
DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

1

AXMEDIS
Automating Production of Cross Media Content

for Multi-channel Distribution
www.AXMEDIS.org

DE3.1.2A
Framework and Tools Specifications

(General Aspects and Model)
Version: 2.1
Date: 17/03/2005
Responsible: DSI
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: Private
Visible to User Groups: NO
Visible to Affiliated: NO
Visible to the Public: NO.

Deliverable Number: DE3.1.2, Part A
Contractual Date of Delivery: January 2005
Actual Date of Delivery: 17 march 2005
Title of Deliverable: Document
Work-Package contributing to the Deliverable: WP3.1
Task contributing to the Deliverable: WP3, WP2
Nature of the Deliverable: report
Author(s): DSI, EPFL, FUPF, ILABS, CRS4, FHGIGD, DIPITA, IRC, XIM, HP, EUTELSAT,
SEJER, TISCALI, COMVERSE

Abstract: This document contains part A of the specification for the first 18 months of the AXMEDIS project. In this
part the general aspects are reported like the specification guidelines, the implementation guidelines, the general
architecture. This part also reports the specification of the model used for AXMEDIS objects, both in memory and as
MPEG21 digital item and for the specific metadata associated with the content and with the whole object. It also reports
the specification of the tools strictly related to AXMEDIS objects management like the AXMEDIS Editor and the
AXMEDIS Object Manager as well as the tools for content protection management.
Keyword List: model, metadata, MPEG21, protection, DRM

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

2

AXMEDIS Copyright Notice
The following terms (including future possible amendments) set out the rights and obligations licensee will be requested
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by
any other means.

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT.

1. DEFINITIONS

i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the
document have been accepted.

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a
Document.

iii. "Licensor" is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in
terms of companies and/or associations, see www.axmedis.org

iv. "Document" means the information contained in any electronic file, which has been published by the
Licensor’s as AXMEDIS official document and listed in the web site mentioned above or available by any
other means.

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.

2. LICENCE

1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to
present terms and conditions (the Licence) for the parts that are own and proprietary property the of
AXMEDIS consortium or its members.

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and
conditions.

3. TERM AND TERMINATION

1. Granted Licence shall commence on Acceptance Date.

2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions
of this Licence.

3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of
termination.

4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the
accessed Copyright.

5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or
obligations, shall survive termination of this Licence and shall continue in full force and effect.

6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it
as stated in the document itself will remain in force for a period of 5 years after license issue date or the
period stated in the document whichever is the longer.

4. USE

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:

i. remove this Copyright Notice on a Document or any of its reproduction in any form in which those
may be achieved;

ii. change or remove the title of a Document;

iii. use all or any part of a Document as part of a specification or standard not emanating from the
Licensor without the prior written consent of the Licensor; or

iv. do or permit others to do any act or omission in relation to a Document which is contrary to the
rights and obligations as stated in the present license and agreed with the Licensor

5. COPYRIGHT NOTICES

1. All Works shall bear a clear notice asserting the Licensor’s Copyright. The notice shall use the wording
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.

6. WARRANTY

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

3

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.

2. For the avoidance of doubt the licensee should be aware that although the Copyright in the
documents is given under warranty this warranty does not extend to the content of any document
which may contain references or specifications or technologies that are covered by patents (also
of third parties) or that refer to other standards. AXMEDIS is not responsible and does not
guarantee that the information contained in the document is fully proprietary of AXMEDIS
consortium and/or partners.

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of
action which the Licensor may have, at all times keep the Licensor fully and effectively
indemnified against all and any liability (which liability shall include, without limitation, all
losses, costs, claims, expenses, demands, actions, damages, legal and other professional fees and
expenses on a full indemnity basis) which the Licensor may suffer or incur as a result of, or by
reason of, any breach or non-fulfilment of any of his obligations in respect of this Licence.

7. INFRINGEMENT

1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the
Copyright which comes to licensee notice and shall, at the Licensor’s request and expense, do all such
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.

8. GOVERNING LAW AND JURISDICTION

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.

2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.

Please note that:

• You can become affiliated with AXMEDIS. This will give you the access to a huge amount
of knowledge, information and source code related to the AXMEDIS Framework. If you are
interested please contact P. Nesi at nesi@dsi.unifi.it. Once affiliated with AXMEDIS you
will have the possibility of using the AXMEDIS specification and technology for your
business.

• You can contribute to the improvement of AXMEDIS documents and specification by
sending the contribution to P. Nesi at nesi@dsi.unifi.it

• You can attend AXMEDIS meetings that are open to public, for additional information see
WWW.axmedis.org or contact P. Nesi at nesi@dsi.unifi.it

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

4

Table of Content

1 EXECUTIVE SUMMARY AND REPORT SCOPE (DSI, ALL) ... 6

2 SPECIFICATION GUIDELINES (DSI¸ALL) .. 7

3 IMPLEMENTATION GUIDELINES .. 9
3.1 DECISIONS ON DESIGN, IMPLEMENTATION AND SPECIFICATION TOOLS (ALL)... 9
3.2 IDENTIFICATION OF A FRAMEWORK FOR CROSS PLATFORM C++ APPLICATIONS DEVELOPMENT TO BE USED AS
BASE OF AXMEDIS FRAMEWORK ... 10

3.2.1 Requirements for the C++ Framework.. 10
3.2.2 Candidates for the C++ Framework .. 10
3.2.3 Evaluation of Candidates ... 11

3.2.3.1 Conclusions ...15
3.3 SUPPORTED PLATFORMS (ALL PARTNERS) ... 15
3.4 DEVELOPMENT FRAMEWORKS .. 16
3.5 USER INTERFACES (ALL PARTNERS)... 17
3.6 COMMUNICATION (ALL PARTNERS) ... 17
3.7 INFORMATION EXCHANGE (EXITECH, ALL PARTNERS) ... 17
3.8 CVS REPOSITORY (EXITECH)... 17
3.9 CODING GUIDELINES... 19
3.10 DOC GENERATION .. 22
3.11 ADOPTION OF LIBRARIES .. 22

3.11.1 Licensing terms (All Partners) .. 23
4 AXMEDIS GENERAL ARCHITECTURE... 24

4.1.1 AXMEDIS General Architecture .. 27
5 AXMEDIS FRAMEWORK OVERVIEW, GENERAL ARCHITECTURE (DSI, ALL)................................ 31

5.1.1.1 WP5.1 -- Development of the general infrastructure ...33
5.1.1.2 WP5.2 -- Component Validation and Acceptance..33
5.1.1.3 WP5.3 -- AXMEDIS framework integration and maintenance ...34

6 AXMEDIS EDITOR OVERVIEW (WP4.1.3, WP5.4.4: DSI, EPFL, FUPF, ALL).. 35
6.1 SOFTWARE ARCHITECTURE .. 38
6.2 GRAPHIC USER INTERFACE ... 39
6.3 CLASS DIAGRAM ... 41

7 AXMEDIS OBJECT MANAGER (DSI, EPFL).. 42
7.1 AXMEDIS COMMAND MANAGER (DSI) ... 44
7.2 PROTECTION PROCESSOR .. 47

7.2.1 AXMEDIS tool registration and certification ... 48
7.2.1.1 Software and hardware fingerprint ...48
7.2.1.2 Tool certificate ..48
7.2.1.3 User certificate ..49
7.2.1.4 User Identifier/Identification...50
7.2.1.5 Date and time...50
7.2.1.6 Action history ..50
7.2.1.7 Enabling code ..51
7.2.1.8 Trustiness of a tool ..51
7.2.1.9 Certified software ..52
7.2.1.10 Execution controls...53

7.2.2 Robustness against malicious user actions.. 53
7.2.3 Protection Processor Class hierarchy .. 54
7.2.4 Protection Info and Procedure Interpreter (DSI)... 57

7.2.4.1 Protection Info Format (DSI) ..58
7.2.4.2 Protection Interpreter (DSI) ..58
7.2.4.3 Protection commands (DSI)..59

7.2.5 Tool certification/registration (DSI, FUPF) .. 60
7.2.6 Tool verification/authentication (DSI) .. 62

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

5

7.2.7 Tool Fingerprint Estimation on PC (DSI) ... 66
7.2.8 Tool ID Estimation on PDA (EPFL) ... 69
7.2.9 Scramble/Descramble Support (EPFL) ... 71

7.2.9.1 cryptlib...72
7.2.9.2 How to install Cryptlib on Windows XP...73
7.2.9.3 How to use cryptlib in C ...73

7.2.10 Compress/uncompress Support (DSI, lib prob.)... 75
7.2.11 Encryption/Decryption Support (FUPF)... 76

7.2.11.1 Architecture for encryption / decryption support ...76
7.2.11.2 OpenSSL..79
7.2.11.3 Windows Version of OpenSSL...79
7.2.11.4 Cryptographic functions provided by OpenSSL...79

8 AXMEDIS DATA MODEL SUPPORT (WP4.1.2: DSI, WP5.4.3: DSI, EPFL).. 80
8.1 AXMEDIS DATA MODEL SCHEMA (DSI).. 81

8.1.1 AXMEDIS Objects as MPEG21 Objects .. 81
8.1.1.1 MPEG21 Digital Items..81
8.1.1.2 AXMEDIS Objects ...83
8.1.1.3 Basic AXMEDIS Object: ..85
8.1.1.4 Protected Basic AXMEDIS Object:..87
8.1.1.5 Composite AXMEDIS Object: ...87
8.1.1.6 Protected Composite AXMEDIS Object: ...89
8.1.1.7 Governed AXMEDIS Object: ...90
8.1.1.8 Query/Promotional AXMEDIS Object...90

8.1.2 AXMEDIS Metadata Model (DSI, EPFL, …..) .. 91
8.1.2.1 AXInfo Model ...91
8.1.2.2 Dublin Core Metadata ...110

8.1.3 Examples of AXMEDIS Objects... 115
8.2 AXMEDIS MODEL (DSI) ... 124

8.2.1 MPEG21 Digital Item Model .. 125
8.2.2 AXMEDIS Object Model .. 129

8.2.2.1 AxMetadata ...131
8.2.2.2 AxInfo..132
8.2.2.3 AxDublinCore ...135
8.2.2.4 AxOID ...136
8.2.2.5 AxContent..137
8.2.2.6 AxObject..137
8.2.2.7 AxResource ...137

8.3 XML LOADER AND SAVER (DSI) ... 138
8.3.1.1 Xerces-C++ ...144

8.4 AXMEDIS OBJECT PREPROCESSOR AND POSTPROCESSOR (EPFL) .. 144
8.4.1 XML to/from BIN (EPFL)... 145

8.4.1.1 BIM..145
8.4.1.2 Xmill..146
8.4.1.3 BinXML ..147

8.4.2 References In/Out Resolver/Integrator (EPFL)... 148

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

6

1 Executive Summary and Report Scope (DSI, all)

This document reports the specification for the first 18 months of the whole project activities. It takes
information from the WP2 of user requirements and from the preliminary work performed by project
partners and summarised in this proposal document. The specification take into account the general structure
of the AXMEDIS framework and of the demonstrators planned in WP9.
The specification is focused on mapping the research and development work on the real needs provided by
the requirements, use cases and test cases:

WP3.1.2 -- Specification of AXMEDIS framework (M3-6) – managed by FUPF – mainly used for

preparing WP5: specification of AXMEDIS framework and major common tools (authoring,
distribution support, protection support, composition and formatting program definition and
execution, etc.) (mainly used in WP5); considering: AXMEDIS Multimedia modelling, AXMEDIS
general architecture and intermodule communication; P2P, Data sharing, streaming, event
synchronisation, indexing, DRM, DRM interoperability, protection, monitoring, fingerprint,
certification, etc.; Distribution channels; content player tools and paradigms; Acceptance and
validation testing processes, etc., major common tools (authoring and production tools, aggregation
tools, formatting tools, distribution support, protection support, etc.) (this information will be mainly
used in WP5), AXMEDIS Certifier and Supervisor, AXEPTtool specification, etc.

WP3.1.5 – Specification of tools for automatic content production and formatting – managed by DSI –

Specifically defined for WP5 tools on content composition, transcoding and formatting, specification
of the main tools for implementing and supporting content composition, formatting and aggregation
etc., considering: technical aspects, DRM, content description, metadata, indexing, synchronisation,
formatting style, graphic details, devices, user profile for content on demand, final format,
distribution tools at the state of the art, production tools at the state of the art, physical models, etc.

The full document has been decomposed in several parts:

A. This document with general aspects up to the description of the content model (DSI)
B. Viewers and players, including plug ins, etc. (DSI)
C. Content Production tools and algorithms (DSI)
D. Fingerprint and descriptors algorithms and tools (FHGIGD)
E. Database area, query support and Content Crawling from CMS (EXITECH)
F. AXEPTool area, for B2B distribution and Programme and Publication for B2C

distribution (CRS4)
G. Workflow aspects and tools (IRC and HP)
H. Protection tools and support, Certification and Supervision and Accounting tools

(FUPF)
I. Distribution tools and AXMEDIS Portal (EUTELSAT)
J. Definitions, tables, terminology, acronyms, lists, references, links and Appendixes

(DSI)

This document (part A) reports the general aspects related to the specification task like the
specification guidelines and the implementation guidelines. It also reports the specification for
AXMEDIS objects modelling and the specification of the tools strictly connected with the model
like the AXMEDIS Object Manager which is the interface used by all applications to access and
manipulate an AXMEDIS Objects. In this sense it also deals with protection aspects since the
AXMEDIS Object Manager has to protect access to the content on the basis of digital rights
management policy defined by the content owner/distributor.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

7

2 Specification Guidelines (DSI¸all)

The whole AXMEDIS system has been decomposed in subsystems and tools. The decomposition has been
performed on the basis of structural aspects, the diagrams are reported in the UML file in vision. Please see
the last version on the Specification folder on the web portal.

The specification of each tools, component and/or module has to be performed by providing the following
information and adopting the UML methodology and tools/diagrams this will allow to talk a unique language
for all now in the specification phase and in terms of documentation of companies accessing to take-up
actions:
• General description of the functionalities and relationships with other tools and components.
• References to the other tools and components that have to interact with the entity.
• Structural decomposition of larger modules or subsystems that still needs to be decomposed to identify

the entities that are modeled in terms of classes. These are recognizable being single programs, DLL,
plug-in, packages, etc.

• Class diagram with details regarding specialization, interfaces, decomposition and references
o Description of classes with their major attributes and methods, with their type and signature
o If some class/object has some evolving state please provide a state diagram with the description

of the states and transitions.
• Object diagrams (component diagrams of UML) to show what happen among objects when these are

instantiated from classes, to highlight the production of lists, and the general structure of objects in the
memory.

• Sequence diagram and/or collaboration diagram (among processes) of UML for selected parts to the
explanation of the entity behavior and their relationships with other entities or processes

• Description of protocols, if any, at level of communication packets and all the higher levels
• Description of relevant algorithms for the functional part of your methods/services by using: textual

description highlighting the motivation and the needs in AXMEDIS, description in terms of flow chart or
activity diagrams of UML or pseudocode or directly in programming language, and if rational a
mathematical formulation of the algorithm or of its math parts. For each non specified algorithm since it
is not know yet please provide

o metrics for its evaluation
o reference value of these metrics
o an example of the results
o test cases have to be put in a different deliverable
o etc.:

• Description of the API provided, if any, in terms of functions/procedures, functionalities, parameters,
types of parameters, behaviour, and internal behaviour. In addition, a sample procedure and detailed
sequence diagram of what can be done to exploit the module in other processes. The API has to be
described by using UML VISIO, IDL (interface description language).

• Description of the interoperability specification aspects related to the adoption of the software module in
different operating systems and to be integrated in different contexts,

o conditional compilations,
o different behaviors in different context,
o profiling,
o configuration aspects,
o etc.

• Formal description of any textual format file, all content formats and confirmation formats have to be
XML and have to be provided in terms of Schema, where each field has to be fully specified in terms of
type and semantics of each possible value, giving the dynamics (e.g., -255 + 256), type (e.g., string,
float, integer, unsigned integer), etc. Some examples have to be provided.

• Formal description of any Binary format file, please provide EBNF description, with dictionary etc.,
where each field has to be fully specified in terms of type and semantics of each possible value. Some
examples have to be provided.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

8

• Formal description of any language, rule based or functional or mix, by using EBNF description with
dictionary and semantic description. Some examples have to be provided.

• Description of the high level communication interfaces such as COM, ACTIVEX, and support for plug-
ins, etc., by providing: functions/procedures, functionalities, parameters, types of parameters, behavior,
and internal behavior. In addition, a sample procedure and detailed sequence diagram of what can be
done to exploit the module in other processes.

• Description of the User Interface, if any:
o Visual Shape and design of the main frame
o Menu with major and minor items and related associated functionalities.
o Contextual menu
o Main functionalities provided from the user interface
o Visual Shape and design of the major dialog boxes.
o Usage of tool bars, scrollbars, and any gadget or widget, etc.
o Description of main activities of the users in terms of Use Cases, see the other deliverable
o For usability aspects please consult ACIT partner

• In designing/specifying the tools/modules please take into account the following general aspects:
o Configuration management
o Please verify if some your components can be produced customizing a component produced by

other partners or can used by other partners in other tools
o Interoperability on different platforms,
o Print capability of the information manipulated
o Protection aspects (registration, certification, operation control, access to certifier, DRM, etc.),

please consult protection experts
o Help to support the users,
o Multilingual support of the user interface and of the help
o Undo support that could be obtained with controlling all commands
o workflow and cooperative work support to be integrated with the Workflow tools that will be

selected for AXMEDIS, etc.
o insert an About for citing, copyright, AXMEDIS projects and EC in a proper manner, as will be

defined later.
o Refer to used standards providing references and documents for the other partners. These

documents will be made accessible to all via WEB.
o Declare any library and tools that you are going to use and the license level/type/cost for that

tools/libraries, etc. According to the CA you have to be very carefully in using:
 PEK, it has to be authorized
 Libraries that may enforce some constraints in the exploitability or portability
 Any used element/library, etc. has to be approved
 Any non approved element cannot be used.
 Etc.

o Installation capability, it has to be installable in a very easy manner
o Manual support for technical and user point of views
o Please remember that if the tool/module belongs to the AXMEDIS Framework as defined in the

CA, it has to be provided in source code to be included into CVS connected to the AXMEDIS
portal.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

9

3 Implementation Guidelines

The AXMEDIS framework is an environment for integrating and validating the new enabling technologies
and new knowledge invented with WP4. At the beginning, this task will produce a set of guidelines for
creating software components. These software components will be created including research algorithms as
described in WP4. The guidelines and most of the components will be publicly delivered to the whole
community together with the components developed by partners in the past and listed in the next table.

AXMEDIS is an Open tool since:

• The components of the framework will be available via the AXMEDIS portal in Open Source for the
development or for transforming already present architecture in AXMEDIS compliant:
• channel distributors, content providers,
• viewers for the different platforms,
• all the algorithms of the same type will be interchangeable, any innovation in the format, in the

process, in the workflow, in the business model, in the DRMs, can be added into the framework
without restructuring;

• The structure of the AXMEDIS framework will be formalised in terms of interfaces among its
components. These will be mainly algorithms and software modules for managing content:
composition, formatting protection, query, etc.;

• No limitation about the number of content providers and distributors and their access to the content
and insertion into the AXEPTool network. Only certification will be needed and it will be provided
almost automatically;

• Other distribution channels can be added according to the above solutions: direct channels such as
those towards PCs or PDAs or, mediate via Channel Distributors such as those towards i-TVs;

• The same channel structure can be duplicated without any problem. You may have more Channel
Distributors for i-TV, pay per view, etc. They can be set up for localization of content and services,
for language and cultural differences, for providing content towards different technologies for
providing different content;

• No limitation about the number of clients;
• No limitation about the number of transactions;

3.1 Decisions on Design, Implementation and Specification Tools (ALL)

• UML: a tool will be selected, VISIO 2003 professional is one of the candidates, other possibilities are

UML free tools, etc. They have to be capable of processing UML, verification of consistency and
managing packages, action diagrams, IDL, etc….

• Model for API is based on IDL, which in turn is based on UML formalisation
• All the tools including the AXMEDIS Object Manager have to be developed in C++
• AXCS and AXMEDIS object database have to provide for the database access some ODBC or JDBC,

this has still to be decided
• Technology for AXPMS has not bee fixed yet
• Communications with AXCS can be in SSL
• Database technology has to be scalable: SQL, MYSQL, DB2, Postgress, etc.
• AXEPTool has to be based on non proprietary protocol such as HTTP

o The same DB used in the AXMEDIS database has to be used in the AXEPTool
• AXMEDIS content processing and editing tools have to be realized in C++, firstly for WINDOWS but

taking into account of porting them on MAC/LINUX. So that a GUI abstraction is needed such as
Mozilla or WXwin, a scripting tool for the GUI can be taken into consideration..

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

10

3.2 Identification of a Framework for Cross Platform C++ Applications
Development to be used as base of AXMEDIS Framework

In this section a Framework for Cross Platform C++ Applications Development to be used as base of
AXMEDIS Framework is identified.

The work performed is sketched in the following steps:
1. Identification of requirements for the C++ Framework
2. Selection of candidates
3. Evaluation of candidates

3.2.1 Requirements for the C++ Framework
The requirements identified for the C++ Framework to be used as the basis of AXMEDIS Framework are the
following.
The C++ Framework has to:
1. be multiplatform supporting at least: MS Windows (98?, 2000, XP), MACOS X, Linux
2. NOT be under GPL license
3. NOT be under commercial license (NOT MANDATORY)
4. be rather wide spread
5. be usable from a C++ Application
6. allow the realization of standard user interfaces as well as MDI, drag&drop support, tree view, details

view, clip board,…
7. allow run-time generation of user interfaces
8. allow the realization of custom views, where the application can control the visualization and the

interaction with the view.
9. allow cross platform access to basic resources like: File system, Network (TCP & UDP), Threads, XML

Parsing, RDF.
10. render multimedia information (video, audio, images) (RELEVANT)
11. allow the realization of applications with skin (like Windows Media Player) (OPTIONAL) or

not prevent its realization on some platforms (MANDATORY).

3.2.2 Candidates for the C++ Framework
Possible candidates are:
• wxWidgets http://www.wxwidgets.org
• Qt http://www.trolltech.com/products/qt
• Mozilla XPToolkit http://www.mozilla.org/xpfe/
• tcl/tk http://www.tcl.tk/
• wxPython
• GTK
• MFC
• fox toolkit http://www.fox-toolkit.org/
• FLTK http://www.fltk.org
• PLIB http://plib.sourceforge.net/

(for a list see http://home.pacbell.net/atai/guitool/)

AAXXMMEEDDIISS FFrraammeewwoorrkk

CCrroossss PPllaattffoorrmm CC++++ FFrraammeewwoorrkk

GGUUII NNeettwwoorrkk FFiilleeSSyysstteemm TThhrreeaaddss XXMMLL//RRDD
FF

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

11

3.2.3 Evaluation of Candidates

For the candidates will be evaluated:

• platforms supported
• licence
• diffusion
• GUI capabilities

o basic user interfaces
o advanced user interfaces
o support for automatic run-time generation of user interfaces
o custom user interfaces
o support for multimedia
o skin support

• Platform abstraction
o file system
o network
o threads

• Tools
o xml support
o rdf support

wxWidgets
General
Platforms Win32, MAC OSX, Linux, OS2, palmOS, winCE
Licence LGPL
Diffusion Good
GUI capabilities
Basic GUI Good
Advanced GUI Good
Custom GUI Good
Automatic GUI Feasible but not directly supported (XRC is used for XML description of GUI)
Multimedia
Support

Native support for images (jpg, png, tiff), contributions are present for some multimedia
support

Skin support Feasible but not directly supported
Platform abstraction
File system Ok, it supports also zip files
Network Ok (not UDP)
Thread Ok
XML Marginal, a non validating parser is present
RDF No
Notes
A library for XML parsing may be used (XERCES)

QT
General
Platforms Win32, MAC OSX, Linux, Linux PDA
Licence Commercial for Win32, GPL for other platforms
Diffusion Good
GUI capabilities
Basic GUI Good
Advanced GUI Good
Custom GUI Good
Automatic GUI Feasible but not directly supported (?)
Multimedia ?

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

12

Support
Skin support Feasible but not directly supported
Platform abstraction
File system Ok
Network Ok
Thread Ok
XML No
RDF No
Notes

Mozilla XPToolkit
General
Platforms Win32, MAC OSX, Linux, …
Licence LGPL
Diffusion Good
GUI capabilities
Basic GUI Good
Advanced GUI Good
Custom GUI Poor
Automatic GUI Feasible, XUL helps in this task
Multimedia
Support

?

Skin support No
Platform abstraction
File system Ok
Network Ok
Thread Ok
XML Ok
RDF Ok
Notes

tcl/tk
General
Platforms Win32, MAC OSX, Linux, …
Licence LGPL
Diffusion Avarage
GUI capabilities
Basic GUI Good
Advanced GUI Avarage (some user interaction is not “standard”)
Custom GUI ?
Automatic GUI Feasible but not directly supported
Multimedia
Support

?

Skin support ?
Platform abstraction
File system Ok
Network Ok?
Thread Ok?
XML ?
RDF ?
Notes

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

13

wxPython
General
Platforms Win32, MAC OSX, Linux, OS2,
Licence LGPL
Diffusion Good (mainly for python)
GUI capabilities
Basic GUI Good
Advanced GUI Good
Custom GUI Good
Automatic GUI Feasible (supports XRC a XML GUI)
Multimedia
Support

Contributions are present for some multimedia support (only on some platforms)

Skin support ?
Platform abstraction
File system Ok
Network Ok
Thread Ok
XML Ok
RDF Ok?
Notes
Python code can be embedded in a C++ applications

GTK+
General
Platforms Win32, Linux, MACOSX?
Licence LGPL
Diffusion Good
GUI capabilities
Basic GUI Good
Advanced GUI Good
Custom GUI Good
Automatic GUI Feasible
Multimedia
Support

?

Skin support ?
Platform abstraction
File system Ok
Network ?
Thread Ok
XML No
RDF No
Notes
GTK mappings exist for Python, Ruby an many other languages

MFC
General
Platforms Win32
Licence Commercial
Diffusion Very Good
GUI capabilities
Basic GUI Good

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

14

Advanced GUI Good
Custom GUI Good
Automatic GUI Feasible
Multimedia
Support

?

Skin support Feasible
Platform abstraction
File system Ok
Network Ok
Thread Ok
XML Ok
RDF No
Notes

Fox Toolkit
General
Platforms Win32, Linux, MACOSX (not native)
Licence LGPL
Diffusion Avarage
GUI capabilities
Basic GUI Good
Advanced GUI Good
Custom GUI Good
Automatic GUI Feasible
Multimedia
Support

?

Skin support ?
Platform abstraction
File system ?
Network ?
Thread ?
XML ?
RDF ?
Notes

FLTK
General
Platforms Win32, Linux, MACOSX
Licence LGPL
Diffusion Avarage
GUI capabilities
Basic GUI ?
Advanced GUI ?
Custom GUI ?
Automatic GUI ?
Multimedia
Support

?

Skin support ?
Platform abstraction
File system ?
Network ?

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

15

Thread ?
XML ?
RDF ?
Notes

PLIB
General
Platforms Win32, Linux, MACOSX
Licence LGPL
Diffusion Avarage
GUI capabilities
Basic GUI Low
Advanced GUI Low
Custom GUI Ok
Automatic GUI Ok
Multimedia
Support

?

Skin support ?
Platform abstraction
File system Ok
Network Ok
Thread Ok
XML No
RDF No
Notes
Used for 3D Games development

3.2.3.1 Conclusions
In the above evaluation of candidates, are marked in red/orange/yellow the features that are problematic.
The features marked in red strongly discourage the adoption of the framework, the ones marker in orange
suggest to avoid to use it.
It results that wxWidgets, wxPython, and GTK+ are the frameworks that could be adopted. However it
seems that wxWidgets gives more coverage especially since it can be used also in PDAs.

3.3 Supported platforms (All Partners)

The components produced by the research activities will have to be compliant with the languages and
platform identified in the specification and in particular:

• Content production tools, editors, publication tools, engines, protection tool editor, etc.:
o Language: C++
o OS: Windows XP and 2000, and viable as a second choice also for MACOS X
o GUI: WxWidget (the new version of the WxWindows)
o XML Parser: XERCES
o WebServices/SOAP: gSoap
o TCP/IP library: that of WxWidget
o STL can be used but a particular attention has to be given on using only functionalities and

data structures that are supported in the STL for PDA (Pocket PC 2003)
o Avoiding the usage of functionalities that are Microsoft specific

• Protection Manager Support
o Client: all features as above in C++
o Domain Home, Domain Factory and Server: Java and C++

• AXEPTool:

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

16

o Publication and loading engines: as the editor area above
o C++ for the tools
o P2P virtual database: Java if needed
o Graphic User Interface: WxWidgets

• AXMEDIS Database and Query Support and AXCS:
o Database technology: MySQL or Postgres
o Technology for coding logic: Java
o DBC: JDBC for the access
o Operating system: Windows and Linux.
o User Interface: JSP or PHP, probably better the JSP formalisation in classes and graphic

design
o Web Server: Apace, TOMCAT

• Scripting language:
o Java Script (ECMA Script)

• Workflow Manager:
o based on OpenFlow or BizTalk
o Plug in of the workflow: the same as the content production area

• The usage of AXMEDIS Error Manager for all the tools in C++ that use an AXOM
• The usage of AXMEDIS Configuration Manager for all the tools in C++ that use an AXOM
• Fingerprint and Metadata/Descriptors extractors:

o the same as the content production area

Other information is collected into the AXFW specification document.

3.4 Development frameworks
Development should be done using C/C++ for all code-sharing components, whereas all internal components
may be developed using other languages with related tools.

Since the source code of all the tools and components will be accessible to all partners, the choice of a
preferred development framework will not limit the possibility to use a different one for regular development
and to build for the preferred development framework before upload or on less regular basis.

The following are the preferred development platforms for the project partners under windows:

Partner Preferred Development Framework
DSI MS Visual Studio .NET 2003
DIPITA gcc/CygWin
COMVERSE MS Visual Studio .NET 2003, MS Visual Studio 6 (Service Pack 5)
EPFL MS Visual Studio .NET 2003
EUTELSAT gcc/CygWin
FHGIGD MS Visual Studio .NET 2003 (MS VS 6.0 and gcc+eclipse as secondary frameworks)
ILABS MS Visual Studio .NET 2003
HP
TISCALI
FUPF MS Visual Studio 6.0 or gcc (linux tools)
XIM gcc or MS Visual Studio .NET 2003
CRS4 gcc
SEJER gcc/CygWin
UNIVLEEDS MS Visual Studio .NET 2003
IRC MS Visual Studio .NET 2003
EXITECH MS Visual Studio .NET 2003 or gcc

Thus the most preferred development framework is MS Visual Studio .NET 2003.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

17

For Java development the choice of a uniform virtual machine will allow to reduce the possibility of
integration problems. The chosen JVM is Sun 1.4.2. The migration to a new JVM (1.5.0) will be made all
together.
The use of a specific Integrated Development Environment for Java development is not set, but it is
mandatory the adoption of ANT for having an easier integration (some IDE use ANT as integrated building
system). For testing the use of JUNIT is appreciated. For development of WebServices Java WSDP 1.5 has
to be used.

3.5 User Interfaces (All Partners)
For the user interface in C++ applications wxWidgets should be used.

3.6 Communication (All Partners)
For the communications among modules in different processes/machines WebServices is the preferred
technology to be used. However in some cases other solutions like XML-RPC or custom protocols could be
used, for example for the interaction with existing tools or for performance reason.

For the interaction with modules in the same process static or dynamic libraries should be used.
COM/ActiveX technology could be used to interact with existing components.

3.7 Information exchange (EXITECH, All Partners)
This section contains guidelines on the way in which information will be exchanged, through documents
posted on the WEB AXMEDIS portal and by synchronizing source code and test cases updates

The main mode for information exchange between the AXMEDIS members is the use of document
repository on the WEB PORTAL. Refer to the portal specification for the operative procedures.

The documents editing has to follow the rules defined by the AXMEDIS consortium. The templates to be
followed for the document editing have to be posted on the WEB site into the management activity in a
dedicated folder. New templates have to be created any time a new type of document has to be produced (i.e.
slide template, deliverable template, reports and management reports, UML diagrams, etc.). The document
responsible and the activity coordinators have to verify if the received/posted content comply with the
template.

In case a new document type is needed, the template can be proposed to the project coordinator, who, if
accept it, will post it on the portal.

It is strongly advised against sending documents in attach to the reflector

Also for the code editing a “template” can be created. The programming style template can be based on some
standard guidelines as:

• C++ Coding Standard defined at http://www.possibility.com/Cpp/CppCodingStandard.html
• Mozilla Coding Style Guide at http://www.mozilla.org/hacking/mozilla-style-guide.html
• Code Conventions for the JavaTM Programming Language defined by SUN at

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
• Apache coding standards at http://jakarta.apache.org/turbine/common/code-standards.html

The standard guideline can be adapted for the project needs.

3.8 CVS repository (EXITECH)
A CVS have to be set up in order to allow the work on the same source code. The CVS system will be
choose after the evaluation of:

o Reliability capabilities
o Transfer security
o Binary file management
o Rule definition capability

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

18

o Access rights managements capability
o Costs (several freeware are available)

The CVS system is used for two apparently unrelated purposes: record keeping and collaboration. The
collaboration purpose is the most important one but also the record keeping has to be considered. It is needed
because the user should have necessity to see or to bring back the situation to a given date.

The CVS repository is accessed by using a CVS client software. From the web portal a service for browsing
the repository should be implemented.

In order to maximize the availability the repository and the CVS server have to be installed in a dedicated
server with a high hard disk capacity and raid controller.

Several versioning systems are available and already used by the developers communities around the world.
The most famous one is the CVS used in several important projects (i.e. SourceForge projects at:
http://sourceforge.net/docman/display_doc.php?docid=14033&group_id=1). There are no reason to invent
new systems or to develop specific application in this area. In follow a brief list of (free or GPL) versioning
systems is presented:

• CVS (Concurrent Versions System) at http://www.cvshome.org
• RCS (Revision Control System) at http://www.cs.purdue.edu/homes/trinkle/RCS/
• PRCS (Project Revision Control System) at http://www.xcf.berkeley.edu/~jmacd/prcs.html
• AEGIS at http://aegis.sourceforge.net/index.html
• Microsoft Visual SourceSafe at: http://msdn.microsoft.com/vstudio/previous/ssafe/

Independent by the tool that will be chosen the versioning system has to allow the possibility for each
developer to browse the source code (with the definition of the access rights), download it, update the local
repositories or perform a commit on the central repository.

The repository has to be backup daily.

Since the CVS system should be installed in a different computer a web interface should be used for commit
or update source code files.

The web portal has to provide instruction for the service users

• How to provide source code
• How to post and update files
• File header template (posted into the managements activity as stated in the information exchange

paragraph)
• Compile/Install procedures (readme file, see before)
• Rules for integration of reused code from other projects or state or the art
• Etc.

The web interface can use some third party application allowing a continuous integration of the source code
and giving the guarantee of “compilable” code on the repository.

The interface should allow to see the code tree status, the last commits, who commit a not compilable code,
update to a dated record, etc.

A continuous build process framework run a daemon process (build loop) which will periodically check the
source control tool for changes to the codebase, build it if necessary, and send out a notification regarding
the status of the build.

Some already implemented solution can be:

• Mozilla Tinderbox at: http://www.mozilla.org/tinderbox.html

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

19

• CruiseControl and CruiseControl .net at http://cruisecontrol.sourceforge.net/index.html
• Anthill and AnthillPro at http://www.urbancode.com/products/anthillpro/default.jsp
• Integration Guard at http://www.urbancode.com/products/anthillpro/default.jsp
• AEGIS at http://aegis.sourceforge.net/
• Draco.net at http://draconet.sourceforge.net/
• DamageControl at http://damagecontrol.codehaus.org/
• BuildBot (Alpha version) at http://sourceforge.net/projects/buildbot/

3.9 Coding Guidelines
For Java source code use guidelines http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
For C++ source code:
Source files

• Header files have to have .h extension.
• Implementation source files have to have .cpp extension.
• All file names have to be lowercase (e.g. axobject.h).
• A header file should normally contain the definition of one class, more than one class can be defined

in one .h file if they are strongly dependent.
• When including files from directories use forward slash “/”and not back slash “\” (e.g. #include

“wx/dc.h”)
• Don’t use tabs to indent code, use 4 spaces.
• Use 76 columns for coding

Naming conventions
• class names should begin with capital letter (e.g. AxObject)
• class attributes and methods should begin with lower case (e.g. model, getModel())
• local variables and functions should begin with lower case;
• macro, enum values and constants should be in all capital letters with “_” as word separator (e.g.

READ_ONLY)
• namespaces should be in all lower case letters
• typedefs names should end with Type suffix (e.g. typedef ParamValueType<int> ParamIntType)
• for accessors use get/set prefixes (e.g. getModel(), setValue(x))
• for classes belonging to the AXMEDIS Framework that are exposed to the framework user use the

“Ax” prefix (e.g. AxObject), for classes that are not exposed this is not mandatory.
Code formatting

• for brace placement follow one of the following rule, but use the same for the whole module
• Place brace under and inline with keywords:
 if (condition) while (condition)
 { {

 } }

• Traditional Unix policy of placing the initial brace on the same line as the keyword and the
trailing brace inline on its own line with the keyword:

 if (condition) { while (condition) {

 } }

• in case a line is too long split it leaving the operator at the end of the previous line and align the
starting of the continuing line with the expression start, examples:

if (aaaaaaaaaa &&
 bbbbbbbbbb &&
 cccccccccc &&
 dddddddddd &&
 eeeeeeeeee)
{
 ...
}

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

20

aFunction(aaaaaaaaa,
 bbbbbbbbb,
 ccccccccc,
 ddddddddd);

Class Header Template

/**
 * A one line description of the class.
 *
 * #include "XX.h"

 * -llib
 *
 * A longer description.
 *
 * @see something
 */

#ifndef XX_h
#define XX_h

// SYSTEM INCLUDES
//

// PROJECT INCLUDES
//

// LOCAL INCLUDES
//

// FORWARD REFERENCES
//

class XX
{
public:
 // LIFECYCLE

 /**
 * Default constructor.
 */
 XX(void);

 /**
 * Copy constructor.
 *
 * @param from The value to copy to this object.
 */
 XX(const XX& from);

 /**
 * Destructor.
 */
 ~XX(void);

 // OPERATORS

 /**
 * Assignment operator.
 *

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

21

 * @param from The value to assign to this object.
 *
 * @return A reference to this object.
 */
 XX& operator=(XX& from);

 // OPERATIONS
 // ACCESS
 // INQUIRY

protected:
private:
};

// INLINE METHODS
//

// EXTERNAL REFERENCES
//

#endif // XX_h_

Class Implementation Template

// SYSTEM INCLUDES
//

// PROJECT INCLUDES
//

// LOCAL INCLUDES
//

#include "XX.h" // class implemented

/////////////////////////////// PUBLIC /////////////////////////////////////

//============================= LIFECYCLE ==================================

XX::XX()
{
}// XX

XX::XX(const XX&)
{
}// XX

XX::~XX()
{
}// ~XX

//============================= OPERATORS ==================================

XX&
XX::operator=(XX&);
{
 return *this;

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

22

}// =

//============================= OPERATIONS =================================
//============================= ACCESS ================================
//============================= INQUIRY =================================
/////////////////////////////// PROTECTED /////////////////////////////////

/////////////////////////////// PRIVATE /////////////////////////////////

for what not explicitly stated try to follow the guidelines provided in:
http://www.possibility.com/Cpp/CppCodingStandard.html

3.10 DOC generation
Documentation of source code (C++ and Java) will be integrated in the code using JavaDoc comments style.

3.11 Adoption of Libraries
Libraries used in the project are:

Library and version Area Licence
wxWidget – 2.4.2 GUI LGPL
FL C++ Lib contribution to
wxWidgets Lib

GUI LGPL

STC C++ based on Scintilla
editor, contribution to the
wxWidgets Lib

GUI LGPL

wxImagick Image processing LGPL
Imagick Image processing LGPL
openssl Protection LGPL
cryptlib Protection GPL and standard commercial

license
xerces-C++ - 2.6.0 XML parser Apache Licence 2.0
gSoap Web services LGPL
CURL – 7.12.13 Crawler BSD
easysoap Crawler LGPL
expat Crawler LGPL
libxml2 Crawler LGPL
IODBC Crawler LGPL
PEAR Library Database LGPL
Xerces Database Apache Licence 2.0
Xalan Database Apache Licence 1.1
XPath Database
OpenFlow – 1.1 Workflow GPL 2.0
Zope – 2.7.3 Workflow ZPL 2.0
Phyton -2.3 Worflow
Xmlrpclib Workflow
Cexpat Workflow
Microsoft ASP Workflow Microsoft licence
Microsoft .NET Workflow Microsoft licence
DirectX SDK Players
splay Players LGPL
faac Players LGPL
im1_dmif_mp4 Players ISO
im1_dmif_trif Players ISO
im1_dmif_remote Players ISO

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

23

im1_dmifclientfilter Players ISO
DOCFRAC Fingerprints LGPL
GNU ghostscript Fingerprints GPL
XPDF Fingerprints GPL
HTMLDOC Fingerprints GPL
WordNet (Emglish, Italian,
Spanish, French, German)

Fingerprints Free for English, proprietary for
other languages

TreeTagger Fingerprints Free for research. Proprietary for
commercial use.

CLAM (0.7) Fingerprints GPL
Torch3 Fingerprints BSD
LibSVM – 2.71 Fingerprints LGPL
Libsndfile – 1.0.11 Fingerprints LGPL
BeeCrypt Fingerprints LGPL
Botan Fingerprints BSD-style
CryptLib (?) Fingerprints GPL and standard commercial

license
RtAudio – 3.0 Fingerprints BSD-style open source
PortAudio – 18 Fingerprints BSD-style open source
Libsndfile – 1.0.11 Fingerprints LGPL
FFTW – 3.0.1 Fingerprints GPL and Non-free license (see

http://web.mit.edu/tlo/www/)
FFMPEG Fingerprints LGPL
FOBS Fingerprints LGPL
SpiderMonkey JavaScript Engine
ver. 1.5 by Mozilla

Engine LGPL

SoundTouch Adaptation LGPL

3.11.1 Licensing terms (All Partners)
• license for libraries and access to code modality as stated in the CA for each module produced and

reused

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

24

4 AXMEDIS General Architecture

The AXMEDIS digital content and content components (in the following, AXMEDIS content in general)
will have a specific format capable of integration inside any kind of cross media format (video, images,
animations, document, audio, etc.), adding metadata, identification, classification, categorization, indexing,
descriptors, annotation, relationships and play activities and protection aspects. The format will permit the
combination of content components, their secure distribution, etc., in the respect of the copyright laws,
supporting a large variety of DRM rules and models according to concepts of interoperability among DRMs
(mainly, but not only, based on MPEG-21, with both binary and XML low level formats). Within the
AXMEDIS content any type of cross media content can be included from simple multimedia files to games,
software components, for leisure and entertainment, infotainment, etc.

The General Architecture of AXMEDIS is represented in the next figure, which highlights both:

• production of AXMEDIS digital content and content components in connection with the
AXMEDIS P2P tool (AXEPTool) that follows business mechanisms of B2B and support DRM with
a certification authority (AXMEDIS Certifier and Supervisor). This can be connected to the
Collection Societies as well as to each Content Provider and to Distributors if needed;

• distribution of AXMEDIS digital content towards clients via specific distributors that realize the
last level of the distribution chain. This last level can also support a B2B transaction if the
distribution is targeted at institutions. Also at this level the sharing via mechanisms of P2P is allowed
and stimulated. This will not invalidate the protection model of AXMEDIS DRM.

The standard distribution channel is today a single distribution path for each type of content, and often,
multiple proprietary systems of representation for the same content. The definition of distribution channel
editorial formats would provide one way, unified and rock-solid content format for multipurpose
applications. Alternative solutions support multichannel distribution by using an XML model of content into
the Content management systems of the content provider that also include multiple transcoding engines for
transforming the XML model of content into the format suitable for the channel. This approach is not
flexible enough since the transcoding of content at the source strictly limits the management of Digital
Rights. In fact, in models such as CONTESSA the DRM can be applied only to the content in its final
version. This creates key problems for the content providers since the content distributors are entitled to
receive unprotected content. This is almost unacceptable in most cases.

Content Integrator

AXMEDIS
 Portal

Distributor

Distributor

Content Provider

Distributor

AXMEDIS Certifier
& Supervisor

Collecting Society

Content Provider

Content Provider

 AXMEDIS General Architecture, mainly B2B side

AXMEDIS
P2P TOOL
(AXEPTool)

B2B Mainly B2C

Content Integrator

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

25

In AXMEDIS, the channel distributors may maintain their distribution process. They can continue to use the
same format for reaching the final users. In AXMEDIS, the content is distributed by using the P2P tool,
namely AXEPTool, by using an evolution of the MPEG-21 format, with the AXMEDIS contribution. This
content will easily contain and deliver MPEG-4, MPEG formats, PDF, HTML, SVG, images, documents,
videos, audio file, etc. (in open standard format for continuation, without the use of proprietary technologies)
on demand and for all platforms according to the final format produced by the Distributor. The received
content will be formatted by using AXMEDIS tools on the basis of specific editorial formats.

The possible Channel Distributors have a large variety of capabilities, they are both of pull and push, and
may include off-line and on-line connection from the client to the distributor.

Channel Distributors are interested in:
• Getting AXMEDIS content and components from the Content Providers and using them for distributing

content via their channels for redistribution for both B2B and B2C transactions.

AXMEDIS
 Portal

 AXMEDIS General Architecture, mainly B2C

AXMEDIS
P2P TOOL
(AXEPTool)

PCs

PDAs

OpenSky Data Broadcast

AXMEDIS Certifier &
Supervisor Server Clients

Kiosks
Kiosks

i-TVs

Channel Distributors

PC- Distributors

PDA- Distributors

Mobile-Distributors
Mobiles

Satellite Data Broadcast

Packaging

Content Integrators

Content Providers

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

26

• Collecting AXMEDIS contents in a local database for preparing the production content Programme that
is the agenda/menu proposed to the customers and final users.

• Using AXMEDIS content for creating attractive content for their customers. For this reason, they need to
have the possibility of inspecting content in their internal LAN on a client PC.

• Receiving and satisfying requests from their customers for delivering to them the proposed content
• Receiving and satisfying queries performed by their customers that are looking for specific content. This

activity is one of the most interesting added value of the AXMEDIS architecture.
• Getting updated information about the possible content that can be recovered from all Content Providers.

This activity is performed via a service of the AXMEDIS portal. The updating of the database of the
available content is performed in push via satellite data broadcast with specific policies.

• Accessing statistics produced by the AXMEDIS Certifier and Supervisor about the content usage.

Satellite Data Broadcast It is a content distribution mechanism that permits the distribution of the
AXMEDIS content in a very efficient manner. This improves the quality of service of the data delivery
process (dependent on broadband availability in client location), and Distributors and also PC users can also
rely on Satellite Broadcast. This technology, provided by EUTELSAT’s Opensky platform, allows large
quantities of data to be pushed via satellite directly on the user’s PC without congesting local networks. The
use of this technology is completely transparent with regard to the AXMEDIS process and only acts as a cost
effective and efficient transport mechanism. The same technology also allows the content providers to bring
live multimedia streaming content directly to the user’s PC either for free to air content (mainly for
marketing purposes) or paying on-demand channels. The pushing mechanism can be used to renovate the
catalogue of the Distributors periodically at low cost.
This platform appears to be ideally suited for distributing AXMEDIS content and components. It represents
an excellent opportunity for content providers for new business and for accelerating the distribution
decreasing their costs.

The satellite distribution channel can be used for several activities of content distribution for both B2B and
B2C business models:
• The push of content

• updating the AXMEDIS content and components in the databases of the Distributors and of the
Providers;

• updating the general indexing databases of the Distributors with updated information regarding the
available AXMEDIS content and components of the Providers;

• updating the AXMEDIS content on Kiosks;
• delivering AXMEDIS content on demand directly to the consumers connected to the satellite i-TV

according to their interactive requests;
• delivering AXMEDIS content to the consumers connected to the satellite i-TV-PC according to their

selection performed from the programmed content of the day and week.
• The streaming of AXMEDIS content on MPEG-4 on one or more channels for:

• promoting Content Providers’ content;
• promoting Distributors’ services, for example stimulating the acquisition of content in push with a

business model based on subscription or pay per view;
• Creating specific B2B channel with large institutions and consumers.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

27

4.1.1 AXMEDIS General Architecture

 AXEPTool Client
 P2P/B2B

Other Viewers/editors via plug-ins
Other viewers/ editors via plug -ins

navigator
Collector
Indexer

AXMEDIS data
model and database

AXMEDIS
Formatting
tools

AXMEDIS
Composition
toos Protection Tool Engine

Program and
Publication tool

engine

Client Viewer
Emulator AXMEDIS

Editor / Viewer

AXMEDIS
Certifier and
Supervisor

Server for: Kiosks
(B2C, wireless, PDA,
Download/Stream),
HTML ……(WP9.6)

Distrib. Query interf.

Client
wp4.6

CMS databases and FSs

AXEPTool
Environment

AXMEDIS
Portal

Object ID Generator Tools in Unique Instance

Tools in multiple instances

On demand

An Example for a Channel

Accounting managing
and reporting tool,

according on license

Loading
tool engine

Publication
tool engine

IN

OUT

Q
ue

ry
 w

p4
.2

Administration

Administrative
Information Integrator

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

28

 AXEPTool Client
 P2P/B2B

Distribution channels and models (Transaction models, formats)

Crawler
Collector
Indexer

Crawler
Result
Integrated
database

AXMEDIS
Compositional
process Engine

AXMEDIS
Formatting
process Engine

Formatting Process
Specification Rules

Composition Process
Specification Rules

AXMEDIS components and
Composed objects, prot/ no prot

AXMEDIS
Composition
Rules Editor

AXMEDIS
Formatting
Rules Editor

DIA support

AXMEDIS Certifier
and supervisor

Account log
public. log

Administration

Monitoring
controlling AXEPTool

Environment

Server for: Kiosks (B2C, wireless, PDA,
Download/Stream), HTML ……(WP9.6)

Server for: Mobile (B2C, GSM, GPRS,
UMTS, stream), WAP, HTML…..(WP9.5)

Server for: i-TV (PC, B2B, push/on
demand), MPEG-4,…..(WP9.3)

Server for: Internet, (PC, B2C, P2P,
 Download/Stream….), any format (WP9.4)

Final Clients

Source
List

transactions

transactions

DRM,
MPEG-21
wp 4.5

Client
wp4.6

Client
wp4.7

Client
wp4.8

Client
wp4.6

WP4.4

WP9.1

WP4.5

Viewer
Emulator Viewer

Emulator Viewer
Emulator Viewer

Emulator

profiles

Query
wp4.2

Query
wp4.2

Query
wp4.2

Query
wp4.2

wp4.2

wp4.1

wp4.1

WP4.6, WP4.7, WP4.8

adaptation

Wp4.3, wp9.2

Wp4.3, wp9.2

MPEG-21

DRM, MPEG-21, wp
4 5

CMS databases and FSs

results

Formatting

Composing

Loading
tool engine

Publication
tool engine

Accounting managing
and reporting tool,

according on license

Query
wp4.2

AXMEDIS data
structure Schema

Data and control flow
Verification DRM
Data Schema

Collector
Engine

Feature
extraction
Plug-ins

Administrative
Information Integrator

IN

OUT

Query
wp4.2

Protection
Tool Engine

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

29

«subsystem»
Crawling Area

«subsystem»
AXMEDIS Content Production Area

«subsystem»
AXMEDIS Editor

«subsystem»
Fingerprint/Descriptor Extractors Area

«subsystem»
AXEPTool Area

«subsystem»
Programme and Publication Area

«subsystem»
Distribution Area

«subsystem»
AXMEDIS Client Player

«subsystem»
AXMEDIS Certifier and Supervisor

«subsystem»
AXMEDIS Protection Tool Area

«subsystem»
Local CMSs

«subsystem»
AXMEDIS Accounting Area

«subsystem»
AXMEDIS Portal

«subsystem»
WorkFlow Management Area

AXMEDIS Architecture

«uses»

«uses»

«subsystem»
AXMEDIS Data Base Area

«subsystem»
Super AXCS

Super
AXCS::AXMEDIS

OID Generator

B2B user

Final user

WF Manager

CMS programmer

programmer

Object Builder

Protector

SupervisorAccounter

Final user

Supervisor

«subsystem»
AXMEDIS Other Players

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

30

AXMEDIS Framework is composed by the following areas and components:
• Local CMSs – represent the set of CMSs which are of interest to be connected to AXMEDIS system via

Crawling Area tools.
• Crawling Area – includes Focuseek adaptation, Collector Engine, etc… includes a set of plug-ins which

allows interaction among proprietary CMSs and AXMEDIS system to migrate digital resources towards
AXMEDIS factory

• Fingerprint Extractors Area – includes access to a set of algorithms capable of estimating fingerprints
(for collection of metadata and for certification) of a large variety of possible resource/content type for
extracting a large mount of features. Such algorithms should be designed as a set of plug-ins usable in
different AXMEDIS tools.

• Programme and Publication Area – includes all the components which allow the interconnection
among AXMEDIS networks and databases to the distribution channels for producing programs to public
content on the distribution channel. It also allows the management of request for content
production/adaptation on demand.

• Distribution Area – includes tools to allow content distribution on specific channels and terminals.
• AXMEDIS Client Players – includes a reduced version of AXMEDIS Editor only capable to read and

show AXMEDIS objects. This Area also includes all the plug-in versions of this tool which allow
AXMEDIS object visualization in other players.

• AXMEDIS Other Players – includes all the plug-in versions of this tool which allow AXMEDIS object
visualization in other players.

• AXMEDIS Editor – includes all the modules to create an AXMEDIS objects such as (i) a set of
different views (ii) a command manager capable of validating user request (iii) a set of plug-in to use
external resource/content editors/viewers (iv) a set of plug-ins to allow the integration of AXMEDIS
Editor within other editing applications (v) interface with workflow, etc.

• AXMEDIS Database Area – includes AXMEDIS Database manger, access to the content, AXMEDIS
Query Support, AXMEDIS Database, etc…

• AXEPTool Area – includes all components related to the B2B and P2P communication via AXEPTool
application.

• AXMEDIS Content Production Area – includes all those tools needed for the automatic content
production such as Formatting and Compositional Engine.

• AXMEDIS Protection Tool Area – includes DRM, encryption and decryption support, a support which
allow communication towards clients and AXMEDIS OID Generator and Certifier and Supervisor, a tool
for protecting objects, etc…

• AXMEDIS OID Generator – it is the unique responsible of object ID generation and it will elaborate
all new-id requests coming from the client or automatic engines.

• AXMEDIS Accounting Area – includes a set of tools which allow final producers or distributors to
collect information about what has been done on their objects in the AXMEDIS Circuit and thus to
produce statistic analysis on content usage and other relevant statistical aspects. It also reports to the
administrative side of the CMS the administrative information to prepare the bill at the content user.

• AXMEDIS Certifier and Supervisor – it is the responsible of user authentication and software
certification, registration and tracking of the activities performed on AXMEDIS objects.

• Workflow Management Area – includes support and plug-ins to allow the content flow control, and
programming, in all AXMEDIS subsystems.

• Super AXCS – is the unique responsible for supervising and collecting general information of
monitoring for the actions performed on the content and for the registration of tools, users, etc.

• AXMEDIS Portal – includes services for partners, for managing the project, for working together, for
supporting take up actions, for providing information during dissemination and demonstration.

All these tools and areas will be deeply analyzed in the following sections.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

31

5 AXMEDIS Framework overview, General Architecture (DSI, all)

The added value of AXMEDIS will be in the research results producing innovative tools for content
production (reducing costs and allowing production and formatting on demand) integrated in an open
P2P tool (AXEPTool) at which any CMS could be joined for content production and distribution in
the B2B environment of AXMEDIS. These aspects integrated with a set of sustainable demonstrators
and take up actions will signal the age of real alliance in the content production process respecting the
business of SMEs and permitting at them to access at relevant content and thus at producing content
at a reasonable costs.

Most of the components mentioned in this WP are already available in the repository of the partners in an
initial version and with less functionalities with respect to the real needs and the goals of the research activity
planned for the AXMEDIS project. Some of the objectives have very ambitious objectives.
Some of the available components are in Open Source, supported by GPL or LPGL or other licenses, others
are in the public domain, others still are proprietary. All the components provided by the partners will be
made available to the community according to the rules specified in the Consortium Agreement in which
each case is examined individually and carefully considered (the Consortium Agreement reports also a
description of pre-existing knowledge and tools and the rules for their exploitation). A limited set of
possibilities that range from LGPL, GPL, to proprietary modules have been used for labelling the IPR
brought by the partners into the project. Some of these components will have to be customised to become
compliant to the AXMEDIS framework, others will have to be transformed into multiplatform, only a few of
them are to be built from scratch. Their maintenance along the project life is a mandatory activity to maintain
their alignment to the AXMEDIS platform during its development. Partners that will provide proprietary
modules have the duty to ensure they are AXMEDIS compliant.

The AXMEDIS Framework
In the following figure, the structure of the AXMEDIS Framework is reported. It contains all the necessary
tools to manage the content workflow from the content production to the distribution over different channels,
they are listed in the following.

The general infrastructure gives a common ground on the base of which other AXMEDIS-compliant
applications can be built. The most relevant parts of the AXMEDIS general infrastructure are:

Any Proprietary CMS, and Content as files

 AXMEDIS general infrastructure

AXMEDIS
database admin.

Tool

AXMEDIS
database

AXMEDIS
Composition

Tools

AXMEDIS
Formatting

Tools

AXEPTool
(P2P)

AXMEDIS
Certifier &
Supervisor

Database access P2P protocol Composition algorithms
Formatting algorithms

Content Model Distribution algorithms
Query & results

model

Query search
algorithms

DRM and
protection
algorithms

Secure
communic.

protocol

WP5.1

WP5.6WP5.5WP9.1/5.4 WP5.4WP5.4

Transcoding algorithms Test Cases

Validat. Content

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

32

• a common model for content representation which allows that the information about the content can be
exchanged between the different tools for the manipulation/fruition, a suitable solution could be the
MPEG-21 format (see WP4.1).

• Repository Administrator Tool (including import/export, ingestion tools, from proprietary CMS
solutions. This Module will be developed in WP9.1 for all the CMS of the partners involved in the
project: SEJER, ILABS, WAN, XAURA, OD2, etc.).

• access methods to the local AXMEDIS database which stores the content with its metadata and it
could be used for searches, classification, etc. as used in the AXEPTool and in any other content
processing. All tools will use these access methods to get the object, write back the modification, create
compound objects, etc. (see WP4.1)

• AXEPTool and its P2P engine for developing P2P applications allowing the content sharing, see
WP5.5. P2P communication model, used by AXEPTool and available for other AXMEDIS compliant
tools in the future.

• Composition Tools and algorithms that perform the composition of AXMEDIS objects, developed in
WP5.4 as general tools and in WP9.1 with some more specific tools. Including AXMEDIS rules editor.

• Formatting Tools and algorithms that manage the presentation description of the AXMEDIS content,
developed in WP5.4 as general tools and in WP9.1 with some more specific tools. Including AXMEDIS
style editor for formatting.

• all the transcoding and digital item adaptation algorithms developed in WP4.3 and the other
algorithms of the same type that will be developed in the demonstrators of WP9. Including
multilingual management for metadata and for text, synchronisation tools and algorithms, etc.

• A protection model including:
o AXMEDIS Certifier & Supervisor which controls the DRM and supervise the traffic on the

AXEPTool.
o DRM/Protection solutions, DRM engines, guidelines for licensing and contract definition,

protection tools, monitoring tools, fingerprint estimation, enforcing and readers as developed in
WP4.

• test cases and validation content for validating the identified algorithms and software
components and tools included in the framework and for accepting new algorithms in WP5.2.

• a format for query & results to represent the request coming from the other peers about the
shared content and the results that list the content corresponding the request criteria (see
WP4.2). This has to be specified for simple client queries and for complex technical queries.

• all the distribution algorithms developed in WP4.6, WP4.7 and WP4.8. They are models for
distributing content via I-TV, mobiles, PDA, PC, kiosk, etc.

The main idea of the AXMEDIS Framework
• Production of the AXMEDIS framework as a structured and organised set of software components in the

area of cross media production, content sharing, content distribution towards multi-channel. These tools
can be mainly used for the production process enabling content production on demand and automatic and
semiautomatic production and formatting.

• Production of a general set of AXMEDIS production tools on the basis of the AXMEDIS framework.
• Improvement and maintenance of the AXMEDIS framework and tools.
• Preparation of guidelines to allow the development of the above mentioned points.

The main activities have been divided in the following subWPs:
• WP5.1 -- Development of the general infrastructure
• WP5.2 -- Component Validation and Acceptance
• WP5.3 -- AXMEDIS framework integration and maintenance
• and all the other technical activities that are related to the tools specified in this document

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

33

5.1.1.1 WP5.1 -- Development of the general infrastructure
This WP is coordinated by DSI
Period: M6-M30
The work in this WP includes several aspects and is quite distributed among all partners with a special
attention to industrial partners such as COMVERSE, HP, ILABS, TISCALI that are interested at the
exploitation of the produced results from the project.

T5.1.1: Production and maintenance of AXMEDIS guidelines
Managed by DSI with the work of all partners.
The algorithms developed in WP4 will have to provide a suitable interface to be joined each other to build
the AXMEDIS framework designed and developed in this WP5. To this end, each software components
including specific algorithms for content manipulation will have to be compliant to a specific interface. For
example, the identified typical interfaces are those of the algorithms for (i) content transcoding, (ii) content
composition, (iii) estimating a fingerprint, (iv) content formatting, (v) reading watermark, etc. These
interfaces will be defined in this SubWP at which all the WP responsible of WP4 are called to work. Most of
the algorithms have to share a common format and in some cases they have to be capable to communicate
according to a unique data model. This data model will be based on the Object Oriented paradigm. The
partners have a large experience in this sense. In order to reach these objectives, a set of guidelines will be
produced according to the AXMEDIS specification to help the developers to work in precise manner. This
will guarantee the interoperability of the research results obtained. This will be quite similar to what has been
done in the past for other projects.

T5.1.2: Production of Stub Components of the general framework
Managed by EPFL. The work should be assigned on the basis of competencies to all the partners involved on
this WP.
Based on the guidelines the second step will lead to the creation of the stubs of the major components and
algorithms. Some of these stubs may become real modules (with common interfaces) in a short time by using
the components provided by the partners and reported in the above table (i.e. transcoding algorithms). The
creation of the stubs will help to avoid integration problems of the various components/algorithms in the
framework in the later developments.
This process will start in the early months and continue through the project improving the interfaces of the
components and their number in the AXMEDIS framework.

5.1.1.2 WP5.2 -- Component Validation and Acceptance
This WP is coordinated by FUPF
Period: M8-M48
In order to correctly set up the AXMEDIS framework, each implemented and supplied component should be
validated and certified before allowing its use by content creators, content providers and final users inside
AXMEDIS. The validation content is produced and collected in WP8 and the related test cases are defined in
WP2 as described in WP5.1. The validation will be performed by skilled partners but different to those have
created the module. Several industrial partners are involved in this work. To perform validation and
acceptance of software components and tools, we have split this WP into several tasks (the great part of this
work will be done after the first 18 months).

T5.2.1: Start up of the Component Validation and Acceptance
Managed by FUPF. The work should be assigned on the basis of competencies to all the partners involved on
this WP.
• Definition of guidelines for deciding if a component is valid or not for its use in the AXMEDIS

framework.
• Definition of acceptance guidelines for components.
• Specification of requirements for constructing tools and / or mechanisms for acceptance and validation.

At this point, it should be decided which mechanisms for component validation and acceptance will be
based on automatic tools and which ones will be manual.

• Development of tools to check the above guidelines.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

34

T5.2.2: Periodic verification and Acceptance Testing
Managed by FUPF. The work should be assigned on the basis of competencies to all the partners involved on
this WP.
• Software components and tools Testing of the tools developed to check the guidelines.
• Software components and tools Verification and validation of interoperability, etc.

The scope of the validation covers not only that of assessing the quality in terms of research value, but also
that of verifying the: reliability, the robustness with respect to the test cases, and the conformance to the
AXMEDIS framework.

5.1.1.3 WP5.3 -- AXMEDIS framework integration and maintenance
This WP is coordinated by EXITECH
Period: M9-M48

This WP is devoted to the integration of the components mentioned in the WP5.1. The integration work will
permit the building of several demonstrators, for instance, the demonstrators developed in WP9 and the trials
developed by the Take up actions. The great part of this work will be done after the first 18 months of
project and will consist of:

T5.3.1: set up of the AXMEDIS framework for integration
Managed by EXITECH
• Components data base set up and data base management.
• CVS set up and management for source sharing.

T5.3.2: Continuous integration of AXMEDIS components
Managed by EXITECH, performed by all partners involved according to their skill and related tools of which
they are responsible.
Activity of integrating into the CVS the components, resolving conflicts, supporting the other partners during
the integration. This will lead to refine the guidelines and also the stubs of the modules.

T5.3.3: Regression and integration testing
Managed by EPFL, performed by all partners involved according to their skill and related tools of which
they are responsible.
Regression and integration test of the software components to verify their global functionalities, by using the
integration test cases defined in WP2 and the data set produced and collected in WP8.

T5.3.4: Optimisation of AXMEDIS components
Managed by DSI, performed by all partners involved according to their skill and related tools of which they
are responsible.
Optimisation of AXMEDIS Components for improving the quality of their results and removing potential
integration problems.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

35

6 AXMEDIS Editor Overview (WP4.1.3, WP5.4.4: DSI, EPFL, FUPF, all)
AXMEDIS Editor will support MPEG-21 with related composition and the nesting of levels; it will support
the navigation in MPEG-21 objects. Drag and drop mechanisms will be used as well as scripting to creating
objects. Moreover, plug-ins will be developed for enabling the MPEG-21 approach in other content editors.
Vice versa, AXMEDIS Editor shall use ActiveX to call and use players for proprietary media formats that
will be possible through MIME type interpretation.

Hierarchy
Editor and

Viewer

AXMEDIS Object Manager

Metadata
Editor and

Viewer

DRM Editor
and Viewer

AXOM
Commands and

Reporting

AXMEDIS Editor
WorkFlow Plug In

Other Plug In

an object : AXMEDIS Object

Top
Package::File

System

AXMEDIS Editor
Configuration

Manager

Internal AXMEDIS
Resource Editor/

Viewer

ActiveX Manager
for Editor/Viewer

External Editor/
Viewer Activation

Manager

AXMEDIS
Object

Editor and
Viewer

AXOM
Content

Processing

AXMEDIS Editor

AXMEDIS Protection Tool
Area::Protection Manager

Support

«subsystem»
AXMEDIS Data Base Area::AXMEDIS Database Manager

Fingerprint/Descriptor Extractors
Area::Fingerprint/Descriptor

Estimation Tools as
Plugin for AXOM

AXMEDIS Content Production
Area::Adaptation Tools and

Algorithms

Workflow
Editor and

Viewer

Protection
Manager Support

Client

Behaviour
Editor and

Viewer

Visual
Editor and

Viewer

AXMEDIS Content
Tools Error

Manager

«uses»

«uses»

Plug In
Manager

Top Package::Object Builder

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

36

AXMEDIS Editor shall manipulate AXMEDIS object in respect of DRM which has been granted to the user
on that object, e.g. a user could hold an object on which he hold play/view grants while he has not copy,
move or other (manipulation) grants; in such a situation AXMEDIS Editor should stop every attempts of
modifying the object by the user.

AXMEDIS Editor includes (or use) the following modules:
• AXMEDIS Object Manager – an AXMEDIS object model container wrapped for secure AXMEDIS

object content manipulation. See Section 9;
• A set of viewer/editor for rendering or manipulating the information contained into the AXMEDIS

Object Manager and model;
o AXMEDIS Object Editor and Viewer – a user interface capable of “playing” AXMEDIS

objects according to the structure and main MPEG21 controls. See Part B;
o DRM Editor and Viewer, a view for editing and verifying the DRM rules for the users. See

Part B
o Hierarchy Editor and Viewer – a view for visualizing and modifying the structure of a

document in terms of elements and their parent-child relationship. Hierarchy Editor/Viewer is
the main entry-point to interact with the object and parts thereof, to recall other kind of
editor/viewer, etc… See Part B;

o Metadata Editor and Viewer - a view to edit and view metadata associated with the object. See
Part B.

o Workflow Editor and Viewer - a view to see the status of the object with respect to workflow
management. See Part B.

o Behaviour Editor and Viewer – a view for editing the behaviour of the object. See Part B.
o Visual Editor and Viewer - a view for editing the visual rendering of the object. See Part B.

• Protection Manager Support Client – a set of functionalities to verify the protection and the rights
(DRM), for the content contained into the AXMEDIS Object Manager. It contacts Protection Manager
Support that in turn contacts AXCS, for certification, registration, accounting, etc. See Part H.

• External Editor/Viewer Activation Manager and relative external application plug-ins – gives, to
AXMEDIS Editor, the capability of viewing/modifying resources by using external application which
have not ActiveX/COM interface. It has a list of possible external applications which are compliant with
AXMEDIS protection model; See Part B.

• ActiveX Manager for Editor/Viewer and relative ActiveX application plug-ins – gives, to AXMEDIS
Editor, the capability of viewing/modifying resources by using external application which have
ActiveX/COM interface; See Part B.

• Internal AXMEDIS Resource Editor/Viewer – a set of editor/viewer built-in AXMEDIS Editor which
guarantees a range of basic behaviors, for example, audio player, video player, doc viewer, etc.; See Part
B.

• AXMEDIS Editor Configuration Manager – is the responsible for configuration storage and
maintaining of any AXMEDIS Editor or AXMEDIS client; See Part B.

• AXMEDIS Content Tools Error Manager – is a support for managing errors in the area of content
processing, editing, formatting, etc. See Part B.

• AXOM Content processing -- This plug in interface allows to demand content processing to external
algorithms. It has to allow the presentation of the some functionalities of the algorithms also to the user,
e.g. fingerprint extractors, for Digital Item Adaptation, etc.; This interface for plug in is mainly usable
for demanding content processing from out side. See Part B.

• AXOM Commands and Reporting – This plug in interface allows to control the action of the
AXMEDIS Object Manager and to send messages and controls outside. See Part B.

• Plug-in Manager – allows the use of external plug-in which can be used for accomplishing various tasks
(e.g., workflow plug-ins). These plug ins have to be certified in some manner to guarantee the safeness
of their environment. The communication on these plug-in has to be performed in some protected
manner since the content if going to be processed by them. See Part B.

Further AXMEDIS Editor specifications are certainly:

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

37

• Each configurable AXMEDIS Editor modules shall conform to AXMEDIS Editor Configuration
Manager requirements. Moreover, each configurable AXMEDIS Editor modules shall own a default
settings set in order to work also on AXMEDIS Editor Configuration Manager fault or absence;

• AXMEDIS Editor and all its sub-modules shall support multi-language. Multi-language option will be
managed through AXMEDIS Editor Configuration Manager User Interface;

In this section will be analyzed only those modules which belong to AXMEDIS Editor area, the others will
be analyzed in the respective sections.

Module Profile
AXMEDIS Editor

Executable or Library(Support) Executable
Single Thread or Multithread Multi-Thread
Language of Development C++
Responsible Name Davide Rogai, Andrea Vallotti
Responsible Partner DSI
Status (proposed/approved) Proposed
Platforms supported Microsoft Windows, Linux, MACOS X

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section
Config Files Config Files Schema

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Views Manager C++ wxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

38

6.1 Software Architecture

AXMEDIS Editor Software Architecture

AXMEDIS Internal
Editors and Viewers

AXOM

 AXOM

External Procedures
Profile Manager

AXOM
Content

Processing

AXOM
Command

and
Reporting

Protection Manager
Support Client

Protection
Processor

AXMEDIS Data
Model Support

AXMEDIS
Error and

Configurat
ion

Manager

Error and Configuration Manager

Active X
Manager

External
Editor/
Viewer

Activation
Manager

External
Editors and Viewers

Plug In
Manager

Adaptation
Algorithms

Fingerprint
Algorithms

Descriptors
Algorithms

AXMEDIS Object
Loader and Saver

DLL API

AXMEDIS Database

Internet Connection

PMS
[Domain]

AXCS

DLL API DLL API DLL API

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

39

6.2 Graphic User Interface
The following is a possible user interface for the AXMEDIS Editor, a Frame is used for each object opened.
Inside the frame, on the left a tree view representing the object structure is presented (see part B for details
on the Hierarcy View) and on the right the different views of the object are hosted (see part B for the
different viewers/editors). The AXMEDIS Hierarchy can be shown also as it will be visible from the End
User by selecting the specific Combo Box.

AXMEDIS Editor

The top-level menus are:

File Description
New creates a new AXMEDIS object in a new window
Open… loads an AXMEDIS object in a new window
Close closes the current window
Save saves the object to disk
Save as… saves the object
Open from database… opens an object from the database
Upload into database… uploads the object into the database
Configuration… opens the configuration editor
Exit closes the application

Edit Description
Undo to undo the last operation
Redo to redo the last operation undone
Cut cuts the element
Copy copy an element
Paste paste an element

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

40

Delete removes an element without putting it in the clipboard
Plugin… Shows the plugins that can be used on the selected element

Editors/Viewers Description
Resource Editor & Viewer Opens the resource viewer
Metadata Editor & Viewer Opens the metadata editor & viewer
Annotation Editor & Viewer Opens the annotation editor & viewer
Visual Editor & Viewer Opens the visual view on the whole object
Behaviour Editor & Viewer Opens the behaviour editor & viewer on the whole object
DRM Editor & Viewer Opens the DRM editor & viewer
Workflow Editor & Viewer Opens the workflow editor & viewer

Player Description
Start Starts playing the object
Pause Pause object palying
Stop Stop playing

Window Description
… contains the list of windows currently opened

Help Description
Guide to AXMEDIS Editor… Opens the guide to the AXMEDIS Editor
About AXMEDIS Editor… Opens a dialog showing information on the AXMEDIS Editor

Contextual menus are used in the AXMEDIS Hierarchy to perform specific operations on each element of
the hierarchy:

Open open a default view for the element
Open with… in case more choices are available let the user choose
Properties… show properties of the element
Cut cuts the element
Copy copies the element
Paste pastes an element after the selected one
Delete removes the element
Move up move the element up
Move down move the element down
Insert
 metadata… inserts a new metadata element
 resource… inserts a new resource element
 object… inserts a new object
Plugin… let the user select the operation to be performed on the element

On the MPEG21 Hierarchy specific contextual menus are used:

Open open a default view for the element
Open with… in case more choices are available let the user choose
Properties… show properties of the element
Cut cuts the element
Copy copies the element
Paste pastes an element after the selected one
Delete removes the element without putting it in the clipboard
Move up move the element up
Move down move the element down

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

41

Insert
 Descriptor inserts a new descriptor
 Statement inserts a new statement
 Item inserts a new item
 Component inserts a new component
 Resource inserts a new resource
 Container inserts a new container
 Reference inserts a new reference
 …
Plugin… let the user select the operation to be performed on the element

Drag and drop can be used to copy an element from one hierarchy to another hierarchy (of different objects)
or to move an element from one point to another (in the same object).
Files (images, video, documents, …) can be dropped inside an object from the file system to become
automatically resources belonging to the object.

6.3 Class Diagram
The following is the class diagram:

wxFrame

AxEditorFrame

AxObjectManager

AxViewsNotebook

wxNotebook

AxGenericView

*

AxView
-element : AxElement

AxElementView

AxDRMView AxMetadataView AxResourceView

wxPanel

AxPluginManager

AxHierarchyView AxMPEG21HierarchyView

wxTreeCtrl

AxEditorFrame
Manager

*2

*

where class AxEditorFrame is the main frame, it contains:

• an AxObjectManager to manipulate the AXMEDIS object;
• a set of views currently open for the object;
• two AxViewsNotebook (one on the left and one on the right).

The AxViewsNotebook are used to contain different views of the object that can be hosted inside a Notebook,
they can be: AxDRMView, AxMetadataView, AxResourceView, AxHierarcyView or
AxMPEG21HierarchyView.
Abstract class AxGenericView represents a view on an AxObjectManager. AxView represents a view on the
whole object (like a hierarchy view) and AxElementView is a view on a specific element of the object.

AxEditorFrameManager is a singleton class where each AxEditorFrame registers itself on creation. It allows
to know which frames are currently open.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

42

7 AXMEDIS Object Manager (DSI, EPFL)
AXMEDIS Object Manager, so called AXOM, is the coordinator of all other modules used by or built in
AXMEDIS Editor. Coordination activities it is important to permit development of others AXMEDIS Editor
modules almost independently each other. AXMEDIS Object Manager guarantees DRM rules respect on
AXMEDIS object manipulations.

AXMEDIS Command Manager

AXMEDIS Object Manager

AXMEDIS Data Base Area::AXMEDIS Data
Model Support

Tool Registration

Tool Certification
(authentication)

Tool ID estimation

«uses»

AXMEDIS Editor::Protection
Manager Support Client

«uses»

«uses»

«uses»

«uses»

«uses»

Tool Profiling

«uses»

Protection Processor

Scramble/
deScramble Support

«uses»

«uses»

Compress/
uncompress Support

«uses»

Protection Info and
Procedures Intepreter

«uses»

unprot/prot procedure and information

«uses»

AXMEDIS Data Model
Support::AXMEDIS Data Model

Schema
«uses»

Decryption Support

Encryption Support

The libraries for Dec-Enc, Scramb-deScramb, etc.. has to be built in a separable manner, so as to
include all of them in the editor an player while in the player we have to have only de-scramble,
decrypt, etc..

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

43

AXMEDIS Object Manager works in respect of AXMEDIS Data Model Support, reported in the following
section; AXMEDIS Object Manager fundamentally is composed by three modules:
• AXMEDIS Command Manager which is the real interface for processing content models as the

AXMEDIS Data Model and protected according to the tools of the AXMEDIS Protection processor.
• AXMEDIS Data Model Support to model the AXMEDIS objects according to the MPEG21 and

additional requirements identified
• AXMEDIS Protection Processor to protect and processing registration, certification, and to protected

and unprotect digital resources according to a dynamic mechanism similar to that of IPMP of MPEG21.

Module Profile
AXMEDIS Object Manager

Executable or Library(Support) Library
Single Thread or Multithread Single Thread
Language of Development C++
Responsible Name Davide Rogai, Andrea Vallotti
Responsible Partner DSI
Status (proposed/approved) Proposed
Platforms supported Microsoft Windows, Linux, MACOS X

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
xerces

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

44

7.1 AXMEDIS Command Manager (DSI)

Module Profile
AXMEDIS Command Manager

Executable or Library(Support) Static Library
Single Thread or Multithread Single Thread
Language of Development C/C++
Responsible Name Davide Rogai, Andrea Vallotti
Responsible Partner DSI
Status (proposed/approved) Proposed
Platforms supported Microsoft Windows, Linux, MACOS X

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

Command Manager is the interface among objects representation and all others data-manipulation
AXMEDIS Editor modules (e.g. View Modules, plug-ins, etc…). Command Manager will provide all base
operations (add, change, delete, etc…) which will be needed to manipulate AXMEDIS objects. Moreover, it
will invoke Protection Manager Support to verify each operation.
• Command Manager works in respect of DRM model, i.e. on every user action it shall invoke the control

of user grants on the involved items. That should be possible through the invocation of Protection
Manager Support;

• Command Manager stores information about taken actions, in particular the following information shall
be stored:

o Kind of action and entities involved;
o Who takes the action;
o Where the action have been taken (AXMEDIS Editor installation identifier);
o When the action have been taken (timestamp);

Command Manger provides an interface to permit development of data-manipulation plug-ins by third party
developer. By data-manipulation plug-in is intended software component which can manipulate memory-stor

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

45

Fundamentals classes involved in the Command Manager package are:
AxCommandManager: it processes all the requests of command execution exposing the execute command
method. It owns a reference to a data model (model) (from Data Model Support) that manage the real
document and it is used by the commands to perform their operations. Singleton class ProtectionProcessor is
used to delegate all the security checks, i.e. certification and verification of the device.
It implements the IModelStatusManagerListener interface to receive notification of model status changes.
ModelStatusManager: it manages all the information needed to maintain the consistency of model data: it
prevents concurrent write/read to elements of the document.
AxObjectManager: derived from AxCommandManager, it will be the interface to the module, it will allow
also to access to PluginManager functionalities.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

46

+execute(in cmd : Command) : void
+getAxObjectElement(in index : ElementIndex) : AxObjectElement
+getDIElement(in index : ElementIndex) : AbstractDIElement

-modelStatusManager : ModelStatusManager
-axmedisModel : AxObject
-mpeg21Model : DIDLDocument
-executedCommandList

AxCommandManager

-elementID : string
-elementAttribute

ElementIndex

+execute(in cm : AxCommandManager) : void
+getReverseCommand() : Command

Commands::Command

-newElement : AbstractDIElement
-parentIndex : ElementIndex
-referenceIndex : ElementIndex
-before : bool

Commands::CommandAdd

-elementIndex : ElementIndex
-attributes

Commands::CommandChangeAttribute

-elementIndex : ElementIndex
Commands::CommandDelete

-newParentIndex : ElementIndex
-childIndex : ElementIndex
-sourceCM : AxCommandManager

Commands::CommandMove

Commands::CommandSave

-fileName : string
Commands::CommandSaveAs

+getChildren() : ElementIndex*

-elementIndex : ElementIndex
-childrenList : ElementIndex*

Commands::CommandExpandElement

Commands on the object are generalized in an abstract class Command which exposes:

• execute method in order to be flexible to the introduction of new commands and
• getReverseCommand to support undo mechanism

Some implementation examples are provided:
• CommandAdd: it allows to add an element to the document, it requires the new element and the

location of this addition
• CommandChangeAttributes: it allows to modify specific attributes of an element, it requires an

attributes list and information to get the position of the element in a document
• CommandMove: it allows to move elements within a document and between two distinct document,

i.e. it allow to realize cut-and-paste operations. It requires references to the node to be moved, to the
new position of the element and to the model or CommandManager the element comes from

• CommandDelete: it allows to delete an element of an existing document, it obviously requires a
references to the element to be deleted

• CommandSave: it allows to save the modified document in the location the original document
comes from, i.e. it override the old version of the document with the modified one

• CommandSaveAs: it allows to save the document (modified or not) to a new location. The
command requires to know the new location for the document, e.g. an URI or an ODBC database
name, etc…

All these commands use the ElementIndex class which is the unique type of reference to elements which the
user of the AxCommandManager class can use to manage the model of the document. ElementIndex is an
indirection layer between the final user of the document model (i.e. who creates tools to manage AXMEDIS
objects) and the model itself. In that way, controlled access to information and content contained in a
document is guaranteed.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

47

7.2 Protection Processor

Module Profile
Protection Processor

Executable or Library(Support) Static Library
Single Thread or Multithread Multithread
Language of Development C/C++
Responsible Name Andrea Vallotti, Davide Rogai
Responsible Partner DSI
Status (proposed/approved) Proposed
Platforms supported Microsoft Windows, Linux, MACOS X

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section
Certificate X.509v3 RFC 2459

http://www.ietf.org/rfc/rfc2459.txt
RFC 3280
http://www.faqs.org/rfcs/rfc3280.html

PKCS #12 Personal
Information Exchange Syntax
Standard

 PKCS #12
http://www.rsasecurity.com/rsalabs/

PKCS #7 Cryptographic
message syntax standard

 PKCS #7
http://www.rsasecurity.com/rsalabs/

User Interface Development model, language,
etc.

Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
cryptlib Cryptlib 3.1 cryptlib is distributed under a dual

license that allows free, open-source
use under a GPL-like license and
closed-source use under a standard
commercial license. In addition,
cryptlib is free for use in low-cost,
non-open-source applications such as
shareware, and for personal and
research use.

Xerces-C++ Version 2.6.0 Apache License, Version 2.0
Apache XML Security Version 1.1 Apache License, Version 2.0

Protection Processor has mainly four tasks:

1. To register and certify an AXMEDIS tool containing the AXOM, e.g. editor, player, engine, etc…
2. To control software which uses sensible content and does not contain AXOM, e.g. plug-ins for

fingerprint
3. To reveal attacks during tool execution, e.g. code debugging

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

48

4. To protect and un-protect elements of AXMEDIS object
In the following those aspects will be described and solutions are proposed for them. After that, class
implementation and interaction will be described.

7.2.1 AXMEDIS tool registration and certification
In the following the needed information to reach an adequate level of protection will be identified and
described. For each identified information, the responsible component is found out and the relationship to the
other is depicted. At the end, the interactions and operations among all involved components to guarantee
trustiness of a tool are described.

7.2.1.1 Software and hardware fingerprint
Given a device and an installation of an AXMEDIS compliant software on it, a fingerprint estimation of the
whole tool (software/installation and hardware/device together) is possible. In particular, this section refers
to software which embed an AXOM (and thus a Protection Processor), e.g. AXMEDIS editor,
compositional/formatting engine, plug-ins for external viewer/editor, etc. The certification of plug-ins for
AXOM (i.e. which do not contain an AXOM) is discussed later. By fingerprint estimation is intended an
extraction of relevant information regarding the device and the most important files of the application (i.e.
those files which are fundamental for the trustiness of the environment). The proposed fingerprint is
composed by the following data:

1. for each hard-disk in the device: serial, controller revision number
2. for each processor in the device: name (i.e. the standard description of its features), serial (if

reachable)
3. BIOS: name (comprehensive of the version), serial
4. optionally, for each network device: MAC address
5. operative system: name, version, installed upgrade (e.g. SP1), serial (e.g. product id)
6. manufacturer-defined name of all available components e.g. video device, audio device,

motherboard, etc…
7. For each of the following files:

a. executable file or library containing the AXOM
b. main file of each plug-ins
c. configuration files
d. secure cache files

the following features have to be collected:
i. full name (path and file name)
ii. physical position (e.g. if mass storage is an hard-disk it is the cluster index)
iii. digest (e.g. MD5)
iv. creation date and time
v. last modification date and time
vi. size

8. AXMEDIS Tool Type ID (AXTTID)
9. AXMEDIS Registration Tool ID (AXRTID) which is the digest of the main program executable file

All this information is estimated by the Protection Processor. It is responsible of their estimation, they are
stored on the AXMEDIS Certifier and Supervisor and transmitted to it by means of the PMS Client. It is to
point out that last modification date and time (previous point 7-v) and size (previous point 7-vi) should not
be considered as parts of the fingerprint for those file which change during the lifetime of a tool, e.g.
configuration file and secure cache, otherwise information stored on the AXCS and those estimated at
runtime will hardly correspond.
The fingerprint is estimated and used for the following operation:

1. Tool registration – the tool has to transmit its fingerprint to the AXCS.
2. Tool certification and authentication – the tool has to re-estimate the fingerprint and to transmit it (or

a digest of it) to the AXCS

7.2.1.2 Tool certificate
Tool certificate is issued by an AXCS to the tool itself when the latter certifies itself at the first activation.
The certificate is formatted in the X.509v3 format. It contains the following information:

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

49

Version 2 (that is X.509v3 is identified by this value)
SerialNumber The serial number of the certificate. It is defined by the issuer which is the AXCS
Signature The encryption algorithm used to encrypt the signature. In this case, the signature

algorithm is the RSA with SHA-1 which is identified by the following ASN.1
object identifier:
sha-1WithRSAEncryption OBJECT IDENTIFIER ::=

{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 }
Issuer The AXCS which issued the certificate expressed in the X.500 format
Validity The validity period of the certificate which for the AXMEDIS purposes could be

one/five year since the issuing time
Subject Identified who or what receives the certificate. In this case it is the AXTID which

identifies the tool
SubjectPublicKeyInfo The encryption algorithm used to generate the public key and the public key

itself. In this case, the used encryption algorithm is the RSA which is identified
by the following ASN.1 object identifier:
rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

Encrypted The encrypted digital signature of the certificate
Extensions Extension to the certificate. This field can contain the enabling code for the tool

and other information
Before generating the certificate, the AXCS requests to the Key Generator (component of the PMS Server) to
generate a key pair (public/private keys). As said above, the AXCS inserts the public key into the tool
certificate and sends certificate and private key to the tool. They are packed together as stated in PKCS #12.
The integrity of transmitted information is guaranteed by a signature using the private key of the AXCS (see
PKCS #12 – Public-key integrity mode). The privacy of that information is guaranteed because it is
encrypted using the public key of the user who is registering the tool (see PKCS #12 – Public-key privacy
mode).
The certificate and the private key are stored in the specific device certificate repository and in the PMS
Client secure cache. In that way, their consistence can be tested every time the tool is used, the Protection
Processor is in charge of doing that check.
The private key corresponding to the tool certificate is marked as un-extractable (see PKCS #11), i.e. it can
be used on the device where it have been stored on the first time but it cannot be exported on other devices,
not even by the device administrator. The tool certificate have to be accessible from all the user of a device
to avoid multiple registration of the same tool by different users.

7.2.1.3 User certificate
User certificate is issued by an AXCS to the user at the registration time. It is useful to recognize who is
using a tool or is making action on an object. The certificate is formatted in the X.509v3 format. It contains
the following information:
Version 2 (that is X.509v3 is identified by this value)
SerialNumber The serial number of the certificate. It is defined by the issuer which is the AXCS
Signature The encryption algorithm used to encrypt the signature. In this case, the signature

algorithm is the RSA with SHA-1 identified by the following ASN.1 object
identifier:
sha-1WithRSAEncryption OBJECT IDENTIFIER ::=

{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 }
Issuer The AXCS which issued the certificate expressed in the X.500 format
Validity The validity period of the certificate which for the AXMEDIS purposes could be

one/five year since the issuing time
Subject The AXUID of the registered user
SubjectPublicKeyInfo The encryption algorithm used to generate the public key and the public key

itself. In this case, the used encryption algorithm is the RSA which is identified
by the following ASN.1 object identifier:
rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

Encrypted The encrypted digital signature of the certificate

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

50

Extensions Extension to the certificate. This field can contain the email of the user and other
information

Before generating the certificate, the AXCS requests to the Key Generator (component of the PMS Server) to
generate a key pair (public/private keys). As said above, the AXCS inserts the public key into the user
certificate and sends certificate and private key to the user. They are packed together as stated in PKCS #12.
The integrity of transmitted information is guaranteed by a signature using the private key of the AXCS (see
PKCS #12 – Public-key integrity mode). The privacy of that information is guaranteed because it is
encrypted using something the user knows, e.g. a password given by the user during the registration (see
PKCS #12 – Password privacy mode).
The certificate can be delivered to the user using the email address he gave as reference during the
registration.
Another suitable solution is to send certificate and private key (possibly packed together) to the user at the
end of the registration through a secure channel, e.g. using secure protocol https (http on SSL) instead of the
un-secure http.
The certificate and the private key are stored in the specific device certificate repository and in the PMS
Client secure cache. In that way, their consistence can be tested every time the tool is used, the Protection
Processor is in charge of doing that check.
User certificate import and export have to be someway controlled, i.e. if a user tries to export a certificate the
system have to check if he/she is the subject the certificate was issued to. For example, the PKCS #12
formatted packet the user receives at registration time is protected by the password he/she gave at that time.
The main issue is to be sure that an user cannot extract a certificate installed on a device without proving
he/she is really the certificate owner.

7.2.1.4 User Identifier/Identification
As stated in the previous sub-section, the AXUID (AXMEDIS User Identifier) of a user is contained in
his/her certificate. On a multi-user device (e.g. a personal computer with MS Windows), several certificates
for different users can be stored. In that scenario, the main issue is how an AXMEDIS tool can get the right
certificate (thus the right AXUID) for the current user.
Usually a multi-user device manages one certificate repository for each system users. In that case, the
AXMEDIS tool can look for a certificate issued by the AXCS in the current user certificate repository and
use that certificate, if exists, as reference certificate for the current system user. Note that each user should
have only one personal certificate issued by the AXCS.
The Protection Processor is in charge of looking for the certificate in the system repository and to get the
contained AXUID which univocally identified the AXMEDIS user.

7.2.1.5 Date and time
Since licenses can be based on date/time condition, date and time control is a fundamental issue to be
addressed.
Date and time have to be measured at the registration and every time an action is made. These measures (or
at least the last one) should be stored in a trusted place which can be suitably the AXCS.
In that way, during certification and authentication, the AXCS can verify if the nominal sequence of the
actions (i.e. the sequence according to which actions were stored) matches the timeline sequence (obtainable
using the measured date and time).
Each record of the history of actions (see below) have to be labelled with the date and time of execution.

7.2.1.6 Action history
Action history permits to control if the user made some not-allowed actions during off-line working. That is,
when the tool is used on-line (i.e. it can freely communicate with the PMS Server) every time the user
request to do an action on an object the request is processed and, if it is authorized, an action log (containing
the action type, the user id, the tool id, date and time, etc…) is sent to the AXCS. On the other hand, if for a
while the tool has been used off-line (i.e. without communication to and from the PMS Server), each
authorized action generates an action log which is cached on the device. As soon as a connection to the PMS
Server is available, the set of cached action logs is sent to it.
The information involved in this kind of control is:

1. the action logs which are stored on the device

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

51

2. a hash (e.g. MD5) of the past history of actions which is stored on the AXCS and on the device.
Every time the tool can communicate with the PMS Server, the former sends to the latter the cached action
logs (or a single action log if it is working on-line) and the updated hash of the history, i.e. a hash which is
function of the old hash and the cached action logs.

7.2.1.7 Enabling code
Enabling code is issued by the AXCS to the tool during the registration (it could be stored in the tool
certificate). The code is function of the fingerprint of the device. The generation function is secret but the
tool is capable to test if its actual fingerprint matches the one at registration time. In that way, the tool can
control itself if something is changed (hardware or software) since the registration.
The enabling code mechanism exploits the theory of Diffie-Hellman on keys generation. In the following
figure the code generation function and test function are depicted. At registration time, the tool estimates its
fingerprint (FP0) and sends it to the AXCS. It calculates the enabling code (AC) for that fingerprint as
depicted in the picture and sends it back. At runtime, the tool re-estimate its fingerprint and verifies if it is
compatible with the stored AC using the test explained in the picture. Notice that the enabling code is
generated using SA and the function g(FP) which are not used (and available) by the tool to make the test.
The common information between the tool and the AXCS is AC and the function f(FP) therefore the tool is
not able to re-calculate a new AC if its fingerprint changes.
The activation number is a way to verifies tool integrity during off-line working.
To make the enabling code calculation and test easier instead of using the entire fingerprint it is better to use
a hash/digest of it, e.g. and MD5.

In the formulas in the figure, square brackets subscribed with m is the base m modulus operation.
SA, g, f, m have to be someway chosen, e.g. they can be randomly created for each tool registration and stored
in the related record.

7.2.1.8 Trustiness of a tool
In this sub-section, a feasible mechanism to test the trustiness of a tool (the pair application/device) is
depicted. The information described above is involved in that check.

 Protection
Processor

PMS Client PMS Server AXCS

registration estimates FP0; - stores FP0;
Fingerprint time t estimates FPt; joins FPt to action logs; - verifies FPt w.r.t.

FP0;

Tool certificate verifies stores;
joins TID to action logs;

generates
keys:

generates
certificate:

AXCS
SA private key
at registration chooses randomly a
number m and calculates:

()
()()[]
()()[]

[]
mKPAC

PK

FPgP

FPgP

FPfS

A

m
S

B

m
S

B

m
S

A

B

A

B

A

||

0

0

0

=
=

=

=

=

AXMEDIS Tool
at registration estimates FP0

at runtime estimates FPt and
checks if:

[]mS
A

BPK ==
where K, PA and m are extracted by
AC and:

)(tB FPfS =

FP0

AC

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

52

User certificate verifies stores; generates
keys;

Generates
certificate;

User Identifier gets joins to action logs; - -

Date and time measures; joins to action logs; -

verifies;
stores date and
time of the last

action log;

Action history estimate new
history hash;

manages action logs;
stores history hash; -

verifies action
logs;

stores new
history hash;

Enabling code tests; stores; - generates as
function of FP0;

In the above table, all task of each involved component are reported with respect to the needed information,
i.e. which component generates/estimates an information and which other uses/verifies it.
If a tool have been successful registered by an user, at runtime the tool is considered trusted if, and only if,
all the following tests succeed:

1. The user certificate is valid, i.e. it is digitally signed by the certification authority (which is an
AXCS). Control performed by the Protection Processor;

2. The tool certificate is valid. Control performed by the Protection Processor;
3. The enabling code contained in the tool certificate and the re-estimated fingerprint are compatible

according to the test described above. Control performed by the Protection Processor;
4. The re-estimated fingerprint digest matches the registration-time fingerprint digest which is stored

on the AXCS. Control performed by the AXCS;
5. The history hash calculated by the Protection Processor, using the old one and the action logs (both

securely stored by the PMS Client), coincides with the same hash estimated by the AXCS using its
own copy of the old history hash and the action logs received;

6. The execution date and time of all the action listed in the action logs are consistent each other (i.e.
the nominal order matches the timeline order) and with respect to the last action execution date and
time stored on the AXCS;

7.2.1.9 Certified software
AXMEDIS tool features can be enriched by means of plug-ins. Usually plug-ins are pieces of software
exposing functions for specific purposes. Thus it is not suitable to equip a (likely) simple piece of software
(as a plug-in can be) with the AXOM to ensure DRM respect. Nevertheless, a plug-in can be used to
manipulate DRM-liable data, e.g. a fingerprint extractor plug-in.
To tackle this lack of security, each pieces of software created to enrich AXOM functionalities via plug-in
and to manage content have to be previously certified by the AXCS. AXMEDIS certification consists of the
following steps:

1. The final version of a software in binary form (e.g. a DLL) is submitted to the AXMEDIS certifiers
(human beings) declaring what are the purposes of that software;

2. The certifiers analyze the functions of the software and verify that it does not make unfeasible
actions, e.g. backup the unprotected content out of trusted environment;

3. If the software conforms to AXMEDIS guidelines and respects what have been initially declared it is
approved;

4. AXCS creates a certificate for the approved software. The information contained in it is described
below;

5. The approved software to be recognize as AXMEDIS compliant by an AXOM have to expose the
given certificate.

The certificate contains the information summarized in the table below. It is formatted as SignedData type of
PKCS #7.

Digest and encryption
algorithm

The signature algorithm is the RSA with SHA-1 identified by the following
ASN.1 object identifier:
sha-1WithRSAEncryption OBJECT IDENTIFIER ::=

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

53

{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 }
Issuer and certificate
serial number

The distinguished name which refers to the AXCS (X.500 format) and the
corresponding certificate serial number

Encrypted digest The encrypted digital signature of the software this certificate refers to

During software installation, the related certificate have to be stored in a repository reachable by all
AXMEDIS tool installed on that device, e.g. a list of entries in the system registry. In that way, plug-ins are
shared among all tools which can use them.
Every time a piece of protected content have to be passed to an external software, the Protection Processor
controls if the binary file containing the software corresponds to the signature contained in the declared
certificate during installation.

7.2.1.10 Execution controls
Protection Processor should inhibit AXMEDIS tool functioning as soon as it reveals that tool execution is
under tracking. That is, Protection Processor should test if execution is under debug. That control is useful to
avoid malicious user to disclose all security mechanism used within AXOM to guarantee trustiness of the
environment.
This feature is system-dependant and it will be specifically developed for each platform AXMEDIS Tool
should be capable to run on.

7.2.2 Robustness against malicious user actions
In the following table are listed several feasible actions which a malicious user can carry out to illegally use
DRM-controlled content. Each attack is shortly described and

Feasible attacks description System avoid/detect capabilities
Migrate an AXMEDIS tool
installation from the registered
device to another

The software and hardware fingerprints of the two devices are not
equal, even if the two device has been assembled with same
components, thus enabling code will fail.

Software under debug during
execution

Protection processor monitors if the application embedding it is under
debug, if it is protection processor will clear all sensible data on the
device. Moreover, if this monitoring system is deactivated modifying
the appliacation file, the fingerprint of the tool will change and it will
stop working.

Change system time to use time-
constrained content out of DRM-
allowed period

This attack will work until the device works off-line. As soon as the
tool can communicate with an AXCS thus, if IPR infringement is
detected by the latter, the tool will be disabled and the sensible
information will be cleared.

Migration of tool certificate There are two countermeasurs against this action:
• The certificate is stored in two different places: the system

certificate repositorty and the secure cache of PMS Client. The
user can move the one stored in the system repository to
another device but a simple consistency control between the
two copies will defeat the attack

• The certificate contains the signed activation code used to
verify the tool integrity. Therefore, a certificate copied by
another device will never work

An user uses content by illegally
exposing the identity of another
user

If a user exposes all the credential of another user the attack will be
not detect. Nevertheless, this attack is similar to the usage of stolen
credit card and it cannot be considered solvable problem: the
privateness of the personal certificate is exclusive interest of the user
himself/herself

Change pieces of hardware Depending on the wideness of changes, the tool is disabled and a new
reqistration is requested

Create a backup of the a newly-
installed AXMEDIS tool. Illegally
use content off-line (i.e. without

If a ghost image of the hard disk is made before using the content and
then it is restored on the original hard-drive after content has been
illegally used off-line, the attack will not be revelead by the

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

54

external controls). Restore the
virgin version of the tool before re-
connect to the network.

protection processor or the AXCS. Nevertheless, this action require
such technical support and knowledge that it is not applicable by the
common user and it do not allow a spread distribution of unprotected
content. Thus it is not of interest for us.

7.2.3 Protection Processor Class hierarchy

Protection Processor general architecture

ProtectionProcessor is the main class of the Protection Processor package. It provides protection services to
the Data Model Support, the Command Manager and the PMS Client. As described in the previous sub-
sections, it is in charge of:

1. certifying and verifying an AXMEDIS tool
2. controlling software which uses sensible content and does not contain AXOM
3. revealing attacks during tool execution
4. protecting and un-protecting AXMEDIS elements

As depicted in the picture above, ProtectionProcessor is the core of this package. It is the connection point
among all other utility (protection information interpretation, etc…). For each of the above-listed macro
functionalities the related functions and classes are shortly described below.

Certification and verification
doToolCertification – this function is called at first tool activation to certify it, sending the required
information to the AXCS.

doToolVerification – verifies tool integrity by calling doLocalToolVerification and sending verification
information to the AXCS.

doLocalToolVerification – controls: that tool fingerprint and the enabling code match, integrity of the used
certificates, etc…

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

55

addActionLog – this function has to be called by the PMS client every time a grant is requested. In that way
protection processor can estimate a checksum for the overall history of the performed actions with a given
tool.

getToolFingerprint – returns the fingerprint of the tool.

ToolFingerprintEstimator – this class exposes a method which estimates the fingerprint of the tool
(hardware and software) and returns it as XML string. Obviously, this class is system-dependant because it
has to use OS/HW-dependant functions to retrieve the required information to estimate the tool fingerprint.

ToolProfileExtractor – this class exposes a method which extracts the profile of the tool (hardware and
software) and returns it as XML string. Obviously, this class is system-dependant because it has to use
OS/HW-dependant functions to retrieve the required information to extract the tool profile.

Software verification
verifySoftware – given a software identifier (e.g. a path or something else), it verifies that the software has a
valid certificate and that the software hash correspond to that certificated by the authority.

Tool execution control
AuthenticationThread – this is a thread which randomly controls tool integrity. That is, it controls the
application is not under debug, it calls doLocalVerification and, if possible, it sends some control
information to the AXCS.

Protection and un-protection of AXMEDIS element
unprotectElement – given a protected AXMEDIS element, this function retrieves the related protection
information and unprotect the protected content obtaining the corresponding clear-text AXMEDIS element.

protectElement – given an unprotected AXMEDIS element and the list of instructions to protect it, this
method protects the element obtaining a protected AXMEDIS element and the related protection
information.

ProtectionInterpreter – this classes is capable to parse protection information to instantiate a set of
ProtectionCommand which can be used to unprotect a given element.

ProtectionCommand – this classes is the super-class for all those class which represent protection
commands, it exposes the basic methods needed to protect and unprotect content.

Other functions and utilities
These are general functions exposed by ProtectionProcessor which are used in several parts of the security
system.
getInstance – the design pattern singleton is applied to that class

getUID – since ProtectionProcessor manage the identity of the user who uses the tool, this function allows
the other components to retrieve the unique identifier of that user. In particular, this function should be used
by the PMS Client to determine the AXUID to be added to an Action Log.

getTID – since ProtectionProcessor is in charge of certifying the tool, this function allows the other
component to obtain the unique identifier of the tool itself. In particular, this function should be used by the
PMS Client to determine the AXTID to be added to an Action Log.

getSystemTime – this function allows the tool components to obtain the controlled system time in a unique
manner. In particular, this function should be used by the PMS Client to determine the execution time of an
action to be added to an Action Log.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

56

getCommunicationCertificate – since ProtectionProcessor manages all the certificates involved in the
security system of the AXMEDIS tool, this function is the unique way to obtain a communication certificate
valid to exchange data with the server-side components of the AXMEDIS framework, e.g. PMS Server or
AXCS.

disableTool – does all the needed action to disable a tool. That is, it removes all assigned certificates and the
enabling code, it clear the cache of the protection information of the PMS Client, all the sensible
information, etc… This function should be called every time a lack of integrity is detected.

FingerprintEstimatorThread – this thread is needed because tool fingerprint estimation can be burdensome
for the device and it cannot be executed every time is required (e.g. at each user action). In that way, the
fingerprint is randomly estimated at runtime without stopping program execution.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

57

7.2.4 Protection Info and Procedure Interpreter (DSI)

Module Profile
Protection Info and Procedure Interpreter

Executable or Library(Support) Static library
Single Thread or Multithread Single Thread
Language of Development C++
Responsible Name Andrea Vallotti
Responsible Partner DSI
Status (proposed/approved) Proposed
Platforms supported Microsoft Windows, Linux, MACOS X

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section
MPEG-21 Part 4: Intellectual
Property Management and
Protection Components

 w6772
http://mpeg.nist.gov/

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

This tool is capable of processing the IPMP information of MPEG21 according to the standard and much
more. The information may include:
• How each element of an AXMEDIS object has been protected, i.e. encrypted, encoded, compressed and

scrambled
• How each chunk of a resource has been protected, e.g. specifying that a given set of protection tools has

to be applied from byte X to byte Y of a given resource (and not to the whole resource). In that way,
different protection can be applied to a resource along its consumption.

• It is based on an XML schema which allows to describe sort of protection procedures
For instance, suppose the resource is an image comprised of two blocks, it can be protected as follow:
Block 1, from 0 to 1234 byte

• Unzip(………parameter)
• Decrypt(……parameters)
• Descramble (……parameters….)

Block 2, from 1235 to the end of the file
• Descramble (……parameters….)
• Unzip(………parameter)
• Decrypt(……parameters)
• Unzip(………parameter)

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

58

• Descramble (……parameters….)
Different tools can be selected by means unique identifiers defined in the framework. The tools can on the
device, downloaded from some server or directly contained within the protection info.
The decomposition and the application of the dynamic IPMP can be performed at level of data segments and
blocks and may change over time if different coding protection models are enforced into the same resource.
This is quite different with respect to dynamically change the IPMP rules when the resource is streamed.
Note that the single resource may have different tools, different keys, different combination or tools, etc…
Protection command used by the Protection Interpreter are distributed as dynamic library (e.g. DLL for
windows, SO for Linux, etc…). Each dynamic library which contains a protection command exposes a given
interface (see below) and its content (a protection command) is described by description file (XML file as
stated for plug-ins).

7.2.4.1 Protection Info Format (DSI)
Protection information are formatted as stated in MPEG-21 Part 4 IPMP standard. The syntax and semantics
is still under discussion, the actual state of the standard is contained in the output document w6772 of the
70th MPEG meeting (see http://mpeg.nist.gov/).
MPEG-21 Part 4 divides protection information into two XML schemas:

• one is used to declare the list of needed protection tools (or commands as defined in this section) to
unprotect the whole digital item;

• the other is used to describe, for each protected element, how to use those tools (e.g. the execution
order, keys, initialization parameters, etc…) to unprotect a specific element.

The former part of protection information (i.e. the list of all needed tools) should not only contain the
necessary tools to unprotect the “first level” of protected element, it should contain also the required tools to
correctly manage all nested levels of protected elements. In that way, looking at the tool list declaration it
will be possible to immediately decide whether an AXMEDIS Tool is capable to completely “consume” an
object.

7.2.4.2 Protection Interpreter (DSI)
Protection Interpreter is the part of Protection Processor in charge of transform an XML description of the
protection information into instance of ProtectionCommand and vice versa.

Protection Interpreter main classes

As depicted above, this package contains two main classes:

• ProtectionInterpreter – exposes functionality to interpret protection information and to verify
capabilities for un-protecting an AXMEDIS object. It also exposes methods for the general
management of protection tools installed on an AXMEDIS tool.

• ProtectionCommand – is a common interface for all those classes which represent protection tools
(in the MPEG-21 terminology). Fundamentally, it exposes function to decode/encode a bundle of
bytes (e.g. represent by a stream) and all needed functions to manage information contained within the
protection information.

In the picture below, the interaction among Protection Processor, Interpreter and PMS Client is sketched. As
depicted, ProtectionInterpreter does not directly unprotect an element, it only creates a sequence of
commands which will be used by the ProtectionProcessor on a specific element obtaining a clear text
element.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

59

Interaction among Protection Processor, Protection Interpreter and PMS Client

during AXMEDIS element un-protection

7.2.4.3 Protection commands (DSI)
As stated in the previous subsections, protection commands have to be implemented as classes implementing
a given interface (ProtectionCommand). Moreover, the dynamic libraries containing those classes have to
respect a specific interface and to contain some certification and classification information (see Plug-in
Manager Manifest). Certification information are mandatory otherwise rely on the dependability of the
dynamic library, and thus of the protection tool contained in it, is not possible.
SpecificDescriptor elements of the manifest of plug-ins containing a protection command contains a
ToolDescription element as described in the MPEG-21 IPMP standard. That element is used to describe the
protection command giving useful information to the ProtectionInterpreter which have to correctly manage
all the available commands.
A dynamic library containing a protection tool have to export the following interface:

extern “C”
ProtectionCommand* createProtectionCommandInstance(const std::string& id);
void releaseProtectionCommandInstance(ProtectionCommand*);

The interface is expressed in C++-like fashion but the calling method is to be considered C-like.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

60

7.2.5 Tool certification/registration (DSI, FUPF)

Module Profile
Tool Certification

Executable or Library(Support) Static library
Single Thread or Multithread Single Thread
Language of Development C++
Responsible Name Andrea Vallotti
Responsible Partner DSI
Status (proposed/approved) Proposed
Platforms supported Microsoft Windows, Linux, MACOS X

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
Xerces-C++ Version 2.6.0 Apache License, Version 2.0

During tool certification, the protection processor estimates the tool fingerprint which is comprehensive of
device fingerprint, tool installation fingerprint and AXRTID. After that, it requires a communication channel
towards the AXCS to the PMS client. Through that channel, protection processor sends to AXCS the
fingerprint and the AXMEDIS User ID of the user who is registering the tool. AXCS returns a
CertificationResult (see Part H “Protection and Accounting Tools” of specification) which contains a status
variable, whose value depends due to the server side verification of the sent data, and, if certification
succeeds, a certificate for the tool containg the TID and the enabling code.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

61

Protection Processor

doToolCertification()

PMS Client

axcsProxy

Tool Fingerprint Estimator

estimateToolFingerprint()

toolFingerprint

getAXCSProxy()

getCommunicationCertificate()

certificates

axcsProxy

doToolCertification(UID,toolFingerprint)

certificationResult certificatioResult

releaseAXCSProxy(axcsProxy)

getResult()

certification OK

getToolCertificate()

toolCertificate

Verifies the received
certificate

storeSecureCache(toolCertificate)

Store the tool certificate
in the system certificate
repository.

Tool certification.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

62

7.2.6 Tool verification/authentication (DSI)

Module Profile
Tool Registration

Executable or Library(Support) Static Library
Single Thread or Multithread Multithread
Language of Development C++
Responsible Name Andrea Vallotti
Responsible Partner DSI
Status (proposed/approved) Proposed
Platforms supported Microsoft Windows, Linux, MACOS X

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
Xerces-C++ Version 2.6.0. Apache License, Version 2.0

The figures below depict the interaction among command manager, protection processor and PMS client
during content consumption and handling in the following cases:

• Local tool verification fails
• Remote tool verification fails
• Verifications succeed and the garnt request is delegated to the PMS Client

As stated above and depicted in the figures, protection processor uses a proxy to comunicate the verification
information to the AXCS. That data consist of:

• TID – the tool identifier assigned to the tool at certification time by the AXCS
• Tool fingeprint hash – to make the commuication lighter, the whole tool fingerprint is transmitted only

if its hash do not match the one stored on the AXCS
• Time – the timestamp of the verification request
• New history hash – the new hash of the action log history estimated on the client. It ha sto be re-

estimated by the server
• Action log list – a list of all action log stored during off-line use of the client

Communication between protection processor and AXCS works on a secure channel provided by the PMS
Client. It has to be pointed out that even if commeunication is established by the PMS client certificates for
communication are managed by the protection processor (as all the other security information) thus PMS
client has to request the communication certificates to the protection processor every time it has to open a
secure channel.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

63

PMS ClientProtection ProcessorCommand Manager

isGranted(AXOID, grants)
doLocalToolVerification()

false

disableTool()

clearProtectionInfoChace()

false

Interactions among Command Manager, PMS Client and Protection Processor
during grant authorization request which fails because tool does not pass local

verification (e.g. enabling code).

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

64

PMS ClientProtection ProcessorCommand Manager

axcsProxy

false

isGranted(AXOID, grants)
doLocalToolVerification()

true
getAXCSProxy()

getCommunicationCertificate()

certificate

axcsProxy

getActionLogs()

actionLogList

doToolVerification(TID,ToolFPHash,time,newHistoryHash,actionLogList)

getToolFingerprint()

toolFingerprint

disableTool()

clearProtectionInfoChace()

false

releaseAXCSProxy(axcsProxy)

Interactions among Command Manager, PMS Client and Protection Processor

during grant authorization request which fails because tool does not pass server-
side verification.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

65

PMS ClientProtection ProcessorCommand Manager

isGranted(AXOID, grants)

getAXCSProxy()

axcsProxy

doLocalToolVerification()

getCommunicationCertificate()

certificate

getActionLogs()

actionLogList

doToolVerification(TID,ToolFPHash,time,newHistoryHash,actionLogList)

releaseAXCSProxy(axcsProxy)

axcsProxy

true

true

clearActionLogs()

isGranted(AXOID, grants)

true

getLastActionLog()

actionLog

New action history hash is
evalueted, etc..true

Interactions among Command Manager, PMS Client and Protection Processor

during grant authorization request which succeeds.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

66

7.2.7 Tool Fingerprint Estimation on PC (DSI)

Module Profile
Tool ID Estimation

Executable or Library(Support)
Single Thread or Multithread
Language of Development
Responsible Name
Responsible Partner
Status (proposed/approved)
Platforms supported

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

Tool fingerprint is decribed in the sections above, it contains information on the hardware (i.e. the personal
computer) and on the software. It has been created to uniquely identify an installation of a given AXMEDIS-
complaiant application on a given device and to allow detection of software/hardware changes. Fingerprint is
stored and transmitted as XML file/message with the following schema:

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

67

Toolfingerprint XML schema.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/tool-fp" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.axmedis.org/tool-fp" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:import namespace="http://www.w3.org/2000/09/xmldsig#" schemaLocation="xmldsig-core-schema.xsd"/>
 <xs:element name="ToolFingerprint" type="ToolFingerprintType"/>
 <xs:complexType name="ToolFingerprintType">
 <xs:sequence>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

68

 <xs:element ref="DeviceFingerprint"/>
 <xs:element ref="SoftwareFingerprint"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="DeviceFingerprint" type="DeviceFingerprintType"/>
 <xs:complexType name="DeviceFingerprintType">
 <xs:sequence>
 <xs:element ref="HardDiskList"/>
 <xs:element ref="ProcessorList"/>
 <xs:element ref="BIOS"/>
 <xs:element ref="NetworkInterfaceList" minOccurs="0"/>
 <xs:element ref="OperativeSystem"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="HardDiskList" type="HardDiskListType"/>
 <xs:complexType name="HardDiskListType">
 <xs:sequence>
 <xs:element ref="HardDisk" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="HardDisk" type="HardDiskType"/>
 <xs:complexType name="HardDiskType">
 <xs:sequence>
 <xs:element name="Serial" type="xs:string"/>
 <xs:element name="Description" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ProcessorList" type="ProcessorListType"/>
 <xs:complexType name="ProcessorListType">
 <xs:sequence>
 <xs:element ref="Processor" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Processor">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="ProcessorType"/>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="ProcessorType">
 <xs:sequence>
 <xs:element name="Serial" type="xs:string" minOccurs="0"/>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Description" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="BIOS" type="BIOSType"/>
 <xs:complexType name="BIOSType">
 <xs:sequence>
 <xs:element name="Serial" type="xs:string" minOccurs="0"/>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Version" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="NetworkInterfaceList" type="NetwrokInterfaceListType"/>
 <xs:complexType name="NetwrokInterfaceListType">
 <xs:sequence>
 <xs:element ref="NetworkInterface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="NetworkInterface" type="NetworkInterfaceType"/>
 <xs:complexType name="NetworkInterfaceType">
 <xs:sequence>
 <xs:element name="Name"/>
 <xs:element name="MACAddress"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="OperativeSystem" type="OperativeSystemType"/>
 <xs:complexType name="OperativeSystemType">
 <xs:sequence>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

69

 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Version" type="xs:string"/>
 <xs:element name="Upgrade" type="xs:string"/>
 <xs:element name="Serial" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="SoftwareFingerprint" type="SoftwareFingerprintType"/>
 <xs:complexType name="SoftwareFingerprintType">
 <xs:sequence>
 <xs:element ref="FileFingerprint" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="FileFingerprint" type="FileFingerprintType"/>
 <xs:complexType name="FileFingerprintType">
 <xs:sequence>
 <xs:element name="Category">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="CONTAIN_AXOM"/>
 <xs:enumeration value="PLUG_IN"/>
 <xs:enumeration value="CONFIGURATION"/>
 <xs:enumeration value="SECURE_CACHE"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="FullFileName" type="xs:anyURI"/>
 <xs:element name="PhysicalPosition" type="xs:string"/>
 <xs:element name="Signature" type="dsig:SignatureType"/>
 <xs:element name="CreationDate" type="xs:dateTime"/>
 <xs:element name="LastModificationDate" type="xs:dateTime" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

As stated before, the information contained in the fingerprint are mainly information for the identification of
the tool, however profile-related information can be estimated in asimila way and merged with those above
reported. Samples of profile information are the following:
• Which kind of content it may manage or not, e.g. it cannot load PDF, it can load PS
• Resolution of the screen device
• Power of the device
• Presence of some basic adaptation tools or their absence
• Print capabilities or not
• Audio capabilities or not
• Video streaming capabilities or not
• Burning ROM capabilities or not
• Network connection speed
• Network connection type, e.g. permanent or irregular
• etc….

7.2.8 Tool ID Estimation on PDA (EPFL)

Module Profile
Tool ID Estimation

Executable or Library(Support) Library
Single Thread or Multithread
Language of Development C/C++
Responsible Name Zoia
Responsible Partner EPFL
Status (proposed/approved) proposed
Platforms supported Pocket PC 2003

Interfaces with other tools: Name of the communicating tools Communication model and format

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

70

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

PDA devices might have built-in serial numbers that can be read programmatically. If the PDA runs Pocket
PC 2002 or later the serial number can be retreived by using the functions: SystemParametersInfo, and
KernelIoControl. This sample code (from http://www.pocketpcdn.com/articles/serial_number2002.html)
returns the serial number of the device:

#include <WINIOCTL.H>

extern "C" __declspec(dllimport)
BOOL KernelIoControl(
 DWORD dwIoControlCode, LPVOID lpInBuf, DWORD nInBufSize,
 LPVOID lpOutBuf, DWORD nOutBufSize, LPDWORD lpBytesReturned
);

#define IOCTL_HAL_GET_DEVICEID CTL_CODE(FILE_DEVICE_HAL, 21, METHOD_BUFFERED,
FILE_ANY_ACCESS)

CString GetSerialNumberFromKernelIoControl()
{
 DWORD dwOutBytes;
 const int nBuffSize = 4096;
 byte arrOutBuff[nBuffSize];

 BOOL bRes = ::KernelIoControl(IOCTL_HAL_GET_DEVICEID,
 0, 0, arrOutBuff, nBuffSize, &dwOutBytes);

 if (bRes) {
 CString strDeviceInfo;
 for (unsigned int i = 0; i<dwOutBytes; i++) {
 CString strNextChar;
 strNextChar.Format(TEXT("%02X"), arrOutBuff[i]);
 strDeviceInfo += strNextChar;
 }
 CString strDeviceId =
 strDeviceInfo.Mid(40,2) +
 strDeviceInfo.Mid(45,9) +
 strDeviceInfo.Mid(70,6);

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

71

 return strDeviceId;
 } else {
 return _T("");
 }
}

7.2.9 Scramble/Descramble Support (EPFL)
The word “scrambling” is often mis-used as a synonym of cryptography.
The term cryptography refers to the tools and mechanisms enabling:

• Tamper detection allows the information receiver to verify that it has not been modified during
transmission. If there were any attempt to modify or substitute data, a false message would be
detected.

• Authentication allows the information receiver to determine who sent the message.
• Privacy/confidentiality ensures that no one can read the message except the intended receiver.

Integrity assures the receiver that the message that they received was not modified in any way since
it was sent from the origin.

• Non-repudiation is a mechanism that proves that the sender really sent the message.

Lastly, scrambling allows two communication parties to disguise information they send to each other. The
sender encrypts/scramble the information before sending it. The receiver decrypts/descramble the
information after receiving it.
In cryptographic terminology, the message is called plaintext or cleartext. Encryption is encoding the
contents of the message in such a way that hides its contents from outsiders. The encrypted message is called
the ciphertext. The process of retrieving the plaintext from the ciphertext is called decryption. Encryption
and decryption usually make use of a key, and the coding method is such that decryption can be performed
only by knowing the proper key.
Scrambling / Descrambling algorithms are based on secret key algorithms.
In secret key cryptography, a single key is used for both encryption and decryption. The sender uses the key
to encrypt the plaintext and then sends the ciphertext to the receiver. The receiver applies the same key to
decrypt the message and recover the plaintext. There are several widely used secret key cryptography
schemes [Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output
Feedback (OFB) and Counter (CTR) modes] and they are generally categorized as being either block ciphers
or stream ciphers. A block cipher is so-called because it encrypts blocks of data at a time. The same plaintext
block will always be encrypted into the same ciphertext when using the same key. Stream ciphers operate on
a single bit, byte, or word at a time, and implements a feedback mechanism so that the same plaintext will
yield different ciphertext every time it is encrypted.
Usually, scrambling / descrambling algorithms refer to stream ciphers algorithms.
In the past, the scrambling process did not change the information with the content but it only “mix” it. In
this way the “preview” of the content could be done with low cost device.
Scrambling algorithms used to allow “content preview” functionality are strongly linked to proprietary and
“unknown” solutions and implementation. This is what in cryptography is called “security by obscurity” that
it is not an “open” approach.
Due to the evolution of the attacks and the openness of the approach, AXMEDIS should use more
sophisticated scrambling algorithms that use strong known secret key algorithms. A well-know library called
cryptlib provides many functions, including all what may be necessary in the project.

Module Profile
Scramble/Descramble

Executable or Library(Support) Support library
Single Thread or Multithread
Language of Development C/C++

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

72

Responsible Name
Responsible Partner
Status (proposed/approved) Proposed
Platforms supported cryptlib is supplied as source code for Unix (static and shared libraries),

DOS, Windows 3.x, Windows 95/98/ME, Windows NT/2000/XP, OS/2,
BeOS, Macintosh, and the Tandem environment, and also as 16- and 32-
bit Windows DLL's. cryptlib is also available as an ActiveX control for
Windows, and adaptations exist for VM/CMS and MVS mainframe
environments.

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
cryptlib Cryptlib 3.1

cryptlib is distributed under a dual
license that allows free, open-
source use under a GPL-like license
and closed-source use under a
standard commercial license. In
addition, cryptlib is free for use in
low-cost, non-open-source
applications such as shareware, and
for personal and research use.

Application Programming Interface

The API of cryptlib serves as an interface to a range of plug-in encryption modules that allow encryption
algorithms to be added in a fairly transparent manner, so that adding a new algorithm or replacing an existing
software implementation with custom encryption hardware can be done without any trouble. The stable,
worldwide adopted API allows any of the algorithms and modes supported by cryptlib to be used with a
minimum of coding effort. In addition the easy-to-use high-level routines allow for the exchange of
encrypted or signed messages or the establishment of secure communications channels with a minimum of
programming overhead. Language bindings are available for C / C++, C# / .NET, Delphi, Java, Python, and
Visual Basic (VB). http://www.cs.auckland.ac.nz/~pgut001/cryptlib/

7.2.9.1 cryptlib

cryptlib is a powerful security software library that allows programmers to easily add encryption and
authentification services to their software.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

73

cryptlib provides a standardised interface to a number of popular encryption algorithms and security services.
Cryptlib can handle secure sessions, end-to-end certification management, symetric and asymetreic key
algorithms etc. cryptlib implements many algorithms: AES, DES, DSA, RSA etc

cryptlib has a layered structure. At the top layer the user can find powerful and easy-to-use functions such as
“encrypt a message” or ”open a secure link”. At the bottom layer there are low level functions such as
encryption routines. High level functions make use of the low level functions. The following picture shows
the layered structure of cryptib.

7.2.9.2 How to install Cryptlib on Windows XP

C/C++ programmers have to download a zipped file that contains all the sources from
http://www.cs.auckland.ac.nz/~pgut001/cryptlib/. Inside the zipped file the user can find all the source files
and a workspace file for VisualC++ 6. The result of the compilation with VisualC++ 6 is a library file
named cl32.dll. The file cryptlib.h serves as interface to use cl32.dll in your projects.
If you want to use cryptlib in Visual Basic/Visual Basic Script/J++/.Net/Delphi you have to compile
cryptlib as described in the above paragraph. Additionaly you have to download an ActiveX wrapper named
clcom.dll. As a side note, I have failed to installing this ActiveX component following the instructions given
in the doc.
If you want to use cryptlib in Java you can find compilation instructions in the documentation.

7.2.9.3 How to use cryptlib in C
This example shows how to encrypt a message by using the cryptEncrypt function.
Prior to calling the encryption/decryption functions the programmer has to do some initialization work. The
following function initializes the cryptlib:

cryptInit();

Then the programmer has to create a context and choose an encryption algorithm and a key:

//context declaration
CRYPT_CONTEXT cryptContext;

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

74

//Create context an set 3DES algorithm
cryptCreateContext(&cryptContext, cryptUser, CRYPT_ALGO_3DES);

//Set a key
cryptSetAttributeString(cryptContext, CRYPT_CTXINFO_KEY,
"0123456789ABCDEF", 16);

At this point everything is ready to call the encryption/decryption functions.
The following function call encrypts a message stored in the buffer variable:

cryptEncrypt(cryptContext, buffer, length);

cryptContext is a variable that contains information about the encryption algorithm and the key to be used.
buffer is a variable with the message to be encrypted. The encrypted message is returned via the buffer and
so it overwrites the cleartext.
length is the length of the buffer.

The following function call decrypts the buffer according to the algorithm and key provided via
crypContext:

cryptDecrypt(cryptContext, buffer, length);

As you can seen from this example cryptlib is not difficult to use. The documentation -300 pages- is
available from the cryptlib web page.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

75

7.2.10 Compress/uncompress Support (DSI, lib prob.)

Module Profile
Compress/Uncompress

Executable or Library(Support) Support library
Single Thread or Multithread
Language of Development C/C++
Responsible Name
Responsible Partner
Status (proposed/approved)
Platforms supported

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
Zlib in wxWidgets wxWidgets LGPL

Compress and uncompress support is provided by the wxWidgets library. It provides input stream to access
to ZIP files (wxZipInputStream) and input/output streams for gzip compression (wxZlibInputStream,
wxZlibOutputStream).

wxZlibInputStream and wxZlibOutputStream are filtering streams they get/send information from/to other
wxInput/OutputStream to uncompress/compress information.

For example to compress a buffer of 1024 bytes to a file named “compressed.dat”:
char data[1024];

// fill the data buffer

wxFileOutputStream ofile(“compressed.dat”);
wxZlibOutputStream compress(ofile);

compress.Write(data, 1024);

While to uncompress it:

wxFileInputStream ifile(“compressed.dat”);

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

76

wxZlibInputStream uncompress(ifile);
char data[1024];

uncompress.Read(data,1024);
if(uncompress.LastRead()!=1024)
 …

7.2.11 Encryption/Decryption Support (FUPF)
This module provides the needed functionality for encrypting / decrypting AXMEDIS Objects in order to
protect them.

Module Profile
Encryption/Decryption Support

Executable or Library(Support) Support library
Single Thread or Multithread Single Thread
Language of Development C/C++
Responsible Name
Responsible Partner FUPF
Status (proposed/approved) Proposed
Platforms supported PC (Linux / Windows)

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)
 Library

File Formats Used Shared with File format name or reference to a

section
Any

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

N/A

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
OpenSSL Apache-style

7.2.11.1 Architecture for encryption / decryption support
Next figure shows the UML description of this module. Nevertheless, this module is based on OpenSSL, so
it is not object oriented in nature, but C++ interface could be provided.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

77

Data
data : byte []

Data(newData : byte) : Data
getData() : byte []
setData(newData : byte [])

KeyAX
key : byte []

KeyAX(newKey : byte []) : KeyAX
setKey(newKey : byte [])
getKeyByte() : byte []

EncryptionDecryption

cipher(sourceData : Data, cipherKey : KeyAX, cipherAlgorithm : Algorithm) : Data
decipher(cipheredData : Data, decipherKey : KeyAX, decipherAlgorithm : Algorithm) : Data

Algorithm
algorithm : int

Algorithm(newAlgorithm : int) : Algorithm
getAlgorithm() : int
setAlgorithm(newAlgorithm : int)

Class diagram for the Encryption / Decryption Support

The functionality of the classes inside the UML diagram is as follows:

EncryptionDecryption: Provides de basic functions for ciphering and deciphering of data, hiding to the
calling aplication the complexity derived of the use of the OpenSSL library.

Data: Represents the data (either in clear or ciphered) used by the EncryptionDecryption class.

KeyAX: Represents the key for ciphering / deciphering the data.

Algorithm: Represents the algorithm for ciphering / deciphering data. The list of supported algorithms will
be also implemented in this class by using constants in the corresponding programming language (C/C++).

EncryptionDecryption
Method cipher
Description This method ciphers the sourceData passed as parameter using the KeyAX ciphering key and

the algorithm indicated by the cipherAlgorithm. The returned information is the ciphered data.
This method makes use of the corresponding operations inside the OpenSSL library for the
different ciphering algorithms supported by it.

Input
parameters

sourceData : Data, the data to be ciphered
cipherKey : KeyAX, the key to be used to cipher data
cipherAlgorithm : Algorithm, the algorithm used to cipher data

Output
parameters

Data, the ciphered data

Method decipher
Description This method deciphers the cipheredData passed as parameter using the KeyAX deciphering

key and the algorithm indicated by the decipherAlgorithm. The returned information is the
data in clear.
This method makes use of the corresponding operations inside the OpenSSL library for the
different deciphering algorithms supported by it.

Input
parameters

cipheredData : Data, the data to be deciphered
decipherKey : KeyAX, the key for deciphering the data
decipherAlgorithm : Algorithm, the algorithm for the deciphering the data

Output
parameters

Data, the original data, in clear

Data

Method Data

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

78

Description Constructor of the class which receives as parameter the data to be ciphered / deciphered.
Input
parameters

NewData: byte[], an array of bytes containing the data either ciphered or in clear

Output
parameters

A new instance of the Data class

Method getData
Description This method requests the data stored inside this class.
Input
parameters

None

Output
parameters

byte[], the byte array representing the data contained inside this class

Method SetData
Description This method allows setting new data inside this class.

Input
parameters

byte[], the byte array representing the data contained inside this class

Output
parameters

None

KeyAX

Method KeyAX
Description Constructor of the class which receives as parameter the key for ciphering / deciphering data.
Input
parameters

NewKey: byte[], an array of bytes containing the key

Output
parameters

A new instance of the KeyAX class

Method getKey
Description This method requests the key stored inside this class.
Input
parameters

None

Output
parameters

byte[], the byte array representing the key contained inside this class

Method setKey
Description This method allows setting new key inside this class.

Input
parameters

byte[], the byte array representing the key contained inside this class

Output
parameters

None

Algorithm

Method Algorithm
Description Constructor of the class which receives as parameter the algorithm identifier
Input
parameters

NewAlgorithm:int, the identifier of the algorithm contained inside this class. It will depend on
the values

Output
parameters

A new instance of the Algorithm class

Method getAlgorithm
Description This method requests the algorithm stored inside this class.
Input
parameters

None

Output
parameters

int, the identifier of the algorithm contained inside this class. It will depend on the values
defined by OpenSSL

Method setAlgorithm

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

79

Description This method allows setting new algorithm inside this class.

Input
parameters

int, the identifier of the algorithm contained inside this class. It will depend on the values
defined by OpenSSL

Output
parameters

None

Application Programming Interface

The API of OpenSSL serves as an interface to a range of security functions. In this module we will use the
ones that provide cryptographic functionality. In next section, OpenSSL library is explained briefly.

7.2.11.2 OpenSSL
The OpenSSL Project (http://www.openssl.org) is a collaborative effort to develop a robust,
commercial-grade, full-featured and Open Source toolkit implementing the Secure Sockets Layer (SSL
v2/v3) and Transport Layer Security (TLS v1) protocols as well as a full-strength general purpose
cryptography library. The project is managed by a worldwide community of volunteers that use the Internet
to communicate, plan and develop the OpenSSL toolkit and its related documentation.
OpenSSL is based on the SSLeay library developed by Eric A. Young and Tim J. Hudson. The OpenSSL
toolkit is licensed under an Apache-style licence, which basically means that you are free to get and use it for
commercial and non-commercial purposes subject to some simple license conditions.

7.2.11.3 Windows Version of OpenSSL
The Windows version of OpenSSL library can be downloaded from
http://www.slproweb.com/products/Win32OpenSSL.html

7.2.11.4 Cryptographic functions provided by OpenSSL
The OpenSSL crypto library implements a wide range of cryptographic algorithms used in various Internet
standards. The services provided by this library are used by the OpenSSL implementations of SSL, TLS and
S/MIME, and they have also been used to implement SSH, OpenPGP, and other cryptographic standards.

libcrypto consists of a number of sub-libraries that implement the individual algorithms. The functionality
includes symmetric encryption, public key cryptography and key agreement, certificate handling,
cryptographic hash functions and a cryptographic pseudo-random number generator. It is briefly described
next.

• Symmetric ciphers: des, idea, rc2, rc4, rc5.
• Public key cryptography and key agreement: dsa, dh, rsa.
• Certificates: x509, x509v3.
• Authentication codes, hash functions: hmac, md4, md5, sha.
• Input/Output data encoding: asn1, bio, evp, pem, pkcs7, pkcs12.

The functions provided by each algorithm depend on its nature, and are independently described in the
library documentation (for details, see http://www.openssl.org/docs/crypto/crypto.html).

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

80

8 AXMEDIS Data Model Support (WP4.1.2: DSI, WP5.4.3: DSI, EPFL)
It is comprised of:
• AXMEDIS Data Model Schema: schema of the XML model for AXMEDIS objects. It also includes a

description of the AXMEDIS details that make of AXMEDIS Objects a specialization of MPEG21
Digital Items.

• AXMEDIS Model: classes modeling the AXMEDIS objects
• XML Loader and Saver: classes for XML loading and saving
• AXMEDIS Object Preprocessor and Postprocessor: Tools for transforming XML into binary and

viceversa, for transforming external references in internal and viceversa, etc.

Top
Package::File

System

AXMEDIS Data Model Support

XML Loader XML Saver

AXMEDIS
Model

AXMEDIS Object
Preprocessor

AXMEDIS Object
Postprocessor

AXMEDIS Data Model Schema

AXMEDIS Info Model

XML to/from BIN References In/Out
Resolver/Integrator

«uses» «uses»

«uses»

«uses»

Module Profile
AXMEDIS DataModel Support

Executable or Library(Support) Support library
Single Thread or Multithread
Language of Development C++
Responsible Name
Responsible Partner DSI
Status (proposed/approved) proposed

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

81

Platforms supported

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

8.1 AXMEDIS Data Model Schema (DSI)
It also includes a description of the AXMEDIS details that make of AXMEDIS of a specialization of
MPEG21 format.

8.1.1 AXMEDIS Objects as MPEG21 Objects
An AXMEDIS Object has to be an MPEG21 digital item but any MPEG21 digital item is not an AXMEDIS
Object. This means that an AXMEDIS Object will have a specific structure and will not support all the
extremely flexible structuring capabilities of MPEG21 digital items.
In this section will be investigated how AXMEDIS Objects could be represented using the structuring
features of MPEG21.

8.1.1.1 MPEG21 Digital Items
The following figure describes how a MPEG21 Digital Item is structured:

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

82

for a complete description see part 2 of the MPEG21 standard describing the Digital Item Description
Language. This part of the standard is related to unprotected digital items only.
The elements contained in a MPEG21 digital items are:

• Container – is a container of items or of other containers;

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

83

• Item – represents a digital item, it contains Descriptors (metadata of the whole digital item)
Components (content that builds up the item) directly or through Reference, and it also contains
other secondary elements;

• Descriptor – contains metadata thought a Statement element or a Component (e.g. for thumbnails)
• Component – contains Resources and Descriptors (metadata of the resource);
• Resource – contains an external reference to the resource (audio, video, text,…) or it can host it

inside the element using base64 encoding;
• Reference – is a place holder for another element it refers to;
• Annotation – contains an annotation
• Anchor – is a link into the content
• Condition, Choice, Selection – are used to group sub parts of the item on the basis of end user

selections, this to avoid streaming of big items.

When considering protected MPEG21 digital items, the standardization process of this feature, is not
currently at level of International Standard but at level of Committee Draft.

Protected content in MPEG21 is obtained by substituting a sub tree of the original XML tree with an element
having the same name (but with different namespace) and containing the protected version of the sub tree in
binary form and the additional information needed to enable access to the content.

8.1.1.2 AXMEDIS Objects
AXMEDIS Objects can be classified as:

Basic AXMEDIS Object: containing one or more digital resources (image, video, document, etc.) and

metadata related to the whole object. Resources can be stored inside the object or outside.
Protected Basic AXMEDIS Object: containing one or more protected digital resources and metadata of the

whole object (in clear but certified). Protected resources can be stored inside the object or outside.
Composite AXMEDIS Object: containing a set of AXMEDIS Objects (Basic or Composite, protected or

not). It has specific metadata for the whole object in addition to metadata related to sub-objects. The
sub-objects can be stored inside the object or referenced.

Protected Composite AXMEDIS Object: as the previous but the whole object is protected (the metadata of
the whole object and of the sub-objects has to be accessible in clear)

Governed AXMEDIS Object: anyone of the previous containing the license to use the object
Query/Promotional AXMEDIS Object: containing only metadata of an object and reference to the real

content.

In the following possible mappings of AXMEDIS Objects as MPEG21 digital items are reported. A tree like
structure is used to represent the XML structure.

MPEG21 Descriptors are used to contain metadata related to the content. The Statement element inside the
Descriptor can contain any XML or text, MPEG21 does not fix its content.
The order where Descriptor elements are reported is not fixed, however some of them are required (have to
be present) and others are optional (may be missing). Some Descriptors are specified in the standard for
Digital Item Identification:

• Identifier, used to identify the object, MPEG21 does not provide a new identification scheme but it
allows to host any kind of identification code. A Registration Authority will be set up to register
identification schemes to be used in MPEG21 Digital Items. A URI is used as identifier, for
Example: <dii:Identifier>urn:mpegRA:mpeg21:dii:isrc:US-ZO3-99-32476</dii:Identifier> identifies an object
using a ISRC code. An Identifier can be used to store the AXMEDIS Object ID.

• RelatedIdentifier, used to identify the work with a uri. It can be used to store the AXMEDIS Work
ID. Example: <dii:RelatedIdentifier>urn:mpegRA:mpeg21:dii:iscw:T-034.524.680-1</dii:RelatedIdentifier>

The AXInfo element is used to contain information specific for AXMEDIS framework. Metadata like title,
author, etc. and mpeg7 metadata are not stored inside AXInfo to allow MPEG21 terminals to access to these

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

84

metadata even if they are not AXMEDIS compliant tools. Other AXMEDIS specific metadata related to the
content can be defined (e.g. for technical information), and hosted in specific Descriptor elements, if a
suitable standardized format is not available (e.g mpeg7).

Since all metadata could be accessible also for protected objects, an AXMEDIS object is structured in the
following way:

DIDL
 Item
 Descriptor containing AXOID
 Item
 contains structured metadata of the object (always in clear) and reference to the content
 Item id="AXOID1_content"
 contains the real object, it contains both metadata and content, this Item cold be protected or not

The following example shows an example of an object with multiple descriptors:
<?xml version="1.0" encoding="UTF-8"?>
<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS" xmlns:ax="urn:axmedis:01" xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-
NS" xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
xmlns:mx="urn:mpeg:mpeg21:2003:01-REL-MX-NS" xmlns:sx="urn:mpeg:mpeg21:2003:01-REL-SX-NS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:axmedis:01 AXMEDIS.xsd">
 <Item>
 <!--
 Descriptor containing the AXOID to identify the object (REQUIRED)
 -->
 <Descriptor id="dsc_id">
 <Statement mimeType="text/xml">
 <dii:Identifier>urn:mpegRA:mpeg21:dii:axoid:A001AGSHDI</dii:Identifier>
 </Statement>
 </Descriptor>
 <Item>
 <!--
 Descriptor containing the AXInfo containing information regarding the object (REQUIRED)
 -->
 <Descriptor id="public_dsc_ax">
 <Statement mimeType="text/xml">
 <ax:AXInfo>
 …
 </ax:AXInfo>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the Dublin Core information regarding the object (REQUIRED)
 -->
 <Descriptor id="public_dsc_dc">
 <Statement mimeType="text/xml">
 <rdf:Description>
 <dc:title xml:lang="en">When the Thistle Blooms</dc:title>
 <dc:title xml:lang="it">Quando il Cardo Sboccia</dc:title>
 <dc:creator>Always Red</dc:creator>
 <dc:publisher>PDQ Records</dc:publisher>
 </rdf:Description>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the MPEG7 information regarding the object (OPTIONAL)
 -->
 <Descriptor id="public_dsc_mpeg7">
 <Statement mimeType="text/xml">
 <mpeg7:Mpeg7>
 …
 </mpeg7:Mpeg7>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Descriptor><Statement mimeType="text/plain">Reference to the real content</Statement></Descriptor>
 <Statement mimeType="text/uri-list">urn:axmedis:A001AGSHDI#A001AGSHDI_content</Statement>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

85

 </Descriptor>
 </Item>
 <Item id="A001AGSHDI_content">
 <!--
 Descriptor containing the AXInfo containing information regarding the object (REQUIRED)
 -->
 <Descriptor id="private_dsc_ax">
 <Statement mimeType="text/xml">
 <ax:AXInfo>
 …
 </ax:AXInfo>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the Dublin Core information regarding the object (REQUIRED)
 -->
 <Descriptor id="private_dsc_dc">
 <Statement mimeType="text/xml">
 <rdf:Description>
 <dc:title xml:lang="en">When the Thistle Blooms</dc:title>
 <dc:title xml:lang="it">Quando il Cardo Sboccia</dc:title>
 <dc:creator>Always Red</dc:creator>
 <dc:publisher>PDQ Records</dc:publisher>
 </rdf:Description>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the MPEG7 information regarding the object (OPTIONAL)
 -->
 <Descriptor id="private_dsc_mpeg7">
 <Statement mimeType="text/xml">
 <mpeg7:Mpeg7>
 …
 </mpeg7:Mpeg7>
 </Statement>
 </Descriptor>
 <!--
 Component elements containing the resource (REQUIRED for single object)
 -->
 <Component id="cmp">
 <Resource mimeType="video/mp4v-es" encoding="base64">
 aadsfadsfsyd647dgd78r85hfuv8nbr8fnf985nf9g9gm569gmty9ghmg90hdhd8fhfjd9d9
 dhd8f95mnfk9gfm59fgt95mkt0jhdf8fnj587fjd67n3jf84mf00eedjf8fj58tm58fm58emds9o
 ...
 </Resource>
 </Component>
 </Item>
 </Item>
</DIDL>

References in an object to other objects can be done using the AXOID. This allows to reconstruct objects
relations in any other place. An additional complexity is due to the use of temporary AXOIDs which are
forbidden to be used outside the AXMEDIS Factory.

References to resources (audio, document, video, … files) can be done using a path. However have to be
noted that a resource have not a unique ID this means that sharing a resource among objects is not possible.

8.1.1.3 Basic AXMEDIS Object:

DIDL
 Item
 Descriptor
 Statement
 dii:Identifier (contains the AXOID, REQUIRED)
 urn:mpegRA:mpeg21:dii:axoid:AXOID1
 Item
 Descriptor
 Statement

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

86

 dii:Identifier (contains any other identifier, OPTIONAL)
 Descriptor
 Statement
 dii:RelatedIdentifier (contains the WorkID, OPTIONAL)
 Descriptor
 Statement
 dii:Type (contains the type of object, OPTIONAL)
 Descriptor
 Statement
 ax:AXInfo (contains AXMEDIS specific information, REQUIRED)
 Descriptor
 Statement
 rdf:Description (contains Dublin Core metadata, REQUIRED)
 Descriptor
 Statement
 mpeg7:Mpeg7 (contains MPEG7 metadata, OPTIONAL)
 Descriptor
 Statement
 ???:XXX (contains any other metadata in XML, OPTIONAL)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID1#AXOID1_content
 Item id="AXOID1_content"
 Descriptor
 Statement
 dii:Identifier (contains any other identifier, OPTIONAL)
 Descriptor
 Statement
 dii:RelatedIdentifier (contains the WorkID, OPTIONAL)
 Descriptor
 Statement
 dii:Type (contains the type of object, OPTIONAL)
 Descriptor
 Statement
 ax:AXInfo (contains AXMEDIS specific information, REQUIRED)
 Descriptor
 Statement
 rdf:Description (contains Dublin Core metadata, REQUIRED)
 Descriptor
 Statement
 mpeg7:Mpeg7 (contains MPEG7 metadata, OPTIONAL)
 Descriptor
 Statement
 ???:XXX (contains any other metadata in XML, OPTIONAL)
 Component
 Resource (contains/refers the resource, REQUIRED)
 Component (another component, OPTIONAL)
 Resource (contains/refers the resource, REQUIRED)
 …

Thus a Basic AXMEDIS Object is structured in the following way:

DIDL
 Item

 OBJECT_AXOID
 Item (contains the metadata of the object an of contained objects)
 OBJECT_METADATA
 CONTENT_REFERENCE (contains an URI referring to the real content, REQUIRED)
 Item id=”AXOID_content”

 OBJECT_METADATA
 CONTENT

where:
• OBJECT_AXOID is a Descriptor containing the AXOID of the basic object;

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

87

• OBJECT_METADATA is a sequence of Descriptors containing the metadata of the basic object;
• CONTENT_REFERENCE is a descriptor containing the reference to the content;
• CONTENT is a sequence of Components

Note: Multiple components will be used for HTML documents containing images inside. Normally only one
component is present.

8.1.1.4 Protected Basic AXMEDIS Object:
A Protected AXMEDIS Object is obtained by protecting the Item containing the real content.

DIDL
 Item
 Descriptor
 Statement
 dii:Identifier (contains the AXOID, REQUIRED)
 urn:mpegRA:mpeg21:dii:axoid:AXOID1
 Item
 Descriptor
 Statement
 dii:Identifier (contains any other identifier, OPTIONAL)
 Descriptor
 Statement
 dii:RelatedIdentifier (contains the WorkID, OPTIONAL)
 Descriptor
 Statement
 dii:Type (contains the type of object, OPTIONAL)
 Descriptor
 Statement
 ax:AXInfo (contains AXMEDIS specific information, REQUIRED)
 Descriptor
 Statement
 rdf:Description (contains Dublin Core metadata, REQUIRED)
 Descriptor
 Statement
 mpeg7:Mpeg7 (contains MPEG7 metadata, OPTIONAL)
 Descriptor
 Statement
 ???:XXX (contains any other metadata in XML, OPTIONAL)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID1#AXOID1_content
 ipmpdidl:Item (contains/refers the protected components, REQUIRED)
 ipmpdidl:Identifier id="AXOID1_content"
 ipmpdidl:Content
 XXXXXXXXXXXXXXXXXX
 …
 XXXXXXXXXXXXXXXXXX

8.1.1.5 Composite AXMEDIS Object:
A composite object obtained by composing objects O1, O2, … On is structured as follows:

DIDL
 Item

 OBJECT_AXOID
 Item (contains the metadata of the object)
 OBJECT_METADATA
 CONTENT_REFERENCE (contains an URI referring to the real content, REQUIRED)
 METADATA[O1]
 METADATA[O2]
 …
 METADATA[On]
 Item id=”AXOID_content” (contains the content of the object)

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

88

 OBJECT_METADATA
 FIRST_ITEM[O1]
 FIRST_ITEM[O2]
 …
 FIRST_ITEM[On]

where:
• OBJECT_AXOID is a Descriptor containing the AXOID of the composed object;
• OBJECT_METADATA is a sequence of Descriptors containing the metadata of the whole object
• CONTENT_REFERENCE is a descriptor containing the reference to the content
• METADATA[O] is a function used to extract from the object O the sub-tree containing only the

metadata of the object
• FIRST_ITEM[O] is a function to get the first child item of the object, it is used to skip the DIDL tag.

the following is an example of double composition:
 AXOID1 = COMPOSE(AXOID2, AXOID3 = COMPOSE(AXOID4, AXOID5))

AXOID1 – a composite object
 AXOID2 – a basic object
 AXOID3 – a composite object
 AXOID4 – a basic object
 AXOID5 – a basic object

DIDL
 Item
 Descriptor (contains AXOID1)
 Item (contains the metadata of the object)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID1#AXOID1_content
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID2#AXOID2_content
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID3#AXOID3_content
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID4#AXOID4_content
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID5#AXOID5_content

 Item id=”AXOID1_content” (contains the metadata and the content)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Item

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

89

 Descriptor (contains AXOID2)
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID2#AXOID2_content
 Item id=”AXOID2_content”
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Component
 Item
 Descriptor (contains AXOID3)
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID3#AXOID3_content
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to AXOID4_content)
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to AXOID5_content)
 Item id=”AXOID3_content”
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Item
 Descriptor (contains AXOID4)
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to AXOID4_content)
 Item id=”AXOID4_content”
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Component
 Item
 Descriptor (contains AXOID5)
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to AXOID5_content)
 Item id=”AXOID5_content”
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Component

8.1.1.6 Protected Composite AXMEDIS Object:
A Protected Composite AXMEDIS Object is obtained, as for basic objects, protecting the Item containing
the real content.

DIDL
 Item
 Descriptor (contains AXOID1)
 Item (contains the metadata of the object)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID1#AXOID1_content

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

90

 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID2#AXOID2_content
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID3#AXOID3_content
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID4#AXOID4_content
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID5#AXOID5_content
 ipmpdidl:Item (contains/refers the protected components, REQUIRED)
 ipmpdidl:Identifier id="AXOID1_content"
 ipmpdidl:Identifier id="AXOID2_content"
 ipmpdidl:Identifier id="AXOID3_content"
 ipmpdidl:Identifier id="AXOID4_content"
 ipmpdidl:Identifier id="AXOID5_content"
 ipmpdidl:Content
 XXXXXXXXXXXXXXXXXX
 …
 XXXXXXXXXXXXXXXXXX

8.1.1.7 Governed AXMEDIS Object:
A Governed AXMEDIS Object contains the licence inside a descriptor like in the following example:

DIDL
 Item
 Descriptor
 Statement
 dii:Identifier (contains the AXOID, REQUIRED)
 Item
 Descriptor
 Statement
 dii:RelatedIdentifier (contains the WorkID, OPTIONAL)
 Descriptor
 Statement
 ax:AXInfo (contains AXMEDIS specific information, REQUIRED)
 Descriptor
 Statement
 rdf:Description (contains Dublin Core metadata, REQUIRED)
 Descriptor
 Statement
 mpeg7:Mpeg7 (contains MPEG7 metadata, OPTIONAL)
 Descriptor
 Statement
 r:license (contains the license for the object, OPTIONAL)
 … (any other of the previous structures)

8.1.1.8 Query/Promotional AXMEDIS Object
A Query/Promotional object contains only metadata and it references to the real content.
The following is an example.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

91

DIDL
 Item
 Descriptor (contains AXOID1)
 Item (contains the metadata of the object)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID1#AXOID1_content
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID2#AXOID2_content
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID3#AXOID3_content
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID4#AXOID4_content
 Item
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Descriptor (contains an URI referring to the real content, REQUIRED)
 Statement mimeType=”text/uri-list”
 urn:axmedis:AXOID5#AXOID5_content

8.1.2 AXMEDIS Metadata Model (DSI, EPFL, …..)
Metadata information related to an object, as seen in previous section, is split among various Descriptors.
These Descriptors can contain:

• identification information (as standardized by MPEG21) for AXOID, AXWID and Type
• AXMEDIS specific information regarding object life-cycle (in AXInfo)
• Dublin Core metadata
• MPEG 7 metadata
• any other metadata represented in XML

8.1.2.1 AXInfo Model
The AXInfo contains information to manage the object in its entire life-cycle, it contains

• Creator information (AXCID, Name, Company, URLs, …)
• Distributor information (AXDID, Name, URLs, …)
• Access information (read only or read/write)
• Creation and modification times
• The History of the object (version/revision, commands performed on the object)
• The Workflow information, etc.
• Fingerprinting information (algorithm identification)
• Potential Available Rights (PAR) for the object and licensing information
• Metadata certification information used to check metadata consistency

In the following documentation of AXInfo schema is reported.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

92

element AXInfo
diagram

namespace urn:axmedis:01

children ObjectCreator Owner Distributor AccessMode CreationDate LastModificationDate Version Revision
ObjectStatus ObjectType ObjectIsProtected ProtectionStamp ObjectIsGoverned IsPromoOf ax:History Workflow
Fingerprints InternalPotentialAvailableRights PotentialAvailableRights MetadataAdditionalInfo

description

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

93

element AXInfo/ObjectCreator

diagram

namespace urn:axmedis:01

children AXCID ObjectCreatorName ObjectCreatorURL ObjectCreatorCompany ObjectCreatorCompanyURL
ObjectCreatorNationality

description It contains information regarding the person who created the object

example <ObjectCreator>
 <AXCID>9383726716152748549594873723</AXCID>
 <ObjectCreatorName>John Doe</ObjectCreatorName>
 <ObjectCreatorURL>mailto:j.doe@video2.org</ObjectCreatorURL>
 <ObjectCreatorCompany>VIDEO2</ObjectCreatorCompany>
 <ObjectCreatorCompanyURL>http://www.video2.com</ObjectCreatorCompanyURL>
 <ObjectCreatorNationality>US</ObjectCreatorNationality>
</ObjectCreator>

element AXInfo/ObjectCreator/AXCID

diagram

namespace urn:axmedis:01

type xs:string

description It contains the AXMEDIS Creator Identifier

element AXInfo/ObjectCreator/ObjectCreatorName

diagram

namespace urn:axmedis:01

type xs:string

description personal name of the creator

constraints This tag should be removed when published on the P2P or on B2C

element AXInfo/ObjectCreator/ObjectCreatorURL

diagram

namespace urn:axmedis:01

type xs:anyURI

description URL associated to the object creator, it could be the email address

constraints This tag should be removed when published on the P2P or on B2C

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

94

element AXInfo/ObjectCreator/ObjectCreatorCompany

diagram

namespace urn:axmedis:01

type xs:string

description name of the company of the creator

element AXInfo/ObjectCreator/ObjectCreatorCompanyURL

diagram

namespace urn:axmedis:01

type xs:anyURI

description URL of the company of the creator

element AXInfo/ObjectCreator/ObjectCreatorNationality

diagram

namespace urn:axmedis:01

type xs:string

description nationality of the creator company using the ISO 3166 two letters code

element AXInfo/Owner

diagram

namespace urn:axmedis:01

children OwnerID OwnerName OwnerURL OwnerCompany OwnerCompanyURL OwnerNationality OwnerDescription

description It contains information regarding the owner of the content, if not present the creator is the owner

example <Owner>
 <OwnerID coding=”SIAE”>0038367292-292893-202383</OwnerID>
 <OwnerCompany>VIDEO Production</OwnerCompany>
 <OwnerCompanyURL>http://www.videoproduction.com</OwnerCompanyURL>
 <OwnerNationality>US</OwnerNationality>
</Owner>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

95

element AXInfo/Owner/OwnerID

diagram

namespace urn:axmedis:01

type extension of xs:string

attributes Name Type Use Default Fixed
coding xs:string required

description identification code to identify the content owner, the coding attribute is used to state which coding scheme is used

example <OwnerID coding=”SIAE”>10293834-236272-353</OwnerID>

element AXInfo/Owner/OwnerName

diagram

namespace urn:axmedis:01

type xs:string

description name of the content owner

element AXInfo/Owner/OwnerURL

diagram

namespace urn:axmedis:01

type xs:anyURI

description the URL of the owner (website or email)

element AXInfo/Owner/OwnerCompany

diagram

namespace urn:axmedis:01

type xs:string

description company name owning the content

element AXInfo/Owner/OwnerCompanyURL

diagram

namespace urn:axmedis:01

type xs:string

description URL of the company owning the content (web site)

element AXInfo/Owner/OwnerNationality

diagram

namespace urn:axmedis:01

type xs:string

description Nationality of the content owner encoded using ISO 3166 two letters code

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

96

element AXInfo/Owner/OwnerDescription

diagram

namespace urn:axmedis:01

type extension of xs:string

attributes Name Type Use Default Fixed
lang xs:string required

description A description of the owner, the lang attribute states the language used for the description

element AXInfo/Distributor

diagram

namespace urn:axmedis:01

children AXDID DistributorName DistributorURL DistributorNationality

description It contains information about the Distributor that distributed the object, it will be present only in the B2C phase

element AXInfo/Distributor/AXDID

diagram

namespace urn:axmedis:01

type xs:string

description is the AXMEDIS Distributor Identifier

element AXInfo/Distributor/DistributorName

diagram

namespace urn:axmedis:01

type xs:string

description name of the distributor

element AXInfo/Distributor/DistributorURL

diagram

namespace urn:axmedis:01

type xs:anyURI

description URL of the distributor (web site)

element AXInfo/Distributor/DistributorNationality

diagram

namespace urn:axmedis:01

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

97

type xs:string

description Nationality of the distributor encoded using ISO 3166 two letters code

element AXInfo/AccessMode

diagram

namespace urn:axmedis:01

type restriction of xs:string

facets enumeration readOnly
enumeration read_write

description states if the object can be changed (read_write) or not (readOnly)

constraints The AccessMode should be the same in all the AXInfos of a composite object, however in case they are missing or
contradictory the one at the top level should be considered valid.

element AXInfo/CreationDate

diagram

namespace urn:axmedis:01

type xs:dateTime

description date and time of object creation

element AXInfo/LastModificationDate

diagram

namespace urn:axmedis:01

type xs:dateTime

description date and time of object modification

element AXInfo/Version

diagram

namespace urn:axmedis:01

type xs:nonNegativeInteger

description number of version of the object, it should be incremented each time the object is uploaded in the AXDB

element AXInfo/Revision

diagram

namespace urn:axmedis:01

type xs:nonNegativeInteger

description number of revision of the object, it should be incremented each time the object is saved to disk and it should return to 0
when uploaded in the AXDB

element AXInfo/ObjectStatus

diagram

namespace urn:axmedis:01

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

98

type xs:string

description status of the object (e.g. in production, published, …)

element AXInfo/ObjectType

diagram

namespace urn:axmedis:01

type restriction of xs:string

facets enumeration BASIC
enumeration COMPOSITE

description it states if the object is BASIC or COMPOSITE

constraints in case the object is BASIC it should have the structure of an AXMEDIS Basic Object, and the structure of an AXMEDIS
Composite Object for a COMPOSITE one. The value for this tag can be also derived from the object structure.

element AXInfo/ObjectIsProtected

diagram

namespace urn:axmedis:01

type xs:boolean

description states if the object is protected (true) or not (false)

element AXInfo/ProtectionStamp

diagram

namespace urn:axmedis:01

type xs:string

description a protection stamp identifying the protected object

constraints It has to be present in case of protected object

element AXInfo/ObjectIsGoverned

diagram

namespace urn:axmedis:01

type xs:boolean

description states if the object has a licence inside (true) or not (false)/

element AXInfo/IsPromoOf

diagram

namespace urn:axmedis:01

children AXOID

description contains a sequence of AXOIDs referring to objects for which this object is a promotional version

element AXInfo/IsPromoOf/AXOID

diagram

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

99

namespace urn:axmedis:01

type xs:token

description an identifier of an AXMEDIS object for which the whole object is a promotional version

element AXInfo/Workflow

diagram

namespace urn:axmedis:01

children WorkItemID WorkspaceInstanceID

description it contains information for the workflow management of the object

element AXInfo/Workflow/WorkItemID

diagram

namespace urn:axmedis:01

type xs:string

description the identifier of the workitem

element AXInfo/Workflow/WorkspaceInstanceID

diagram

namespace urn:axmedis:01

type xs:string

description Identifies the workspace instance

element AXInfo/Fingerprints

diagram

namespace urn:axmedis:01

children FingerprintID

attributes Name Type Use Default Fixed
for xs:IDREF required

description contains information regarding fingerprints for a specific Component element of the object.

constraint the for attribute refers to a Component element containing the resource fingerprinted

element AXInfo/Fingerprints/FingerprintID

diagram

namespace urn:axmedis:01

type extension of xs:string

description an identifier for the algorithm used to fingerprint the component

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

100

element AXInfo/InternalPotentialAvailableRights

diagram

namespace urn:axmedis:01

type ax:PotentialAvailableRightsType

children LicensingURL PARStatus r:license

description contains all the rights really available on the object, not all these rights can be exploited by end users or distributors.

the LicensingURL contains the URL to acquire a license for the object and PARStatus contains the status like to be
verified, verified, …

constraints the license is not a complete licence, it is used to contain only the grants but without the principal and the resource
elements.

element AXInfo/PotentialAvailableRights

diagram

namespace urn:axmedis:01

type ax:PotentialAvailableRightsType

children LicensingURL PARStatus r:license

description contains the rights available outside the AXMEDIS Factory usually it is a subset of the InternalPotentialAvailableRights.

the LicensingURL contains the URL to acquire a license for the object and PARStatus contains the status like to be
verified, verified, …

constraints the license is not a complete licence, it is used to contain only the grants but without the principal and the resource
elements.

complexType PotentialAvailableRightsType

diagram

namespace urn:axmedis:01

children LicensingURL PARStatus r:license

description this type contains the information on the rights potentially available on the object, its status and the url to be used to
acquire a real license

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

101

element PotentialAvailableRightsType/LicensingURL

diagram

namespace urn:axmedis:01

type xs:anyURI

description contains the URL to be used to acquire a licence for the object

element PotentialAvailableRightsType/PARStatus

diagram

namespace urn:axmedis:01

type xs:string

description contains the current status of the PAR like: to be verified, verified, …

element AXInfo/MetadataAdditionalInfo

diagram

namespace urn:axmedis:01

children MetadataInfo

description contains additional information on metadata stored in other descriptors next to the AXInfo (DC, MPEG7, etc.)

element AXInfo/MetadataAdditionalInfo/MetadataInfo

diagram

namespace urn:axmedis:01

children MetadataCertification MetadataStatus

attributes Name Type Use Default Fixed
for xs:IDREF

description contains additional info on the metadata descriptor stated by the for attribute

constraints the for attribute refers to a descriptor element next to the AXInfo or for the AXInfo

element AXInfo/MetadataAdditionalInfo/MetadataInfo/MetadataCertification

diagram

namespace urn:axmedis:01

type extension of xs:string

description contains certification information for a metadata descriptor

element AXInfo/MetadataAdditionalInfo/MetadataInfo/MetadataStatus

diagram

namespace urn:axmedis:01

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

102

type xs:string

description contains the editorial status of the metadata descriptor (e.g. to be completed, verified, …)

element History

diagram

namespace urn:axmedis:01

children ObjVersion

description contains the history of the object

element History/ObjVersion

diagram

namespace urn:axmedis:01

children When Who Where What

attributes Name Type Use Default Fixed
number xs:nonNegativeIntege

r

description contains information on the history of a specific version of the object, the number attribute indicates the version number

element History/ObjVersion/When

diagram

namespace urn:axmedis:01

type xs:dateTime

description contains the date & time when the version was uploaded on the AXDB

element History/ObjVersion/Who

diagram

namespace urn:axmedis:01

type xs:string

description contains the name of the person who uploaded he object on the AXDB

element History/ObjVersion/Where

diagram

namespace urn:axmedis:01

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

103

children Organization Site Machine

description contains the indication of the location where the upload was performed

element History/ObjVersion/Where/Organization

diagram

namespace urn:axmedis:01

type xs:string

description contains the indication of the Organization where the upload was performed

element History/ObjVersion/Where/Site

diagram

namespace urn:axmedis:01

type xs:string

description contains the indication of the site where the upload was performed

element History/ObjVersion/Where/Machine

diagram

namespace urn:axmedis:01

type xs:string

description contains the indication of the machine where the upload was performed

element History/ObjVersion/What

diagram

namespace urn:axmedis:01

children Description Commands

description contains what have been performed on the object as a textual description and as the list of commands performed.

element History/ObjVersion/What/Description

diagram

namespace urn:axmedis:01

type extension of xs:string

attributes Name Type Use Default Fixed
lang xs:string optional

description contains textual description of what have been done on the object for the specific object version

element History/ObjVersion/What/Commands

diagram

namespace urn:axmedis:01

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

104

children ax:Cmd

description contains the commands performed on the object.

element Cmd

diagram

namespace urn:axmedis:01

children AXTID AXTTID AXRTID Operation Revision Who When Where

description contains information regarding a command performed on the object

element Cmd/AXTID

diagram

namespace urn:axmedis:01

type xs:string

description contains the AXMEDIS Tool ID identifying the tool used to perform the command

element Cmd/AXTTID

diagram

namespace urn:axmedis:01

type xs:string

description contains the AXMEDIS Tool Type ID identifying the type of tool used to perform the command

element Cmd/AXRTID

diagram

namespace urn:axmedis:01

type xs:string

description contains the AXMEDIS Real Tool ID identifying the tool instance used to produce the object

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

105

element Cmd/Operation

diagram

namespace urn:axmedis:01

children Name Argument

description contains the operation performed to the object

element Cmd/Operation/Name

diagram

namespace urn:axmedis:01

type xs:string

description contains the name of the operation performed on the object

element Cmd/Operation/Argument

diagram

namespace urn:axmedis:01

description contains an argument for the operation, it can be any xml tag.

element Cmd/Revision

diagram

namespace urn:axmedis:01

type xs:nonNegativeInteger

description contains the revision number to which the command contributes

element Cmd/Who

diagram

namespace urn:axmedis:01

type xs:string

description contains information regarding who performed the operation

element Cmd/When

diagram

namespace urn:axmedis:01

type xs:dateTime

description contains when (date & time) the operation was performed

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

106

element Cmd/Where

diagram

namespace urn:axmedis:01

children Organization Site Machine

description contains the location where the operation was performed

element Cmd/Where/Organization

diagram

namespace urn:axmedis:01

type xs:string

description contains the Organization where the operation was performed

element Cmd/Where/Site

diagram

namespace urn:axmedis:01

type xs:string

description contains the site where the operation was performed

element Cmd/Where/Machine

diagram

namespace urn:axmedis:01

type xs:string

description contains the identifier of the machine where the operation was performed

The following is the complete textual description of the AXInfo Schema:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:axmedis:01" xmlns:ax="urn:axmedis:01" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS" elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import namespace="urn:mpeg:mpeg21:2002:02-DIDL-NS" schemaLocation="xmlschemas\DIDL.xsd"/>
 <xs:import namespace="urn:mpeg:mpeg21:2002:01-DII-NS" schemaLocation="xmlschemas\dii.xsd"/>
 <xs:import namespace="urn:mpeg:mpeg21:2003:01-REL-R-NS" schemaLocation="xmlschemas\rel-r.xsd"/>
 <xs:import namespace="urn:mpeg:mpeg21:2003:01-REL-MX-NS" schemaLocation="xmlschemas\rel-mx.xsd"/>
 <xs:import namespace="urn:mpeg:mpeg21:2003:01-REL-SX-NS" schemaLocation="xmlschemas\rel-sx.xsd"/>
 <xs:element name="AXInfo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ObjectCreator" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AXCID" type="xs:string"/>
 <xs:element name="ObjectCreatorName" type="xs:string" minOccurs="0"/>
 <xs:element name="ObjectCreatorURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="ObjectCreatorCompany" type="xs:string" minOccurs="0"/>
 <xs:element name="ObjectCreatorCompanyURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="ObjectCreatorNationality" type="xs:string"/>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

107

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Owner" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="OwnerID">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="coding" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="OwnerName" type="xs:string" minOccurs="0"/>
 <xs:element name="OwnerURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="OwnerCompany" type="xs:string" minOccurs="0"/>
 <xs:element name="OwnerCompanyURL" type="xs:string" minOccurs="0"/>
 <xs:element name="OwnerNationality" type="xs:string"/>
 <xs:element name="OwnerDescription" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="lang" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Distributor" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AXDID" type="xs:string"/>
 <xs:element name="DistributorName" type="xs:string" minOccurs="0"/>
 <xs:element name="DistributorURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="DistributorNationality" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="AccessMode">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="readOnly"/>
 <xs:enumeration value="read_write"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="CreationDate" type="xs:dateTime"/>
 <xs:element name="LastModificationDate" type="xs:dateTime"/>
 <xs:element name="Version" type="xs:nonNegativeInteger"/>
 <xs:element name="Revision" type="xs:nonNegativeInteger"/>
 <xs:element name="ObjectStatus" type="xs:string"/>
 <xs:element name="ObjectType">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="BASIC"/>
 <xs:enumeration value="COMPOSITE"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="ObjectIsProtected" type="xs:boolean" minOccurs="0"/>
 <xs:element name="ProtectionStamp" type="xs:string" minOccurs="0"/>
 <xs:element name="ObjectIsGoverned" type="xs:boolean" minOccurs="0"/>
 <xs:element name="IsPromoOf" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AXOID" type="xs:token" maxOccurs="unbounded"/>
 </xs:sequence>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

108

 </xs:complexType>
 </xs:element>
 <xs:element ref="ax:History" minOccurs="0"/>
 <xs:element name="Workflow" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="WorkItemID" type="xs:string"/>
 <xs:element name="WorkspaceInstanceID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Fingerprints" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="FingerprintID" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string"/>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="for" type="xs:IDREF" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="InternalPotentialAvailableRights" type="ax:PotentialAvailableRightsType" minOccurs="0"/>
 <xs:element name="PotentialAvailableRights" type="ax:PotentialAvailableRightsType" minOccurs="0"/>
 <xs:element name="MetadataAdditionalInfo" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="MetadataInfo" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="MetadataCertification">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string"/>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="MetadataStatus" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="for" type="xs:IDREF"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Cmd">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AXTID" type="xs:string"/>
 <xs:element name="AXTTID" type="xs:string"/>
 <xs:element name="AXRTID" type="xs:string"/>
 <xs:element name="Operation">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Argument" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="##any"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

109

 <xs:element name="Revision" type="xs:nonNegativeInteger"/>
 <xs:element name="Who" type="xs:string" minOccurs="0"/>
 <xs:element name="When" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="Where" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Organization" type="xs:string" minOccurs="0"/>
 <xs:element name="Site" type="xs:string" minOccurs="0"/>
 <xs:element name="Machine" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="History">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ObjVersion" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="When" type="xs:dateTime"/>
 <xs:element name="Who" type="xs:string"/>
 <xs:element name="Where" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Organization" type="xs:string" minOccurs="0"/>
 <xs:element name="Site" type="xs:string" minOccurs="0"/>
 <xs:element name="Machine" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="What">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Description" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="lang" type="xs:string" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Commands" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ax:Cmd" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="number" type="xs:nonNegativeInteger"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="PotentialAvailableRightsType">
 <xs:sequence>
 <xs:element name="LicensingURL" type="xs:anyURI"/>
 <xs:element name="PARStatus" type="xs:string" minOccurs="0"/>
 <xs:element ref="r:license"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

110

8.1.2.2 Dublin Core Metadata
The Dublin Core Metadata Initiative produced RDF schemas and XML schemas to allow the representation
of Dublin Core metadata (for details see http://dublincore.org/) AXMEDIS will use this schemas to represent
basic metadata.

The 15 basic metadata terms defined in Dublin Core are:

• contributor
• coverage
• creator
• date
• description
• format
• identifier
• language
• publisher
• relation
• rights
• source
• subject
• title
• type

each term may be repeated more than one time meaning that all of them applies to the resource described.
Terms may be written in a different language and the language used is identified by a xml:lang attribute.
A resource with:

 <dc:creator>J. Doe<dc:creator>
 <dc:creator>M. White<dc:creator>
 <dc:title xml:lang=”en”>A title<dc:title>
 <dc:title xml:lang=”it”>Un titolo<dc:title>

has two authors (J. Doe and M. White) and a title expressed in English and Italian.

In the following table is reported the definition for the DC terms as found in
(http://dublincore.org/documents/dcmi-terms/).

contributor

URI: http://purl.org/dc/elements/1.1/contributor

Definition: An entity responsible for making contributions to the content of the resource.

Comment: Examples of a Contributor include a person, an organisation, or a service. Typically, the name of a Contributor should
be used to indicate the entity.

coverage

URI: http://purl.org/dc/elements/1.1/coverage

Definition: The extent or scope of the content of the resource.

Comment: Coverage will typically include spatial location (a place name or geographic coordinates), temporal period (a period
label, date, or date range) or jurisdiction (such as a named administrative entity). Recommended best practice is to
select a value from a controlled vocabulary (for example, the Thesaurus of Geographic Names [TGN]) and that, where
appropriate, named places or time periods be used in preference to numeric identifiers such as sets of coordinates or
date ranges.

References: [TGN] http://www.getty.edu/research/tools/vocabulary/tgn/index.html

creator

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

111

URI: http://purl.org/dc/elements/1.1/creator

Definition: An entity primarily responsible for making the content of the resource.

Comment: Examples of a Creator include a person, an organisation, or a service. Typically, the name of a Creator should be used
to indicate the entity.

date

URI: http://purl.org/dc/elements/1.1/date

Definition: A date associated with an event in the life cycle of the resource.

Comment: Typically, Date will be associated with the creation or availability of the resource. Recommended best practice for
encoding the date value is defined in a profile of ISO 8601 [W3CDTF] and follows the YYYY-MM-DD format.

References: [W3CDTF] http://www.w3.org/TR/NOTE-datetime

description

URI: http://purl.org/dc/elements/1.1/description

Definition: An account of the content of the resource.

Comment: Description may include but is not limited to: an abstract, table of contents, reference to a graphical representation of
content or a free-text account of the content.

format

URI: http://purl.org/dc/elements/1.1/format

Definition: The physical or digital manifestation of the resource.

Comment: Typically, Format may include the media-type or dimensions of the resource. Format may be used to determine the
software, hardware or other equipment needed to display or operate the resource. Examples of dimensions include size
and duration. Recommended best practice is to select a value from a controlled vocabulary (for example, the list of
Internet Media Types [MIME] defining computer media formats).

References: [MIME] http://www.isi.edu/in-notes/iana/assignments/media-types/media-types

identifier

URI: http://purl.org/dc/elements/1.1/identifier

Definition: An unambiguous reference to the resource within a given context.

Comment: Recommended best practice is to identify the resource by means of a string or number conforming to a formal
identification system. Example formal identification systems include the Uniform Resource Identifier (URI) (including
the Uniform Resource Locator (URL)), the Digital Object Identifier (DOI) and the International Standard Book
Number (ISBN).

language

URI: http://purl.org/dc/elements/1.1/language

Definition: A language of the intellectual content of the resource.

Comment: Recommended best practice is to use RFC 3066 [RFC3066], which, in conjunction with ISO 639 [ISO639], defines
two- and three-letter primary language tags with optional subtags. Examples include "en" or "eng" for English, "akk"
for Akkadian, and "en-GB" for English used in the United Kingdom.

References: [RFC3066] http://www.ietf.org/rfc/rfc3066.txt

References: [ISO639] http://www.loc.gov/standards/iso639-2/

publisher

URI: http://purl.org/dc/elements/1.1/publisher

Definition: An entity responsible for making the resource available

Comment: Examples of a Publisher include a person, an organisation, or a service. Typically, the name of a Publisher should be
used to indicate the entity.

relation

URI: http://purl.org/dc/elements/1.1/relation

Definition: A reference to a related resource.

Comment: Recommended best practice is to reference the resource by means of a string or number conforming to a formal

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

112

identification system.

rights

URI: http://purl.org/dc/elements/1.1/rights

Definition: Information about rights held in and over the resource.

Comment: Typically, a Rights element will contain a rights management statement for the resource, or reference a service
providing such information. Rights information often encompasses Intellectual Property Rights (IPR), Copyright, and
various Property Rights. If the Rights element is absent, no assumptions can be made about the status of these and other
rights with respect to the resource.

source

URI: http://purl.org/dc/elements/1.1/source

Definition: A reference to a resource from which the present resource is derived.

Comment: The present resource may be derived from the Source resource in whole or in part. Recommended best practice is to
reference the resource by means of a string or number conforming to a formal identification system.

subject

URI: http://purl.org/dc/elements/1.1/subject

Definition: The topic of the content of the resource.

Comment: Typically, a Subject will be expressed as keywords, key phrases or classification codes that describe a topic of the
resource. Recommended best practice is to select a value from a controlled vocabulary or formal classification scheme.

title

URI: http://purl.org/dc/elements/1.1/title

Definition: A name given to the resource.

Comment: Typically, a Title will be a name by which the resource is formally known.

Multiplicity: 0..many (title in many languages)

type

URI: http://purl.org/dc/elements/1.1/type

Definition: The nature or genre of the content of the resource.

Comment: Type includes terms describing general categories, functions, genres, or aggregation levels for content. Recommended
best practice is to select a value from a controlled vocabulary (for example, the DCMI Type Vocabulary
[DCMITYPE]). To describe the physical or digital manifestation of the resource, use the Format element.

References: [DCMITYPE] http://dublincore.org/documents/dcmi-type-vocabulary/

Many other terms has been introduced as refinements of these basic terms like:

• abstract as refinement of description
• alternative as refinement of title
• comformsTo as refinemet of relation
• etc.

The full list is reported in the following and additional information can be found in
(http://dublincore.org/documents/dcmi-terms/).

abstract

Definition: A summary of the content of the resource.

Refines: http://purl.org/dc/elements/1.1/description

accessRights

Definition: Information about who can access the resource or an indication of its security status.

Comment: Access Rights may include information regarding access or restrictions based on privacy, security or other regulations.

Refines: http://purl.org/dc/elements/1.1/rights

alternative

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

113

Definition: Any form of the title used as a substitute or alternative to the formal title of the resource.

Comment: This qualifier can include Title abbreviations as well as translations.

Refines: http://purl.org/dc/elements/1.1/title

audience

Definition: A class of entity for whom the resource is intended or useful.

Comment: A class of entity may be determined by the creator or the publisher or by a third party.

available

Definition: Date (often a range) that the resource will become or did become available.

Refines: http://purl.org/dc/elements/1.1/date

bibliographicCitation

Definition: A bibliographic reference for the resource.

Comment: Recommended practice is to include sufficient bibliographic detail to identify the resource as unambiguously as
possible, whether or not the citation is in a standard form.

Refines: http://purl.org/dc/elements/1.1/identifier

conformsTo

Definition: A reference to an established standard to which the resource conforms.

Refines: http://purl.org/dc/elements/1.1/relation

created

Definition: Date of creation of the resource.

Refines: http://purl.org/dc/elements/1.1/date

dateAccepted

Definition: Date of acceptance of the resource (e.g. of thesis by university department, of article by journal, etc.).

Refines: http://purl.org/dc/elements/1.1/date

dateCopyrighted

Definition: Date of a statement of copyright.

Refines: http://purl.org/dc/elements/1.1/date

dateSubmitted

Definition: Date of submission of the resource (e.g. thesis, articles, etc.).

Refines: http://purl.org/dc/elements/1.1/date

educationLevel

Definition: A general statement describing the education or training context. Alternatively, a more specific statement of the location
of the audience in terms of its progression through an education or training context.

Refines: http://purl.org/dc/terms/audience

extent

Definition: The size or duration of the resource.

Refines: http://purl.org/dc/elements/1.1/format

hasFormat

Definition: The described resource pre-existed the referenced resource, which is essentially the same intellectual content presented
in another format.

Refines: http://purl.org/dc/elements/1.1/relation

hasPart

Definition: The described resource includes the referenced resource either physically or logically.

Refines: http://purl.org/dc/elements/1.1/relation

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

114

hasVersion

Definition: The described resource has a version, edition, or adaptation, namely, the referenced resource.

Refines: http://purl.org/dc/elements/1.1/relation

isFormatOf

Definition: The described resource is the same intellectual content of the referenced resource, but presented in another format.

Refines: http://purl.org/dc/elements/1.1/relation

isPartOf

Definition: The described resource is a physical or logical part of the referenced resource.

Refines: http://purl.org/dc/elements/1.1/relation

isReferencedBy

Definition: The described resource is referenced, cited, or otherwise pointed to by the referenced resource.

Refines: http://purl.org/dc/elements/1.1/relation

isReplacedBy

Definition: The described resource is supplanted, displaced, or superseded by the referenced resource.

Refines: http://purl.org/dc/elements/1.1/relation

isRequiredBy

Definition: The described resource is required by the referenced resource, either physically or logically.

Refines: http://purl.org/dc/elements/1.1/relation

issued

Definition: Date of formal issuance (e.g., publication) of the resource.

Refines: http://purl.org/dc/elements/1.1/date

isVersionOf

Definition: The described resource is a version, edition, or adaptation of the referenced resource. Changes in version imply
substantive changes in content rather than differences in format.

Refines: http://purl.org/dc/elements/1.1/relation

license

Definition: A legal document giving official permission to do something with the resource.

Comment: Recommended best practice is to identify the license using a URI. Examples of such licenses can be found at
http://creativecommons.org/licenses/.

Refines: http://purl.org/dc/elements/1.1/rights

mediator

Definition: A class of entity that mediates access to the resource and for whom the resource is intended or useful.

Comment: The audiences for a resource are of two basic classes: (1) an ultimate beneficiary of the resource, and (2) frequently, an
entity that mediates access to the resource. The mediator element refinement represents the second of these two classes.

Refines: http://purl.org/dc/terms/audience

medium

Definition: The material or physical carrier of the resource.

Refines: http://purl.org/dc/elements/1.1/format

modified

Definition: Date on which the resource was changed.

Refines: http://purl.org/dc/elements/1.1/date

provenance

Definition: A statement of any changes in ownership and custody of the resource since its creation that are significant for its
authenticity, integrity and interpretation.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

115

Comment: The statement may include a description of any changes successive custodians made to the resource.

references

Definition: The described resource references, cites, or otherwise points to the referenced resource.

Refines: http://purl.org/dc/elements/1.1/relation

replaces

Definition: The described resource supplants, displaces, or supersedes the referenced resource.

Refines: http://purl.org/dc/elements/1.1/relation

requires

Definition: The described resource requires the referenced resource to support its function, delivery, or coherence of content.

Refines: http://purl.org/dc/elements/1.1/relation

rightsHolder

Definition: A person or organization owning or managing rights over the resource.

Comment: Recommended best practice is to use the URI or name of the Rights Holder to indicate the entity.

spatial

Definition: Spatial characteristics of the intellectual content of the resource.

Refines: http://purl.org/dc/elements/1.1/coverage

tableOfContents

Definition: A list of subunits of the content of the resource.

Refines: http://purl.org/dc/elements/1.1/description

temporal

Definition: Temporal characteristics of the intellectual content of the resource.

Refines: http://purl.org/dc/elements/1.1/coverage

valid

Definition: Date (often a range) of validity of a resource.

Refines: http://purl.org/dc/elements/1.1/date

AXMEDIS will support all these metadata (basic and refined), however in case of collision with information
stored in other descriptors like in AXInfo or Identifiers, these ones are considered valid and the DC ones are
dependent. Meaning that in case of inconsistency between these information the AXInfo and the Identifiers
have a higher priority and can be used to fix the DC values (under user control).

Have to be noted that not all refined elements may have sense in the AXMEDIS context, thus some of them
may be not considered by some applications (e.g. DB may not index some metadata).

8.1.3 Examples of AXMEDIS Objects

Basic AXMEDIS Object
The following is an example of a Basic AXMEDIS Object

<?xml version="1.0" encoding="UTF-8"?>
<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS" xmlns:ax="urn:axmedis:01" xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-
NS" xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
xmlns:mx="urn:mpeg:mpeg21:2003:01-REL-MX-NS" xmlns:sx="urn:mpeg:mpeg21:2003:01-REL-SX-NS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:axmedis:01 AXMEDIS.xsd">
 <Item>
 <!--
 Descriptor containing the AXOID to identify the object (REQUIRED)
 -->
 <Descriptor id="dsc_id">
 <Statement mimeType="text/xml">

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

116

 <dii:Identifier>urn:mpegRA:mpeg21:dii:axoid:A001AGSHDI</dii:Identifier>
 </Statement>
 </Descriptor>
 <Item>
 <!--
 Descriptor containing the RelatedIdentifier to identify the work (OPTIONAL)
 -->
 <Descriptor id="public_dsc_rel_id">
 <Statement mimeType="text/xml">
 <dii:RelatedIdentifier>urn:mpegRA:mpeg21:dii:iscw:T-034.524.680-1</dii:RelatedIdentifier>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the AXInfo containing information regarding the object (REQUIRED)
 -->
 <Descriptor id="public_dsc_ax">
 <Statement mimeType="text/xml">
 <ax:AXInfo>
 <ax:ObjectCreator>
 <ax:AXCID>... a creator ID ...</ax:AXCID>
 <ax:ObjectCreatorName>J. Doe</ax:ObjectCreatorName>
 <ax:ObjectCreatorURL>mailto:jdoe@invideo.com</ax:ObjectCreatorURL>
 <ax:ObjectCreatorCompany>InVideo</ax:ObjectCreatorCompany>
 <ax:ObjectCreatorCompanyURL>http://www.invideo.com</ax:ObjectCreatorCompanyURL>
 <ax:ObjectCreatorNationality>US</ax:ObjectCreatorNationality>
 </ax:ObjectCreator>
 <ax:AccessMode>read_write</ax:AccessMode>
 <ax:CreationDate>2004-12-27T15:00:00</ax:CreationDate>
 <ax:LastModificationDate>2004-12-27T16:43:00</ax:LastModificationDate>
 <ax:Version>2</ax:Version>
 <ax:Revision>1</ax:Revision>
 <ax:ObjectStatus>production</ax:ObjectStatus>
 <ax:ObjectType>BASIC</ax:ObjectType>
 <!--
 History of the object
 -->
 <ax:History>
 <ax:ObjVersion number="1">
 <ax:When>2004-12-27T16:27:00</ax:When>
 <ax:Who>J. Doe</ax:Who>
 <ax:Where>
 <ax:Organization>InVideo</ax:Organization>
 <ax:Site>Atlanta</ax:Site>
 <ax:Machine>JDOE_01</ax:Machine>
 </ax:Where>
 <ax:What>
 <ax:Description>First version</ax:Description>
 </ax:What>
 </ax:ObjVersion>
 <ax:ObjVersion number="2">
 <ax:When>2004-12-27T16:27:00</ax:When>
 <ax:Who>J. Doe</ax:Who>
 <ax:Where>
 <ax:Organization>InVideo</ax:Organization>
 <ax:Site>Atlanta</ax:Site>
 <ax:Machine>JDOE_05</ax:Machine>
 </ax:Where>
 <ax:What>
 <ax:Commands>
 <ax:Cmd>
 <ax:AXTID>.... a Tool ID ...</ax:AXTID>
 <ax:AXTTID>... a Tool Type ID...</ax:AXTTID>
 <ax:AXRTID>... a Real Tool ID ...</ax:AXRTID>
 <ax:Operation>
 <ax:Name>Add</ax:Name>
 </ax:Operation>
 <ax:Revision>1</ax:Revision>
 </ax:Cmd>
 <!-- To be completed -->
 </ax:Commands>
 </ax:What>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

117

 </ax:ObjVersion>
 </ax:History>
 <!--
 Workflow information
 -->
 <ax:Workflow>
 <ax:WorkItemID>... a work item ID... </ax:WorkItemID>
 <ax:WorkspaceInstanceID>.... a workspace instance ID ...</ax:WorkspaceInstanceID>
 </ax:Workflow>
 <!--
 Fingerprint algorithms to be used for the resource
 -->
 <ax:Fingerprints for="cmp">
 <ax:FingerprintID>FngVideo01</ax:FingerprintID>
 </ax:Fingerprints>
 <!--
 Rights potentially available on the object
 -->
 <ax:PotentialAvailableRights>
 <ax:LicensingURL>http://www.axmedis.org</ax:LicensingURL>
 <ax:PARStatus/>
 <r:license>
 <r:grantGroup>
 <r:grant>
 <mx:play/>
 <r:allConditions>
 <sx:validityIntervalFloating>
 <sx:duration>P1M</sx:duration>
 </sx:validityIntervalFloating>
 <r:validityInterval>
 <r:notAfter>2010-01-01T00:00:00</r:notAfter>
 </r:validityInterval>
 </r:allConditions>
 </r:grant>
 <r:grant>
 <mx:move/>
 </r:grant>
 <r:grant>
 <mx:delete/>
 </r:grant>
 </r:grantGroup>
 </r:license>
 </ax:PotentialAvailableRights>
 <!--
 Information for metadata certification ...(to be better defined)
 -->
 <ax:MetadataAdditionalInfo>
 <ax:MetadataInfo for="dsc_id">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 </ax:MetadataInfo>
 <ax:MetadataInfo for="public_dsc_rel_id">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 </ax:MetadataInfo>
 <ax:MetadataInfo for="public_dsc_dc">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 <ax:MetadataStatus>partial</ax:MetadataStatus>
 </ax:MetadataInfo>
 <ax:MetadataInfo for="public_dsc_mpeg7">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 <ax:MetadataStatus>partial</ax:MetadataStatus>
 </ax:MetadataInfo>
 <ax:MetadataInfo for="public_dsc_ax">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 </ax:MetadataInfo>
 </ax:MetadataAdditionalInfo>
 </ax:AXInfo>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the Dublin Core information regarding the object (REQUIRED)
 -->

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

118

 <Descriptor id="public_dsc_dc">
 <Statement mimeType="text/xml">
 <rdf:Description>
 <dc:title xml:lang="en">When the Thistle Blooms</dc:title>
 <dc:title xml:lang="it">Quando il Cardo Sboccia</dc:title>
 <dc:creator>Always Red</dc:creator>
 <dc:publisher>PDQ Records</dc:publisher>
 </rdf:Description>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the MPEG7 information regarding the object (OPTIONAL)
 -->
 <Descriptor id="public_dsc_mpeg7">
 <Statement mimeType="text/xml">
 <mpeg7:Mpeg7>
 <mpeg7:DescriptionUnit xsi:type="MediaProfileType">
 <mpeg7:MediaFormat>
 <mpeg7:VisualCodingFormat
href="urn:mpeg:mpeg7:cs:MPEG7VisualCodingFormatCS:3.1.2"/>
 <mpeg7:BitRate>64000</mpeg7:BitRate>
 </mpeg7:MediaFormat>
 <mpeg7:MediaQuality>
 <mpeg7:QualityRating ratingType="objective">
 <mpeg7:RatingValue>35.6</mpeg7:RatingValue>
 <mpeg7:RatingMetric>
 <mpeg7:QualityRatingScheme href="urn:mpeg:mpeg7:cs:MPEG-
7QualityRatingSchemeCS:2.3"/>
 <mpeg7:RatingStyle>higherBetter</mpeg7:RatingStyle>
 </mpeg7:RatingMetric>
 </mpeg7:QualityRating>
 </mpeg7:MediaQuality>
 </mpeg7:DescriptionUnit>
 </mpeg7:Mpeg7>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Descriptor><Statement mimeType="text/plain">Reference to the real content</Statement></Descriptor>
 <Statement mimeType="text/uri-list">urn:axmedis:A001AGSHDI#A001AGSHDI_content</Statement>
 </Descriptor>
 </Item>
 <Item id="A001AGSHDI_content">
 <!--
 Descriptor containing the RelatedIdentifier to identify the work (OPTIONAL)
 -->
 <Descriptor id="private_dsc_rel_id">
 <Statement mimeType="text/xml">
 <dii:RelatedIdentifier>urn:mpegRA:mpeg21:dii:iscw:T-034.524.680-1</dii:RelatedIdentifier>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the AXInfo containing information regarding the object (REQUIRED)
 -->
 <Descriptor id="private_dsc_ax">
 <Statement mimeType="text/xml">
 <ax:AXInfo>
 <ax:ObjectCreator>
 <ax:AXCID>... a creator ID ...</ax:AXCID>
 <ax:ObjectCreatorName>J. Doe</ax:ObjectCreatorName>
 <ax:ObjectCreatorURL>mailto:jdoe@invideo.com</ax:ObjectCreatorURL>
 <ax:ObjectCreatorCompany>InVideo</ax:ObjectCreatorCompany>
 <ax:ObjectCreatorCompanyURL>http://www.invideo.com</ax:ObjectCreatorCompanyURL>
 <ax:ObjectCreatorNationality>US</ax:ObjectCreatorNationality>
 </ax:ObjectCreator>
 <ax:AccessMode>read_write</ax:AccessMode>
 <ax:CreationDate>2004-12-27T15:00:00</ax:CreationDate>
 <ax:LastModificationDate>2004-12-27T16:43:00</ax:LastModificationDate>
 <ax:Version>2</ax:Version>
 <ax:Revision>1</ax:Revision>
 <ax:ObjectStatus>production</ax:ObjectStatus>
 <ax:ObjectType>BASIC</ax:ObjectType>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

119

 <!--
 History of the object
 -->
 <ax:History>
 <ax:ObjVersion number="1">
 <ax:When>2004-12-27T16:27:00</ax:When>
 <ax:Who>J. Doe</ax:Who>
 <ax:Where>
 <ax:Organization>InVideo</ax:Organization>
 <ax:Site>Atlanta</ax:Site>
 <ax:Machine>JDOE_01</ax:Machine>
 </ax:Where>
 <ax:What>
 <ax:Description>First version</ax:Description>
 </ax:What>
 </ax:ObjVersion>
 <ax:ObjVersion number="2">
 <ax:When>2004-12-27T16:27:00</ax:When>
 <ax:Who>J. Doe</ax:Who>
 <ax:Where>
 <ax:Organization>InVideo</ax:Organization>
 <ax:Site>Atlanta</ax:Site>
 <ax:Machine>JDOE_05</ax:Machine>
 </ax:Where>
 <ax:What>
 <ax:Commands>
 <ax:Cmd>
 <ax:AXTID>.... a Tool ID ...</ax:AXTID>
 <ax:AXTTID>... a Tool Type ID...</ax:AXTTID>
 <ax:AXRTID>... a Real Tool ID ...</ax:AXRTID>
 <ax:Operation>
 <ax:Name>Add</ax:Name>
 </ax:Operation>
 <ax:Revision>1</ax:Revision>
 </ax:Cmd>
 <!-- To be completed -->
 </ax:Commands>
 </ax:What>
 </ax:ObjVersion>
 </ax:History>
 <!--
 Workflow information
 -->
 <ax:Workflow>
 <ax:WorkItemID>... a work item ID... </ax:WorkItemID>
 <ax:WorkspaceInstanceID>.... a workspace instance ID ...</ax:WorkspaceInstanceID>
 </ax:Workflow>
 <!--
 Fingerprint algorithms to be used for the resource
 -->
 <ax:Fingerprints for="cmp">
 <ax:FingerprintID>FngVideo01</ax:FingerprintID>
 </ax:Fingerprints>
 <!--
 Rights potentially available on the object
 -->
 <ax:PotentialAvailableRights>
 <ax:LicensingURL>http://www.axmedis.org</ax:LicensingURL>
 <ax:PARStatus/>
 <r:license>
 <r:grantGroup>
 <r:grant>
 <mx:play/>
 <r:allConditions>
 <sx:validityIntervalFloating>
 <sx:duration>P1M</sx:duration>
 </sx:validityIntervalFloating>
 <r:validityInterval>
 <r:notAfter>2010-01-01T00:00:00</r:notAfter>
 </r:validityInterval>
 </r:allConditions>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

120

 </r:grant>
 <r:grant>
 <mx:move/>
 </r:grant>
 <r:grant>
 <mx:delete/>
 </r:grant>
 </r:grantGroup>
 </r:license>
 </ax:PotentialAvailableRights>
 <!--
 Information for metadata certification ...(to be better defined)
 -->
 <ax:MetadataAdditionalInfo>
 <ax:MetadataInfo for="dsc_id">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 </ax:MetadataInfo>
 <ax:MetadataInfo for="private_dsc_rel_id">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 </ax:MetadataInfo>
 <ax:MetadataInfo for="private_dsc_dc">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 <ax:MetadataStatus>partial</ax:MetadataStatus>
 </ax:MetadataInfo>
 <ax:MetadataInfo for="private_dsc_mpeg7">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 <ax:MetadataStatus>partial</ax:MetadataStatus>
 </ax:MetadataInfo>
 <ax:MetadataInfo for="private_dsc_ax">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 </ax:MetadataInfo>
 </ax:MetadataAdditionalInfo>
 </ax:AXInfo>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the Dublin Core information regarding the object (REQUIRED)
 -->
 <Descriptor id="private_dsc_dc">
 <Statement mimeType="text/xml">
 <rdf:Description>
 <dc:title xml:lang="en">When the Thistle Blooms</dc:title>
 <dc:title xml:lang="it">Quando il Cardo Sboccia</dc:title>
 <dc:creator>Always Red</dc:creator>
 <dc:publisher>PDQ Records</dc:publisher>
 </rdf:Description>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the MPEG7 information regarding the object (OPTIONAL)
 -->
 <Descriptor id="private_dsc_mpeg7">
 <Statement mimeType="text/xml">
 <mpeg7:Mpeg7>
 <mpeg7:DescriptionUnit xsi:type="MediaProfileType">
 <mpeg7:MediaFormat>
 <mpeg7:VisualCodingFormat
href="urn:mpeg:mpeg7:cs:MPEG7VisualCodingFormatCS:3.1.2"/>
 <mpeg7:BitRate>64000</mpeg7:BitRate>
 </mpeg7:MediaFormat>
 <mpeg7:MediaQuality>
 <mpeg7:QualityRating ratingType="objective">
 <mpeg7:RatingValue>35.6</mpeg7:RatingValue>
 <mpeg7:RatingMetric>
 <mpeg7:QualityRatingScheme href="urn:mpeg:mpeg7:cs:MPEG-
7QualityRatingSchemeCS:2.3"/>
 <mpeg7:RatingStyle>higherBetter</mpeg7:RatingStyle>
 </mpeg7:RatingMetric>
 </mpeg7:QualityRating>
 </mpeg7:MediaQuality>
 </mpeg7:DescriptionUnit>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

121

 </mpeg7:Mpeg7>
 </Statement>
 </Descriptor>
 <!--
 Component elements containing the resource (REQUIRED for single object)
 -->
 <Component id="cmp">
 <Resource mimeType="video/mp4v-es" encoding="base64">
 aadsfadsfsyd647dgd78r85hfuv8nbr8fnf985nf9g9gm569gmty9ghmg90hdhd8fhfjd9d9
 dhd8f95mnfk9gfm59fgt95mkt0jhdf8fnj587fjd67n3jf84mf00eedjf8fj58tm58fm58emds9o
 ...
 </Resource>
 </Component>
 </Item>
 </Item>
</DIDL>

Protected Basic AXMEDIS Object

<?xml version="1.0" encoding="UTF-8"?>
<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS" xmlnd:ipmpdidl="urn:mpeg:mpeg21:2004:01-IPMPDIDL-NS"
xmlnd:ipmp="urn:mpeg:mpeg21:2004:01-IPMP-NS" xmlns:ax="urn:axmedis:01" xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS"
xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
xmlns:mx="urn:mpeg:mpeg21:2003:01-REL-MX-NS" xmlns:sx="urn:mpeg:mpeg21:2003:01-REL-SX-NS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:axmedis:01 AXMEDIS.xsd">
 <Item>
 <!--
 Descriptor containing the AXOID to identify the object (REQUIRED)
 -->
 <Descriptor id="dsc_id">
 <Statement mimeType="text/xml">
 <dii:Identifier>urn:mpegRA:mpeg21:dii:axoid:A001AGSHDI</dii:Identifier>
 </Statement>
 </Descriptor>
 <Item>
 <!--
 Descriptor containing the RelatedIdentifier to identify the work (OPTIONAL)
 -->
 <Descriptor id="public_dsc_rel_id">
 <Statement mimeType="text/xml">
 <dii:RelatedIdentifier>urn:mpegRA:mpeg21:dii:iscw:T-034.524.680-1</dii:RelatedIdentifier>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the AXInfo containing information regarding the object (REQUIRED)
 -->
 <Descriptor id="public_dsc_ax">
 <Statement mimeType="text/xml">
 <ax:AXInfo>
 <ax:ObjectCreator>
 <ax:AXCID>... a creator ID ...</ax:AXCID>
 <ax:ObjectCreatorName>J. Doe</ax:ObjectCreatorName>
 <ax:ObjectCreatorURL>mailto:jdoe@invideo.com</ax:ObjectCreatorURL>
 <ax:ObjectCreatorCompany>InVideo</ax:ObjectCreatorCompany>
 <ax:ObjectCreatorCompanyURL>http://www.invideo.com</ax:ObjectCreatorCompanyURL>
 <ax:ObjectCreatorNationality>US</ax:ObjectCreatorNationality>
 </ax:ObjectCreator>
 <ax:AccessMode>read_write</ax:AccessMode>
 <ax:CreationDate>2004-12-27T15:00:00</ax:CreationDate>
 <ax:LastModificationDate>2004-12-27T16:43:00</ax:LastModificationDate>
 <ax:Version>2</ax:Version>
 <ax:Revision>1</ax:Revision>
 <ax:ObjectStatus>production</ax:ObjectStatus>
 <ax:ObjectType>BASIC</ax:ObjectType>
 <!--
 History of the object
 -->
 <ax:History>
 <ax:ObjVersion number="1">

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

122

 <ax:When>2004-12-27T16:27:00</ax:When>
 <ax:Who>J. Doe</ax:Who>
 <ax:Where>
 <ax:Organization>InVideo</ax:Organization>
 <ax:Site>Atlanta</ax:Site>
 <ax:Machine>JDOE_01</ax:Machine>
 </ax:Where>
 <ax:What>
 <ax:Description>First version</ax:Description>
 </ax:What>
 </ax:ObjVersion>
 <ax:ObjVersion number="2">
 <ax:When>2004-12-27T16:27:00</ax:When>
 <ax:Who>J. Doe</ax:Who>
 <ax:Where>
 <ax:Organization>InVideo</ax:Organization>
 <ax:Site>Atlanta</ax:Site>
 <ax:Machine>JDOE_05</ax:Machine>
 </ax:Where>
 <ax:What>
 <ax:Commands>
 <ax:Cmd>
 <ax:AXTID>.... a Tool ID ...</ax:AXTID>
 <ax:AXTTID>... a Tool Type ID...</ax:AXTTID>
 <ax:AXRTID>... a Real Tool ID ...</ax:AXRTID>
 <ax:Operation>
 <ax:Name>Add</ax:Name>
 </ax:Operation>
 <ax:Revision>1</ax:Revision>
 </ax:Cmd>
 <!-- To be completed -->
 </ax:Commands>
 </ax:What>
 </ax:ObjVersion>
 </ax:History>
 <!--
 Workflow information
 -->
 <ax:Workflow>
 <ax:WorkItemID>... a work item ID... </ax:WorkItemID>
 <ax:WorkspaceInstanceID>.... a workspace instance ID ...</ax:WorkspaceInstanceID>
 </ax:Workflow>
 <!--
 Fingerprint algorithms to be used for the resource
 -->
 <ax:Fingerprints for="cmp">
 <ax:FingerprintID>FngVideo01</ax:FingerprintID>
 </ax:Fingerprints>
 <!--
 Rights potentially available on the object
 -->
 <ax:PotentialAvailableRights>
 <ax:LicensingURL>http://www.axmedis.org</ax:LicensingURL>
 <ax:PARStatus/>
 <r:license>
 <r:grantGroup>
 <r:grant>
 <mx:play/>
 <r:allConditions>
 <sx:validityIntervalFloating>
 <sx:duration>P1M</sx:duration>
 </sx:validityIntervalFloating>
 <r:validityInterval>
 <r:notAfter>2010-01-01T00:00:00</r:notAfter>
 </r:validityInterval>
 </r:allConditions>
 </r:grant>
 <r:grant>
 <mx:move/>
 </r:grant>
 <r:grant>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

123

 <mx:delete/>
 </r:grant>
 </r:grantGroup>
 </r:license>
 </ax:PotentialAvailableRights>
 <!--
 Information for metadata certification ...(to be better defined)
 -->
 <ax:MetadataAdditionalInfo>
 <ax:MetadataInfo for="dsc_id">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 </ax:MetadataInfo>
 <ax:MetadataInfo for="public_dsc_rel_id">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 </ax:MetadataInfo>
 <ax:MetadataInfo for="public_dsc_dc">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 <ax:MetadataStatus>partial</ax:MetadataStatus>
 </ax:MetadataInfo>
 <ax:MetadataInfo for="public_dsc_mpeg7">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 <ax:MetadataStatus>partial</ax:MetadataStatus>
 </ax:MetadataInfo>
 <ax:MetadataInfo for="public_dsc_ax">
 <ax:MetadataCertification>... certification data ...</ax:MetadataCertification>
 </ax:MetadataInfo>
 </ax:MetadataAdditionalInfo>
 </ax:AXInfo>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the Dublin Core information regarding the object (REQUIRED)
 -->
 <Descriptor id="public_dsc_dc">
 <Statement mimeType="text/xml">
 <rdf:Description>
 <dc:title xml:lang="en">When the Thistle Blooms</dc:title>
 <dc:title xml:lang="it">Quando il Cardo Sboccia</dc:title>
 <dc:creator>Always Red</dc:creator>
 <dc:publisher>PDQ Records</dc:publisher>
 </rdf:Description>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the MPEG7 information regarding the object (OPTIONAL)
 -->
 <Descriptor id="public_dsc_mpeg7">
 <Statement mimeType="text/xml">
 <mpeg7:Mpeg7>
 <mpeg7:DescriptionUnit xsi:type="MediaProfileType">
 <mpeg7:MediaFormat>
 <mpeg7:VisualCodingFormat
href="urn:mpeg:mpeg7:cs:MPEG7VisualCodingFormatCS:3.1.2"/>
 <mpeg7:BitRate>64000</mpeg7:BitRate>
 </mpeg7:MediaFormat>
 <mpeg7:MediaQuality>
 <mpeg7:QualityRating ratingType="objective">
 <mpeg7:RatingValue>35.6</mpeg7:RatingValue>
 <mpeg7:RatingMetric>
 <mpeg7:QualityRatingScheme href="urn:mpeg:mpeg7:cs:MPEG-
7QualityRatingSchemeCS:2.3"/>
 <mpeg7:RatingStyle>higherBetter</mpeg7:RatingStyle>
 </mpeg7:RatingMetric>
 </mpeg7:QualityRating>
 </mpeg7:MediaQuality>
 </mpeg7:DescriptionUnit>
 </mpeg7:Mpeg7>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Descriptor>

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

124

 <Statement mimeType="text/plain">Reference to the real content</Statement>
 </Descriptor>
 <Statement mimeType="text/uri-list">urn:axmedis:A001AGSHDI#A001AGSHDI_content</Statement>
 </Descriptor>
 </Item>
 <ipmpdidl:Item>
 <ipmpdidl:Identifier>urn:axmedis:A001AGSHDI#A001AGSHDI_content</ipmpdidl:Identifier>
 <ipmpdidl:Info>
 <ipmp:IPMPInfoDescriptor>
 <ipmp:Tool>
 <ipmp:ToolBaseDescription>
 <ipmp:IPMPToolID>urn:mpegRA:mpeg21:IPMP:ABC005:77:29</ipmp:IPMPToolID>
 <ipmp:Remote ref="urn:IPMPToolsServer:ToolEnc005-3484"/>
 </ipmp:ToolBaseDescription>
 </ipmp:Tool>
 <ipmp:Tool>
 <ipmp:ToolBaseDescription>
 <ipmp:IPMPToolID>urn:mpegRA:mpeg21:IPMP:ABC064:55:86</ipmp:IPMPToolID>
 <ipmp:Remote ref="urn:IPMPToolsServer:ToolWat005-6393"/>
 </ipmp:ToolBaseDescription>
 </ipmp:Tool>
 <ipmp:RightsDescriptor>
 <ipmp:License>
 <r:license>
 <r:encryptedLicense Type="http://www.w3.org/2001/04/xmlenc#Content">
 <enc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#3des-cbc"/>
 <dsig:KeyInfo>
 <dsig:KeyName>SymmetricKey</dsig:KeyName>
 </dsig:KeyInfo>
 <enc:CipherData>
 <enc:CipherValue>Ktd63SDfkDWEjeSdkj39872A5ToQ...</enc:CipherValue>
 </enc:CipherData>
 </r:encryptedLicense>
 </r:license>
 </ipmp:License>
 </ipmp:RightsDescriptor>
 </ipmp:IPMPInfoDescriptor>
 </ipmpdidl:Info>
 <ipmpdidl:Contents>agsdhsjdddjfhf945734md9v784nf.... 7283udfhjdf94jdbnhcysd8e</ipmpdidl:Contents>
 </ipmpdidl:Item>
 </Item>
</DIDL>

8.2 AXMEDIS Model (DSI)

Module Profile
AXMEDIS Model

Executable or Library(Support) Support library
Single Thread or Multithread
Language of Development C++
Responsible Name Bellini, Vallotti, Rogai
Responsible Partner DSI
Status (proposed/approved) proposed
Platforms supported

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

125

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

8.2.1 MPEG21 Digital Item Model
In this section classes modeling the MPEG21 digital items are reported.

+isTypeOf(in ptr : Recognizable*) : bool

Type

Type

+isTypeOf(in ptr : Recognizable*) : bool

«interface»
AbstractType

+getTypeName() : char*

Recognizable

«uses»

Since the development language is C++ a Type description class is needed in order to compare types of
instances. A compare is necessary to control the proper insertion of elements in the data model. For example
to enforce that the allowed children of a specific element are only a subset of the all elements at disposal, a
list of Types is given. This list can be used to check if the insertion of a candidate element in the children is
correct.
Any hierarchy of classes that want to support this feature have to be inherited from Recognizable. The class
AbstractType is used to manage type information without taking care of the used actualization of the
template class Type. Thus a reference to an AbstractType object can be passed as parameter, stored in an
array and at any time it can be used to check if a given instance belongs to its hierarcy (if the instance has
been constructed as a sub class of that described from the AbstractType reference).

Since AXMEDIS Objects are MPEG21 compliant objects the MPEG21 data model have to be managed.
The following static structure diagrams take into account the MPEG21 Digital Item Description model
(didmodel).

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

126

The model has been conceived to store a hierarchical structure of a multimedia object, each part of it can be
protected or not. For this reason two different schema are provided one for the clear-text elements and the
other for the protected ones. Both schema have derives from the same hierarchy specified in the didmodel
which deals with abstract element

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

127

+createAbstractDIElement(in XmlElement) : AbstractDIElement

«interface»
AbstractDIElementFactory

+getOwnerDocument() : Document
+getChildren() : AbstractDIElement*
+getNamespace() : char*
+getId() : char*
+getTag() : char*
+isAvailable() : bool
+getParent() : AbstractDIElement
+getTextDescription() : char*
+visit(in visitor : AbstractDIElementVisitor) : void
+getAllowedChildren() : AbstractType*
+addChild(in child : AbstractDIElement) : void
+insertChildBefore(in child : AbstractDIElement) : void
+insertChildAfter(in child : AbstractDIElement) : void
+removeChild(in child : AbstractDIElement) : void

#ownerDocument : Document
-id : char*
-available : bool
-parent : AbstractDIElement

AbstractDIElement

AbstractItem

AbstractResource

AbstractAssertion

AbstractCondition

AbstractContainer

AbstractAnnotation

AbstractDescriptor AbstractStatement AbstractComponent

AbstractAnchor

AbstractFragment

AbstractChoice

AbstractSelection

«interface»
AbstractDIElementVisitor

+importElement(in element : AbstractDIElement) : AbstractDIElement

«interface»
Document

1
*

types::Recognizable

In the above diagram the classes that manage the abstract structure of the didmodel are shown. The base
class AbstractDIElement is inherited from Recognizable class in order to support type recognition of all the
subclasses. AbstractDIElement exposes common methods of all the DI elements i.e reference to the owner
document, list of children, tag, id, structure management methods… many of the exposed methods are
polymorphic and should be redefined from the sub-classes (i.e. getAllowedChildren). The abstract elements
are the base to treat equally equivalent tag from protected and clear-text schema (e.g.. AbstractItem represent
clear-text DIDLItem, protected IPMPItem).
AbstractDIElementFactory is the interface that could be implemented by any hierarchy (DIDL, IPMP) to
allow automatic creation of elements.
Document interface should be implemented by those classes which want to register itself as the owner
document of a hierarchy of elements (hierarchy manager).

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

128

+getNamespace() : char*
+visit(in visitor : DIDLElementVisitor) : void

-namespace : const char* = "urn:mpeg:mpeg21:2002:02-DIDL-NS"
DIDLElement

+getAllowedChildren() : AbstractType*
+getItems() : AbstractItem*
+getComponents() : AbstractComponent*
+getAnnotations() : AbstractAnnotation*
+getConditions() : AbstractCondition*
+getDescriptors() : AbstractDescriptor*
+getChildren() : AbstractDIElement*
+getTag() : char*
+getTextDescription() : char*

DIDLItem

DIDLResource

DIDLAssertion DIDLCondition

DIDLContainer

DIDLAnnotation

DIDLDescriptor DIDLStatement

DIDLComponent

DIDLAnchor

DIDLChoice DIDLSelection

didmodel::AbstractDIElement

didmodel::AbstractContainer

didmodel::AbstractItem

didmodel::AbstractDescriptor didmodel::AbstractStatement

didmodel::AbstractComponent

didmodel::AbstractAnnotation

didmodel::AbstractCondition

DIDLFragment

getAllowedChildren redefined by DIDLItem
returns the following AbstractType list:
Type<AbstractItem>,
Type<AbstractComponent>,
Type<AbstractDescriptor>,
Type<AbstractAnnotation>
Type<AbstractCondition>

getTag redefined by DIDLItem returns:
"didl:Item"

didmodel::AbstractFragment

didmodel::AbstractChoice didmodel::AbstractSelection

didmodel::AbstractResource

didmodel::AbstractAnchor

didmodel::AbstractAssertion

Referable

+createAXElement(in XmlElement) : AXElement
+createAbstractDIElement(in XmlElement) : AbstractDIElement
+importElement(in element : AbstractDIElement) : AbstractDIElement
+addDIElementFactory(in namespace, in factory : AbstractDIElementFactory) : void

DIDLDocument

Document

«interface»
didmodel::AbstractDIElementFactory

1*

The above diagram maps all the elements which are treated as clear-text. It should be noted that each class
representing such elements are inherited from the correspondent abstract. The DIDLElement class is another
generalization of the whole set of elements since it overrides the method introduced from the
AbstractDIElement that are in common among all the DIDL elements.
The note describe and example of how any of these element can override the remaining virtual methods like
getAllowedChildren: this override will return a list of AbstractType instances.
Please note that Referable class is the generalization about elements that can be obtained with a reference,
this class include the mechanisms to get the reference from the schema and to resolve that reference filling
the element attributes.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

129

+getNamespace() : char*
+visit(in visitor : DIDLElementVisitor) : void
+getIdentifier() : IPMPIdentifier
+getInfo() : IPMPInfo
+getContent() : IPMPContent

-namespace : const char* = "urn:mpeg:mpeg21:2004:01-IPMPDIDL-NS"
IPMPElement

+getAllowedChildren() : AbstractType*
+getTag() : char*
+getTextDescription() : char*

IPMPItem

IPMPResource

IPMPAssertion IPMPCondition

IPMPContainer

IPMPAnnotation

IPMPDescriptor IPMPStatement

IPMPComponent

IPMPAnchor

IPMPChoice IPMPSelection

IPMPFragment

getAllowedChildren returns NULL
since the IPMPItem has no children,
but only IPMPInfo and IPMPcontent

getTag returns "ipmp:Item"

didmodel::AbstractAssertion didmodel::AbstractCondition didmodel::AbstractChoice didmodel::AbstractSelection

didmodel::AbstractResource

didmodel::AbstractAnchor

didmodel::AbstractComponentdidmodel::AbstractContainer

didmodel::AbstractAnnotation

didmodel::AbstractFragment

didmodel::AbstractDescriptor didmodel::AbstractStatement

didmodel::AbstractItem

didmodel::AbstractDIElement

IPMPInfo

IPMPContent

IPMPIdentifier

+unprotectElement(in protectedElement : AbstractDIElement) : AbstractDIElement
+protectElement(in unprotectedElement : AbstractDIElement) : AbstractDIElement

«interface»
IPMPTool

The above diagram describes the protected element hierarchy. The base class IPMPElement redefines the
virtual methods differently from DIDLElement. It introduces the common methods to retrieve identifier,
protection info, and protected content from all the IPMP elements (since they maintain the same structure).

8.2.2 AXMEDIS Object Model
In this section the classes modelling AXMEDIS objects are reported.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

130

AxObject

AxObjectElement

-mPublic : bool = true
AxMetadata

AxContent

AxInfo AxDublinCore

1

*

1

*

AxOID

11

AxResource

AbstractDIElement

1 0..1

ProtectionInfo

1
0..1

DOMNode

1

1

Abstract class AxObjectElement represents any element that can be stored in a AXMEDIS Object. It refers to
an AbstractDIElement that represent it in a MPEG21 Digital Item and it may also refer to ProtectionInfo
used to protect it.
Class AxMetadata represents any XML metadata associated with a content, it is further specialised in AxInfo,
AxDublinCore and AxOID. The mPublic attribute indicates if the metadata has to visible even if the object is
protected.
Abstract class AxContent represents content to be stored in AXMEDIS objects, it can be AxObject or
AxResource. An AxResource represents any digital resource identified with a mime type, it can be an image,
a document, an audio. An AxObject can contain any number of metadata and any number of content.

The following is the object diagram of a basic object:

While the following is the object diagram of a composite AXMEDIS object:

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

131

compositeObj : AxObject

mPublic = true
axinfo : AxInfo

mPublic = true
dc : AxDublinCore

mPublic = true
id : AxOID

basicObj : AxObject

mPublic = true
axinfo : AxInfo

mPublic = true
dc : AxDublinCore

mPublic = true
id : AxOID

 : AxResource

basicObj : AxObject

mPublic = true
axinfo : AxInfo

mPublic = true
dc : AxDublinCore

mPublic = true
id : AxOID

 : AxResource

8.2.2.1 AxMetadata
Class AxMetadata is a class to store any XML metadata.
The AbstractDIElement it refers to should be a DIDLDescriptor, containing a DIDLStatement with the XML
content. XML content can be accessed trought a DOMNode object.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

132

8.2.2.2 AxInfo
Class AxInfo, derived from AxMetadata, provides access to the information related to the AXMEDIS object.
Methods available for this class are:

ObjectCreator Management

+addObjectCreator(in position : int = -1) : int
adds a new ObjectCreator in the position given (starting from 0), position -1 means to add at the end.
the return value indicates the position in which it is added.
+removeObjectCreator(in position : int)
removes an ObjectCreator from the position specified
+getObjectCreatorCount() : int
returns the number of ObjectCreator present
+findObjectCreatorByAXCID(in axcid : string) : int
returns the position of an ObjectCreator with a specific AXCID. It returns -1 if not found.
+findObjectCreatorByName(in name : string) : int
returns the position of an ObjectCreator with a specific Name. It returns -1 if not found.
+getObjectCreatorAXCID(in refNum : int = 0) : string
+setObjectCreatorAXCID(in refNum : int, in value : string)
allow to get and set the AXCID value for an ObjectCreator identified by position
+getObjectCreatorName(in refNum : int = 0) : string
+setObjectCreatorName(in refNum : int, in value : string)
allow to get and set the Name value for an ObjectCreator identified by position
+getObjectCreatorURL(in refNum : int = 0) : string
+setObjectCreatorURL(in refNum : int, in value : string)
allow to get and set the URL value for an ObjectCreator identified by position
+getObjectCreatorCompany(in refNum : int = 0) : string
+setObjectCreatorCompany(in refNum : int, in value : string)
allow to get and set the Company value for an ObjectCreator identified by position
+getObjectCreatorCompanyURL(in refNum : int = 0) : string
+setObjectCreatorCompanyURL(in refNum : int, in value : string)
allow to get and set the CompanyURL value for an ObjectCreator identified by position
+getObjectCreatorNationality(in refNum : int = 0) : string
+setObjectCreatorNationality(in refNum : int, in value : string)
allow to get and set the Nationality value for an ObjectCreator identified by position

Owner Management
+getOwnerID() : string
+setOwnerID(in value: string)
allow to get and set the code identifying the owner
+getOwnerIDCoding() : string

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

133

+setOwnerIDCoding(in value: string)
allow to get and set the coding used to identify the owner
+getOwnerName() : string
+setOwnerName(in value: string)
allow to get and set the name of the owner
+getOwnerURL() : string
+setOwnerURL(in value: string)
allow to get and set the URL of the owner
+getOwnerCompany() : string
+setOwnerCompany(in value: string)
allow to get and set the company of the owner
+getOwnerCompanyURL() : string
+setOwnerCompanyURL(in value: string)
allow to get and set the company URL of the owner
+getOwnerNationality() : string
+setOwnerNationality(in value: string)
allow to get and set the nationality of the owner
+addOwnerDescription(in position:int = -1) : int
adds a new description of the owner at the position specified or at the end if position is -1. The
return value indicates the position where it is added.
+removeOwnerDescription(in position:int)
removes the description specified
+getOwnerDescription(in position:int = 0) : string
+setOwnerDescription(in position:int, in value:string)
allow to get and set the value of the description
+getOwnerDescriptionLanguage(in position:int = 0) : string
+setOwnerDescriptionLanguage(in position:int, in value:string)
allow to get and set the value of the description language

Distributor Management
+addDistributor()
adds a Distributor if not present.
+removeDistributor()
removes the Distributor
+getDistributorCount() : int
returns the number of Distributors present
+getDistributorAXDID() : string
+setDistributorAXDID(in value : string)
allow to get and set the AXDID value for the Distributor
+getDistributorName() : string
+setDistributorName(in value : string)
allow to get and set the Name value for the Distributor
+getDistributorURL() : string
+setDistributorURL(in value : string)
allow to get and set the URL value for the Distributor
+getDistributorNationality() : string
+setDistributorNationality(in value : string)
allow to get and set the Nationality value for the Distributor

Object Status
+getAccessMode() : string
+setAccessMode(in value : string)
allow to get and set the Access the the object “READ_ONLY” or “READ_WRITE”
+getCreationDate() : DateTime
get the date and time of object creation

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

134

+getLastModificationDate() : DateTime
get the date and time of object modification
+getVersion() : int
get the version of the object
+getRevision() : int
get the revision of the object
+getObjectStatus() : string
+setObjectStatus(in value : string)
allow to get and set the current status of the object
+getObjectType() : string
allow to get object type (“BASIC” or “COMPOSITE”)
+getObjectIsProtected() : bool
+setObjectIsProtected(in value:bool)
allows to get and set if the object is protected or not
+getProtectionStamp() : string
+setProtectionStamp(in value:string)
allows to get and set the protection stamp
+getObjectIsGoverned() : bool
+setObjectIsGoverned(in value:bool)
allow to get and set if the object contains a licence or not

PromoOf Management
+addPromoOfAXOID(in axoid:string, in position:int=-1)
adds a new AXOID in the PromoOf section, the position indicates where to put the AXOID, -1
means at the end
+removePromoOfAXOID(in position:int)
removes the AXOID in the position specified
+getPromoOfAXOIDCount() : int
get the count of AXOID in the PromoOf section
+getPromoOfAXOID(in position:int) : string
+setPromoOfAXOID(in position:int, in value:string)
allow to get and set the AXOID in a specified position

Workflow Status
+getWorkflowWorkItemID() : string
+setWorkflowWorkItemID (in value : string)
allow to get and set the WorkflowWorkItemID
+getWorkflowWorkspaceInstanceID() : string
+setWorkflowWorkspaceInstanceID (in value : string)
allow to get and set the WorkflowWorkspaceInstanceID

Fingerprints Management
+addFingerprints(in for:string, in position:int=-1) : int
adds a new Fingerprints section for a specified resource
+removeFingerprints(in position:int)
removes the Fingerprints section specified
+getFingerprintsCount() : int
gets the number of Fingerprints sections
+getFingerprintsFor(in position:int) : string
+setFingerprintsFor(in position:int, in value:string)
get and set the “for” attribute in the Fingerprints sections
+findFingerprintsFor(in for:string) : int
finds the fingerprint section for the specified resource, returns -1 if not found
+addFingerprintID(in fingerptints:int, in fingerprintId:string, in position:int=-1) : int
adds a new fingerprint ID in the Fingerprints section specified, the postion argument indicates where
to put the value (-1 is at the end)

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

135

+removeFingerprintID(in fingerptints:int, in position:int)
removes the fingerprinted in the Fingerprints section specified
+getFingerprintIDCount(in fingerptints:int)
gets the count of FingerprintID in the Fingerprints section specified
+getFingerprintID(in fingerprints:int, in position:int) : string
+setFingetprintID(in fingerprints:int, in position:int, in fingerprintid:string)
allow to get and set the fingerprintid

Internal Potential Available Rights Management
+addInternalPotentialAvailableRights()
adds a new Internal PAR section
+removeInternalPotentialAvailableRights()
removes the Internal PAR section
+getInternalPotentialAvailableRightsCount()
gets how many Internal PAR sections are present (0 or 1)
+getInternalPotentialAvailableRightsStatus() : string
+setInternalPotentialAvailableRightsStatus(in value:string)
allow to get and set the internal PAR status
+getInternalPotentialAvailableRightsLicense() : DOMNode
gets the DOM node of the license

Potential Available Rights Management
+addPotentialAvailableRights()
adds a new PAR section if not present
+removePotentialAvailableRights()
removes the PAR section
+getPotentialAvailableRightsCount()
gets how many PAR sections are present (0 or 1)
+getPotentialAvailableRightsLicensingURL() : string
+setPotentialAvailableRightsLicensingURL (in value:string)
allow to get and set the licensing URL
+getPotentialAvailableRightsStatus() : string
+setPotentialAvailableRightsStatus(in value:string)
allow to get and set the PAR status
+getPotentialAvailableRightsLicense() : DOMNode
gets the DOM node of the license

Additional Metadata Management
+getMetadataCertification(in for:string) : string
+setMetadataCertification(in for:string, in value:string)
allow to get and set the metadata certification for a specific descriptor
+getMetadataStatus(in for:string) : string
+setMetadataStatus(in for:string, in value:string)
allow to get and set the metadata status for a specific descriptor
+removeMetadataInfo(in for:string)
removes all the metadata info for a specific descriptor

Object History Management
+getHistoryOfVersion(in version:int) : DOMNode
gets the history of a version as a DOM Node

8.2.2.3 AxDublinCore
Class AxDublinCore allows to manage a Dublin Core descriptor:

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

136

Example of use:
 AxDublinCore aDC;

 if(aDC.getDCElementCount(“creator”)==0)
 aDC.addDCElement(“creator”, “Mozart”);
 else
 aDC.setDCElement(“creator”, 0, “Mozart”);

 string creator=aDC.getDCElementValue(“creator”);

8.2.2.4 AxOID
Class AxOID embeds the AXOID identifier.

+isPublic() : bool
+setIsPublic(in public : bool = true)
+getMetadataID() : string
+setMetadataID(in value : string)
+getDOMNode() : DOMNode

-mPublic : bool = true
-mMetadataID : string

AxMetadata

+getDIElement() : AbstractDIElement
+setDIElelemt(in diElement : AbstractDIElement)
+isProtected() : bool
+getProtectionInfo() : ProtectionInfo
+setProtectionInfo(in protectionInfo : ProtectionInfo)

AxObjectElement

+getID() : string
+setID(in value : string)

AxOID

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

137

8.2.2.5 AxContent
Abstract class AxContent represents content to be stored in AXMEDIS objects, it is specialized in AxObject
or AxResource.

8.2.2.6 AxObject
Class AxObject represents an AXMEDIS Object, it can contain any number of metadata and any number of
content and it is identified by an AxOID.

8.2.2.7 AxResource
ClassAxResource represents any digital resource identified with a mime type, it can be an image, a
document, an audio etc.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

138

+getContentID() : string
+setContentID(in value : string)

AxContent

+getDIElement() : AbstractDIElement
+setDIElelemt(in diElement : AbstractDIElement)
+isProtected() : bool
+getProtectionInfo() : ProtectionInfo
+setProtectionInfo(in protectionInfo : ProtectionInfo)

AxObjectElement

+getMimeType() : string
+setMimeType(in value : string)
+getRef() : string
+setRef(in ref : string)
+embedFile(in fileName : string)
+removeEmbeddedResource()
+getInputStream()

AxResource

8.3 XML Loader and Saver (DSI)

Module Profile
XML Loader and Saver

Executable or Library(Support) Support Library
Single Thread or Multithread Single Thread
Language of Development C++
Responsible Name Davide Rogai, Andrea Vallotti
Responsible Partner DSI
Status (proposed/approved) proposed
Platforms supported All…

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
Xerces-C++ v. 2.6.0 Apache Licence 2.0

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

139

XML Loader is the tool by which a client (Player, Authoring tool, Formatting/Compositional process engine,
etc…) can obtain a software representation of an AXMEDIS object from an XML (text or binary) file which
represents such object.

The XML loader is structured as the concatenation of different transformations:

1. from XML file to filtered DOM
2. from filtered DOM to MPEG21 DIDL memory object tree
3. from MPEG21 DIDL to AXMEDIS object tree

It is natural to think the XML Saver performs the reversed transformations.

Loading steps

The first step is processing the XML or BIN format of an AXMEDIS object. The resources of the object
could be too big to allocated as a whole in memory; filtering is the only possibility in order to get the benefits
of a DOM in memory of the AXMEDIS XML format, without the occupation of (potentially) GBytes of data
(e.g. a MPEG2 video resource of a movie). The DOM implementation expose a node filtering feature that
can reject a node after the DOM builder has loaded it; this is unacceptable for the loader purpose, because
the resource could be only removed after it has occupied the whole memory and the loader has caused a fatal
error on the system.
The solution is to intercept the “resource” tag occurrence before it is loaded in memory; something that the
SAX interface can manage.
It is important to understand that a reference must not be loaded as a whole, but it must be inserted in the
DOM structure as an equivalent entity.
In the DOM the resource includes a way to retrieve the content stream still located on the file system.

XML/BIN file format

lo
ad

in
g saving

filtered DOM document

DIDLDocument object

AXObject root

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

140

The new resource element must redirect access to the effective content location (stream to the file/storage
position) during access functions (play, adapting, copying…).
The IPMP Content of an IPMPItem (it is used to protect content inside AXMEDIS objects) is treated in the
same way; it could be a big amount of data and it will be not loaded in the DOM. The part in the DOM that
refer to a stream on the file will be integrated if requested by the user actions.

The hierarchy of DIDLElement objects is built on the basis of the DOM created from the XML file.
The class responsible for loading an object from XML file is XMLDILoader. The class provide only one
method that is loadFromXML(string path) that returns a DIDLDocument.
In the following a sequence diagram of the loading interactions among different parts of the action is
depicted. The loading is invoked on the DIXMLLoader passing to it the path of the XML file that has to be
loaded. Then a DOMDocument is created processing the file and browsed by the loader: inside the loader
class there is the logic to fetch elements in the DOMDocument and to append in the proper position to the
DIDLDocument hierarcy of AbstractDIElement objects. The DIDLDocument act also as the factory of
AbstractDIElement objects; it is able to process a DOMElement node of the DOMDocument in order to
create a new AbstractDIElement. The loader uses this features and it is responsible to fill pointers to related
elements in the hierarchy.

location

On the disk (XML/BIN) In memory (DOM)

Resource

Resource

Other tags

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

141

The second phase of loading AXMEDIS objects concerns the construction of AXMEDIS hierarchy based on
the MPEG21 DIDL one.
Another class plays the role of object loader (entity by entity), but is related to the MPEG21 document root
(a DIDLDocument object).
Since the information complexity is already modelled by MPEG21 data model, the AXLoader behaviour
appears much simpler that the DIXMLLoader.

Saving steps

Since the AXMEDIS hierarchy, which origins in a AXObject reference, is strictly dependent from the
AbstractDIElement object referred from its children. This two hierarchies of object are forced to be
consistent with each other, so the save process at AXMEDIS level consists in save the DIDLDocument
connected to the AXMEDIS Object. The real information regarding the AXMEDIS Object are stored at
MPEG21 DIDL level and only rendered at AXMEDIS level by group classes.

The DIDLDocument save process is based on the visitor pattern: in fact the DIXMLSaver realizes the
AbstractDIElementVisitor, because it has to navigate over all the elements referenced in the hierarchy.
The DIXMLSaver has to implements all the visitor interfaces since it is responsible to visit any element of
the hybrid (DIDL/IPMP) hierarchy. The DIXMLSaver uses a DOMDocument to write data gathered during
the visitation of the AbstractDIElement objects.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

142

In the following a sequence diagram highlights delegation between objects and visitor interfaces.

It follows the static diagram that shows relationships among classes at Digital Item level.
The Saver is a visitor for all the hierarchies provided by the MPEG21 Data model.
The Loader uses the DIDLDocument as a factory to creates AbstracDIElement objects.
Both classes are related to a DOM in order to perform read/write operations on an XML file.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

143

+visitIPMPItem(in el : IPMPItem)
+visitIPMPResource(in el : IPMPResource)
+visitDIDLItem(in el : DIDLItem)
+visitDIDLResource(in el : DIDLResource)
+visitAbstracItem(in el : AbstractItem)
+visitAbstractResource(in el : AbstractResource)
+initializeDOM()
+setFilePath(in path)

DIXMLSaver
+visitAbstracItem(in el : AbstractItem)
+visitAbstractResource(in el : AbstractResource)

«interface»
AbstractDIElementVisitor

+getElement()
+getElementByTagName()
+getFirstChild() : DOMElement

XERCES::DOMDocument

1

1

XERCES::DOMElement +importElement(in element : AbstractDIElement) : AbstractDIElement
+createAbstractDIElement(in element : DOMElement) : AbstractDIElement
+saveToXML(in path : char)
+getRootElement()

DIDLDocument

Document

«uses»

1

*

+loadFromXML(in theDOM : DOMDocument) : DIDLDocument
+getRootDIElement() : AbstractDIElement
+setFilePath(in path)

DIXMLLoader

«uses»

+visitDIDLItem(in el : DIDLItem)
+visitDIDLResource(in el : DIDLResource)

«interface»
DIDLElementVisitor

+visitIPMPItem(in el : IPMPItem)
+visitIPMPResource(in el : IPMPResource)

«interface»
IPMPElementVisitor

1*

Also in the static diagram the complexity is reduced for the AXLoader class, as depicted below.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

144

8.3.1.1 Xerces-C++
Xerces-C++ is a validating XML parser written in C++. Xerces-C++ makes it easy to give your application
the ability to read and write XML data. A shared library is provided for parsing, generating, manipulating,
and validating XML documents, including reference solver/integrator for e.g. combining multiple files.

Source code, samples and API documentation are provided with the parser. Xerces is available for several
platforms among them Windows OS, and Red Hat Linux.
Xerces implements two different APIs for XML parsing: SAX and DOM. Both of them define the logical
structure of documents and the way a document is accessed and manipulated. SAX was first adopted by Java
programmers while DOM is a W3C specification.

License
Xerces can be used with no charge, and in a royalty-free way. No obligation to redistribute the source code.
The only obligation is to redistribute a copy of the license notice.

Installation
The compiled libraries -.lib .dll- and the source files -.c .hpp- are available for download from
http://xml.apache.org/xerces-c/download.cgi. No installation is needed though they insist on verifying the
integrity of the downloaded files by using digital signatures.

Example of use in C++: DOM example
#include <xercesc/dom/DOM.hpp>
The header file <dom/DOM.hpp> includes all the individual headers for the DOM API classes.
The DOM class names are prefixed with "DOM" (if not already), e.g. "DOMNode". The intent is to prevent
conflicts between DOM class names and other names that may already be in use by an application or other
libraries that a DOM based application must link with.
DOMDocument* myDocument;
DOMNode* aNode;
DOMText* someText;
Applications would use normal C++ pointers to directly access the implementation objects for Nodes in C++
DOM.
DOMNode* aNode;
DOMNode* docRootNode;

aNode = someDocument->createElement(anElementName);
docRootNode = someDocument->getDocumentElement();
docRootNode->appendChild(aNode);

8.4 AXMEDIS Object Preprocessor and Postprocessor (EPFL)

Module Profile
AXMEDIS Object Preprocessor and Postprocessor

Executable or Library(Support)
Single Thread or Multithread
Language of Development
Responsible Name
Responsible Partner
Status (proposed/approved)
Platforms supported

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

145

Interfaces with other tools: Name of the communicating tools Communication model and format
(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

Tools for transforming XML into binary and viceversa, for transforming external references in internal and
viceversa, etc.

8.4.1 XML to/from BIN (EPFL)
Using user-defined tags in text format make XML files oversized; this is known as XML verbosity. It is a
characteristic of mark-up languages like HTML or text languages in general. There is redundant information
in XML files like blank spaces or attribute names. The overhead of textual XML can be overcome by
compressing and converting the text file into a binary file. Storage of big files is not a concern nowadays
because high capacity hard disks are not expensive. Nevertheless, the reduction of the file size is especially
important when the file is transmitted through channels where the bandwidth is a constraint e.g. wireless or
Internet. The smaller is the file the less bandwidth is consumed.

8.4.1.1 BIM
The use of BiM is proposed. Other compressors like Xmill, XMLZip, or WBXML achieve the same
compression ratios than BiM does but neither of them fulfils all the BiM requirements: flexible updating,
random access, high compression, light decoding, and parsing at binary level.

Module Profile
XML to/from BIN

Executable or Library(Support) Support Library
Single Thread or Multithread Single Thread
Language of Development C/C++
Responsible Name
Responsible Partner
Status (proposed/approved) Proposed
Platforms supported Windows / Linux

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

146

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
MPEG-7 Experimentation
Model may be used

XM (version 5.5 ?) Free, but patent pool for BiM still
to be investigated

Overall Module Description
BiM (Binary Format for MPEG-7) is the MPEG-7 XML compression standard. BiM encoder and decoder
can be used with any XML language and they have been already tested on XHTML and SVG. BiM is a
schema-based compression technique. It exploits the knowledge of the XML schema to compress the file. In
BiM, the XML schema has to be known by the encoder and the decoder. The elements inside the XML file
are compressed with other encoders based on redundancy elimination techniques. The standard specifies a
way to plug-in other dedicated encoders that can be better to compress certain elements of the XML file.
BiM does a partial validation of the file while encoding so that the decoder has to do less processing to
validate the file. Type information is associated to the XML components during the encoding process to
achieve a bigger compression. At the decoder side, XML values are received in type format so that they are
quicker to process than text XML values. As XML, BiM can be robust against versioning and evolution of
the XML language. An old decoder might be able to partially decode a new version of binary XML file. Yet
if no compatibility is needed, higher compression ratios can be achieved. BiM is able to decompose a big
XML file in smaller parts and then encode each part independently. The BiM decoder is able to extract
information from the binary XML parts without having them all available. This feature is useful when
updating only the part that has changed instead of reloading the entire file. It is also a big advantage over
only-redundancy encoders because in streaming applications it allows the decoder to start decoding before it
has received the complete file. It is possible to navigate through the XML tree architecture in binary format
without the necessity of decoding the whole XML binary file. By navigating through the binary format of the
file, the encoder does not have to decode the entire file but only the sub-tree or element in which the user is
interested. This turns into a save of memory, of processing, and time because not all the file has to be
decoded to access a part of it.

8.4.1.2 Xmill
XMill is a special-purpose compressor for XML data that typically achieves twice the compression rate over
existing compressors, such as gzip.
XMILL is an open source program delivered under a BSD License, it is written in C++, and it is available for
all 32-bit MS Windows (95/98/NT/2000/XP), and all POSIX (Linux/BSD/UNIX-like OSes)

Similar to gzip, XMill is a command-line tool that works on a file-by-file basis. A given file with extension
'.xml' is compressed into a file with extension '.xmi'. Any other file without extension '.xml' is compressed
into a file by appending extension '.xm'. Reversely, the original file is obtained by replacing extension '.xmi'
with extension '.xml' or by removing extension '.xm'. Alternatively, the user write the output to the standard
output and optionally read from the standard input.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

147

Underlying Technique

XMill is based on a grouping strategy that groups and compresses text items together based on their
semantics. For example, a sequence of <Person> elements (with <Name>, <Age>, <Shoesize>, ... elememts)
in an XML document could be rearranged by grouping all names, all ages, and all shoe sizes together. This
will typically lead to higher compression ratio, since each group will contain text items with high
similarities.

The default grouping strategy is by considering the parent label of the text item. Even though this works
well, there are cases when a label has different meanings in different parts of the document (e.g. <Title> in
<Person> has a different meaning from the <Title> in <Book>) or when different labels have the same
meaning (e.g. a <ChildName> in <Person> contains person name like <Name>).

Therefore, XMill provides a powerful regular path expression language for grouping text items with respect
to their meaning. Each text item is reachable over a 'path' of labels from the root of the XML document. For
example, the social security of an employee of a company might be stored in the 'ssno' attribute of element
'<Employee>' in element '<Company>' in the root element '<Root>'. Hence, the path to the text item is
/Root/Company/Employee/@ssno. After the grouping in containers, conventional compressors, such as gzip
are applied to the containers and will exploit those similarities. Since the number and size of containers
grows with the size of the XML file, a memory window mechanism is implemented: After the overall size of
the containers reaches a certain user-specified memory window, the containers a compressed and stored in
the output file. The compressed content of the memory window is called a 'run'. After the 'run' is stored in the
output file, the containers are filled with data again.

In addition to path expression, the user can also specify how to "pre-compress" the specific text item. For
example, the user might want to replace the 'Age' string by its binary integer representation. Or more
complex, an IP number might be replaced by four bytes.

XMill allows the user to specify additional "user compressors" to pre-compress the text items before it is
stored in the containers. Note that the gzip compression is still applied to the containersafterwards.

XMill provides an interface for writing own user compressors in C++. This is particularly useful for domain-
specific data, such as DNA sequences, 3D coordinates, etc.

8.4.1.3 BinXML

BinXML is the Binary XML transport and processing format adopted by MPEG-7, TV-Anytime
and ARIB consortia. BinXML provides a high XML data compression rate, which helps saving
memory, storage space, or bandwidth in an XML architecture. BinXML provides high processing
speed of the encoded XML, with very low hardware requirements in memory and CPU power,
contrarily to textual XML data.

BinXML is an open framework which accepts authentication, signature or error correctness tools
(third party softwares). These tools can be currently applied, to whole BinXML documents after the
encoding, and in the future, to XML fragments when the streaming functionality will be released.

BinXML Software Development Kit is currently available for Microsoft Windows and Linux based
systems. The BinXML starter kit tryout is fully functional production software. It is restricted by a
30-days key and contains the minimal set of tools to allow encoding and decoding XML files.

BimXML is a proprietary implementation of MPEG-7 BiM (supposed to become soon MPEG-B)
and so it implements all the BiM capabilities: pre-parsed format, typed format, schema-oriented,
etc.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

148

Using BinXML to encode an XML file
The following C++ example will encode “input_file.xml” to “output_file.out” if we would execute
it. The file “license.dat” allows using the BinXML library for 30 days. The file
“ExManagerConfig.xml” contains the encoder configuration. Since BinXML is schema-oriented it
needs to know the schema we are using. The schema information is passed to the library through the
“ExManagerConfig.xml” file. The SDK provides a utility program that changes the format of our
XML schema to a format that the library understands. Once the schema has been converted, by
using the utility program, it is referenced in the “ExManagerConfig.xml” configuration file.

char* szSource = "input_file.xml";
char* szDestination = "output_file.out";

int iRet = 0;
ExampleErrorHandler* pErrorHandler = new ExampleErrorHandler();
IEwManager* pManager;

EwManagerFactory::registerLicenseFile("license.dat");

// Create and setup the manager
pManager = EwManagerFactory::createManager("EwManagerConfig.xml",
pErrorHandler);

EwFileAUHandler* pAUHandler = new EwFileAUHandler(szDestination);
pManager->setAUHandler(pAUHandler);

xercesc::ContentHandler* ch = pManager->getContentHandler();
EwXMLInput* pInput = new EwXMLInput(pErrorHandler);
pInput->setContentHandler(ch);

// encode the file !
pInput->parse(szSource);

// Cleanup
delete pAUHandler;
delete pInput;
EwManagerFactory::destroyManager(pManager);

8.4.2 References In/Out Resolver/Integrator (EPFL)

Module Profile
References in/OUT Resolver/Integrator

Executable or Library(Support)
Single Thread or Multithread
Language of Development C++
Responsible Name
Responsible Partner
Status (proposed/approved) proposed
Platforms supported Windows, Linux

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

149

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
Xerces-C++ Freedom to use and to distribute

without paying royalities nor
distributing source code

In this flow diagram an instance, a player for example, asks to resolve a reference. We assume that the object
referenced is a resource contained inside an AXMEDIS object located in the AXMEDIS database. The caller
instance uses the function ResolveReference(reference) on the ReferenceResolver. The ReferenceResolver
uses the Database Web Service to find and download the AXMEDIS object inside of which there is the
target resource. Once the AXMEDIS object is downloaded, the ReferenceResolver uses the ObjectManager
to extract the resource from the AXMEDIS Object. Finally, the resource is returned to the calling instance by
means of a pointer or reference to an outputStream interface.
If the referenced object is not in the local file system, the Reference Resolver uses the Axmedis Database
Web Service to localize and download the object.

DE3.1.2A – Framework and Tools Specification (General and Model)

AXMEDIS Project
CONFIDENTIAL

150

The following flow diagram shows how a reference integration could take place. In this case we assume that
some instance wants to instert in the AX Object2 a resource that is located inside of the AX Object1. The
ReferenceIntegrator locates first the AX Object1 by using the Database Web Service. Then it extracts the
target resource from the AX Object1 by using the Object Manager1. Finally it uses the Object Manager2 to
add the resource into the AX Object2.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

