development team, in order to get the comments on the tool
behaviour.

It will be very useful to follow the test cases that involve components to be accepted in order to check if they
are correct. A report on if test cases are accomplished or not should be done by test participants.

6.11 Start up of component validation and acceptance
In order to start up the component validation and acceptance in the AXMEDIS framework, the responsible of
each module should:

• Follow the CVS repository guidelines
• Prepare unit tests
• Perform unit tests and give a brief report on them

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

28

• Prepare integration tests
• Perform integration tests. They may be done by the partners participating in the integration together

or not. In the latter case, some communication mechanisms will be established in order to solve
possible integration problems as soon as possible. For instance, if one partner is performing an
integration test of one of his components with other partner’s component, a videoconference or
audio-conference might be set up before, during or after tests are done

• Give a brief report on the integration test, outlining problems found, categorising them (application
error, bad parameter value, inconsistent API, etc)

These reports should be available in the portal to the rest of the partners in order to improve the component
knowledge and maintenance. A new directory / portal section should be created to contain them. They could
also be included into the CVS repository, together with the corresponding application, web service, library,
etc.

6.12 Periodic verification
During project development, components will be improved / updated to solve problems found during the
different testing phases or to meet new requirements found during the acceptance tests or the evolution of
commercial software products and standards affecting the AXMEDIS framework components.

In this way, there will be the need to inform the rest of the partners of any components having been updated,
so that new integration tests are performed if needed.

Reports on the unit tests performed over the new or updated components have to be given together with the
new version of the component.

The periodic verification steps should be as follows:

1 Update component into the corresponding directory of the CVS repository, indicating that it is a new
version.

2 Send e-mail to the reflector and / or developers mailing list to inform that an update on a component
has been done and including the results of the related regression test(s) when needed.

3 Partners using the updated component should:
3.1 Perform integration tests with the new version of the component. The participation / support of

the component responsible may be requested.
3.2 Report errors / problems detected during the integration test, if any. The report has to be

uploaded in the portal, in order that partners are informed of the results of the test.
3.3 If needed, after integration errors / problems reported in 3.2 are solved, components using the

initially updated component should be also updated in the CVS repository.
3.4 Go to verification step 2 for the component(s) updated in step 3.3.

As a modification in one component may involve the modification of many other components, regression
and integration tests should be systematically done. In some cases, it could happen that a component will no
longer work with lower versions of libraries and components. This should be specified in the documentation
of the component.

6.13 Acceptance testing
Acceptance of a component involves that it has previously been validated and verified, making the
corresponding unit and integration tests. Once they have been passed, acceptance tests should be done. They
may involve other partners, final users, user group experts, etc.

Acceptance test results could be reported using the review form described in section 7.3.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

29

Once the component has been accepted, it can be made publicly available in the AXMEDIS framework.
Moreover, it may be further optimised.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

30

7 Guidelines on AXMEDIS Framework Validation (EXITECH)

7.1 Source Code repository model
7.1.1 Premises
In order to better understand the guidelines contained in this document, it is necessary to underline the
premises under which they are valid and the context in which the repository for AXMEDIS framework, web
service and application, hereinafter “the CVS repository” has been born, the name derives from the definition
reported in Annex I. the structure of the CVS repository is oriented at who will use the AXMEDIS
framework and in particular to partners involved in WP9 demonstrators and those that will contribute to
AXMEDIS with take up actions and projects. It is for them that we are mainly creating this framework.

As stated by the project manager, that requested these guidelines according to the schedule of Annex I:

• The CVS repository is not a support for development and developers, since each team in each
company has to create the environment for development inside the company;

• The CVS repository is not an instrument for integration, since it has no configuration management
process inside, at least now, a task in WP5 will define the guidelines for the integration;

• The CVS repository is not an instrument for automated building and continuous integration, since it
has no management of automatic building;

• The CVS repository is not an instrument for automated building and continuous integration, since it
has no management of automatic building and no bound on submission due to a failure in
compilation;

• The CVS repository is a support for management of the project, and for the versioning of the AXFW
and its detailed components, and for the creation/storage of demonstrators;

• The CVS repository has to support versioning only at predefined time intervals (that can be also a
time frame of months or weeks, this will depend on the project evolution and status;

• Each contribution at the CVS repository has to be self-contained in the sense that has to provide
comprehensive support for compiling, executing, deploying the AXMEDIS part submitted;

• Each contribution at the CVS repository has to be completed with documentation according what has
been formally defined in these guidelines, and revision of the specification document starting from
the official version;

• Each contribution to the CVS repository has to be completed with test cases and test code for
allowing regression testing, a more detailed description of the activity of testing will be described in
specific guidelines on testing, regression and acceptance testing.

7.1.2 Repository Structure
After all these necessary premises the guidelines for the structure and the content of the repository can be
detailed:
The repository is structured in three main parts:

• Framework
• WebServices
• Application

Each part will contain a set of subdirectory for putting all the necessary files. Not all the directories are
mandatory for each kind of application types as detailed in the following. In any case the following set of
directories will be present under each specified parts:

• include: directory only for C/C++ application that have include files;
• source: directory containing the source code;
• doc: directory containing the documentation as specification documentation, code documentation,

test documentation, dependencies and configuration documentation, other documentation. For each
kind of documentation a detailed description will be given;

• lib: directory containing all the necessary libraries (lib, dll, jar, etc) needed for the AXMEDIS part
to work;

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

31

• bin: directory containing the result of building process that can be a jar, an executable, a library, a
war or whatever.

The doc directory has to be split in different directories according to the following structure:
• specification: this directory must contain the UML diagrams of all the classes and in order to avoid

the problems due to incompatible format the diagrams have to be submitted in XMI format. In the
same directory, if present, also the XML schemas and WSDL files have to be put. Any other format
for UML with respect to XMI format will not be accepted;

• code: in this directory the documentation of code must be put. The documentation should be
Javadoc, doc++ or other auto-generated documentation (preferred) or other documentation format. In
any case documentation must be put in one of the following formats: HTML or TXT (preferred)
and/or RTF or PDF (not preferred but acceptable). Any other proprietary format such as Microsoft
Word docs, OpenOffice docs, or other will be refused;

• test: this directory must contain all the test cases necessary to test the part, the source code and
building scripts for testing. Automatic testing is recommended such as JUnit (i.e.
http://www.junit.org/) for Java, CppUnit (i.e. http://sourceforge.net/projects/cppunit/) for C++,
PHPUnit (i.e. http://www.phpunit.de/en/index.php) for PHP and so on, and script for automating
testing are kindly requested such as Batch, Makefile, Ant and so on.

• configuration-deployment
• other

This structure has been selected:

• To give the best integrated view to the future users of the AXFW. In this way we can give to them in
a simple manner access to separate levels. For example, access to source code, only to applications,
only to the includes, etc.

• To provide and collect the history of all the executable applications developed, this will permit to
provide the history of development according to annex I of the contract and to provide demonstration
without the need of recompiling and involving other partners

• To provide access in a simple manner at all the code and applications to be test for the partners that
have to test and verify the tools even without the presence of who has produced the code.

Under each of the directories defined, a directory for each project part has to be created, so that the final
structure will be something like:

The Framework Structure is described in the following picture:

• AXMEDIS
o Framework

� include
• axom

� source
• axom
• axbd

� doc
• specification

o axom

• AXMEDIS
o Framework
o WebServices
o Application

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

32

o axbd
• code

o axom
o axbd

• test
o axom
o axbd

• configuration-deployment
o axom
o axbd

• other
o axom
o axbd

� lib
• axom
• axbd

� bin
• axom
• axbd

� project
• axom

o win32
o macos
o linux

o WebServices
o Application

Into the “Framework” part of the repository it is supposed to have:

-- object models
-- loader and saver
-- communication protocols
-- DB access
-- data transforming logic
-- algorithms
-- DLL
-- plug ins
-- libraries
-- scripts
-- web service support
-- etc.

The WebService Structure is described in the following picture:

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

33

And finally the Application structure can be depicted as follows:

• AXMEDIS
o Framework
o WebServices
o Application

� JavaApplication1
• include
• source
• doc

o specification
o code
o test
o configuration-deployment
o other

• lib
• bin
• project

o win32
o macos
o linux

� C++application1
• include
• source
• doc

• AXMEDIS
o Framework
o WebServices

� include
� source

• userSupport
� doc

• specification
o userSupport

• code
o userSupport

• test
o userSupport

• configuration-deployment
o userSupport

• other
o userSupport

� lib
• userSupport

� bin
• userSupport

o Application

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

34

o specification
o code
o test
o configuration-deployment
o other

• lib
• bin
• project

o win32
o macos
o linux

As applications there are considered:

• User interfaces
• Skins
• Main classes that can generate an executable by using framework content
• all the test tools needed for other parts (protocols) verification.
• Etc.

It is possible, depending on the software that is realized, to define some guidelines for the different kind on
file to be put in each directory as stated in the next paragraphs.
In the following the general guidelines will be reported and in the more specific subsection only the changes
that applies to the general structure will be reported.

7.1.3 General Guidelines

7.1.3.1 Directory include (optional: only for C/C++)
All the include (.h, .hpp, .hh, etc) that are generated for the project by the developers.

Inside this directory, a sub directory for each component will be created.

7.1.3.2 Directory source (mandatory)
All the source code organized in subdirectory defined by each development team (.c, .cxx, .cpp, .java, etc)
that are generated for the project by the developers.

Inside this directory, a sub directory for each component will be created. Inside this directory the partner can
organize the source code in the best manner according to the project type; some example follows:

• A set of subdirectories with source code put inside
• The source code directly placed in the directory
• A hierarchy of directory differentiating for source type (i.e. Java, C++, WebPages, etc)

7.1.3.3 Directory doc/specification
In this directory must be placed:

• the UML diagram in XMI or Visio formats in order to guarantee maximum interoperability and
independence by UML editor software vendors that are generated for the software under
development – mandatory for modules having OO classes;

• the XML schema adopted for the XML test case or for other activities related to the software under
examination in XML format – mandatory if the schema was used;

• the WSDL used by the application for accessing as a client to web services on the server side in plain
text format – mandatory if the WSDL was used.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

35

7.1.3.4 Directory doc/code (mandatory)
In this directory the documentation of the code must be present. No submission without documentation can
be acceptable. It is suggested to use automatic documentation generation according for example to JavaDoc
or Doc++ style. In any case the documentation can be submitted only in the following formats in order to
guarantee the maximum interoperability and independence by software vendors:

• HTML (preferred)
• Plain TEXT (preferred)
• RTF
• DOC

No other format will be accepted.

7.1.3.5 Directory doc/test (mandatory)
In this directory all the test cases and the test code must be submitted together with the operational
instruction to test the code. Automatic testing is recommended and scripts for automating testing are kindly
requested as Batch file, Makefile, Ant and so on.
When in test cases you are referring to some objects or digital resource please provide reference according to
the documentation reported in the official deliverable on Test Cases, see WP2 and WP8 deliverables.
The documentation on how to test software must be inserted in a plaint text file named HowToTest.txt in the
root directory of the doc/test. This file must contain a reference to additional libraries (to be put on the lib
directory) that are necessary for testing and not for deployment.

7.1.3.6 Directory doc/configuration-deployment (optional: only for modules requiring
deployment)

In this directory a plain text file named configuration-dependencies.txt must be placed in the root of the
directory doc/configuration-deployment and it must be filled with the information on dependencies of this
software piece from other software pieces that are present in the repository tree together with the related
version that have been tested to correctly operates.
In addition a plain text file named deployment.txt must be placed in the root of the directory
doc/configuration-deployment containing all the information that are needed to know how to deploy the
software artifact (such as the library that are needed, environment variables, additional software needed,
target operating system, etc).
Any other file can be added, but the only formats allowed are:

• HTML
• Plain TEXT
• RTF
• DOC

7.1.3.7 Directory doc/other (optional)
This directory can contain any additional document useful for the development community. The only bound
is the format that must be chosen among:

• HTML
• Plain TEXT
• RTF
• PDF

7.1.3.8 Directory lib (mandatory)
This directory must contain all the libraries that are not statically linked to the application and that are
needed for the application in order to work. In the case the no library is needed an empty file named no-lib-
needed.txt must be placed in the lib root directory. In the case of multiplatform development a directory for
each platform have to be created and the lib must be put in the correct directory.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

36

7.1.3.9 Directory bin (mandatory)
This directory must contain the product of the module and all the components (configuration files, etc) that
are necessary for a correct exploiting of the software. It is considered product: an executable, a library, etc.
For application that do not have an executable, the jar, war, dll, lib or the result of the module that have to be
deployed must be put here. In the case of multiplatform development a directory for each platform have to be
created and the executable must be put in the correct directory.

7.1.3.10 Directory project (optional: only for modules requiring building)
This directory must contain the makefiles or IDE projects to build the corresponding library or application.
This directory can contain also the minimal set of file (in a unique zip file for easy recompiling the module in
a defined IDE of the user. This zip file must contain only the minimal set of file, i.e. those after a project
clean up.

7.1.4 C/C++ Application

7.1.4.1 Directory include
Must be present

7.1.4.2 Directory source
No change

7.1.4.3 Directory doc/specification
No change

7.1.4.4 Directory doc/test
No change

7.1.4.5 Directory doc/configuration-deployment
No change

7.1.4.6 Directory doc/other
No change

7.1.4.7 Directory lib
No change

7.1.4.8 Directory bin
No change

7.1.5 C/C++ Dynamic Library

7.1.5.1 Directory include
Must be present

7.1.5.2 Directory source
No change

7.1.5.3 Directory doc/specification
No change

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

37

7.1.5.4 Directory doc/code
No change

7.1.5.5 Directory doc/test
No change

7.1.5.6 Directory doc/configuration-deployment
No change

7.1.5.7 Directory doc/other
No change

7.1.5.8 Directory lib
No change

7.1.5.9 Directory bin
No change

7.1.6 C/C++ Static Library

7.1.6.1 Directory include
Must be present

7.1.6.2 Directory source
No change

7.1.6.3 Directory doc/specification
No change

7.1.6.4 Directory doc/test
No change

7.1.6.5 Directory doc/configuration-deployment
No change

7.1.6.6 Directory doc/other
No change

7.1.6.7 Directory lib
No change

7.1.6.8 Directory bin
No change

7.1.7 C/C++ WebService

7.1.7.1 Directory include
Must be present

7.1.7.2 Directory source
No change

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

38

7.1.7.3 Directory doc/specification
The WSDL used by the application for accessing as a client to other web services and WSDL used for
generating the server side path or the web service under development on the server side in plain text format.

7.1.7.4 Directory doc/code
No change

7.1.7.5 Directory doc/test
No change

7.1.7.6 Directory doc/configuration-deployment
No change

7.1.7.7 Directory doc/other
No change

7.1.7.8 Directory lib
No change

7.1.7.9 Directory bin
No change

7.1.8 Java Application

7.1.8.1 Directory include
Not present

7.1.8.2 Directory source
No change

7.1.8.3 Directory doc/specification
No change

7.1.8.4 Directory doc/code
No change

7.1.8.5 Directory doc/test
No change

7.1.8.6 Directory doc/configuration-deployment
No change

7.1.8.7 Directory doc/other
No change

7.1.8.8 Directory lib
This directory must contain all the libraries in JAR format that are needed by the java application. In the case
the no library is needed an empty file named no-lib-needed.txt must be placed in the lib root directory.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

39

7.1.8.9 Directory bin
This directory must contain the application packaged in a JAR file with a batch file for executing it. In the
case of multiplatform script for launching the application, a directory for each platform has to be created and
the script must be put in the correct directory.

7.1.9 Java Library (JAR)

7.1.9.1 Directory include
Not present

7.1.9.2 Directory source
No change

7.1.9.3 Directory doc/specification
No change

7.1.9.4 Directory doc/code
No change

7.1.9.5 Directory doc/test
No change

7.1.9.6 Directory doc/configuration-deployment
No change

7.1.9.7 Directory doc/other
No change

7.1.9.8 Directory lib
This directory must contain all the libraries in JAR format that are needed by the java library. In the case the
no library is needed an empty file named no-lib-needed.txt must be placed in the lib root directory.

7.1.9.9 Directory bin
This directory must contain the library packaged in a JAR file.

7.1.10 Java WebService

7.1.10.1 Directory include
Not present

7.1.10.2 Directory source
No change

7.1.10.3 Directory doc/specification
The WSDL used by the application for accessing as a client to other web services and WSDL used for
generating the server side path or the web service under development on the server side in plain text format.

7.1.10.4 Directory doc/code
No change

7.1.10.5 Directory doc/test
No change

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

40

7.1.10.6 Directory doc/configuration-deployment
No change

7.1.10.7 Directory doc/other
No change

7.1.10.8 Directory lib
No change

7.1.10.9 Directory bin
No change

7.2 Guidelines for the submission process
The objective of this process is to guarantee that each partner will “commit” the MODULES resulting from
the development activities into a central repository (i.e.: the CVS tree) according to the defined standard
format. The defined format takes into account all the technical components and documentation that is needed
by other partners or external users to download the components and to adopt them into the applications.

The CVS is a complicated tool that is easy enough to use for normal users. A repository of files, arranged in
a directory structure as described in the next paragraph, will be stored in the central server and all partners
and future users could check out copies of this repository. This would create a copy of the (current version
of the) files in the users local hard drive.
The management of the central repository is under the responsibility of Exitech and DSI.

Each partner could:
; Update the copy of the CVS tree to reflect the changes made since the last updated.
; Commit the changes to the CVS tree so that others can see them.

Each partner could only “add” a new file. A new version of a file will update the old one.
No “delete” operation should be done on the central CVS, unless it is necessary to guarantee the congruency
at the system level.

All the partners will make changes to their own MODULES at their leisure (without connection to the
server), and subsequently commit these changes to the main repository. It will not be possible for more than
one user to work on (and commit changes in) the same MODULE. Each module has a Responsible.
Because CVS retains all previous versions of all files that were ever part of the repository, so it will be
possible (though not easy) to recover from mistakes.

For creating new folders into the repository a request has to be send to the project coordinator with the
repository administrator in cc. The email has to contain the names of the folders to be created, the content
description and any other relevant information.

When a commit is performed an index.txt file has to be also updated (or created), for any folder, where the
committed data is briefly explained.

The verification process
The verification process (Responsible: Exitech) will guarantee that the both technical contents and
documentation will have been uploaded for each module. The Responsible will perform only a formal
verification of the submitted data. Errors into the committed contribution will be communicated to the
partner by the project coordinator.
Each partner will be responsible for the completeness and correctness of the modules.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

41

The CVS process will not guarantee the integration of the components; anyway all the technical information
is required to permit the “integrators” and “testers” to evaluate the components and to test according to the
testing procedures.

The CVS system will guarantee the versioning functionalities; it will not provide configuration management
functions.

Submission plan
Each partner has to submit the total contribution according to the development plan; anyway each partner
could “commit” the new version of a component after any “relevant” upgrade (bug fix, new functionalities,
updated documentation).

The maintainers of the CVS will verify after each “commit” the completeness of the documentation.
Moreover, some statistics will be provided automatically for each component (i.e.: file age, number of
submission per partners, etc).
The objective of this process is to guarantee that each partner will “commit” the MODULES resulting from
the development activities into a central repository (i.e.: the CVS tree) according to the defined standard
format. The defined format takes into account all the technical components and documentation that is needed
by other partners or external users to download the components and to adopt them into the applications.

7.3 Guidelines for checking-out, updating committing

For managing the AXMEDIS repository the Subversion (http://subversion.tigris.org/) platform has been
chosen.

A complete Subversion documentation and also a Subversion book are available on the project website
http://subversion.tigris.org/servlets/ProjectDocumentList.

Subversion is a free/open-source version control system. That is, Subversion manages files and directories
over time. A tree of files is placed into a central repository. The repository is something like an ordinary file
server, except that it remembers every change ever made to your files and directories. This allows recovering
older versions of data, or examining the history of how data changed.

Subversion can access its repository across networks, which allows it to be used by people on different
computers.

Some of Subversion capabilities are:

Directory versioning
CVS only tracks the history of individual files, but Subversion implements a “virtual” versioned file system
that tracks changes to whole directory trees over time. Files and directories are versioned.
True version history

Atomic commits
A collection of modifications either goes into the repository completely, or not at all. This allows developers
to construct and commit changes as logical chunks, and prevents problems that can occur when only a
portion of a set of changes is successfully sent to the repository.
Versioned metadata

Each file and directory has a set of properties—keys and their values— associated with it. You can create
and store any arbitrary key/value pairs you wish. Properties are versioned over time, just like file contents.
Choice of network layers

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

42

Consistent data handling
Subversion expresses file differences using a binary differencing algorithm, which works identically on both
text (human-readable) and binary (human-unreadable) files. Both types of files are stored equally
compressed in the repository, and differences are transmitted in both directions across the network.

Efficient branching and tagging
Subversion creates branches and tags by simply copying the project, using a mechanism similar to a hard-
link. Thus these operations take only a very small, constant amount of time.

Subversion architecture:

Subversion architecture (extracted from: http://svnbook.red-bean.com/en/1.0/svn-book.html)

The AXMEDIS repository will be configured using the Apache “mod_DAV” & the Subversion
“mod_DAV_SVN” since the “svnserve” seems to give some limits to the user configuration.

The AXMEDIS repository will be available on a SSL protected site. The repository will be protected with an
account and a password and the internal folder will be configured in order to allow the access only to the
selected users.
The repository can be accessed for reading purposes via browser, command line and using Subversion
compatible GUI clients.

Web access
It will be possible to access and browse the (full or part of) repository according to the user rights. It is
proposed to give one account for each partner.

A possible view of the repository could be the one shown in the next figure.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

43

Command line client access
Command line clients are available for all the operating systems (MAC OS X, Linux, Solaris, BSD, and
Windows.
For getting a working copy of the Application Folder it is enough to run the “svn checkout” command. The
following figure shows the Application folder checkout from a windows command line subversion client.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

44

Let suppose that the fabrizio.txt file was changed and a new file is added to the working directory. The
changes can be committed by using the “svn commit” as follow:

If the new file has to be added to the repository it has to be first added to the working directory:

A list of the other Subversion command line is available on the Subversion book (http://svnbook.red-
bean.com/en/1.0/svn-book.html) at Chapter 9 (http://svnbook.red-bean.com/en/1.0/svn-book.html#svn-ch-9).

Using a GUI Subversion client
Several subversion clients are available. For a list you can see: http://subversion.tigris.org/project_links.html
at the clients and plug-in section.

Also some development environments include GUI subversion clients.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

45

7.4 Guidelines for adding new external libraries to the AXFW (ALL)

This section describes the process for adding new external libraries to be used by the tools inside the AXFW,
apart from the ones declared in the specification documents.

7.4.1 Addition of external libraries

In order to add a new library, the following directives have to be followed:

1) Any library that is being used for the development of any tool to be included in the AXFW has to be
authorised before its usage.

2) An AXMEDIS partner cannot decide autonomously to make some GPL or LGPL if it comes from
the project results. The coding of any part is IPR of the project and thus it has to be authorised and
any implication has to be verified.

The violation of these directives implies may lead at the exclusion of a partner for bad behaviour. The CA
reports most of the details on this issue.

7.4.2 Authorisation of external libraries use

The inclusion of any library has to be authorised by sending a request to the project coordinator and the
general reflector indicating:

• what would you like to use
• which OS
• why
• license model of the library

For instance, the authorisation will not be given if the module is GPL. It could be discussed depending on the
point in which the module is used if it should be GPL. In any case has to be separately discussed.

Finally, the delivery of code in GPL or LGPL is not authorised without an explicit authorisation of the
AXMEDIS consortium.

The list of accepted libraries is reported in the AXMEDIS portal (www.axmedis.org).

Each accepted library has to be posted on the portal in the corresponding folder with:

• library in binary and source code
• documentation of the library for its compilation and usage
• license

7.5 Source Code Repository Present Status

7.5.1 WebService Formal Validation (Revision 1312 of the repository)

The situation of the web service repository is quite good and is depicted below.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

46

From a statistical point of view we have the following general figures:

Where:

• OK, means that no improvement is needed
• REC, means that the situation can be Recoverable with a low effort
• TBR, means that the situation has to be recovered
• CRIT, means that the situazion is critical and ir urgent a recovery action.

From the proint of view of the partner involved in this part we have the following result:

Where an Overall value between 0 and 1 is considered as OK, an Overall between 1 and 2 is considered
Recoverable and an Overall greater that 2 is considered Critical.

7.5.2 Application Formal Validation (Revision 1312 of the repository)

The situation of the web service repository is quite good and is depicted below.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

47

From a statistical point of view we have the following general figures:

Where:

• OK, means that no improvement is needed
• REC, means that the situation can be Recoverable with a low effort
• TBR, means that the situation has to be recovered
• CRIT, means that the situazion is critical and ir urgent a recovery action.

From the proint of view of the partner involved in this part we have the following result:

Where an Overall value between 0 and 1 is considered as OK, an Overall between 1 and 2 is considered
Recoverable and an Overall greater that 2 is considered Critical.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

48

7.5.3 Framework Formal Validation (Revision 1312 of the repository)
The situation of the web service repository is quite good and is depicted below.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

49

From a statistical point of view we have the following general figures:

Where:

• OK, means that no improvement is needed
• REC, means that the situation can be Recoverable with a low effort
• TBR, means that the situation has to be recovered
• CRIT, means that the situazion is critical and ir urgent a recovery action.

From the proint of view of the partner involved in this part we have the following result:

Where an Overall value between 0 and 1 is considered as OK, an Overall between 1 and 2 is considered
Recoverable and an Overall greater that 2 is considered Critical.

An analysis of the whole project in terms of source code repository consists in the figures reported in the
table below:

Weighted Overall WebServices 0.615
Weighted Overall Framework 1.879
Weighted Overall Application 2.239
Weighted Overall Project 1.799

As always an Overall value between 0 and 1 is considered as OK, an Overall between 1 and 2 is considered
Recoverable and an Overall greater that 2 is considered Critical.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

50

8 Guidelines on AXMEDIS Framework Integration and Maintenance
(FUPF)

This section aims to describe how to validate the AXMEDIS Framework by providing the tools or
procedures to perform an integration testing of the different modules.

For this purpose, it is assumed that a Unit testing initial step has been already performed on the AXMEDIS
modules, so that what has to be tested here is not the correctness of the modules operation but the interaction
and compatibility with other modules.

For each of the AXMEDIS modules, it is expected that the involved partners provide the information
detailed in next subsections.

8.1 Linked Modules

A list of modules that interact directly or indirectly with the present module and against which some aspects
have to be verified to have a successful integration of the AXMEDIS Framework.

8.2 Integration Testing How To

A reference to the tools that have been created for the automatic or semi-automatic testing of the integration
with other modules or, when automatic tests become difficult to be developed, the description of the
procedure to be followed and the aspects to be verified during the integration testing.

8.3 Integration review report form

The reports regarding the results obtained during the review of the integration of different modules. Each
report describes the issues and errors found during the review.

The main information to be reported when a module is being reviewed is described in the following table.

Review ID Identifier of the review.
Module names Name of the modules being reviewed.
Integration description General purpose of the integration test review.
List of use cases Related Use Cases
List of Test Cases Related Test Cases
Author Organisation that has the responsibility of the implementation of the module.

The name of the person involved in the implementation can also be given.
Participants Names, organisations and roles of people involved in the review.

ID Who Date Issue location and description
Issue
number

Name and
organisation
of the
person who
finds the
issue

Date
when the
issue is
found

Part of the module where the issue is found and description of the
issues found in the module during revision and. The location could be
the source code file, web page, etc; it will depend on the type of
application.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

51

8.4 Verification report form

Verification reports refer to the resolution or resolution proposal regarding review reports. They have to be
created when a module is verified, after it has been reviewed and some issues have been found.

The information to be reported is described in the following table.

Verification ID Identifier of the verification.
Review ID Identifier of the review to which this verification refers.
Module names Name of the modules being verified.
Author Organisation that has the responsibility of the implementation of the module.

The name of the person involved in the implementation can also be given.

ID Who Date Status Issue description and resolution
Related
Review
Issue
number

Name and
organisation
of the
person who
verifies the
issue

Date when
the
verification
is
performed

Solved,
Proposed
or Not
Solved

How the issue found during the revision process has to be
solved or has been solved

Regarding the Status column, it has to be filled in the following manner:

- Solved: when the issue in the review report has been solved
- Proposed: when the issue in the review report has been proposed but not solved
- Not solved: when the issue in the review report has neither been proposed nor solved

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

52

9 Guidelines on AXMEDIS Framework Regression testing (FUPF)

Regression testing is any type of software testing which seeks to uncover regression bugs. Regression bugs
occur whenever software functionality that previously worked as desired stops working or no longer works
in the same way that was previously planned. Typically regression bugs occur as an unintended consequence
of program changes.

Common methods of regression testing include re-running previously run tests and checking whether
previously fixed faults have reemerged.

Experience has shown that as software is developed, this kind of reemergence of faults is quite common.
Sometimes it occurs because a fix gets lost through poor revision control practices (or simple human error in
revision control), but just as often a fix for a problem will be "fragile" - i.e. if some other change is made to
the program, the fix no longer works. Finally, it has often been the case that when some feature is
redesigned, the same mistakes will be made in the redesign that were made in the original implementation of
the feature.

Therefore, in most software development situations it is considered good practice that when a bug is located
and fixed, a test that exposes the bug is recorded and regularly retested after subsequent changes to the
program. Although this may be done through manual testing procedures using programming techniques, it is
often done using automated testing tools. Such a 'test suite' contains software tools that allows the testing
environment to execute all the regression test cases automatically; some projects even set up automated
systems to automatically re-run all regression tests at specified intervals and report any regressions. Common
strategies are to run such a system after every successful compile (for small projects), every night, or once a
week.

Regression testing is an integral part of the extreme programming software development methodology. In
this methodology, design documents are replaced by extensive, repeatable, and automated testing of the
entire software package at every stage in the software development cycle.

Source: Wikipedia
http://en.wikipedia.org/wiki/Regression_testing

9.1 Unit test tools
The most common way for regression testing is to use unit tests. See below the list of unit test tools.

http://www.testingfaqs.org/t-unit.html

Generally unit test tools are language relatives. There are a lot of free tools available for regression testing in
the languages used in AXMEDIS. These are some free popular unit testing tools for C++, C and Java.

http://cppunit.sourceforge.net/
http://unitpp.sourceforge.net/
http://check.sourceforge.net/
http://junit.sourceforge.net/

9.2 Regression testing guidelines
Due to the fact that most implementations of Axmedis are in C++, CppUnit seems to be the best choice.
CppUnit is one of the most popular C++ testing free tools and because it is originally a port of JUnit, it will
be close to Java (for Java features).

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

53

We recommend copying a version of CppUnit in the Axmedis framework for a global use.

Some recommendations:

- Every unit of the whole project which has predictable results or results that can be automatically tested
should be tested.

- It is in charge of every partner to make his own tests.
- Regression test have to run with the actual version of the unit. Or the actual results (tests

passed/failed/error) must be available with the regression tests.
- A modification of a unit with regression tests shouldn’t be submitted without executing the regression

tests. The result must be as good as the previous results (with no result specified, all tests must pass). If
better results are obtained with a modification, don’t forget to post the new results expected with it.

As said in recommendations it is in charge of every partner to make his own tests. Practically, in brief, it will
be to make a new MVC++ project for every tested project, and to create testing files. A global testing can be
produced directly by CppUnit due to the enormous amount of different workspaces of the whole project, but
if it is requested, a batch file can be maintained.

One important thing to remember is that these kinds of tests are logical tests and consequently not user
interfaces tests.

9.3 Testing using CppUnit
This section is dedicated to practical information and procedure to make testing code. First of all the SVN
must be updated (to import CppUnit features).

Procedure:
1. Make a copy of your project (.vcproj).
2. Rename it to your_project_name_test.vcproj
3. Open your solution
4. Add the project your_project_name_test.vcproj (Menu: File/Add Project/Existing Project…)
5. Rename your new project as your_project_name_test (has originally your_project_name. By right-click

on the project list)
6. Open your_project_name_test properties.
7. Modify if needed the these properties :

- General
Configuration Type : Application(.exe)

- Linker
Î General

Output File : change the file to your_project_name_test.exe
Additional Library Directories: add …/lib/cppunit

Î Input
Additional Dependencies : add cppunitd.lib in debug mode and cppunit.lib in release mode.

Î System
SubSystem : Console

8. Add Main.cpp in the project (is in source/cppunit)
9. Copy and modify to your own tests : your_module_test.h and your_module_test.cpp
10. Compile and execute
11. You can now watch your results in TestResult.xml (don’t forget to post it with your module)

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

54

10 Guidelines on Performance Assessment and Optimisation (DSI)

Project of tests and performance analysis, verification and validation activities involving all modules in
AXMEDIS Framework. This document expose methods and behaviours used to accomplish a full exhaustive
test of all the modules, including Databases and related Web Services The latter chapters relate guidelines for
Demo Package Production and File Installation .

10.1 Reference values

Please note to take into account the following ranges of values for the relevant variables:

• AXOID: from 10.000 to 20.000.000 for each AXCS
• AXUID: from 10.000 to 2.000.000 for each AXCS
• AXDID: from 1.000 to 20.000 for each AXCS/PMS
• Grant conditions (rights) in the PMS database: from 10.000 to 20.000.000 for each

PMS
• AXLID: Licenses ID: from 10.000 to 2.000.000 for each PMS server database
• AXMEDIS object size: from 100 Kbyte to 10 GByte
• Mean value of AXMEDIS objects:

o Audio: 5 Mbyte, 5 minutes
o Video: …………
o Document: ………
o MPEG4: ………
o Images: ………

• Grant requests per year: from 200.000 to 2.000.000.000 for each PMS
• Action Log events per year: from 200.000 to 2.000.000.000 for each PMS
• AXTID: from 20.000 to 4.000.000 for each AXCS
• Number of queries on the AXMEDIS database per year: ………………….
• How many users per minute may I satisfy for a WS request (grant, registration, query,

etc..) as a function of the status of the database (number of record, number of grants,
number of action log, etc.)

• The number of users/requests that access at the same time fro the databases ranges:
o AXMEDIS database: from 10 to 100
o AXMEDIS registration portal from 1.000 to 100.000
o AXMEDIS P2P database for searching objects: from 1000 to 100.000
o AXMEDIS certificate production: from 1.000 to 20.000
o AXCS Web Services: from 1.000 to 200.000

• AXCP total disk space: from 100 Mbyte to 10 TeraByte
• AXCP mean disk space per node: …………
• AXCP Number of nodes: from 1 to 100 (may be 200 to 2.000)
• AXCP Node CPU capability: from ….MIPS/MPFLOPS to …………
• AXCP Node CPU percentage: from 10% to 100%
• For external function/procedure in plug ins: execution time normalised with respect to

parameters for example Size X, Size Y, Time Duration, Frame per second, sample per
second, bit/byte per pixel, size of file, etc. ……

All the estimations have to contextualised in terms of the hardware and software used:

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

55

• HW description: CPU, memory, HD performance, network, etc.
• SW configuration: operative system, etc.

All the analysis has to be done taking into account the context and all the external influence, such as
connection bandwidth throughput, hardware capabilities, other tasks running on the same machine,
and so on.

10.2 Load tests meaning for databases and webservices
These tests have the purpose of getting a performance measure of databases and web services. They are
performed with the scope of identifying the trend of the response time when the number of concurrency
request increases. In this way it can get a sort of scalability measure of the tested resource.

There are two main interesting measures: time measure and capacity measure. The first concerns the time
needed to complete the required task and it is estimated starting the measure when the request is sent and
ending when the response is received by the web service client. The second is about the maximum number of
simultaneous requests that can be satisfied without get crashed (with a certain level of quality of service).

Concerning databases, it has to be detected the so called reference fields, which are the most significant
fields of the databases in terms of number of tuples containing them.

Concerning web services, the most important performance measures are obtained executing the following
tests:

• Load Test. The web service is put through a growing number of requests. The number of requests
grows until the maximum tolerable number is reached. It is useful to understand the behaviour of the
web service put through an overload of requests while operating in its normal environment.

• Stress test. The web service is put through load of requests greater than the standard one. It is useful
to understand the behaviour of the web service if the number of request increase highly and
unexpectedly, till it reaches a great value (near the maximum tolerable number).

• Spike Test. The web service is put through cyclic peaks of requests. A repeated great number of
concurrency requests is useful to understand the web service behaviour when it is put through great
load of requests.

• Stability Test. The web service is put through a standard load of requests for a long time. This test is
useful to detect unexpected problems such as memory leaks.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

56

Typical trends of load and stress tests (number of requests per time)

A very common error while performing this kind of tests, is to consider only average values. It is a great
error because lower and higher values are not taken into account even if they could be very important. Here
is an example. Let us consider a web service which the target response time is 6 seconds and the average
response time, measured for 100 clients is about 5 seconds. At a first sight it seems to be a good behaviour,
but it is really not. Let us suppose the detected response times are distributed as follows:
- 40 clients after a time of 3 seconds
- 25 clients after a time of 4 seconds
- 15 clients after a time of 7 seconds
- 20 clients after a time of 9 seconds.
In this scenario there are 40 clients that are fully satisfied, 25 clients that are satisfied, 15 clients that are not
satisfied and 20 clients that are terribly unsatisfied. It is a situation quite different from considering only
average values. It has to be considered also that an average value of 5 seconds could be produced by
distribution times very different from this: 100 clients after 5 seconds (very improbable), 50 clients after 4
seconds and 50 clients after 6 seconds. Each of this distribution reflect a scenario that is very different from
the others and from the first one. Here is evident the importance of the lower and the higher values.

num. of requests per hour

1000 2000 3000 4000 5000

t
i

m
e

Average Value

Value Range
(min - max)

Lower and higher values for a distribution time scenario

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

57

Another important parameter that has to be taken into account to have a more accurate analysis is the
distribution. There can be various kind of distribution, but the most important for the web services measure
analysis is the number of users vs. response time for a fixed number of concurrent requests. It can be clearly
represented in a graph where are indicated the different number of users (y-axis) that are served in the
corresponding different times (x-axis), for a fixed number of concurrency requests. It is useful to understand
the response time performances of the web service. If a different number of concurrency requests will be
considered, the distribution trend will change. A suitable distribution is the one that groups small time values
for a great number of users.

Number of Users per Response Time for two fixed number of concurrent requests

(1000 req. brown coloured and 2000 req. orange coloured

Load and stress analysis can also be used to discover implementation bugs. Indeed if system resources are
monitored while performing the tests, it can be detected many bad behaviours of the web service such as
bottleneck and memory leaks. If the available memory decreases and the load of requests remains nearly
constant it will probably be a memory leak. If the number of requests increases and the system throughput
doesn’t augment it will probably be a bottleneck: the system reached its limit.

Memory leak and bottleneck conditions

It is not necessary to monitor all system resource: often it is sufficient to monitor the usage of base resources
as memory, cpu, disk and so on.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

58

10.3 AXMEDIS AXCS (DSI)

10.3.1 AXCS Registration and Certification database (DSI)

10.3.1.1 Table size / # of tuple
This test scenario checks the relationship about database size and the number of occurrences. Its reference
fields are often the primary keys of the tables or the reference field for all the tables in a given database. A
desirable behaviour leads to a linear growth of database size given a linear growth of reference fields. For
AXCS Registration and Certification database the independent fields are:

• AXUID – Number of occurrences of this field is directly related to b2busers, finalusers, genericusers,

toolproducers, distributors and creators tables size. We can assume that : #of(b2busers) + #of(finalusers)
+ #of(distributors) + #of(creators) > = #of(AXUID) where # is the number of tuple occurrences for each
table. AXUID is also indirectly related to CertTools table size.

• AXTID – Number of occurrences of this field are indirectly related to RegTools table size, and directly
related to CertTools table size.

Load tests on the database are performed following the reference given by these fields and so we can assume
to create three load tests:

• A test driven by AXUID occurrences, assuming fixed AXTID and RegTools size, that measures the
total size of database.

• A test driven by AXTID occurrences, assuming fixed AXUID, that measures the total size of the
database. This test measures the incidence that number of certified tools has on the whole size of
database

Graphics examples:

AXUID graphic

0

100

200

300

400

500

600

1 10 100 1000 10000

AXUID (# of occurrences)

R
eg

C
er

t S
iz

e
(M

B
)

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

59

AXTID graphic

0

100

200

300

400

500

600

1 10 100 1000 10000

AXTID (# of occurrences)

R
eg

C
er

t S
iz

e
(M

B
)

10.3.1.2 Search Time / # of tuple

This test scenario shows how performances in executing queries decrease when database size growth. These
kind of test is useful to determine the critical size of the database, beyond that size performances in query
managing could decrease even exponentially. In this scenario results may have substantially changes due to
the given query used to perform the test. A reasonable thing to do in projecting tests is to apply queries
actually used by those web services that uses the database. Since the web service doesn’t query directly the
database but uses a middleware to access data, it is not possible to report exactly the queries performed by
the web service to the database. Here are reported some significant queries to the AXCS Registration and
Certification database.

• Insertion of data into the tables for a B2BUser with some role (creator, distributor, collecting society,
tool producer)

• Insertion of data into the tables for a Final User
• Retrieval of data for a B2BUser (with some role) given the AXUID
• Retrieval of data for a Final User given the AXUID
• Retrieval of data for a some kind of user given some criteria (multiple retrieval)
• Retrieval of all data for all users (every row in genericuser table and related row in the other tables)

For each query presented the diagram is created showing # of occurrences of the target query vs. search time
used to retrieve results occurred.
Moreover these tests has to be repeated considering different database sizes; these could be modelled
keeping trace of previous test section results.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

60

Graphics examples:

0

5

10

15

20

25

30

35

40

1 10 100 1000

of occurencies

se
ar

ch
 ti

m
e

(m
s)

query1
query2

10.3.1.3 Single and Multiple access tests comparison
Another performance scenario that has to be considered is the case of multiple access, indeed in a concurrent
access scenario a decrease in DBMS performances is expected. To state how this reduction will affect
retrieve time for AXCS database queries is necessary to repeat search time tests in a multiple access
scenario, driven by number of concurrent access to the database.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

61

Graphics examples:
AXCS Registration and Certification Multiuser Query Graphic (1)

0

5

10

15

20

25

30

35

40

1 10 100 1000

of occurencies

se
ar

ch
 ti

m
e

(m
s)

query1: single user
query1: 2 users

AXCS Registration and Certification Multiuser Query Graphic (2)
Y = search time X = # simultaneous connections – fixed: # of occurrences

0

5

10

15

20

25

30

35

40

1 10 100 1000

of users

se
ar

ch
 ti

m
e

(m
s)

query1: 1 occurrence
query1: 100 occurrences

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

62

10.3.2 AXCS – ObjectsID (DSI)

10.3.2.1 Database size / # of tuple
This test scenario checks the relationship about database size and the number of tuples contained . ObjectsID
tables finds their reference field in AXOID field. This field is the primary reference for all test realized for
this database. Since AXOID field is the only reference measure, number of test is greatly reduced compared
with the previous section

Graphics examples:
AXOID graphic

0

100

200

300

400

500

600

1 10 100 1000 10000

AXOID (# of occurrences)

O
bj

ec
ts

ID
 S

iz
e

(M
B

)

10.3.2.2 Search Time / # of tuple

This test scenario shows how performances in executing queries decrease when database size growth. These
kind of test is useful to determine the critical size of the database, beyond that size performances in query
managing could increase even exponentially. In this scenario results may have substantially changes due to
the given query used to perform the test. A reasonable thing to do in projecting tests is to apply queries
actually used by those web services that uses the database. Since the web service doesn’t query directly the
database but uses a middleware to access data, it is not possible to report exactly the queries performed by
the web service to the database. Here are reported some significant queries to the AXCS ObjectsID database.

• Insertion of object related data into the objects table
• Retrieval of object related data from the objects table given an AXOID
• Retrieval of object related data from the objects table given some criteria (multiple retrieval)
• Retrieval of all data in the object table

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

63

For each query presented the diagram is created showing # of occurrences of the target query vs. search time
used to retrieve results occurred.
This kind of test gives information not only about behaviours of different queries but also about evolution in
search time when database increase its size, since a great number of occurrences as result for a query denotes
a large size of given database. To link number of occurrences to database size refers to table size/# of tuples
section.

Graphics examples:
Query graphic for AXCSObjectsID

0

5

10

15

20

25

30

35

40

1 10 100 1000

of occurencies

se
ar

ch
 ti

m
e

(m
s)

query1
query2

10.3.2.3 Single and Multiple access tests comparison
Another performance scenario that has to be considered is the case of multiple access, indeed in a concurrent
access scenario a decrease in DBMS performances is expected. To state how this reduction will affect
retrive time for AXCS database queries is necessary to repeat search time tests in a multiple access scenario,
driven by number of concurrent access to the database. One diagram for each query will be created as a
result of this kind of measures.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

64

Graphics examples:
AXCSObjectsID Multiuser Query Graphic (1)

0

5

10

15

20

25

30

35

40

1 10 100 1000

of occurencies

se
ar

ch
 ti

m
e

(m
s)

query1: single user
query1: 2 users

AXCSObjectsID Multiuser Query Graphic (2)
Y = search time X = # simultaneous connections – fixed: # of occurrences

0

5

10

15

20

25

30

35

40

1 10 100 1000

of users

se
ar

ch
 ti

m
e

(m
s)

query1: 1 occurrence
query1: 100 occurrences

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

65

10.3.3 AXCS – Accounting (DSI)

10.3.3.1 Database size / # of tuple
This test scenario checks the relationship about database size and the number of tuples contained.

Accounting tables finds their reference field in LogID field. This field is the primary reference for all test
realized for this database. To consider that LogID in table actionlog and in table supervisorinputdata are
different instances of action log. Thus database size is directly dependent from LogID number of tuple the
related graphic will be always of type : DBsize= A* (# of LogID-tuple)
where A is the average size of a LogID-tuple. The graph of this database will result something like this:

Graphics examples:
LogId graphic:

1

10

100

1000

10000

100000

1 10 100 1000 10000

LogID (# of occurrences)

AX
CS

Ac
co

un
tin

g
Si

ze
 (M

B)

10.3.3.2 Search Time / # of tuple

This test scenario shows how performances in executing queries decrease when database size growth. These
kind of test is useful to determine the critical size of the database, beyond that size performances in query
managing could increase even exponentially. In this scenario results may have substantially changes due to
the given query used to perform the test. A reasonable thing to do in projecting tests is to apply queries
actually used by those web services that uses the database. For AXCSAccounting database these queries are:

• Insertion of log related data into the actionlog table
• Retrieval of log related data from the actionlog table given a LogID
• Retrieval of log related data from the actionlog table given an AXOID (multiple retrieval)
• Retrieval of log related data from the actionlog table given an AXUID (multiple retrieval)
• Retrieval of log related data from the actionlog table given some criteria (multiple retrieval)
• Retrieval of all data in the actionlog table

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

66

For each query presented the diagram is created showing # of occurrences of the target query vs. search time
used to retrieve results occurred.
This kind of test gives information not only about behaviours of different queries but also about evolution in
search time when database increase its size, since a great number of occurrences as result for a query denote
a large size of given database. To link number of occurrences to database size refers to table size/# of tuples
section.

Graphics examples:
Query graphic for AXCSAccounting

0

5

10

15

20

25

30

35

40

1 10 100 1000

of occurencies

se
ar

ch
 ti

m
e

(m
s)

query1
query2

10.3.3.3 Single and Multiple access tests comparison
Another performance scenario that has to be considered is the case of multiple access, indeed in a concurrent
access scenario a decrease in DBMS performances is expected. To state how this reduction will affect
retrive time for AXCS database queries is necessary to repeat search time tests in a multiple access scenario,
driven by number of concurrent access to the database. One diagram for each query will be created as a
result of this kind of measures.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

67

Graphics examples:
AXCSAccounting Multiuser Query Graphic (1)

0

5

10

15

20

25

30

35

40

1 10 100 1000

of occurencies

se
ar

ch
 ti

m
e

(m
s)

query1: single user
query1: 2 users

AXCSAccounting Multiuser Query Graphic (2)
Y = search time X = # simultaneous connections – fixed: # of occurrences

0

5

10

15

20

25

30

35

40

1 10 100 1000

of users

se
ar

ch
 ti

m
e

(m
s)

query1: 1 occurrence
query1: 100 occurrences

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

68

10.3.4 Users Registration Web Service (DSI)
This web services concerns about users registration and is linked to the performances of Registration and
Certification database.

10.3.4.1 Time Tests\
Time tests concerns the average times of response per number of threads

Mean Response Time for Web Services

0

200

400

600

800

1000

1200

1400

1 10 100 1000 10000 100000

Concurrent Threads

Ti
m

e
to

 S
er

ve
 (m

s)

To obtain the web service response time, it has to be considered also the performances of the related
database, the AXCS Registration and Certification database (please see the pertinent section). Each thread is
associated to an instance of the web service which performs one or more queries over the database and some
data processing. Web service time response results as:

∑i (QryTimei(sizeofDB)) + dpt + nt

where
QryTime(sizeofDB) is the query time depending on the size of the db
i is the number of query
dpt is the data processing time
nt is the network time depending on the network infrastructure

It has to be noticed that dpt value will be significantly smaller than QryTime(sizeofDB) value. The nt value
depends on the network infrastructure goodness.

10.3.4.2 Capacity Tests
The meaning of the following tests has been introduced at the beginning of the current section.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

69

Load test: x = number of request, y = time

Expected trend for load test (number of requests per time)

Stress test: x = number of request, y = time

Spike test: x = number of request, y = time

Stability test: x = number of request, y = time

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

70

10.3.4.3 Concurrency Tests

X = Response time, Y = number of users for a fixed number of concurrency request.

Number of Users per Response Time for fixed number of concurrent requests

(1000 req. brown coloured and 2000 req. orange coloured)

10.3.5 Objects Registration Web Service (DSI)
This web services concerns about object metadata registration and is linked to the performances of ObjectID
database.

10.3.5.1 Time Tests\
Time tests concerns the average times of response per number of threads

Mean Response Time for Web Services

0

200

400

600

800

1000

1200

1400

1 10 100 1000 10000 100000

Concurrent Threads

Ti
m

e
to

 S
er

ve
 (m

s)

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

71

To obtain the web service response time, it has to be considered also the performances of the related
database, the Objects ID database (please see the pertinent section). Each thread is associated to an instance
of the web service which performs one or more queries over the database and some data processing. Web
service time response results as:

∑i (QryTimei(sizeofDB)) + dpt + nt

where
QryTime(sizeofDB) is the query time depending on the size of the db
i is the number of query
dpt is the data processing time
nt is the network time depending on the network infrastructure

It has to be noticed that dpt value will be significantly smaller than QryTime(sizeofDB) value. The nt value
depends on the network infrastructure goodness.

10.3.5.2 Capacity Tests
The meaning of the following tests has been introduced at the beginning of the current section.

Load test: x = number of request, y = time

Expected trend for load test (number of requests per time)

Stress test: x = number of request, y = time

Spike test: x = number of request, y = time

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

72

Stability test: x = number of request, y = time

10.3.5.3 Concurrency Tests

X = Response time, Y = number of users for a fixed number of concurrency request.

Number of Users per Response Time for fixed number of concurrent requests

(1000 req. brown coloured and 2000 req. orange coloured)

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

73

10.3.6 Reporting Web Service (DSI)
This web services concerns about object metadata registration and is linked to the performances of
Accounting database.

10.3.6.1 Time Tests\

Time tests concerns the average times of response per number of threads

Mean Response Time for Web Services

0

200

400

600

800

1000

1200

1400

1 10 100 1000 10000 100000

Concurrent Threads

Ti
m

e
to

 S
er

ve
 (m

s)

To obtain the web service response time, it has to be considered also the performances of the related
database, the AXCS Accounting database (please see the pertinent section). Each thread is associated to an
instance of the web service which performs one or more queries over the database and some data processing.
Web service time response results as:

∑i (QryTimei(sizeofDB)) + dpt + nt

where
QryTime(sizeofDB) is the query time depending on the size of the db
i is the number of query
dpt is the data processing time
nt is the network time depending on the network infrastructure

It has to be noticed that dpt value will be significantly smaller than QryTime(sizeofDB) value. The nt value
depends on the network infrastructure goodness.

10.3.6.2 Capacity Tests
The meaning of the following tests has been introduced at the beginning of the current section.

Load test: x = number of request, y = time

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

74

Expected trend for load test (number of requests per time)

Stress test: x = number of request, y = time

Spike test: x = number of request, y = time

Stability test: x = number of request, y = time

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

75

10.3.6.3 Concurrency Tests

X = Response time, Y = number of users for a fixed number of concurrency request.

Number of Users per Response Time for fixed number of concurrent requests

(1000 req. brown coloured and 2000 req. orange coloured)

10.3.7 Statistics Web Service (DSI)
This web services concerns about object metadata registration and is linked to the performances of
Accounting database.

10.3.7.1 Time Tests\
Time tests concerns the average times of response per number of threads

Mean Response Time for Web Services

0

200

400

600

800

1000

1200

1400

1 10 100 1000 10000 100000

Concurrent Threads

Ti
m

e
to

 S
er

ve
 (m

s)

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

76

To obtain the web service response time, it has to be considered also the performances of the related
database, the AXCS Accounting database (please see the pertinent section). Each thread is associated to an
instance of the web service which performs one or more queries over the database and some data processing.
Web service time response results as:

∑i (QryTimei(sizeofDB)) + dpt + nt

where
QryTime(sizeofDB) is the query time depending on the size of the db
i is the number of query
dpt is the data processing time
nt is the network time depending on the network infrastructure

It has to be noticed that dpt value will be significantly smaller than QryTime(sizeofDB) value. The nt value
depends on the network infrastructure goodness.

10.3.7.2 Capacity Tests
The meaning of the following tests has been introduced at the beginning of the current section.

Load test: x = number of request, y = time

Expected trend for load test (number of requests per time)

Stress test: x = number of request, y = time

Spike test: x = number of request, y = time

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

77

Stability test: x = number of request, y = time

10.3.7.3 Concurrency Tests

X = Response time, Y = number of users for a fixed number of concurrency request.

Number of Users per Response Time for fixed number of concurrent requests

(1000 req. brown coloured and 2000 req. orange coloured)

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

78

10.3.8 AXMEDIS AXCV and AXS Web Services (FUPF)

This web service concerns user and tool certification and verification and retrieval of protection information
form AXCS database.

10.3.8.1 Time Tests
Time tests concerns the average times of response per number of threads

Mean Response Time for Web Services

0

200

400

600

800

1000

1200

1400

1 10 100 1000 10000 100000

Concurrent Threads

Ti
m

e
to

 S
er

ve
 (m

s)

To obtain the web service response time, it has to be considered also the performances of the related RegCert
and Accounting databases. Each thread is associated to an instance of the web service which performs one or
more queries over the database and some data processing. Web service time response results as:

∑i (QryTimei(sizeofDB)) + dpt + nt

where
QryTime(sizeofDB) is the query time depending on the size of the db
i is the number of query
dpt is the data processing time
nt is the network time depending on the network infrastructure

It has to be noticed that dpt value will be significantly smaller than QryTime(sizeofDB) value. The nt value
depends on the network infrastructure goodness.

10.3.8.2 Capacity Tests
The meaning of the following tests has been introduced at the beginning of the current section.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

79

Load test: x = number of request, y = time

Expected trend for load test (number of requests per time)

Stress test: x = number of request, y = time

Spike test: x = number of request, y = time

Stability test: x = number of request, y = time

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

80

10.3.8.3 Concurrency Tests

X = Response time, Y = number of users for a fixed number of concurrency request.

Number of Users per Response Time for fixed number of concurrent requests

(1000 req. brown coloured and 2000 req. orange coloured)

10.4 AXMEDIS PMS (FUPF)

10.4.1 AXMEDIS PMS Server License database (FUPF)

10.4.1.1 Database size / # of tuple
This test scenario checks the relationship about database size and the number of tuples contained. License
database tables find their reference field in LicenseID field. This field is the primary reference for all test
realized for this database.
Database size is directly dependent from LicenseID number of tuple. The related graphic will be always of
type : DBsize= A* (# of LicenseID-tuple) where A is the average size of a LicenseID-tuple. The graph of
this database will result something like this:

Graphics examples:
LogId graphic:

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

81

1

10

100

1000

10000

100000

1 10 100 1000 10000

LicenseID (# of occurrences)

Li
ce

ns
e

D
at

ab
as

e
 S

iz
e

(M
B

)

10.4.1.2 Search Time / # of tuple

This test scenario shows how performance in executing queries decreases when database size grows. These
kind of tests are useful to determine the critical size of the database, beyond which size performances in
query managing could increase even exponentially. In this scenario, results may experience substantial
changes depending on the query used to perform the test. A reasonable thing to do in projecting tests is to
apply the same kind of queries that are used by those web services that interact with the database. For
License database, these queries are:

• Insertion of License related data into the License database
• Retrieval of License related data from the License database given a LicenseID
• Retrieval of Licenses related data from the License database given an AXUID, action and AXOID

(multiple retrieval)

For each of the previous queries, a diagram will be created showing the number of occurrences of the target
query vs. the search time used to retrieve the results.
This kind of test gives information not only about behaviours of different queries but also about evolution in
search time when database increases its size, since a great number of occurrences as result for a query denote
a large size of given database. To link number of occurrences to database size refer to “table size/# of tuples
section”.

Graphics examples:
Query graphic for AXCSAccounting

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

82

0

5

10

15

20

25

30

35

40

1 10 100 1000

of occurencies

se
ar

ch
 ti

m
e

(m
s)

query1
query2

10.4.1.3 Single and Multiple access tests comparison
Another performance scenario that has to be considered is the case of multiple access. In a concurrent access
scenario a decrease in DBMS performances is expected. To state how this reduction will affect the retrieval
time for License database queries, it is necessary to repeat search time tests in a multiple access scenario,
driven by the number of concurrent access to the database. One diagram for each query will be created as a
result of this kind of measures.

Graphics examples:
License Database Multiuser Query Graphic (1)

0

5

10

15

20

25

30

35

40

1 10 100 1000

of occurencies

se
ar

ch
 ti

m
e

(m
s)

query1: single user
query1: 2 users

License Database Multiuser Query Graphic (2)

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

83

Y = search time
X = # simultaneous connections – fixed: # of occurrences

0

5

10

15

20

25

30

35

40

1 10 100 1000

of users

se
ar

ch
 ti

m
e

(m
s)

query1: 1 occurrence
query1: 100 occurrences

10.4.2 AXMEDIS PMS Server Web Service (FUPF)

This web service concerns user authorisation and protection information retrieval through AXCS.

10.4.2.1 Time Tests
Time tests concerns the average times of response per number of threads

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

84

Mean Response Time for Web Services

0

200

400

600

800

1000

1200

1400

1 10 100 1000 10000 100000

Concurrent Threads

Ti
m

e
to

 S
er

ve
 (m

s)

To obtain the web service response time, it has to be considered also the performances of the related License
database and AXCS-AXCV and AXCS-AXS web services. Each thread is associated to an instance of the
web service which performs one or more queries over the database and some data processing. Web service
time response results as:

∑i (QryTimePMSi(sizeofPMSDB)) + dptPMS + ntPMS + (QryTimeAXCSi(sizeofAXCSDB)) + dptAXCS +
ntAXCS

where
QryTimePMS(sizeofDB) is the query time against the PMS db depending on the size of the db
QryTimeAXCS(sizeofDB) is the query time of AXCV and/or AXS against AXCS db depending on the size of
the db
i is the number of query
dptPMS is the PMS data processing time
dptAXCS is the AXCS AXCV and/or AXS data processing time
ntPMS is the PMS network time depending on the network infrastructure
ntAXCS is the AXCS AXCV and/or AXS network time depending on the network infrastructure

It has to be noticed that dpt value will be significantly smaller than QryTime(sizeofDB) value for both PMS
and AXCS. The nt value depends on the network infrastructure goodness.

10.4.2.2 Capacity Tests
The meaning of the following tests has been introduced at the beginning of the current section.

Load test: x = number of request, y = time

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

85

Expected trend for load test (number of requests per time)

Stress test: x = number of request, y = time

Spike test: x = number of request, y = time

Stability test: x = number of request, y = time

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

86

10.4.2.3 Concurrency Tests

X = Response time, Y = number of users for a fixed number of concurrency request.

Number of Users per Response Time for fixed number of concurrent requests

(1000 req. brown coloured and 2000 req. orange coloured)

10.5 AXMEDIS Database (EXITECH, FUPF)
In this section some performance figures for the Database related web services will be reported. In particular
we will have 3 sections: (i) Loader, (ii) Saver, and (iii) Query.
It should be noted that Loader, Saver and Query are factory services or locally installed services in a Kiosk
for example and therefore they have not a large number of concurrent users such as public webservice as
Registration and other AXCS services. This consideration will be taken in account in defining the figures.

10.5.1 Loader Web Service [EXITECH]

Loader Web Service is capable to return the URL to be downloaded on the basis of a given AXOID and
version. Its performance such as for all the database query are mainly affected by the number of item to be
checked. The reference parameter will be the number of record in the VersionHistory Table that collects all
the versions of all the objects.
The tests will be performed by fixing the number of records in this table and issuing a concurrent number of
requests and registering the mean response time with confidence interval for the requests.

10.5.1.1 Response Time for Number of connection
In this metric the number of records in the Version History is fixed and ve will obtain different figures for
each number of records:
The execution of the test will be:

• Fill the DB with the fixed number of record
• Execute a test with a fixed number of concurrent connection
• Register the mean response time with respect to the whole number of connection
• Repeat with a different number of concurrent connections
• Repeat all the previous for a different number of records

The aim is to obtain a graph like the following where on the X we have the number of connection and on the
Y the mean response time with confidence interval. Different curves for different number of records will be
obtained.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

87

For this measure quite all the test reported in the introduction can be executed.
Typical range for connection can be from 10 to 200.

10.5.2 Saver Web Service [EXITECH]

Saver Web Service is capable to index in the database an object provided as a file. Its performance such as
for all the database software are affected by the number of item to be inserted and read, but in this case the
main parameter to be considered is the size of the file in order to verify the impact of the file size on the
indexing process. The reference parameter will be therefore the size of the file submitted supposing that the
file is already in the filesystem and not remotely located, since a remote connection insert a noise that is not
predictable.
The tests will be performed by fixing the size of the files and issuing a concurrent number of requests and
registering the mean response time with confidence interval for the requests. It should be noted that each
connection should store a different file in order to measure maximum effort.

10.5.2.1 Response Time for Number of connection
In this metric the size of the file is fixed and we will obtain different figures for each size:
The execution of the test will be:

• Fill the file size
• Execute a test with a fixed number of concurrent connection
• Register the mean response time with respect to the whole number of connection
• Repeat with a different number of concurrent connections
• Repeat all the previous for a different file size

The aim is to obtain a graph like the following where on the X we have the number of connection and on the
Y the mean response time with confidence interval. Different curves for different number of records will be
obtained.

Response Time

DB Size= X records

DB Size= 2X records

Number of Connection

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

88

For this measure quite all the test reported in the introduction can be executed.
Typical range for connection can be from 10 to 100, while file size should be 100K, 1M, 10Mb, 100Mb

10.5.3 Quey Support Web Service for Metadata [EXITECH]

In this section the query Support web service for AXDB will be tested without considering the time of
distributing the query by the MainQuery Support and collecting results, since these processes are affected by
network time can be not predictable. Query Support for AXDB is capable to retrieve the AXODI that satisfy
certain requests in terms of metadata and rights. Performance will be measured for metadata only in the
section.
The main factors that affects the query are:
- number of record in the database (say number of records in the Did table);
- Type of the query that can be of three different typologies:

- AXINFO only
- AXINFO + DCMI
- AXINFO + DCMI + OPTIONAL FIELDS

The tests will be performed by fixing the number of records in the DID table and issuing a concurrent
number of requests and registering the mean response time with confidence interval for the requests. It
should be noted that each connection should store a different file in order to measure maximum effort.
This process has to be repeated for all the query types identified.

10.5.3.1 Response Time for Number of connection
In this metric the number of records in the DID table is fixed and we will obtain different figures for each
size. For each size dirrerent type of queries are issued:
The execution of the test will be:

• Fill the file size
• Execute a test with a fixed number of concurrent connection
• Register the mean response time with respect to the whole number of connection
• Repeat with a different number of concurrent connections

Response Time

File Size= 100Kb

File Size= 1Mb

Number of Connection

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

89

• Repeat all the previous for a different file size
• Repeat all the previous for a different query type

The aim is to obtain a graph like the following where on the X we have the number of connection and on the
Y the mean response time with confidence interval. Different curves for different number of records will be
obtained. One graph for each query type will be obtained.

For this measure quite all the test reported in the introduction can be executed.
Typical range for connection can be from 10 to 1000.

10.5.4 Query Support Web Service for PAR [FUPF]

This web service concerns query support for PARs. It uses the same License database as PMS Server, so
refer to PMS License database section for the database tests.

10.5.4.1 Time Tests
Time tests concern the average times of response per number of threads

Response Time

DID table size = X records

DID table size = 2X records

Number of Connection

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

90

Mean Response Time for Web Services

0

200

400

600

800

1000

1200

1400

1 10 100 1000 10000 100000

Concurrent Threads

Ti
m

e
to

 S
er

ve
 (m

s)

To obtain the web service response time, it has to be considered also the performances of the related License
database. Each thread is associated to an instance of the web service which performs one or more queries
over the database and some data processing. Web service time response results as:

∑i (QryTimePMSi(sizeofPMSDB)) + dptPMS + ntPMS
where
QryTimePMS(sizeofDB) is the query time against the PMS db depending on the size of the db
i is the number of query
dptPMS is the PMS data processing time
ntPMS is the PMS network time depending on the network infrastructure

It has to be noticed that dpt value will be significantly smaller than QryTime(sizeofDB) value. The nt value
depends on the network infrastructure goodness.

10.5.4.2 Capacity Tests
The meaning of the following tests has been introduced at the beginning of the current section.

Load test: x = number of request, y = time

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

91

Expected trend for load test (number of requests per time)

Stress test: x = number of request, y = time

Spike test: x = number of request, y = time

Stability test: x = number of request, y = time

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

92

10.5.4.3 Concurrency Tests

X = Response time, Y = number of users for a fixed number of concurrency request.

Number of Users per Response Time for fixed number of concurrent requests

(1000 req. brown coloured and 2000 req. orange coloured)

10.6 AXMEDIS Content Processing GRID (DSI)
The performance analysis to be performed on the GRID infrastructure implies a set of tests and measures on
different tools:

• AXMEDIS Rule Scheduler
• AXMEDIS Rule Executor, or Engine

Since the Content Processing GRID works a service provider, it can be analysed in different work conditions
by preforming:

• Load Test. The number of rules to be run grows until the maximum tolerable number is reached. It
is useful to understand the behaviour of the web service put through an overload of requests while
operating in its normal environment.

• Stress test. The GRID is put through load of requests greater than the standard one. It is useful to
understand the behaviour when the number of request increase highly and unexpectedly, till it
reaches a great value (near the maximum tolerable number).

• Spike Test. The GRID is put through cyclic peaks of requests. A repeated great number of
concurrency requests is useful to understand the behaviour when it is put through great load of
requests.

• Stability Test. The GRID is put through a standard load of requests for a long time. This test is
useful to detect unexpected problems such as memory leaks.

For each AXCP tool, different analysis can be performed as described in the following sections.

10.6.1 AXMEDIS Rule Scheduler
For each service of the AXMEDIS Rule Scheduler a precise analysis is needed:

• Time to service (from the Web Service) in different conditions of workload, service in terms of
considering the rule to be scheduled.

• Reaction time from the Node (alarm or message) in different conditions up to the Maximum number
of nodes manageable

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

93

• Reliability of connections among nodes and scheduler

10.6.2 AXMEDIS Rule Executor, or Engine
For each service of the Rule Executor/Engine a precise performance analysis is needed:

• Precision in maintaining the promise about the max % of workload
• Precision in maintaining the promise about the max % of the average workload
• Reaction time in leaving the CPU in the occurrence of an extreme need of the user.
• Measuring of the maximum:

o HD space
o MIPS accessible
o Number of nodes
o Number of rules manageable
o Size of the rule in terms of code
o Size of the rule in terms of memory space

• Estimation of precision for a CPU capability model

10.7 AXMEDIS Content Processing Algorithms (DSI, FHGIGD)
For each of the algorithms proposed the characterisation is needed to have a measure of the CPU time
needed to execute the algorithm on a given resource. This means that the main parameters that influence the
execution time of the algorithms have to be determined:

• Size of the file, digital resource
• Duration of the file: audio, and video
• X-size and Y-size, for images and video
• Sample rate for audio and video
• Bit per pixel, for images and video
• Bit per sample, for audio
• Time to disk access
• CPU performance
• Memory usage
• Etc.

The identification of the main parameters can be considered completed if the trend of the execution time as a
function of them is linear. Thus the estimation of the K factor is needed. More complex and elaborated
models can be defined in a second phase.

10.8 AXMEDIS P2P Server for queries (EXITECH)
Since in the P2P the AXDB Query support will be adopted, the same metrics reported in section 10.5.3 can
be used.

10.9 AXMEDIS P2P AXEPTool and AXMEDIA Tools (DSI, HEXAGLOBE)
For the assessment of the performance capabilities the typical measures of the P2P can be used.

• The download time as a function of the number of sources and of the size of the file and of the
population of peers.

• The time to restart the flow of data chunks of an interrupted download
• The time to publishing an Object.

10.9.1 AXMEDIS P2P Tracker (DSI, HEXAGLOBE)

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

94

For the assessment of the performance capabilities the typical measures of the P2P can be used.
• Time to provide a bittorrent information as a function of the number of bittorrent files in the Tracker

Server
• Time to update a bittorrent information as a function of the number of bittorrent files in the Tracker

Server
• Time to remove a bittorrent information as a function of the number of bittorrent files in the Tracker

Server
• Time to provide a bittorrent information as a function of the number of simultaneous requests at the

Tracker Server
• Time to update a bittorrent information as a function of the number of simultaneous requests at the

Tracker Server
• Time to remove a bittorrent information as a function of the number of simultaneous requests at the

Tracker Server

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

95

11 Guidelines for Video Demonstration acquisition (DSI: Nicola Mitolo)

This chapter specify all options used to capture the screen using the software BB FlashBack that has been

selected by the partners to realize the video demonstrations of AXMEDIS tools.

(http://www.bbsoftware.co.uk/BBFlashBack.aspx)

11.1 How to record with BBFlashBack Recorder

1) After the installation start “BB FlashBack Recorder” (or right-click on the Systray on the BB

FlashBack Recorder icon, in the right side of the Windows toolbar);

2) Click on “Record a new movie”;

3) In the next windows select the folder and the filename; select the “Whole screen” option. Untick the

“Show recorder toolbar” in the “Recorder Options” box and press the “More Options…” button

(Fig1).

 Fig. 1

4) In the BB FlashBack Recorder Options window, select the “Display” tab and tick the following

options (Fig. 2):

• Change resolution while recording

• Video Mode: 800x600

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

96

Fig. 2

5) In the “To tidy up the movie” option box (Fig. 3):

• Remove BB FlashBack Recorder windows and menus from movie

• Don’t show BB FlashRecorder icon during recording

• Hide desktop icons

Fig. 3

6) Select the Sound tab (Fig. 4) and:

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

97

• Select the “Recorded sound” option

• Select “Microphone” as Sound Source (correct the Rec Level if necessary)

• In the Sound Format box select “44.1kHz”, Stereo and Use MP3 Compression “High Quality”

The audio can be also recorded in a second moment, after the screen recording, using an audio recording

professional software as Adobe Audition or the freeware Audacity (http://audacity.sourceforge.net/). In this

case it is very important to have the screen captured video and the audio perfectly synchronized.

Fig 4

7) Select the “Hotkey” tab and set hotkeys for the “Record” and for the “Stop recording” functions

(Fig.5);

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

98

Fig. 5

8) Press “OK” in the “Options” windows and press “Record” (Fig. 6) to start the recording; also it is

possible to start the recording using the appropriate hotkey.

Fig. 6

9) During the recording all icons in the desktop will be hided. Press the key you set to stop the

recording. The window in Fig. 7 will appear. Press “Yes” and the BB FlashBach Player will start

immediately. In this manner you can check if the recorded movie is ok.

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

99

Fig. 7

Please, send the final movie in .fbr format to mitolo@dsi.unifi.it

11.2 Structure of video presentations

• AXMEDIS Presentation:
o AXMEDIS General Architecture
o Examples of AXMEDIS Framework and tool Exploitation
o Part 1 - video on General Overview
o Part 2 - video on The Creation of the Object
o Part 3 - video on Content Processing, Database and Query Support
o Part 4 - video on Licensing
o Part 5 - video on Protection aspects and the PandP Editor

• AXMEDIS Editors the authoring tools:
o AXMEDIS Factory
o video on AXMEDIS Editor (DSI: Bellini)

� Creating an New Object
� Creating a nested Object (an object that contains other objects inside, difference

layers)
� Loading and Saving an object
� Navigating in the object structure (AXMEDIS model)
� Navigating in the object structure (MPEG-21 model)
� The AXMEDIS Information, AXInfo
� Metadata Editing and view
� Metadata Mapper Editor (UNIVLEEDS)
� Protection Information editing and view (FHGIGD)
� Protecting an object and posting data on AXCS (FHGIGD)
� Observing/interacting with Protected Objects
� License Editing and view (FUPF)
� Potentially Available Rights Editing and view (FUPF)
� Posting License on the PMS Server (FUPF)
� Application of Content Processing Algorithms
� Object Behavior definition (EPFL)
� Object Behavior execution and play (EPFL)
� Connection to the database, make a query and selection
� Using Automatic Formatting Facilities
� Using Fingerprint Facilities
� Using Adaptation Facilities
� Using Watermark Facilities (FHGIGD)
� Using Device Profile Facilities (IRC)
� Using Ringtone Facilities (IRC)
� SMIL Editor (EPFL)

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

100

� Preprocessor (EPFL)
� Etc.

• AXMEDIS Players: (DSI)
o AXMEDIS Player for Windows (DSI)

� Video Player
� Image Player
� Document and HTML Player (SEJER)
� Audio Player
� OSMO player (EPFL)

o AXMEDIS Player as Active X for Internet Explorer (DSI)
o AXMEDIS player as Plug in for Mozilla (SEJER)
o video on AXMEDIS PDA Player (EPFL)

• AXMEDIS Protection Tools Area: (FUPF)
o video on License Editor
o video on License to Contract and Vice versa
o video on Grant Authorization
o verification of a license against PMS server
o Protection Information Editor

• AXMEDIS Content Processing Tools Area, AXCP Area:
o video on AXMEDIS Rule Editor and debugger (DSI: Bruno)

� Loading and save a Rule
� Creating a new Rule
� Executing a Rule
� Debugging a Rule
� Using content processing algorithms into rules
� Accessing to AXMEDIS object elements
� Manipulating AXMEDIS object metadata
� Making queries and selections
� Accessing to AXMEDIS database
� Moving objects among different AXMEDIS databases
� Working on Licenses
� Working on Protection Information
� Protecting Objects
� Loading and saving objects on disk
� Loading and saving objects via FTP
� Accessing to ODBC databases
� Accessing to WEBDAV databases
� Accessing to HTTP information
� Exploiting Web Servces WSDL

o AXMEDIS GRID
o AXMEDIS Stand alone nodes

• AXMEDIS Content Processing Algorithms and AXCP Plugins:
o Adaptation Algorithms

� Video on Audio adaptation (EPFL)
� Video on Ringtones adaptation (IRC)
� Video on Video adaptation (FHGIGD)
� Video on Images adaptation (DSI)
� Video on Documents adaptation (DIPITA)
� Video on Metadata adaptation (UNIVLEEDS)

DE5.1.3.1 – AXMEDIS Framework Guidelines

AXMEDIS project

101

� Video on License adaptation (FUPF)
o Fingerprint Algorithms

� video on Audio fingerprint (EPFL)
� video on Video fingerprint (FHGIGD)
� video on Images fingerprint (FHGIGD)
� Video on general data fingerprint (FHGIGD)

o Extractor of Descriptors Algorithms
� video on Document descriptors extractor (DIPITA)
� Video on Audio descriptors (EPFL)
� Video on Video descriptors (FHGIGD)
� Video on Images descriptors (FHGIGD)

o Watermarking Algorithms
� Video on Audio watermark (FHGIGD)
� ...

o other Algorithms:
� ...

• AXMEDIS Database and query Support Area:
o video on AXMEDIS Database Administrative Interface
o video on AXMEDIS Query Support (EXITECH)

� load and save of objects
� make a query
� get query results
� navigation in the database

o AXMEDIS Selection Editor (DSI)

• AXMEDIS Publication Area: (UNIVLEEDS)
o AXEPTool P2P B2B Tool
o AXMEDIS Tool, P2P for Consumers
o AXMEDIS Program and Publication Tools, video on Program and Publication

• AXMEDIS Reporting, Accounting (EXITECH):
o Using the Action Logs about the exploitation of rights
o Video on CAMART:………….
o video on AXMEDIS Accounting Information Integrator, Administrative collection of data

• AXMEDIS Certifier and Supervisor DSi: Martini, Chellini):
o video on Administrative User Interface

� ……..

• AXMEDIS Workflow Tools area (IRC: Badii):
o Open Flow Based Management
o video on Workflow integration - 1
o video on Workflow integration - 2

