
DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

1

AXMEDIS
Automating Production of Cross Media Content

for Multi-channel Distribution
www.AXMEDIS.org

DE3.1.2B
Framework and Tools Specifications

(Viewers and Players)
Version: 3.2
Date: 16/03/2005
Responsible: DSI
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: Private
Visible to User Groups: No
Visible to Affiliated: No
Visible to the Public: No.

Deliverable Number: DE3.1.2 part B
Contractual Date of Delivery: January 2005
Actual Date of Delivery: 17 March 2005
Title of Deliverable: Framework and Tools Specifications (Viewers and Players)
Work-Package contributing to the Deliverable: WP3.1
Task contributing to the Deliverable: WP3, WP2
Nature of the Deliverable: report
Author(s): DSI, EPFL, UNIVLEEDS, IRC< XIM, HP, FUPF, SEJER

Abstract: In this document everything concerning how to handle (play/edit) AXMEDIS content is detailed.
Different scenarios of utilization are considered in the following sections. The beginning part put the basis to
the construction of the AXMEDIS editor: all the editor/viewers that show different features of the structured
content inside an AXMEDIS object are specified.
Keyword List: AXMEDIS tools and players, integration, viewers, user interface..

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

2

AXMEDIS Copyright Notice
The following terms (including future possible amendments) set out the rights and obligations licensee will be requested
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by
any other means.

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT.

1. DEFINITIONS

i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the
document have been accepted.

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a
Document.

iii. "Licensor" is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in
terms of companies and/or associations, see www.axmedis.org

iv. "Document" means the information contained in any electronic file, which has been published by the
Licensor’s as AXMEDIS official document and listed in the web site mentioned above or available by any
other means.

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.

2. LICENCE

1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to
present terms and conditions (the Licence) for the parts that are own and proprietary property the of
AXMEDIS consortium or its members.

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and
conditions.

3. TERM AND TERMINATION

1. Granted Licence shall commence on Acceptance Date.

2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions
of this Licence.

3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of
termination.

4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the
accessed Copyright.

5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or
obligations, shall survive termination of this Licence and shall continue in full force and effect.

6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it
as stated in the document itself will remain in force for a period of 5 years after license issue date or the
period stated in the document whichever is the longer.

4. USE

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:

i. remove this Copyright Notice on a Document or any of its reproduction in any form in which those
may be achieved;

ii. change or remove the title of a Document;

iii. use all or any part of a Document as part of a specification or standard not emanating from the
Licensor without the prior written consent of the Licensor; or

iv. do or permit others to do any act or omission in relation to a Document which is contrary to the
rights and obligations as stated in the present license and agreed with the Licensor

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

3

5. COPYRIGHT NOTICES

1. All Works shall bear a clear notice asserting the Licensor’s Copyright. The notice shall use the wording
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.

6. WARRANTY

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.

2. For the avoidance of doubt the licensee should be aware that although the Copyright in the
documents is given under warranty this warranty does not extend to the content of any document
which may contain references or specifications or technologies that are covered by patents (also
of third parties) or that refer to other standards. AXMEDIS is not responsible and does not
guarantee that the information contained in the document is fully proprietary of AXMEDIS
consortium and/or partners.

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of
action which the Licensor may have, at all times keep the Licensor fully and effectively
indemnified against all and any liability (which liability shall include, without limitation, all
losses, costs, claims, expenses, demands, actions, damages, legal and other professional fees and
expenses on a full indemnity basis) which the Licensor may suffer or incur as a result of, or by
reason of, any breach or non-fulfilment of any of his obligations in respect of this Licence.

7. INFRINGEMENT

1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the
Copyright which comes to licensee notice and shall, at the Licensor’s request and expense, do all such
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.

8. GOVERNING LAW AND JURISDICTION

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.

2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.

Please note that:

• You can become affiliated with AXMEDIS. This will give you the access to a huge amount
of knowledge, information and source code related to the AXMEDIS Framework. If you are
interested please contact P. Nesi at nesi@dsi.unifi.it. Once affiliated with AXMEDIS you
will have the possibility of using the AXMEDIS specification and technology for your
business.

• You can contribute to the improvement of AXMEDIS documents and specification by
sending the contribution to P. Nesi at nesi@dsi.unifi.it

• You can attend AXMEDIS meetings that are open to public, for additional information see
WWW.axmedis.org or contact P. Nesi at nesi@dsi.unifi.it

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

4

Table of Content

1 EXECUTIVE SUMMARY AND REPORT SCOPE (DSI, ALL) ... 6

2 AXMEDIS OBJECT VIEWERS AND EDITORS (DSI, EPFL)... 7
2.1 VIEW *MODULES (DRM EDIT/VIEW, HIERARCHY EDIT/VIEW, METADATA EDIT/VIEW, ETC…) 7
2.2 HIERARCHY EDITOR AND VIEWER (DSI).. 10

2.2.1 Hierarchy Business Logic.. 14
2.2.2 Hierarchy Editor User Interface... 14
2.2.3 Hierarchy Viewer and Renderer .. 16

2.3 DRM EDITOR AND VIEWER (WP4.5.1: FUPF)... 17
2.3.1 DRM Editor Business Logic.. 17
2.3.2 DRM Editor User Interface.. 18
2.3.3 DRM Viewer and Renderer ... 20

2.4 VISUAL EDITOR AND VIEWER (EPFL) .. 22
2.4.1 Visual Editor User Interface .. 23

2.5 BEHAVIOUR AND FUNCTIONAL EDITOR AND VIEWER (EPFL)... 25
2.5.1 Behaviour Business Logic ... 28
2.5.2 Behaviour Editor User Interface.. 29

2.6 AXMEDIS OBJECT EDITOR AND VIEWER (DESCRIPTIONS AND COMMENTS) (EPFL, DSI).............................. 30
2.6.1 Business Logic ... 31
2.6.2 User Interface ... 32

2.6.2.1 Main GUI...32
2.6.2.2 Configuration GUI ..32
2.6.2.3 Renderer GUIs...33

2.7 METADATA EDITOR AND VIEWER (UNIVLEEDS) .. 33
2.7.1 General Metadata Business Logic ... 36
2.7.2 Metadata Editor User Interface.. 37
2.7.3 Metadata Manager.. 38
2.7.4 Metadata Schemas.. 38
2.7.5 Metadata Viewer and Renderer ... 38

2.8 WORKFLOW EDITOR AND VIEWER (IRC, XIM, HP) .. 39
2.8.1 Workflow Editor Business Logic .. 42
2.8.2 Workflow Editor User Interface (Openflow) .. 43

3 AXMEDIS CONTENT TOOL ERROR MANAGER (DSI).. 51
3.1 CLASS HIERARCHY.. 52
3.2 AXMEDIS ERROR CODING FORMAT ... 52
3.3 AXMEDIS ERROR MANAGER USER INTERFACE (DSI) ... 53
3.4 AXMEDIS ERROR MANAGER LOG FORMAT (DSI) ... 54

4 AXMEDIS EDITOR CONFIGURATION MANAGER (DSI, EPFL) ... 56
4.1 AXMEDIS EDITOR CONFIGURATION MANAGER CLASSES .. 57
4.2 AXMEDIS EDITOR CONFIGURATION MANAGER USER INTERFACE .. 58

4.2.1 User interface class hierarchy.. 59
4.3 AXMEDIS CONFIGURATION FORMAT (DSI) ... 59

5 AXMEDIS EDITOR PLUG-IN MANAGER (DSI, EPFL).. 61
5.1 PLUG-IN FUNCTION DESCRIPTION.. 64
5.2 PLUG-IN FUNCTION PARAMETERS CLASS HIERARCHY... 71
5.3 PLUG IN MANAGER (GENERAL TOOL) (DSI, EPFL).. 72
5.4 AXOM CONTENT PROCESSING (DSI, EPFL).. 74
5.5 AXOM COMMANDS AND REPORTING (DSI, EPFL)... 74

6 INTERNAL AXMEDIS RESOURCE EDITORS/VIEWERS (DSI) .. 75
6.1 INTERNAL AUDIO PLAYER (DSI, EPFL, …………)... 76
6.2 INTERNAL IMAGE VIEWER (DSI,…………)... 79

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

5

6.3 INTERNAL VIDEO PLAYER (DSI, ………)... 81
6.4 INTERNAL MPEG-4 PLAYER (EPFL).. 83
6.5 INTERNAL SMIL PLAYER (EPFL)... 85
6.6 DOCUMENT VIEWER (DSI) ... 87

6.6.1 HTML... 87
6.6.2 MSWord Documents ... 88
6.6.3 PDF... 88
6.6.4 Postscript .. 89

7 EXTERNAL EDITOR/VIEWER AXMEDIS PLUG-INS AND ACTIVEX EDITOR/VIEWER AXMEDIS
PLUG-INS (WP4.1.3: DSI, WP4.1.4: EPFL).. 90

7.1 EXTERNAL EDITOR/VIEWER ACTIVATION MANAGER, EXEVAM, (DSI).. 91
7.1.1 ActiveX Server... 93
7.1.2 AXMEDIS Object Handler on the AXMEDIS Editor.. 94
7.1.3 AXMEDIS Object Handler as Plug-in for external Editor XX .. 95
7.1.4 Communication and discovery of plug-in counter-parts... 96
7.1.5 Security level negotiation .. 97

8 PLUG INS IN OTHER PLAYERS (DSI, EPFL, UNIVLEEDS)... 99
8.1 GENERAL PLUG-IN AIM AND SUPPORT ... 99
8.2 AXMEDIS ACTIVEX CONTROL (DSI) .. 100
8.3 AXMEDIS PLUG-IN INTO MOZILLA (SEJER) .. 102

8.3.1 Introduction .. 102
8.3.2 The Mozilla Plug-in Technology... 103
8.3.3 Authentication.. 104
8.3.4 Architecture.. 105

8.4 AXMEDIS PLUG-IN INTO MULTIMEDIA PLAYERS (DSI) ... 106
8.4.1 Possible AXMEDIS plug-in into Multimedia Players .. 107
8.4.2 Analyzed plug-in technologies .. 108

9 AXMEDIS PLAYERS (EPFL, DSI) ... 111
9.1 AXMEDIS PC PLAYER (DSI, EPFL) ... 112

9.1.1 AXMEDIS Player GUI.. 113
9.1.2 AXMEDIS PDA Player (EPFL, DSI) ... 114

9.2 AXMEDIS MOBILE PLAYER (EPFL, COMVERSE, DSI)... 116
9.3 AXMEDIS TABLET PC PLAYER FOR SCHOOL BAG ON MOZILLA (SEJER) .. 117

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

6

1 Executive Summary and Report Scope (DSI, all)

The full AXMEDIS specification document has been decomposed in the following parts:
A. general aspects up to the description of the content model
B. Viewers and players, including plug ins, etc.
C. Content Production tools and algorithms
D. Fingerprint and descriptors algorithms and tools
E. Database area, query support and Content Crawling from CMS
F. AXEPTool area, for B2B distribution and Programme and Publication for B2C distribution
G. Workflow aspects and tools
H. Protection tools and support, Certification and Supervision and Accounting tools
I. Distribution tools and AXMEDIS Portal
J. Definitions, tables, terminology, acronyms, lists, references, links and Appendixes

This document contains Part B only.

In this document everything concerning how to handle (play/edit) AXMEDIS content is detailed. Different
scenarios of utilization are considered in the following sections. The beginning part put the basis to the
construction of the AXMEDIS editor: all the editor/viewers that show different features of the structured
content inside an AXMEDIS object are specified. These AXMEDIS Viewer can browse structure
(hierarchy), multimedia feature (metadata, behaviour, visual, object), protection and DRM. Even workflow
aspects are manageable in a suitable user interface integrated with the AXMEDIS Editor.
Errors and configuration of the AXMEDIS Editor are considered in the specification of the Content Tool
Error Manager and Configuration Manager. The AXMEDIS Editor has to be extendable in order to add new
content processing capabilities and to interoperate with different already established workflow management
services. The AXMEDIS Editor Plug-in Manager has been specified in this document, providing methods to
plug-in new functions (profile description and dynamic linking).
All the needed modules to render the multimedia resources included in the AXMEDIS objects (audio, video,
images, documents, mpeg4, smil) are specified
Other scenarios for the interoperability of the AXMEDIS Editor with other commonly used tools for content
production have been consider; in the External Editor/Viewer AXMEDIS plug-ins the capability of
activating other tools directly from the AXMEDIS Editor is specified. The specification details how the
AXMEDIS editor can master the communication with the external tool and how the DRM and the security
requirements are preserved in the data transfer.
The plug-in analysis is carried out also in other scenario about inserting AXMEDIS in the common tool for
the end-user: AXMEDIS ActiveX control is specified together with AXMEDIS Plug-in for Mozilla. Other
plug-in for the multimedia players (e.g. Windows Media Player) are specified considering general issues.
The AXMEDIS player provided by the AXMEDIS framework is specified in different versions: for PC, for
PDA and for mobile devices.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

7

2 AXMEDIS Object Viewers and Editors (DSI, EPFL)

2.1 View *Modules (DRM Edit/View, Hierarchy Edit/View, Metadata Edit/View, etc…)

View modules are those parts of AXMEDIS Editor GUI which show some aspects of the actual AXMEDIS
object and parts thereof. In the following subsections will be analyzed the most important aspects (and the
corresponding views) thought about till this moment, i.e.:
• Hierarchy;
• DRM;
• Spatial;
• Behavioural and Functional;
• Descriptions and comments;
• Metadata;
• Object editor
• Etc.

Common functionalities have been found in the group of AXMEDIS view:

• Management functionality: view activation
• Save/Load of view item position and state (collapsed/expanded) etc.
• Contextual Menu dynamic creation and processing
• Common relation with other classes (AXOM)

Actor

Editing via Editing via
internal internal

viewers/editorsviewers/editors

Editing via Editing via
external external

viewers/editorsviewers/editors

AXMEDIS AXMEDIS
Editor and its Editor and its

viewview

ActorActor

Editing via Editing via
internal internal

viewers/editorsviewers/editors

Editing via Editing via
external external

viewers/editorsviewers/editors

AXMEDIS AXMEDIS
Editor and its Editor and its

viewview

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

8

For that two basic classes are considered:

• AXView that generalize all the AXMEDIS views: this base class provides the reference to the
AXOM, the node registration and a not structured collection of ViewItems in order to allow
navigation of elements in a general manner; the save load function connected to a
ViewConfigManager; it provides also an important function that allow a view to process the
contextual actions invoked on the view items

• The view item generalize the features of every element present in any view. As first property, the
capability to build its own dynamic contextual menu.

Dynamic Context Menu

In any view if the event that shows contextual menu is fired (right click or double) the dynamic contextual
menu is composed as depicted in the following figure.

actions of the
specific view

actions on the
specific object

activations of
other views

on view item

actions from the
content processing

plug-ins

inherited from
AXViewItem

AXViewItem

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

9

Hierarchy
Editor and

Viewer

AXMEDIS Object Manager

Metadata
Editor and

Viewer

DRM Editor
and Viewer

Protection
Informaiton
Editor and

Viewer

Workflow
Editor and

Viewer

Behaviour
Editor and

Viewer

Visual
Editor and

Viewer

Metadata
Mapper Editor

and Viewer

Object
Editor and

Viewer

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

10

2.2 Hierarchy Editor and Viewer (DSI)

Module Profile
Hierarchy Editor and Viewer

Executable or Library(Support) Dynamic library
Single Thread or Multithread Single Thread
Language of Development C++
Responsible Name Davide Rogai, Andrea Vallotti
Responsible Partner DSI
Status (proposed/approved) proposed
Platforms supported Microsoft Windows, Linux, MACOS X

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

AXHierarchyView C++ wxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

11

Hierarchy Editor and Viewer

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

Top Package::Object Builder

Top Package::Final user

Hierarchy Editor User
Interface

Hierarchy Business
Logic

AXMEDIS
Editor::AXMEDIS Object

Manager

Behaviour Editor and
Viewer::WxWidget

Hierarchy Viewer and
Renderer

«uses»

«uses»

AXMEDIS
Editor::AXOM Content

Processing

AXMEDIS
Editor::AXOM

Commands and
Reporting

Hierarchy View should show hierarchical relationship among object subparts. Because of linearity of
MPEG-21/AXMEDIS relationship among components (i.e. each component has one, and only one, father
component), tree-like view (similar to the one of explorer) is the most suitable solution. Such view should
permit cut and paste operation and, moreover, it should permit specific operations (through contextual-menu
usage) on showed elements.
• Hierarchy View shall allow cut and paste actions. Both drag-and-drop and keyboard functionalities

should be developed to make the user interface more friendly;
• Hierarchy View shall allow use of mouse right-click on showed objects to permit contextual menu usage.

Such menus could be customized upon object types in order to permit implementation of specific
(object-type determined) actions, e.g. right-clicking on a document should permit to open (in a readable
format) it as long as the same action upon a mp3 should permit value extraction of IDv3 tags.

• Hierarchy View shall expose a functions which permits to add functionalities on the base selected
element type.

• Hierarchy View shall represent each object by a specific icon. Some of such icons should be obtained by
OS file association and the others will be drawn by developers.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

12

Hierarchy Viewer/Player

Hierarchy Editor and
Viewer::Hierarchy Viewer

and Renderer

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

Hierarchy Editor and
Viewer::Hierarchy
Business Logic

AXMEDIS Editor::AXMEDIS
Object Manager

Behaviour Editor and
Viewer::WxWidget

Top Package::Final user

«uses»

«uses»

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

13

-axelement : AXObject
-elementIndex : ElementIndex

AXHierarchyNode

+modelChanged(in anEvent)

«interface»
AXOM::IObjectModelListener

+execute(in cmd : Command) : void

AXOM::AXOM

AXOM::ElementIndex

+modelChanged(in anEvent)
+AXView(in objman : AXOM)
+saveConfigTo(in manager : ViewConfigManager)
+loadConfigFrom(in manager : ViewConfigManager)
+procContextualMenu()

-axom : AXOM
-nodes : AXViewItem*

views::AXView

AXHierarchyView

AXMPEG21View

+getContextualActions()
views::AXViewItem

-dielement : AbstractDIElement
-elementIndex : ElementIndex

MPEG21HierarchyNode

AXOM::AbstractDIElement

AXOM::AXObject

wxTreeCtrl

wxTreeItemData

1

*

«interface»
Error and Configuration Manager::ViewConfigManager

commands::Command +CommandGetChildren(in index : ElementIndex)
+getReverseCommand() : Command
+getChildrenList() : AbstractDIElement*
+execute(in axom : AXOM)

commands::CommandGetChildren

+execute(in axom) : int
+getReverseCommand() : Command
+setParentIndex(in index : ElementIndex)
+setBeforeAfterIndex(in index : ElementIndex)
+setBeforeAfterFlag(in beforeNotAfter : bool)

commands::CommandAdd

wxMenu

In the above diagram the basic relation between entities are depicted:
AXOM and the interface execute is accessible from any view that access to an object. The AXOM executes
the requested command after the needed check for the corresponding rights,. The AXHierarchyNode are the
connection between data model and the wxTreeItemData of the wxWidgets library: information tree nodes
of the wxTreeCtrl.
The wxTreeCtrl is the entity the user interact with, obviously each overriding of the wxTreeItemData refers
to an AXMEDIS element:

1. filled if the axelement attribute refers to an AXObject, which is a copy of the element stored in the
data model without direct references to other information inside the model, but only those needed to
show element properties to the user;

2. not filled if the axelement is null and the ElementIndex refers to the AXelement that must be
retrieved by the model, the retreiving operation is controlled by the AXOM.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

14

2.2.1 Hierarchy Business Logic
The business logic under the hierarchy interface will basically cover four action on the hierarchy element

• Add – Insert Before – Insert After
• Remove
• Cut
• Copy
• Paste
• Drag and drop
• Expand
• Collapse
• Activation of other view

All the commands will be mapped on several command instances:

• The Add – Insert Before – InsertAfter generates a new CommandAdd class in order to submit such
instance to the execute method exposed by AXOM, these actions will set differently the command
attribute which determine the addition target in the data model, once the command is processed by
the AXOM the needed rights are checked by the PMS client and the needed operation executed in
the model (i.e. adapt?, enhance?, enlarge).

• The Remove operates in a similar manner requesting the execution of CommandDelete.
• The functions Cut, Copy, Paste, Drag and Drop are managed by the application clipboard and after

the event processing end in a CommandMove or CommandCopy which will check their specific
rights (i.e. extract).

• The function Expand needs to retrieve data model information in order to show the list of the sub-
items in the hierarchy, this requests the execution of CommandGetChildren which after the right
check (explore) allows the view to retrieve children data.

2.2.2 Hierarchy Editor User Interface
It follows two snapshots of the same Hierarchy Editor conceived as tabs.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

15

AX0005

AX0004

AX0001

AX0002

AX0003

Edit

Add AXMEDIS element
Remove AXMEDIS element

item – AX0005

item – AX0004

Edit

Add MPEG21 element
Remove MPEG21 element

item – AX0002

descriptor
statement – AXInfo

descriptor
statement – MPEG7

descriptor
statement – RDF

descriptor
statement – AXInfo

descriptor
statement – MPEG7

descriptor
statement – RDF

component

resource – audio

item – AX0003

reference – AXOID:AX0003

descriptor
statement – AXInfo

descriptor
statement – MPEG7

descriptor
statement – RDF

descriptor
statement – AXInfo

descriptor
statement – MPEG7

descriptor
statement – RDF

item – AX0004

component
resource – document

MPEG21 HierarchyAXMEDIS Hierarchy AXMEDIS Hierarchy MPEG21 Hierarchy

descriptor
statement – AXInfo

descriptor
statement – MPEG7

descriptor
statement – RDF (dublin core)

AX0005

AX0004

AX0001

Edit

Add AXMEDIS element
Remove AXMEDIS element

MPEG21 HierarchyAXMEDIS Hierarchy

User Hierarchy User Hierarchy

User Hierarchy

In the above GUI sketches are represented the two roles which Hierarchical Editor plays. On the left side the
AXMEDIS hierarchy is depicted: the hierarchy (parent-child relationship) in AXMEDIS shows how a

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

16

composite has been structured it also show which part are at disposal locally and which are only references
to other AXMEDIS objects (see the italic text on AX0003 and the temporary icon).
The MPEG21 hierarchy is much more complicated since it shows all the relationship between MPEG21 tags
of the didmodel: for example AXMEDIS metadata are mapped on several descriptors which are element of
the MPEG21 hierarchy. Components and resources are depicted as well, please note that the referenced
object is mapped on MPEG21 reference tag.
In addition the hierarchy view has to support drag-and-drop functionality, in order to copy or move a whole
sub-hierarchy from an AXMEDIS/MPEG21 object to another, obviously such feature is supported on
homogeneous view (MPEG21 to MPEG21).

An additional view is provided

2.2.3 Hierarchy Viewer and Renderer

The viewer and renderer will only allow to expand/collapse item:
All the drag-drop cut-copy-paste are inhibited ass the addition or deletion from the hierarchy

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

17

2.3 DRM Editor and Viewer (WP4.5.1: FUPF)

Module Profile
DRM Editor and Viewer

Executable or Library(Support) Library (Support)
Single Thread or Multithread Single Thread
Language of Development C++
Responsible Name
Responsible Partner FUPF
Status (proposed/approved) Proposed
Platforms supported PC (Windows / Linux)

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section
XML based (MPEG-21 REL)

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

AXDRMView C++ WxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
Xerces
Xalan
XPath / XQuery

DRM View shall be implemented by the use of DRM User Interface, which shall permit to browse and
manage all DRM-related aspects, like the following ones:

• DRM User Interface shall permit to add new rules, remove and change existing rules on the whole object

or parts thereof;
• DRM User Interface shall graphically show DRM relationship among components and among actual

AXMEDIS object and others object. Relationships should be represented with a graph structure within
arrows and links will have given meaning/semantic;

• DRM User Interface shall be able to test the usability of an AXMEDIS object, and components thereof,
in a given context. Such context could be a set of fake licenses and a set of constraints (place of
consumption, time instant or interval, etc…). DRM View shall answer in two ways: true or false. In
latter case, DRM View shall give a set of clauses that explain why not, e.g. a specific license is needed or
a specific time interval is partially covered by the set of licenses owned by the user;

2.3.1 DRM Editor Business Logic
The business logic under the DRM viewer interface will cover the actions we can do over three kinds of
DRM information:

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

18

• Licenses
• License template
• Potential Available Rights (both internal and external)

This information will be generated in XML format following the MPEG-21 REL language. For this reason,
the editor will construct a tree, with some restrictions, mainly imposed by the structure of an REL license
(for instance, we always have to define a right but the rest of elements inside a grant are optional).

The operations permitted over the DRM information describe above will be the following:

• Add a new element. The elements available will depend on the father element.
• Remove an element. This action will also imply the removal of the child elements, if any.
• Cut
• Copy
• Paste
• Drag and Drop
• Expand
• Collapse

Moreover, and not really related with the creation of DRM information, but with checking the scope of the
DRM information, that is, ask if one action is available to the user under some conditions, a form will be also
provided to do so.

2.3.2 DRM Editor User Interface
The DRM Editor user interface will have two different views, one for creation of DRM information, and the
other for the checking if some action is available with the information currently created.

The following figure shows the preliminary user interface for the creation of DRM information. It follows a
tree-like structure, where the elements could be added following the MPEG-21 REL structure.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

19

User interface for DRM editor

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

20

Person

Right

AXOID

Condition

Condition

Condition

Condition

Check DRM conditions

Play

Territory

FeePerUse

NotBefore

NotAfter

Check Reset

User interface for checking permitted actions based on the DRM information

Result

Condition

Result DRM conditions

New Query

Yes, it is possible to exercise the right, see
conditions.

Territory Spain, NotBefore 07/03/2005,
NotAfter 31/12/2005

User interface for presenting the results of the query

2.3.3 DRM Viewer and Renderer
The DRM viewer only shows the structure of DRM information in the shape of a tree. The editing
functionalities will be disabled, and only the possibility to ask for available actions based on DRM
information will be permitted.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

21

User interface for DRM viewer

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

22

2.4 Visual Editor and Viewer (EPFL)

Module Profile
Visual Editor and Viewer

Executable or Library(Support)
Single Thread or Multithread Multithreaded
Language of Development C++
Responsible Name Giorgio Zoia
Responsible Partner EPFL
Status (proposed/approved) Proposed
Platforms supported Windows and Linux

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section
 wxWidgets

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

 C++

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets LGPL

Spatial View shall show object placement in a 2-D (or possibly 3-D) environment. Moreover, Spatial View
shall permit managing (i.e. moving, deleting, adding, etc…) object subparts which have spatial properties or
constraints.
• Spatial View shall be able to proportionally represent components in all significant spatial directions;
• Spatial View shall permit to modify spatial properties and constraints by means of graphical actions such

as drag-and-drop, contextual menu, etc…
• Component spatial properties should be relative to the comprising container or to other items. Otherwise,

those properties should be absolute respects to the entire object;
• Position constraints should be represented as labelled solid line where the label contains the distance

measure between the components and the constraint reference, e.g. if the position of a component is
absolute, a line for each direction will show the distance from the reference visualization edge.

The Visual Editor will arrange the media objects (video, photo, text, etc) on the screen. The Visual Business
Logic will store and manage an XML document that will describe the placement and dimensions of the
media objects on the screen i.e.: the layout. This XML document will be integrated inside the AXMEDIS
document enclosed inside a <Component> tag pair. The Business Logic will access the AXMEDIS
document through the Command Manager.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

23

As the user interacts with the GUI, the Business Logic will update the underlying data representation of the
layout by editing the XML document. The layout description will be done according to the SMIL W3C
standard. SMIL stands for Synchronized Multimedia Integration Language; it is an HTML-like language for
describing audiovisual presentations in XML. A part of the SMIL language is devoted to describing the size
and location on the screen of the media objects. For this reason, the data architecture of the Visual Business
Logic will be that of SMIL. The Visual Business Logic will implement a subset of the SMIL layout features.
More SMIL features can be added as the project evolves if we deem it necessary.
Below I will explain the list of SMIL XML elements and attributes that will allow the Visual Business Logic
to organize and store the layout of the presentation. The following is the basic skeleton of the SMIL
presentation that we will have to support:

<smil>
<head>
 <layout>
 <!-- The Visual Editor will handle this part: 2D layout-->
 </layout>
</head>
<body>
 <!-- The Behavour Editor will handle this part: time scheduling-->
</body>
</smil>

The “smil” element is needed to be SMIL compatible. The “smil” element is the root element of any
presentation. It only has an identifier attribute.
The “head” element is a child of the “smil” element and it will be needed to be SMIL compatible. Like the
“smile” element, it only has an identifier attribute.
Inside the “head” element, there is the “layout” element that, as the name states, contains the layout
information. The “layout” element has two attributes: an identifier attribute and a “type” attribute. The
“type” attribute specifies which layout language is used in the layout element. In our implementation, we
intend to support only one language for the layout description, the SMIL Basic Layout Language. Therefore,
we will set the “type” attribute to the fixed value “text/smil-basic-layout” or we will omit the attribute
because the default value is the one that we want.
The “body” element is explained in the Behaviour Editor section since this element deals with time
synchronization issues.
Finally, we have the two most important elements to describe the spatial placing of the media objects; these
are the “root-layout” and the “region” elements. Both are children of the “layout” element. Their purpose is
to define rectangular regions on the screen. Each rectangular region serves as placeholder for one or more
media objects. For instance, imagine defining a single rectangle where three videos will be rendered one
after the other. Every rectangular region has to have an identifier. This identifier is very important because it
will be used in the Behaviour Editor to associate the rectangle with the media objects. See Behaviour editor
for more details. The “root-layout” element is a little bit special because it defines the rectangular region
where the whole presentation will be displayed. See two examples of usage:

• <root-layout>: to set the width and height for the window in which the presentation will be rendered.
E.g.: <root-layout width="300" height="200" background-color="white"/>

• <region>: to define a rectangular region of the display area where a media object will be placed.
E.g.: <region id = ”some_id” left = ”0” top = ”0” width = ”32” height = “32” />

2.4.1 Visual Editor User Interface
The Visual Editor GUI will allow the user to draw rectangles on the screen. To draw a new rectangle it will
suffice to click-and-hold a mouse button, drag the mouse, and release the mouse button; this will define the
upper left and lower right corners of the rectangle. Every rectangle will represent the region where a media
object will be rendered. Every rectangle will be associated with a “region” element of the SMIL document
managed by the Visual Business Logic. The user will be able to draw, resize, move, copy, paste, and delete

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

24

rectangles. Every of this operations will be notified to the Visual Business Logic that in return will update
the SMIL document. In this way, the SMIL document will be a faithful representation of what the rectangles
the user will place on the screen. By right clicking on a rectangle the user will access a context menu (see
picture below) to set the rectangle attributes: identifier, width, height, background-color etc For instance if
the user changes the “width” attribute, the rectangle will be resized to accommodate to the new width; this
“width” attribute will also be updated in the SMIL document.
If the user right clicks on an area where there are not rectangles another context menu will pop up. This
context menu will contain the “root-layout” attributes such as width, and height . These SMIL attributes
control the display area of the presentation.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

25

2.5 Behaviour and Functional Editor and Viewer (EPFL)

Module Profile
Behaviour Editor and Viewer

Executable or Library(Support)
Single Thread or Multithread Multithreaded
Language of Development C++
Responsible Name Giorgio Zoia
Responsible Partner EPFL
Status (proposed/approved) Proposed
Platforms supported Windows

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

 C++ wxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets LPGL

The Behaviour Editor together with the Visual Editor will provide the user with the infrastructure to produce
multimedia presentations. A multimedia presentation can be composed of many media objects (text, audio,
video, vector graphics...). The user will use the Behaviour and Visual Editors to organize the media objects
in space and time. As explained in the section 2.4, the user will use the Visual Editor to place the media
objects in different positions of the screen. The Behaviour Editor will complement the Visual Editor by
adding time boundaries to the media objects. This means that every media object will be visible only for a
period defined by the user. The simplest example for this is a slide show: the user specifies a group of slides
and each slide is only visible during a slot of time defined by the user.
The Behaviour Editor will use a subset of the SMIL language to describe the multimedia presentation. SMIL
(pronounced "smile") is defined as a set of XML modules which are used to describe the temporal, positional,
and interactive behavior of a multimedia presentation.

Behaviour and Functional View is intended first as a View where the main modalities and layers of the
Editor can be activated. The AXMEDIS Object can be a heterogeneous, multi-layer piece of information for
which different modalities of exploration/manipulation are possible and for which different layers may be
accessible according to preferences. In this sense the Functional View displays the available possibilities and

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

26

allows selecting a text view, other than composited media view (scene layer) or a media-by-media view. The
functional view may also allow displaying available modes of operation, like the selection between file /
broadcast (save later, transmit immediately) and related configuration.
Behaviour and Functional View is also an interfacing view to external editors affecting synchronization and
timing among different media objects. An AXMEDIS object may include multimedia and cross-media
scenes like those that can be produced by MPEG-4 BIFS, SMIL, etc. Through suitable plug-ins and
interfaces the AXMEDIS Editor may allow inserting and taking out portions or elements of these composited
elements. Direct internal editing through internal functions and menus could be limited to a minimum of
simple straightforward cases. Overall, the Behaviour and Functional View will:

• allow the production and modification of behavioural and functional parts of the AXMEDIS Objects.
These parts are the functional parts of the MPEG-21 object. They are used to describe the behaviour
of the object when it is open, played, etc. It is possible in this way to describe the execution sequence
and the buttons to activate them, etc. See Digital Item Processing, Digital Item Methods.

• allow switching by one touch tabs among different views such as text view (XML text view),
composite media scene view, single media view (video, audio, hyperlinks, animations, etc.), media
delivery view (embedded elements, streaming elements, etc.).

• for aggregated composite objects, allow activating different windows with different view modalities
for different subparts of the object.

• support plug-ins to show and manage specific composite media types that are to be reasonably
expected for these elements, given the complex nature that these elements may have. At least a few
of the major formats and tools for multimedia synchronization and timing (BIFS, SMIL), including
maybe also QT, avi (divx) and the like.

• permit the visualization of simple time diagrams and/or spatial layouts from AXMEDIS objects to
permit selection of some parts (on the base of annotations, etc.) to activate related editing tools for
the supported functionality and formats

be configurable, i.e. user should be able to select, for each kind of components, which view to activate by
default.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

27

Behaviour Editor and Viewer
This has to be taken as an example of any AXMEDIS Editor
and Viewer connected to the AXOM for working on its
details.

Behaviour Editor User
Interface

Behaviour Viewer and
Renderer

Behaviour Business
Logic

Behaviour Player/
Simulator

AXMEDIS Editor::AXMEDIS
Object Manager

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

Top Package::Final user
Top Package::Object Builder

WxWidget

«uses»

«uses»

AXMEDIS Editor::AXMEDIS
Content Tools Error Manager

AXMEDIS Editor::AXMEDIS
Editor Configuration Manager

«uses»

«uses»
«uses»

«uses»

«uses»

«uses»

AXMEDIS
Editor::AXOM Content

Processing

AXMEDIS
Editor::AXOM

Commands and
Reporting

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

28

Behaviour Editor and
Viewer::Behaviour Viewer

and Renderer

Behaviour Editor and
Viewer::Behaviour Player/

Simulator

Behaviour Editor and
Viewer::WxWidget

Behaviour Editor and
Viewer::Behaviour
Business Logic

Top Package::Final user

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

AXMEDIS Editor::AXMEDIS
Object Manager

«uses»

«uses»

Behaviour Viewer/Player
The structure of this component and tool could be taken as
an example of any Viewer/Player connected to the AXOM
for rendering its details in final players/viewers.

2.5.1 Behaviour Business Logic
The Behaviour Business Logic will maintain an XML document. This XML document will describe the
schedule of a group of media objects. It will be possible to specify when every media object will be
displayed, for how long, and when the media object will abandon the display area. To describe the temporal
behaviour of the media objects we will use SMIL. SMIL (see also the Visual Editor section) is an XML
based language that enables the description of audiovisual presentations.
The user will interact with the Behaviour GUI to define, in a graphical way, the showtimes of the media
objects. The Behaviour Business Logic will receive notifications from the Behaviour GUI and it will modify
the SMIL document accordingly. In this way, the SMIL document will become a text description of the
temporal planning that the user will design in a graphical manner.
It is important to notice that the SMIL document edited by the Behaviour Business Logic is the same
document edited by the Visual Editor. However, there will be no conflict because the Behaviour Editor and
the Visual Editor will modify different parts of the same document. The Visual editor is concerned with the
spatial plannig while the Behaviour Editor regards the temporal planning. Fortunately, a SMIL document
keeps in separate sections the schedule and the layout. The SMIL document will be hold inside the
AXMEDIS document and will be treated as any other Component. This means that the SMIL document will
be accessed via the Command Manager.
The Behaviour Business Logic will be able to handle a subset of the SMIL language. To incorporate media
objects in the presentation we will need the following media tags:

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

29

• img: a still image (jpg, gif, etc)
• video: a video (mpeg, avi, mov, etc) formally we can use any kind of video here. For instance,

mpeg-4 provided that we have a SMIL player that is able to instanctiate an mpeg-4 player.
• text: plain text.

The media objects will need a start time, an end time, and a region on the screen where they will be rendered.
This will be achieved by using the following attributes:

• begin: defines when the element will be visible (start playing).
• dur: defines how long the element will be visible.
• region: contains the identifier of a region on the screen defined with the Spatial Editor.

Putting it all together, we could have something like this:
<video src=”weather.mpg” region=”videos_rectangle” begin=”0s” dur=”59s” />
The line above states that the video weather.mpg will be played for 59 seconds in the region on the screen
named “videos_rectangle” that must has been previously defined using the Visual Editor.
Finally, we will need to use the par (parallel) tag. We will enclose all the media tags inside a par tag pair. In
SMIL, the par tag is used to display media objects simultaneously. However, we can also present elements
sequentially by setting the begin attribute appropiately.

2.5.2 Behaviour Editor User Interface
The Behaviour GUI will display graphically the temporal boundaries of every media object. This GUI will
have a horizontal time line similar to a ruler (see next picture) with marks on it that will indicate the time.
The media objects will be represented as horizontal bars of different lengths according to the duration of the
media object. The bars will be drawn under the time line in such a way that the limits of a bar will be aligned
with the start and end times. This way, every bar will give a graphical impression of when a media object
will start playing and when will it stop.
To add, modify or remove bars in this GUI the user will use a contextual menu accessible via right click. To
associate a media object with a bar, the user will have to select a media object from the Hyerachical View
and drag it onto the bar. To define the region of the screen where the media object will be rendered, the user
will have to select a rectangle from the Visual Editor and drag it onto the bar.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

30

2.6 AXMEDIS Object Editor and Viewer (Descriptions and Comments) (EPFL, DSI)

Module Profile
AXMEDIS Object Editor and Viewer

Executable or Library(Support)
Single Thread or Multithread Multithreaded
Language of Development C++
Responsible Name Giorgio Zoia
Responsible Partner EPFL
Status (proposed/approved) Proposed
Platforms supported Windows, Linux

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

 wxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets wxWidgets LGPL

Annotations and Comments View will permit to display information including annotations and comments
within AXMEDIS objects or parts of them. Annotations and Comments will be logically included as
elements in AXMEDIS objects without actually modifying their contents. Such View will be user
customizable, i.e. users will be able to select which types of media have to be made accessible for each
component. Annotations and Comments View will:

• permit to add/edit/delete annotations and comments by means of graphical actions such as drag-and-
drop, contextual menus, etc

• be configurable, i.e. user should be able to select, for each kind of components, which annotations
and comments types (textual, audio, alternatives, etc…) have to be made accessible;

• support plug-ins to show and manage specific media types that are to be reasonably expected for
these elements, given the different nature that annotations and comments may have. Other than
normal text support, at least audio annotations/comments and possibly text-to-speech should be
included; still pictures should also be available in at least one common format.

• support for printing and visualising the metadata in a human understandable format.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

31

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

Annotations and Comments
Renderer

WxWidgets

AXMEDIS Editor::AXMEDIS
Editor Configuration Manager

Annotations and Comments
User Interface

Annotations and Comments
Business Logic

AXMEDIS Editor::AXMEDIS
Object Manager

AXMEDIS Editor::AXMEDIS
Content Tools Error Manager

2.6.1 Business Logic
Instead of “Annotations and Comments”, “Comments” will be used from now on. The Comments Business
Logic is the ‘brain’ of the Comments Editor. This is the list of characteristics of the Comments Business
Logic:

• This block is able to associate a set of Comments with an AXMEDIS object.
• This block does not need to ask permission to the AXMEDIS Object Manager to perform any action

because the Comment operations do not interfere with the DRM rules of the AXMEDIS object.
• This block does not need to report its activities to the AXOM Commands and Reporting because the

Comment operations do not affect the integrity of the AXMEDIS object.
• This block can ask to the AXMEDIS Object Manager information about the current AXMEDIS

Object: name, playing state, paused state...
• This block is able to read and write the file system where the Comments will be stored.
• This block is able to instantiate a simple text editor to display text Comments and to allow the user to

write text Comments.
• This block is able to instantiate a simple audio player/recorder to record or play audio Comments.
• This block is able to instantiate simple picture viewer/editor to allow the user to display graphic

Comments.
• This block is able to store the configuration of the Comments Editor.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

32

2.6.2 User Interface
The Annotations and Comments User Interface will be composed of several Graphical User Interfaces
(GUIs): one for each type of Comment, a main GUI that will group all the Comments belonging to the same
AXMEDIS object, and finally a Configuration GUI that will be displayed though the AXMEDIS Editor
Configuration Manager.

2.6.2.1 Main GUI
The main GUI will show the list of Comments associated with one AXMEDIS object. This GUI will permit
the following operations by means of a contextual menu (see next picture) :

1. Save all
2. Add a Comment
3. Remove a Comment
4. Open a Comment

2.6.2.2 Configuration GUI
The Configuration GUI will allow the customization of the Comments Editor. The user will be able to
configure the default type of comments e.g: plain text or the default directory where the comments will be
stored. This could be implemented as ActiveX Property pages (in PC platform). By using Property pages this
GUI can be driven and be made accessible from the AXMEDIS Editor Configuration Manger which is in
charge of centralizing the configuration information of the whole AXMEDIS Editor.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

33

2.6.2.3 Renderer GUIs
Different types of Comments need different GUIs. A simple text editor will be needed to have text
comments. For audio Comments a simple audio player/recorder will be needed. It is not necessary that this
player is able to play/record compressed formats like mp3; it suffices if it is capable of playing/recording in
non-compressed format. Finally a simple image/drawing editor will be provided.

The following picture shows how the Comments Audio Renderer could look like.

2.7 Metadata Editor and Viewer (UNIVLEEDS)

Module Profile
Metadata Editor and Viewer

Executable or Library(Support) Executable
Single Thread or Multithread Single Thread
Language of Development C++
Responsible Name Kia Ng and Royce Neagle
Responsible Partner UNIVLEEDS
Status (proposed/approved) Proposed
Platforms supported Windows XP

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)
Query Support
AXOM Commands and
Reporting

Plug in Interface

File Formats Used Shared with File format name or reference to a

section
XML

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
 wxWindows, v-2.5.3 or v-2.4.2 LGPL
 Xerces-c++ v-2.6.0 Apache Software Licence, v2.0
 Xalan-c++ v-1.9 The Apache Software License, v1.1

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

34

Metadata Viewer provides functionality to display information contained within the metadata associated with
an AXMEDIS object. Due to the complex nature of AXMEDIS object, there may be one or more metadata
sections with different schema, including MPEG21, Dublin Core, AXInfo.
• Metadata Viewer shall be able to adapt itself (e.g. by analysing the data-related XML schema)

automatically to the metadata structure;
• Metadata Viewer shall be fully configurable, i.e. user shall be able to select, for each set of metadata and

for each kind of components, which metadata have to be displayed;
• Specific set of valuable metadata, such as authoring MPEG-7 metadata, should be included into

AXMEDIS Editor basic release;

Scenario for editing metadata

1. Receive metadata information in XML from WF
2. Parse XML data to obtain a list of metadata tag and value
3. Generate visualisation for metadata
4. Provide functionality for the actor to modify the metadata
5. Provide functionality to send back the revise metadata to the originator (via WF)

For Metadata visualisation, two possible approaches can be done:

1. Using the above editor without the manipulation and save functionality (4 & 5) activated
2. Generating a HTML file (with CSS) and use a browser to display the file

Metadata
Saver

Metadata
Loader

MMeettaaddaattaa
EEddiittoorr

2

5

AXMEDIS Workflow
Manager

1

Metadata
Visualisation

Metadata
Manipulator

4

5

Metadata
Parser

3

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

35

Metadata Editor and Viewer

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

Metadata Editor User
Interface

AXMEDIS
Editor::AXMEDIS Object

Manager

Behaviour Editor and
Viewer::WxWidget

«uses» «uses»

Metadata Viewer and
Renderer

Top Package::Object Builder

Top Package::Final user

Metadata Schemas

«uses»

Metadata Manager

«uses»

General Metadata
Business Logic

This architecture should allow to cope with different Metadata Sets simply by changing the Metadata
Schemas (also taken from the AXMEDIS object, and in particular from the AXInfo): The interested
test cases should be UNIMARC, Doublin Core, and all the AXInfo data. The Role of the Metadata
Manager is that of reading the schema and creating data structure and logic on the basis of the General
Metadata Business Logic. The Metadata Manager can have in the same AXMEDIS object different
sections with different Metadata differentiated for: Model, language, schema, etc. The Metadata
Viewer and Renderer can be a simple translator in HTML or XML and the real renderer can be the
HTML renderer inside the AXMEDIS Media Player.

AXMEDIS Editor::AXOM
Commands and

Reporting

AXMEDIS Editor::AXOM
Content Processing

Metadata
Loader

MMeettaaddaattaa
VViieewweerr AXMEDIS Workflow

Manager

Metadata
Visualisation

Metadata
Parser

1

HTML and CSS
files

2

See previous
scenario

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

36

Metadata Viewer

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

Metadata Editor and
Viewer::General Metadata

Business Logic

Metadata Editor and
Viewer::Metadata Manager

Behaviour Editor and
Viewer::Behaviour Viewer and

Renderer

Metadata Schemas AXMEDIS Editor::AXMEDIS
Object Manager

«uses»

Behaviour Editor and
Viewer::WxWidget

«uses»

Top Package::Final user

2.7.1 General Metadata Business Logic
The General Metadata Business Logic provide the navigation functionalities to traverse a given XML
document based on the structure and relationships modelled by the Metadata manager using a schema. It is
particularly important for the Metadata editor to know what is the valid child for a particular nodes
depending on the context, where the user intended to add an elements. The Business Logic preserves the
structure integrity and ensure the correctness of the updated XML.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

37

2.7.2 Metadata Editor User Interface

The Menu Bar
The menu bar will be constituted of the following entries:

File

o Load – load XML
o Save – save the XML and send via WF
o Save as – save metadata as XML on local system
o Exit – Quit the editor/viewer

Messages (This may be automatically set to always show messages)
o Last message – Displays the last message sent by the AXMEDIS Workflow Manager into the Log

text window
o Messages List - Displays the list of messages sent by the AXMEDIS Workflow Manager

Help

o Help – Call the on line help
o About – Information about the authors, version etc.

Tree view area
In this area the structure of the XML is displayed. It will be visualised using a Tree control that will permit to
show and browse components according to the generic XML inputted. This view will also permit the editing
of fields for the elements for editing

Tool bar
Menu bar

Tree view XML Format
for searching Dublin Core
elements and editing fields

Text view of logs from metadata editor, Workflow
‘command and reporting’, etc… Status bar

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

38

Textual Visualisation Area
This is a text control where log messages, textual description, alert, etc… are displayed.

2.7.3 Metadata Manager
With a given schema, the Metadata Manager creates a representation of the structure and representation
which include all the valid nodes, elements, parent child relationships, and each individual type. At this level
the XML Document Object Model (DOM) is used to provide a way on how the XML document can be
accessed and manipulated. The structure of this structure is used by the General Metadata Business Logic
which navigates the structure. For the Metadata Editor, this structure, nodes, elements, etc are used to allow
the user to add new elements with validation.

Metadata structure can be complex with recursive references. The AXMEDIS Metadata Manager extracts
basic structure and apply a linearization to the structure in order to minimise unnecessary complexity
unrelated to metadata editing purposes, removing recursive references.

2.7.4 Metadata Schemas
In this case, for the Metadata Editor, the Metadata Schema is required as a means for defining the structure
and content of the XML documents. One or more metadata schema(s) is/are required for the AXMEDIS
metadata editor in order to validate the correctness of the structure and elements of the metadata description
of the AXMEDIS object. This is particularly important to allow the adding of a new element (which may be
optional and not included in the original description).

If no schema is available for the editor, the editor will still provide the functionality of modifying existing
elements and try to preserve the original type. However, no new elements can be added since there is a
potential danger of corrupting the original object description.

2.7.5 Metadata Viewer and Renderer
There are two approaches to achieve the metadata visualisation:

1. uses the metadata editor (as described above) with the editing functionalities disabled
2. to automatically generate HTML (with pre-defined or user-defined CSS) and uses standard

browser (e.g. IE) for visualisation

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

39

2.8 Workflow Editor and Viewer (IRC, XIM, HP)

Module Profile
Workflow Editor and Viewer

Executable or Library(Support) Executable OpenFlow User Interface based upon Zope User Interface
Single Thread or Multithread Multithread
Language of Development User interface: Zope DTML (a superset of html)

Application logic: Python or DTML
Responsible Name
Responsible Partner
Status (proposed/approved)
Platforms supported Microsoft Windows, Linux, Mac OS X

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)
WorkFlow Engine Via Zope Web Server

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Zope Web-based U.I. DTML, a superset of html Idem

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
OpenFlow OpenFlow 1.1 GPL 2.0
Zope by Zope Corporation Zope 2.7.3 ZPL 2.0 (Zope Public Licence 2.0),

open source, GPL compatible
Python by Stichting
Mathematisch Centrum,
Amsterdam, The Netherlands.

Python 2.3 Free Open Source by Stichting
Mathematisch Centrum,
Amsterdam, The Netherlands.

Xmlrpclib by Secret Labs AB
and by Fredrik Lundh

Xmlrpclib Free Open source by Secret Labs
AB
and by Fredrik Lundh

C expat Library by James Clark C expat Mozilla Public Licence Version 1.1

The workflow editor and viewer is the gateway interface for creating and changing new project workspaces
referred to as NPDs in the terminology adopted for the AXMEDIS Workflow and object life cycle analysis
elsewhere in our document.

Naturally the functionality of this editor/viewer at the level of NPD editing will be a subset of the use cases
already set-out for the AXMEDIS workflow management system particularly focusing on the global
management requirements of the NPD workspace including Actors, Objects, Processes, etc. as follows

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

40

A) Search is a generic use case that can search for anything at any time both synchronously (during user
interaction online; i.e. whilst the client workspace-instance is online and running, or alternatively whilst it
is in-pause/offline (asynchronous search). The search can be blind/exploratory or more specific as in a
special case that can be inherited to search for eligible components to be worked on; as follows:

• Search in the AXWF Database for (sub)processes that have to be worked by the user; this is based on

specific search criteria

• Retrieve from AXWF DB, the Axmedis Components associated with (sub)processes

• Invoke the Axmedis Object Manager (or Axmedis DB Manager) to search for the components based
on search criteria (to be used by the search engine deployed by the Axmedis Object Manager)

B) Create a New Product Development, which typically entails creating new Axmedis Object instance and a

new workflow process instance; as follows:

• Create a new process instance in the AXWF DB

• Invoke the Axmedis Object Manager to create new Axmedis Object

• Link the process instance to the Axmedis Object instance

C) Discard an NPD, which implies the termination of the process instance:

• Cancel the process instance from the AXWF DB

• Invoke the Axmedis Object Manager to remove the associated Axmedis Object

D) Add a Component to a specified NPD; this can imply the creation of a new sub-process instance:

• Invoke the Axmedis Object Manager to create a new component in the Axmedis Object instance

• If the process flow requires it, create a sub-process instance in the AXWF DB

• Link the sub-process instance to the Axmedis Object component

E) Remove a Component from a specified NPD; this can imply the termination of a sub-process instance:

• Invoke the Axmedis Object Manager to delete the component

• If the process flow requires it, also cancel the associated sub-process instance

F) Start an Activity in the process flow instance (work_item) selected by the user (for example start editing a

component):

• The user selects from the work_items list and the choice of activity to start

• The WF manager automatically performs the selected actions in the process flow:

• Launching compositional/ formatting/ loading tool /publication tool /protection tool/ Program and

publications engine; or launching the local PC editor tool (see below for details)

G) Group is responsible for bundling components, people, processes, partners, projects, teams, packets,

digital assets products, etc into one entity which may be further referred to.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

41

H) Show the Component in which the user has to work:

• Invokes the local PC viewing tool for showing the component associated with a work-item in the
work-item list (see below for details)

I) Track Component: shows the history of what has so far been performed on the component

• Invokes the Axmedis Object Manager (or the Axmedis DB Manager) for retrieving the history of an
Axmedis component associated with a work-item in the work-items list

J) Track CPA identifies the Critical Path Activities (CPA) and produces all the information regarding those

activities e.g. people involved, components being worked on, processes needing attention, possibly
implicitly or explicitly also tracks CPA-slack-critical objects/processes, etc.

K) Time-stamp Generate: it is an internal AXWFM Object Manager function, not visible to the user,

typically invoked by the Check-in/Check-out function

L) The AXWFM Object Manager invokes the Axmedis Object Manager (or Axmedis DB Manager) to

update the tracking information

M) Generate Version: again a function internal to the AXWFM Object Manager; can be explicitly executed

by the user or automatically generated by the AXWF process

• The WF Object Manager invokes the Axmedis Object Manager (or Axmedis DB Manager) for
updating the Object/component revision

N) List Work: lists in a hierarchical view the work-items in which the user can or has to perform activities

• The WF Object Manager retrieves from the AXWF DB the list of the work-items in which the user or
team is involved

O) Select a workitem is responsible for selecting a workitem from the work-list

P) Complete a Task sends the WorkFlow engine the trigger that causes it to have the respective user activity

recorded as completed and then to go to the next activity in the process-instance flow

Q) Distribute Work: AXWF function used for assigning activities to users

• The AXWF Object Manager invokes the AXWF DB for changing the process-instance information
related to users

R) Change State/Phase: again a function internal to AXWF Object Manager; can be explicitly executed by

the user or automatically generated by the AXWF process

• The AXWF Object Manager invokes the Axmedis Object Manager (or Axmedis DB Manager) to
update the Object State/phase; phase change typically occurs as a result of developmental changes as
reflected in the workflow-instance/NPD-instance

S) Global Viewer: shows details about the NPD

• Invokes the local PC viewing tool for showing the Axmedis Object associated to a work-item in the
work-item list (see below for details)

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

42

T) Notification: used to send notifications to other users in the project
• This may or may not invoke an external Notification engine

U) Check-in: used to lock an Axmedis component, and copy it to a user exclusive access area, ready for

download:

• Invoke the Axmedis Object Manager for locking the Object/component

• Copy the Object component in a Server area of exclusive access to the user, so that the user can

download it to his PC disk

• Invoke the Axmedis Object Manager for updating tracking information

V) Check-out: Applicable only to previously checked-in Objects. After having uploaded the modified

Axmedis component, re-loads it onto the Axmedis Object Manager and updates tracking data

• Copy to the Axmedis Object Manager the selected Object component from the Server area of
exclusive access of the user concerned

• Invoke the Axmedis Object Manager for unlocking the Object/component

• Invoke the Axmedis Object Manager for updating tracking information

2.8.1 Workflow Editor Business Logic
It will be possible for the AXMEDIS workflow management system to support inter-factory workflow. An
example of this would be collaborating content producers who work jointly on common objects. Content
Factory A would create an object, then Factory B would perform some activities to add value to the object,
then returning it to Factory A for completion. Conceptually, this process is identical to the normal, intra-
factory scenario where activities are carried out in one content factory. In the inter-factory scenario, the
collaborating factories will need to establish an agreed workflow in order to manage their division of work
productively and efficiently. This workflow agreement can be modelled in the same manner as a
conventional intra-factory workflow. We are not proposing centralised single server architecture; rather each
partner will have their workflow running with their part of the project workflow definition. The transitions
resulting into change of partner will be defined in the workflow to reflect the collaborative workflow logic
as agreed between the collaborators. The waiting period for the factories can be defined as “Idle/wait”
activities within the workflow which are completed upon receiving the workitem from the external factory.
For example when the workitem is handed to Factory B from Factory A, as defined in the workflow, Factory
A will then start an “Idle/wait” activity which will end upon receiving the workitem back from Factory B.

It is important that collaborating factories therefore share common WFMS tools in order to manage and track
the progress of an NPD across their combined activities. This enables dynamic planning and scheduling of
resources across the factories, much in the way that automotive companies operating just-in-time policies use
integrated logistics systems to track components through their value chain.

This dynamic visibility would not be possible if separate WFMS tools were employed in each factory and the
only communication available were some embedded historic metadata within objects passed between
factories.

For this reason, a common web-based editor will be used for the AXMEDIS Workflow user interface, which
will be capable of being accessed from multiple collaborating content producers, integrators and distributors
sharing a common inter-factory workflow.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

43

2.8.2 Workflow Editor User Interface (Openflow)

Openflow runs on the Zope platform which is managed through the “Zope Management Interface” using
industry standard browsers, typically by logging on as the administrator (admin) at
URL http://localhost:8080/manage. The screen shot below shows an example of this management interface.

Creating a new process in openflow is a multi-step process which begins with adding an OpenFlow container
using the Zope management interface as shown below (delineated by a an ellipse in red).

Figure 1: Adding an OpenFlow container through the Zope Management Interface

During the creation of the OpenFlow container, the name of the container must be specified as shown in the
next screen-shot.
.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

44

Figure 2: Creating the OpenFlow container

Next it is necessary to define the process and the activities pertaining to the process, together with
their transitions (From Activity and To Activity). These operations are performed by accessing the
tabs in the Openflow container as shown in the following screen-shots:

Figure 3: The process definition tab

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

45

Figure 4: Creating a new Process definition

Figure 5: Management of activity and transitions of a process

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

46

Figure 6: Editing a process activity

Figure 7: Defining process transition and related conditions

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

47

Applications associated to the activities are then specified selecting the Applications Tab.

Figure 8: Defining process applications

The users and roles are configured as Zope users and roles as access control list (acl_users).

Once a process has been defined it can be tested. An instance of the process can be created and executed
directly in the processflow-instance management tab shown below.

Figure 9: Process instance management tab

The following Figure shows the of the workitems involved in the process instance that has been created.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

48

Figure 10: Monitoring and management of a specific process instance

Process Example:

The following simple example illustrates a process to request a AXMEDIS object manipulation (a mock-up
process). This is an example of explicit forwarding to different actors having different roles. The first actor
requests the creation of a new AXMEDIS object by filling out a form. The request goes to the second actor
(called Socius) who checks that the request is acceptable. The request is then forwarded to the third actor
(called Prefectus) for approval.

The following steps are necessary for the above example process to be enacted:

The first actor (called Tertius) enters an AXMEDIS object manipulation request by filling out the following
form as shown in the screen-shot below:

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

49

Figure 11: Tertius’ AXMEDIS object manipulation form

According to the processflow, the request goes to the next actor (called Socius). When Socius logs in, his
work list shows that there is a workitem in his worklist as shown in the screen-shot below:

Figure 12: Socius’ worklist and workitem activation

To execute the workitem, the actor (Socius) has to activate the workitem (Begin) and perform the related
activities. Next this actor either forwards the workitem to the next actor, which in this case is the supervisor
(called Prefectus), or rejects the request; as illustrated by the screen-shot below:

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

50

Figure 13: Socius’ workitem execution and forwarding

Then the activity is forwarded to the last actor and the process ends.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

51

3 AXMEDIS Content Tool Error Manager (DSI)

Module Profile
AXMEDIS Content Tool Error Manager

Executable or Library(Support) Library
Single Thread or Multithread Single
Language of Development C++
Responsible Name Bellini
Responsible Partner DSI
Status (proposed/approved)
Platforms supported All

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section
XML based for error table

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

WXWidget for list of errors

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
WxWIDGET
log4cxx Apache License version 2.0

AXMEDIS Content Tool Error Manager is an interface through which all software modules are allowed to
log errors in an independent way w.r.t. to the language. Moreover, the error manager allow the user to
graphically visualize the error logs.
To achieve language independence errors have to be pre-defined and identified and, at runtime, they should
be handle through identifiers instead of using their text descriptor. Therefore, in AXMEDIS Framework
errors will be uniquely identified by the following information:

• the area name the error refers to, e.g. workflow, axeptool, editor, player, engine, scheduler, etc…
• the full class name of the class (i.e. the name comprehensive of containing namespace) the error is

raised by
• an error code

As stated after in this section, error identifiers (area name, full class name, error code) are someway
associated with other useful information such as a short description, recovery note, etc which are language
dependant.
The above data can be statically defined in the code or dynamically determined at runtime. To determine that
information at runtime an infrastructure for error management is needed. That infrastructure should consist
of one or more classes which has to be used by all modules of AXMEDIS Framework (see below).

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

52

3.1 Class Hierarchy

ErrorManager class exposes the following static function>

• setToolName – has to be called at tool start-up time. In that way, every time an error is logged the
ErrorManager knows the tool name avoiding hardly readable and repetitive code.

• setAreaName – has to be called at tool start-up time. In that way, every time an error is logged the
ErrorManager knows the area name avoiding hardly readable and repetitive code.

• fatalError, error, warning, info – those functions work in the same way the unique differences is the
severity level of the logged error they produce. Using four different functions we avoid the need to use
an additional parameter for the functions and the code will result much more readable. The first
parameter of those functions is the error source, i.e. the instance which wants to raise the error, the
second parameter is the error code, which will be merged with other information to determine the error
identifier.

As depicted in the figure above, ErrorSource is an interface extending the interface Recognizable thus
ErrorManager is able to retrieve information on the class without boring the programmer with to much
code.

3.2 AXMEDIS Error Coding Format
Each AXMEDIS module can define its own errors. Each errors is defined by the following information:

• Error Identifier – area name, full class name, error code
• Language – the language used for description and recovery notes
• Error Description – the error description in a specific language
• Recovery notes – a language dependant description which describe in more details the error and the

causes which could have given rise to the error
Obviously, the same error (recognized by its identifier) can be defined several time with different languages.
Error definitions are coded in XML file with the following schema:

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

53

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/error-definition" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.axmedis.org/error-definition" elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="ErrorList" type="ErrorListType"/>
 <xs:complexType name="ErrorListType">
 <xs:sequence>
 <xs:element ref="Error" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Error" type="ErrorType"/>
 <xs:complexType name="ErrorType">
 <xs:sequence>
 <xs:element ref="ErrorIdentifier"/>
 <xs:element name="Language" type="xs:language"/>
 <xs:element name="Description" type="xs:string"/>
 <xs:element name="RecoveryNotes">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="##any"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ErrorIdentifier" type="ErrorIdentifierType"/>
 <xs:complexType name="ErrorIdentifierType">
 <xs:sequence>
 <xs:element name="Area" type="xs:string"/>
 <xs:element name="ClassName" type="xs:string"/>
 <xs:element name="ErrorCode" type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

3.3 AXMEDIS Error Manager User Interface (DSI)

The AXMEDIS Error Manager User Interface allows the user to visualize and manage the logged error and
to handle log-related options. The user interface reads data from error definition files and error log file
(whose format are specified in this section) and mixes that information to render the errors in a human-
readable format.
The GUI exposes the following functionalities:

• Menu File – it contains file-related actions:
o Load – loads an error log file and visualize it
o Save – saves the visualized logs on a given location

• Menu Error – it contains error-related actions:
o Flush – deletes all the logs in the opened error log file
o Delete – deletes the selected error from the opened error log file
o More info… - opens a dialog which shows detailed information on the error
o Order by… - the user the ordering criteria of the logged error table

• Menu Tools – allows to configure the Error Manager and the GUI. In particular, it allows to modify
the following options:

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

54

o Language – sets the language used for the description field and for the “More info…”
dialog

o Severity threshold level – only error whose severity level is greater than the threshold are
showed in the table. The severity level are those defined in the error log schema

o Redirection – the user can decide where error should be logged. He/She can choose among:
local redirection, remote redirection and both redirection

o Log activation – the user can activate/deactivate the log mechanism
Moreover, ordering action can be directly performed on the table as well as display of “More info” dialog.

3.4 AXMEDIS Error Manager Log Format (DSI)
Every time an error is raised through the error manager interface the error is logged somewhere. The location
of the log file can be configured using the AXMEDIS Configuration Manager. The log file is in XML format
and has the following schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/error-log" xmlns="http://www.axmedis.org/error-log"
xmlns:errdef="http://www.axmedis.org/error-definition" xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import namespace="http://www.axmedis.org/error-definition" schemaLocation="error-def.xsd"/>
 <xs:element name="ErrorLog" type="ErrorLogType"/>
 <xs:complexType name="ErrorLogType">
 <xs:sequence>
 <xs:element ref="Error" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Error" type="ErrorType"/>
 <xs:complexType name="ErrorType">
 <xs:sequence>
 <xs:element name="ErrorIdentifier" type="errdef:ErrorIdentifierType"/>
 <xs:element name="Date" type="xs:date"/>
 <xs:element name="Time" type="xs:time"/>
 <xs:element name="Location" type="xs:string"/>
 <xs:element name="Level">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="FATAL"/>
 <xs:enumeration value="ERROR"/>
 <xs:enumeration value="WARNING"/>
 <xs:enumeration value="INFO"/>
 <xs:enumeration value="DEBUG"/>

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

55

 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

element ErrorLog

diagram

namespace http://www.axmedis.org/error-log

type ErrorLogType

children Error

source <xs:element name="ErrorLog" type="ErrorLogType"/>

description This is the root element of the log file. It can contain none or more Errors.

element Error

diagram

namespace http://www.axmedis.org/error-log

type ErrorType

children ErrorIdentifier Date Time Location Level

used by complexType ErrorLogType

source <xs:element name="Error" type="ErrorType"/>

description This element represent a logged error. It consist of the following information:

• ErrorIdentifier – this is the same element of the error definition schema and it identifies the logged error

• Date – the date when the error has been logged

• Time – the time when the error has been logged

• Location – represent the location where the error has been raised. It consist of an IP address (or something
equivalent) and of a process/thread identifier

• Level – the level of the error. It can assume the following values FATAL, ERROR, WARNING, INFO or DEBUG
on the base of the severity of the error

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

56

4 AXMEDIS Editor Configuration Manager (DSI, EPFL)

Module Profile
AXMEDIS Editor Configuration Manageer

Executable or Library(Support) Library
Single Thread or Multithread Single
Language of Development C++
Responsible Name Andrea Vallotti
Responsible Partner DSI
Status (proposed/approved)
Platforms supported

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section
XML based for configuration
info

All the Editors tools, editors and
viewers written in C++ and
related AXOM tools

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

For Error log C++ WxWIDGET

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
WxWIDGET Open

AXMEDIS Editor Configuration Manager will be the unique access point to AXMEDIS Editor modules
configurations. Each configurable AXMEDIS Editor modules (and sub modules) will respect AXMEDIS
Editor Configuration Manager requirements.
AXMEDIS Editor Configuration Manager User Interface will be flexible enough to manage the widest range
of settings possible. That should be possible by means of plug-in support.
Further, AXMEDIS Editor Configuration Manager will manage and provide AXMEDIS Editor general
configurations, such as multi-language.
• AXMEDIS Editor Configuration Manager shall be the unique configuration access point;
• AXMEDIS Editor Configuration Manager shall provide an interface to allow configuration access and

modification (AXMEDIS Editor Configuration Manager User Interface);
• AXMEDIS Editor Configuration Manager shall include a default settings module which shall be

configurable by XML schema-like language. In such a way, every AXMEDIS Editor module shall
specify it’s own settings

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

57

4.1 AXMEDIS Editor Configuration Manager classes
In this sub/section, the structure of classes to manage the configuration file is presented. A stated in the
introduction, these classes has to allow to manage single parameters and set of parameters called module.
The class hierarchy reflect the structure of the XML file which contains the configuration parameters which
schema is described in the following sub/section.

+parseConfiguration(in inputStream) : void
+serializeConfiguration(in outputStream) : void
+addModule(in newModuleId : char*, in category : char*) : bool
+containsModule(in moduleId) : bool
+removeModule(in moduleId) : bool
+getModule(in moduleId) : ConfModule&
+[](in moduleid : char*) : ConfModule&

-configurationModules
ConfManager

+addParam(in newParamName : char*) : bool
+containsParam(in paramName : char*) : bool
+removeParam(in paramName : char*) : bool
+getParam(in paramName : char*) : ConfParam&
+[](in paramName : char*) : ConfParam&
+isVisible() : bool
+setVisible(in visible : bool) : void
+getCategory() : char*
+setCategory(in category : char*) : void

-ownerMngr : PrivateConfManager
ConfModule

+ConfParam(in paramName : char*, in stringValue : char* = "")
+ConfParam(in paramName : char*, in longValue : long)
+ConfParam(in paramName : char*, in doubleValue : double)
+getStringValue() : char*
+getLongValue() : long
+getDoubleValue() : double
+setValue(in value : char*) : void
+setValue(in value : long) : void
+setValue(in value : double) : void
+=(in value : char*) : void
+=(in value : long) : void
+=(in value : double) : void
+getName() : char*

-ownerModule : PrivateConfModule
-xmlNode

ConfParam

1

1

1

*

1
* 1

1

+getParamNode(in paramName : char*) : <unspecified>
#xmlNode

PrivateConfModule

«private»

+getModuleNode(in moduleId : char*) : <unspecified>
#xmlDoc

PrivateConfManager

«private»

The Configuration Manager is composed of three main classes:

• ConfManager – it is the main class through which all modules and parameters are reachable
• ConfModule – it represents a set of parameters related each others, e.g. all the parameters related to

a specific software module
• ConfParam – it represent one parameter, it provides function to easily manage different types of

parameter.
PrivateConfManager and PrivateConfModule are two utility classes which are used to expose different
interfaces inside and outside this namespace.
ConfManager exposes the following methods to allow management of a set of configurations and
parameters:

• parseConfiguration – parses and loads a set of configurations from an input stream. The stream have
to respect the format described in the following sub-section;

• serializeConfiguration – serializes the whole set of configurations on the given output stream
formatted as described in the following sub-section;

• addModule – creates a new module of parameters having the given name (newModuleId) and the
given category (category). The module name have to be unique than the function does not create two
modules with the same name. The module category could be a string like a file path. In this way,
categories and sub-categories can be easily created and managed. Moreover, the instance of

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

58

ConfManager sets itself as owner manager (ownerMngr) of the newly created instance of
ConfModule. In this way, the module can interact with the configuration manager;

• containsModule – checks if the configuration manager contains a module with the given name
(moduleId);

• removeModule – if exists, removes the module with the given name from the configuration manager;
• getModule and [] operator – both functions allow to get an instance of ConfModule which represent

the module having the given name (moduleId). Acting on the obtained instance of ConfModule, it is
possible to manage the parameters contained in the corresponding module of the configuration
manager.

Moreover, ConfManager privately extends PrivateConfManager to provide the getModuleNode function
only to the instances of ConfModule created by it. getModuleNode returns the XML node representing the
module identified by moduleId.
ConfModule exposes the following methods to allow management of a module of parameters contained in
the owner configuration manager:

• addParam – creates a new parameter having the given name (newParamName). The parameter name
have to be unique within the module than the function does not create two parameter with the same
name. Moreover, the instance of ConfModule sets itself as owner module (ownerModule) of the
newly created instance of ConfParam. In this way, the parameter can interact with the owner
module;

• containsParam – checks if the module contains a parameter with the given name (paramName);
• removeParam – if exists, removes the parameter with the given name from the module;
• getParam and [] operator – both functions allow to get an instance of ConfParam which represent

the parameter having the given name (paramName). Acting on the obtained instance of ConfParam,
it is possible to manage the parameter contained in the owner module.

ConfModule implements a mechanism similar to those used by ConfManager. It privately extends
PrivateConfModule to provide the getParamNode function only to the instances of ConfParam created by
it. The method returns the XML node representing the parameter having the given name (paramName).
ConfParam exposes several functions to allow management of different type of parameter in an easy
manner. In particular, it exposes methods to set and get the value of a parameter and to obtain the name of
the parameter itself.

4.2 AXMEDIS Editor Configuration Manager User Interface
• AXMEDIS Editor Configuration Manager User Interface shall provide an interface to allow

development of plug-ins for specific kind (or set) of settings;
• AXMEDIS Editor Configuration Manager User Interface will be capable to correctly display module

settings;
• AXMEDIS Editor Configuration Manager shall show all configuration in an user friendly manner, e.g.

dived by categories;

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

59

In the above figure, the user interface of AXMEDIS Configuration Manager is depicted. It is composed of a
tree view, which organizes the modules in user friendly manner, and a generic panel where the parameters of
the selected module are displayed. The showed parameters should have an adequate representation to their
type, e.g. in the figure above the selected files in the “AXMEDIS Certificate” field.

4.2.1 User interface class hierarchy
In the following, the class hierarchy for the user interface of the Configuration Manger is depicted.

4.3 AXMEDIS Configuration Format (DSI)
The configurations managed by the previous described classes are stored in a specific format. The best way
to store that information is to use XML file. In the following, the choosen schema of the XML file is
reported and described.

<config>
 <module name="User authentication" category="AXMEDIS Editor/AXMEDIS Network">
 <parameter name="AXMEDIS Certificate" type="String">file:/// C:/Documents and
Settings/vallotti/AXMEDIS/certificate.axc</parameter>
 <parameter name="Parameter 1" type="Int32">100</parameter>
 <parameter name="Parameter 2" type="Float">1000.35</parameter>
 <parameter name="Parameter 3" type="Boolean">true</parameter>
 </module>
 <module ...>
 <parameter ...> ... </parameter>
 <parameter ...> ... </parameter>

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

60

 <parameter ...> ... </parameter>
 </module>
 .
 .
 .
 .
</config>

In the previous example the module and parameters showed in the figure above (the one related to the user
interface) are expressed in the needed format. The related schema is reported below.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="unqualified">
<xs:element name="config">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="module">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="parameter">
 <complexType>
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"/>
 </sequence>
 <attribute name=”name” type=”string”/>
 <attribute name=”type” type=”string”/>
 </complexType>
 </xs:element>
 </xs:sequence>
 <attribute name=”name” type=”string”/>
 <attribute name=”category” type=”string”/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

61

5 AXMEDIS Editor Plug-in Manager (DSI, EPFL)

AXMEDIS Editor has been thought to be as versatile and flexible as possible. In order to achieve this goal,
various AXMEDIS Editor modules need to support plug-in technology. Hence, a AXMEDIS Editor Plug-in
Manager is needful, such manager will be able to support installation/registration of plug-ins, to load such
plug-ins for AXMEDIS Editor modules which request it and to maintain/manage relationship among plug-
ins and related entities or actions, e.g. AXMEDIS Editor Plug-in Manager shall maintain relation among a
specific set of metadata and the corresponding production or visualization plug-ins.

• AXMEDIS Editor Plug-in Manager shall manage the following kind of plug-ins:
o Data-manipulation plug-ins shall be able to modify AXMEDIS object structure, i.e. plug-ins which

shall be able to delete or move existing components, insert new components, etc…
o Metadata show/manage plug-ins shall be used by Metadata View to adequately display and modify

user-defined sets of metadata;
o Metadata production shall be able, through AXMEDIS object (and parts thereof) analysis, to

produce metadata to be included into the object;
o Configuration plug-ins shall be used by AXMEDIS Editor Configuration Manager to manage and

display specific configuration information;
o Workflow plug-ins which shall permit interaction of AXMEDIS Editor with AXMEDIS Workflow

subsystem;
o Protection plug-ins, which contain protection algorithm enriching the set of those available for the

Protection Processor;
• Plug-in Manger shall provide standard interface definition for the above mentioned plug-ins family;
• Plug-in Manger shall provide an interface to allow interested AXMEDIS Editor modules to access to

associated plug-ins.
• AXMEDIS Editor Plug-in Manager shall store all those information needful to classify and sort plug-

ins, such as:
o Kinds of component or actions associated;
o Mime type association;
o Etc…

Each plug-in is described by a XML file (namely a profile) which contains the following information:
• the category of the plug-in, e.g. content processing;
• the unique identifier of the plug-ins, e.g. an URI like a XML namespace;
• the signature of the plug-in evaluated by an AXCS;
• data specific for the kind of plug-in (see below);
• the signature, estimated by the AXCS, of the whole XML file.

See the XML schema below for more details.
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com) by Paolo Nesi (University of Florence) -->
<xs:schema targetNamespace="http://www.axmedis.org/plugin-schema" xmlns:pin="http://www.axmedis.org/plugin-schema"
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="0.1">
 <xs:import namespace="http://www.w3.org/2000/09/xmldsig#" schemaLocation="xmldsig-core-schema.xsd"/>
 <xs:element name="Plugin" type="pin:PluginType">
 <xs:annotation>
 <xs:documentation>This is the root element for XML file describing AXMEDIS plugins</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="PluginType">
 <xs:sequence>
 <xs:element name="GeneralDescriptor" type="pin:GeneralDescriptorType"/>
 <xs:element name="ComponentsSignature" type="dsig:SignatureType"/>
 <xs:element name="SpecificDescriptor" type="pin:SpecificDescriptorType"/>
 <xs:element name="Signature" type="dsig:SignatureType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="GeneralDescriptor" type="pin:GeneralDescriptorType"/>
 <xs:complexType name="GeneralDescriptorType">

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

62

 <xs:sequence>
 <xs:element name="Category" type="xs:string"/>
 <xs:element name="Identifier" type="xs:anyURI"/>
 <xs:element name="Library" type="xs:string"/>
 <xs:element name="Version" type="xs:string"/>
 <xs:element name="Vendor" type="xs:string"/>
 <xs:element name="MainLibrary" type="xs:anyURI"/>
 <xs:element name="Description" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ComponentsSignature" type="dsig:SignatureType"/>
 <xs:element name="SpecificDescriptor" type="pin:SpecificDescriptorType"/>
 <xs:complexType name="SpecificDescriptorType" abstract="true">
 <xs:sequence>
 <xs:any namespace="##any"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Signature" type="dsig:SignatureType"/>
</xs:schema>

element Plugin

diagram

namespace http://www.axmedis.org/plugin-schema

type pin:PluginType

children GeneralDescriptor ComponentsSignature SpecificDescriptor Signature

description This element is the root element of profiles for AXMEDIS plug-ins. It contains necessary information to manage and to
use the associated plug-in.

element GeneralDescriptor

diagram

namespace http://www.axmedis.org/plugin-schema

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

63

type pin:GeneralDescriptorType

children Category Identifier Library Version Vendor MainLibrary Description

description This element contain general information on the plug-in the profile refers to. That information is mandatory and valid for
all kind of plug-in. The fields are:

• Category represents the type of functionalities the plug-in implements, e.g. content processing, protection tool,
etc…

• Identifier is the unique identifier of the plug-in in AXMEDIS framework

• Library the name of the specific library of the vendor

• Version is string representing the version of the software, it could be use for compatibility controls

• Vendor is the name/description of the plug-in maker

• MainLibrary is a relative URI referencing the dynamic library exposing the interface described in the
SpecificDescriptor element of the plug-in profile.

• Descriptor a human readable description text of the plug-in

element ComponentsSignature

diagram

namespace http://www.axmedis.org/plugin-schema

type dsig:SignatureType

children dsig:SignedInfo dsig:SignatureValue dsig:KeyInfo dsig:Object

attributes Name Type Use Default Fixed
Id ID optional

description This element is a dsign:SignatureType. It is the signature (estimated by an AXCS) of the entire plug-in. The signature
comprises all relevant resources which compose the plug-in. Those resources are listed as Reference elements of
ds:SignedInfo.

element SpecificDescriptor

diagram

namespace http://www.axmedis.org/plugin-schema

type pin:SpecificDescriptorType

description This is an abstract element which can be substituted with any element derived by SpecificDescriptorType. In that way,
Category-dependant XML schema can be used to describe specific features of the plug-in (see GeneralDescriptor).

[DSI] Use of SpecificDescriptor as described above is still under discussion. Another proposed solution is
to create a unique XML schema which can be capable to acceptably describe all kinds of plug-in. That new
solution will allow to use a unique formalism to describe plug-ins and a standard way to use them.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

64

element Signature

diagram

namespace http://www.axmedis.org/plugin-schema

type dsig:SignatureType

children dsig:SignedInfo dsig:SignatureValue dsig:KeyInfo dsig:Object

attributes Name Type Use Default Fixed
Id ID optional

description This is the signature of the whole profile except the Signature element itself. It has been introduced to guarantee the
dependability of the data contained in the manifest.

Notice that all references contained in a profile have to be evaluated as relative to the profile location on the
local file-system. This should not be a hard constraint for plug-in developers because AXMEDIS plug-ins
will be installed in a given location (which depends on the platform).
Profile authenticity and plug-in signature are not directly verified by the Plug-in Manager, they are verified
by the Protection Processor calling verifySoftware and passing the location of the profile and the profile
itself.

5.1 Plug-in function description
The functions contained in a plug-in, which should be made available to the AXOM, have to be someway
described in the plug-in profile. In that way, AXOM knows the signature of that functions and can call them.
The functions described in the plug-in profile are accessible in different ways/for different purposes
including:

• a user can use a function through a user interface like the AXMEDIS Editor; e.g. a user wants to use a
specific function on a given resource then the editor can display an interface dynamically generated

• automatically by an engine like Compositional/Formatting Engine; e.g. in a compositional script a
fingerprint extract function can be called

The function description has to be placed within the SpecificDescriptor element of the plug-in description
schema.
See the XML below for more details

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

65

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/plugin-function-schema"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.axmedis.org/plugin-function-schema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="FunctionList" type="FunctionListType">
 <xs:annotation>
 <xs:documentation>Comment describing your root element</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="FunctionListType">
 <xs:sequence>
 <xs:element ref="Function" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Function" type="FunctionType"/>
 <xs:complexType name="FunctionType">
 <xs:sequence>
 <xs:element name="Name" type="xs:ID"/>
 <xs:element name="Version" type="xs:string" minOccurs="0"/>
 <xs:element ref="FunctionDescription"/>
 <xs:element ref="ParameterList"/>
 <xs:element ref="Result"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="FunctionDescription" type="DescriptionType"/>
 <xs:complexType name="DescriptionType">
 <xs:sequence>
 <xs:any namespace="##any"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ParameterList" type="ParameterListType"/>
 <xs:complexType name="ParameterListType">
 <xs:sequence>
 <xs:element ref="Param" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Result" type="ParamType"/>
 <xs:element name="Param" type="ParamType"/>
 <xs:complexType name="ParamType">
 <xs:sequence>
 <xs:element name="Name" type="xs:ID"/>
 <xs:element ref="ParamType"/>
 <xs:choice minOccurs="0">
 <xs:element name="In"/>
 <xs:element name="Out"/>
 <xs:element name="InOut"/>
 </xs:choice>
 <xs:choice minOccurs="0">
 <xs:element name="Mandatory"/>
 <xs:element name="DefaultValue" type="xs:anySimpleType"/>
 </xs:choice>
 <xs:element ref="ParamDescription"/>
 <xs:element ref="Constraints" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ParamDescription" type="DescriptionType"/>
 <xs:element name="Constraints" type="ConstraintsType"/>
 <xs:complexType name="ConstraintsType">
 <xs:sequence>
 <xs:element ref="Ranges" minOccurs="0"/>
 <xs:element ref="Resource" minOccurs="0"/>
 <xs:any namespace="##any"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ParamType" type="ParamTypeType"/>
 <xs:simpleType name="ParamTypeType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="UINT16"/>
 <xs:enumeration value="INT16"/>
 <xs:enumeration value="UINT32"/>

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

66

 <xs:enumeration value="INT32"/>
 <xs:enumeration value="FLOAT"/>
 <xs:enumeration value="DOUBLE"/>
 <xs:enumeration value="BOOLEAN"/>
 <xs:enumeration value="STRING"/>
 <xs:enumeration value="CHAR"/>
 <xs:enumeration value="RESOURCE"/>
 <xs:enumeration value="AXOM"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="Ranges" type="RangesType"/>
 <xs:complexType name="RangesType">
 <xs:sequence>
 <xs:element ref="Range" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Range" type="RangeType"/>
 <xs:complexType name="RangeType">
 <xs:sequence>
 <xs:element name="From" type="Limit"/>
 <xs:element name="To" type="Limit"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Limit">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="included" type="xs:boolean" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:element name="Resource" type="ResourceType"/>
 <xs:complexType name="ResourceType">
 <xs:sequence>
 <xs:element name="Type" type="xs:string"/>
 <xs:element name="Format" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

element FunctionList

diagram

namespace http://www.axmedis.org/plugin-function-schema

type FunctionListType

children Function

source <xs:element name="FunctionList" type="FunctionListType">
 <xs:annotation>
 <xs:documentation>Comment describing your root element</xs:documentation>
 </xs:annotation>
</xs:element>

description This element is the root element for the description of all function exposed by a plug-in.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

67

element Function

diagram

namespace http://www.axmedis.org/plugin-function-schema

type FunctionType

children Name Version FunctionDescription ParameterList Result

used by complexType FunctionListType

source <xs:element name="Function" type="FunctionType"/>

description This element represent a single function exposed by a plug-in. A function is characterized by a Name, which is used in
the script to call the function, and a version.

Element FunctionDescription

diagram

namespace http://www.axmedis.org/plugin-function-schema

type DescriptionType

used by complexType FunctionType

source <xs:element name=”FunctionDescription” type=”DescriptionType”/>

description This element can contain any kind of data and represents the description of the function (e.g. the help for the function).

Element ParameterList

diagram

namespace http://www.axmedis.org/plugin-function-schema

type ParameterListType

children Param

used by complexType FunctionType

source <xs:element name=”ParameterList” type=”ParameterListType”/>

description This element represents the list of parameters to be passed to the function.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

68

Element Param
diagram

namespace http://www.axmedis.org/plugin-function-schema

type ParamType

children Name ParamType In Out InOut Mandatory DefaultValue ParamDescription Constraints

used by complexType ParameterListType

source <xs:element name=”Param” type=”ParamType”/>

description This element represents a parameter of a plug-in function. Each parameter is characterized by the following field:

• Name – the name of the parameter
• ParamType – see below
• In, Out, InOut – only one of these field can be used for each parameter. They represent the direction of the

parameter:
o In – represents a parameter which will not be changed by the function
o Out – represents a parameter whose value is not used by the function and which will be modified by

it
o InOut – represents a parameter whose value is used by the function and which will be modified by it

by default the parameter will be considered of type InOut.
• Mandatory, DefaultValue – only one of these field can be used for each parameter. They represent the

obligatoriness of the parameter:
o Mandatory – it means that a value has to be given for this parameter
o DefaultValue – it is used to provide a default value for the parameter if it is not explicitly given

• ParamDescription – see below
• Constraints – see below

element ParamType

diagram

namespace http://www.axmedis.org/plugin-function-schema

type ParamTypeType

used by complexType ParamType

facets enumeration UINT16
enumeration INT16
enumeration UINT32

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

69

enumeration INT32
enumeration FLOAT
enumeration DOUBLE
enumeration BOOLEAN
enumeration STRING
enumeration CHAR
enumeration RESOURCE
enumeration AXOM

source <xs:element name="ParamType" type="ParamTypeType"/>

description This element represents the type of a parameter. The definition of this element fixes the set of parameter type which can
be exchanged among AXOM and plug-ins. A non-exhaustive list is reported above. Each type reported in the list
corresponds to a specific type in the programming language. The association is reported below.

element ParamDescription

diagram

namespace http://www.axmedis.org/plugin-function-schema

type DescriptionType

used by complexType ParamType

source <xs:element name="ParamDescription" type="DescriptionType"/>

description This element contains a human-readable description of a parameter, e.g. an help for the user.

Element Constraints

diagram

namespace http://www.axmedis.org/plugin-function-schema

type ConstraintsType

children Ranges Resource

used by complexType ParamType

source <xs:element name=”Constraints” type=”ConstraintsType”/>

description This element contains the constraints which the parameter is liable to. Constraints can contain several kind of
constraints, in the picture are reported some examples which are explained below.

element Ranges

diagram

namespace http://www.axmedis.org/plugin-function-schema

type RangesType

children Range

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

70

used by complexType ConstraintsType

source <xs:element name="Ranges" type="RangesType"/>

description This element contains a set of ranges which are used to constrain a parameter.

element Range

diagram

namespace http://www.axmedis.org/plugin-function-schema

type RangeType

children From To

used by complexType RangesType

source <xs:element name="Range" type="RangeType"/>

description This element represent an interval constraint of a parameter. It is composed by two values:

• From is the start point of the range

• To is the end point of the range
both extreme limits can be included or excluded. In fact, those elements have the included attribute which can be true
or false.

element Resource

diagram

namespace http://www.axmedis.org/plugin-function-schema

type ResourceType

children Type Format

used by complexType ConstraintsType

source <xs:element name="Resource" type="ResourceType"/>

description This element represent a constraint on the type of resource which can be passed as parameter to a function. It has to be
used in conjunction to a parameter of type RESOURCE to determine the acceptable MIME Type for it. The Type
element corresponds to the MIME type while Format element corresponds to the MIME subtype. Information about the
MIME content-types can be found in the RFC 2045 [RCF2045], 2046 [RCF2046] and 2077 [RCF2077].

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

71

5.2 Plug-in function parameters class hierarchy

As stated in the description schema, for each parameter type defined there a specific class has to be used in
the programming language. Those classes derive from a common base class (PluginParam) which provides
a basic interface for all possible parameter types. Moreover PluginParam derives from Recognizable which is
an interface which allows to perform type-related operations on the objects (e.g. something like reflection in
Java and C#), for more details see Part A in the Document Model Support section.
The associations among class and parameter types is depicted below:

• ParamValueType – it is a template class which will be used, through a set of typedef definition, to
wrap the basic data type, that is: UNIT16, INT16, UINT32, INT32, CHAR, BOOLEAN, FLOAT,
DOUBLE.
This class exposes a constructor and a cast operator which allow to freely use its instances in the same
way of base type.

• String – it represents a parameter of type STRING
• Resource – it represents a RESOURCE. It exposes two meaningful functions: getMIMEType,

getStream. The former allow to know the MIME type of the resource contained in it, the latter returns
a stream which allow to get the resource wherever it is physically located.

• AXOM – it represents a parameter of type AXOM.
The base class exposes two generic function getParamRef and getParamSize which respectively return a
reference to the real parameter (as void pointer) and the size in byte of the parameter itself.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

72

5.3 Plug In Manager (general tool) (DSI, EPFL)

AXMEDIS Editor::AXMEDIS
Object Manager

Adaptation Algorithms Profile

AXMEDIS Editor::Plug In Manager

AXMEDIS Editor::AXOM
Content Processing

Compositional/Formatting Rules
Editor::External Procedures Profile

Manager

Module Profile
Plug in Manager

Executable or Library(Support) Library
Single Thread or Multithread Single
Language of Development C++
Responsible Name Andrea Vallotti
Responsible Partner DSI
Status (proposed/approved)
Platforms supported

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)
API AXOM, Editors and Engines

File Formats Used Shared with File format name or reference to a

section
none None
User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Plug in monitor, list of active
plug ins

C++

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
WxWIDGET

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

73

+plugFunction(in plugpointID, in func : PlugFunction)
+addPlugPoint(in pointID, in point : PlugPoint)

-plugPoints
PlugInManager

+plugFunction(in func : PlugFunction, in funcID)
+listPluggedFunctionIDs()
+getPluggedFunction(in funcID) : PlugFunction

PlugPoint

+listResourcesMIMETypes()
+listFunctionIDsForMIMETypes()

AXContentProcessing

+setPluginPath(in path)
+installPlugIns(in connector : PlugConnector)

DLLExplore

1
1

PlugConnector

AXCommandReporting

Some methods of
the plug-in manager
are at disposal of
the DLL environment

+setParams(inout params : vector<PluginParam>) : void
+setParam(in name, inout param : PluginParam) : void
+setParam(in index : int, inout param : PluginParam) : void
+getParam(in name) : PluginParam&
+getParam(in index : int*) : PluginParam&
+execute() : PluginParam&
+execute(inout params : vector<PluginParam>) : PluginParam&

PlugFunction

+getCommandReportType()

CommandReportingPlugFunction

+getResourceMIMEType()

ContentProcessingPlugFunction

«uses»
«uses»

1

*

In the above diagram the plug-in manager structure is depicted. That diagram provides base classes which
allows to construct more complicated architecture. In particular, fundamental element of that approach are
the following:

• PluginManager – it is the main class of the module which links the plug-in (and their functionalities)
to those component which will use them. It contains a list of PlugPoint, each of them is registered to a
specific category of plug-in and function. Every time PluginManager loads a plug-in and its
functions, it alerts the related PlugPoint.

• DLLExplorer – it is an utility class which is used by the PluginManager to discover all the plug-in
installed on a device. Every time it found a dynamic library with its associated profile it invokes the
PluginManager.

• PlugFunction – it is a base class for all those classes which have to be used as plug-in function. The
execute method is pure virtual and it have to be defined in the derived classes, it is the real functional
part of those classes.

• PlugPoint – it is a base class for all those classes which want to use plug-in functions. As depicted in
the figure, PlugPoint is the base class the content processing module derives from (as well as the
command and reporting module)

Plug-in certification functionalities are based on the services provided by the Protection Processor which
needs to access to profile of the plug-in.
Fundamentally an AXMEDIS Plug-in is a dynamic library acting as factory of plug-in functions. A plug-in
have to expose the following interface:

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

74

extern “C”
PluginFunction* createPluginFuncton(const std::string& id);
void releasePluginFuncton (PluginFunction*);

5.4 AXOM Content processing (DSI, EPFL)

AXOM Content Processing is the interface the AXOM uses to call dynamic functions for content processing.
Content processing function belongs to the following categories: Fingerprint estimation, Descriptor
estimation, Adaptation algorithm, etc…
AXOM Content Processing is a subclass of PlugPoint and it is registered in the plug-in manager as plug
point for all the above-mentioned function categories. In that way, content processing can manage and
arrange the content processing functions on the base of relevant information such as, for example, MIME
type of the resource to which the function applies (described in the Constraints element of the function
description).
AXOM uses AXOM Content Processing function to access function s on the base of its needs and of the
requests it receives from the user.
AXOM Content Processing configuration is also based on the information provided by the user thorough the
Configuration GUI. This module allows the user to visualize the association among resource types and
functions and to modify those links so as achieves specific goals.

5.5 AXOM Commands and Reporting (DSI, EPFL)

AXOM Commands and Reporting has the same role as AXOM Content Processing instead it is responsible
to manage dynamic functions related to workflow system. It is implemented in the same way of AXOM
Content Processing and it is the intermediate between AXOM and Plug-in Manager.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

75

6 Internal AXMEDIS Resource Editors/Viewers (DSI)

a set of view/editor built-in AXMEDIS Editor which guarantees a range of basic behaviors, for example,
audio player, video player, doc viewer, etc.;

Internal AXMEDIS Resource Editor/Viewer

AXMEDIS Editor::AXMEDIS
Object Manager

Internal Video Player

Internal Image Player

Internal Audio Player

AXMEDIS Client Player::AXMEDIS Media Player
User Interface and Window

Support

Internal Document
Viewer

Internal MPEG4 Player

Internal AAAA Editor or
viewer

Internal Editors and viewers of digital resources have to be realised in a compatible manner to be
interfaced with the AXOM and to be hosted into the AXMEDIS Media Player User Interface and
Windows Support.

They have to:

• be provided in Source Code and Lib/Obj to be linked to the rest of the application to guarantee the
safeness of the Digital Resources.

• Provide a formal interface to export content processing functionalities if they are EDITORS such
as: editing, merge, cut and past, save, load, etc.

• Provide a formal interface to export content Playing functionalities if they are PLAYER or
VIEWERS: play, start, stop, pause, save, load, etc.

• Provide a formal interface to INIBIHIT and/or control all the functionalities as above describe
• Provide a formal interface to make a report of the actions performed by the user or requested by

means of the interface.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

76

6.1 Internal Audio Player (DSI, EPFL, …………)

Module Profile
Internal Audio Player

Executable or Library(Support) Library
Single Thread or Multithread Multithread
Language of Development C++
Responsible Name Bellini
Responsible Partner DSI
Status (proposed/approved)
Platforms supported Windows

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section
MPEG3, WAVE, AAC

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

WxWIDGET C++

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
WxWIDGET LGPL
splay LGPL

The Internal Audio Player will allow to listen to audio files encoded in WAV, MP3 and possibly AAC and
WMA formats.
The functionalities supported will allow to:

• load a file directly from file system or from an AXMEDIS Object
• control the playback with play, pause, stop functions
• control the volume
• get status (current time, duration, information on the played resource, …)
• set the start/end time for playing and for extraction
• extract a portion of the audio to a stream

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

77

MpegThread

AudioThread MpegMultiRatePlayer

Soundinputstream

WaveThread
Mpegtoraw

AudioMultiRatePlayer

Soundplayer

RawWinPlayer Rawplayer

RawWinPlayerOnThread

WaveMultiRatePlayer

WaveBuffer

WaveMultiRateBuffer

WaveMultiRatePlayerOnThread

-player1

-loader1

-buffer 2

-mpegPlayer

1
1

-server1

-wavePlayer1

-buffer 2 Soundinputstreamfromfile

Soundinputstreamfromhttp

Rawtofile

+showControls(in show : bool = true)
+onPlayPause()
+onStop()
+onSeek()

AxMediaPlayerPanel

1

-audioThread0..1

wxPanel

+bindTo(in axom : AxObjectManager)
+load(in index : ElementIndex)
+load(in url : string)
+play()
+extractTo(in ostream)
+getStatus() : string
+goNext()
+goPrev()
+goTo()
+getCount()
#checkRight(in cmd : AxCommand)
+getMediaTimeControl() : AxMediaTimeControl
+getMediaVisualControl() : AxMediaVisualControl

AxMediaPlayer

AxObjectManager

0..1

11

AxAudioPlayer

AxCommand

AxCommandPlay ElementIndex

1 1

+stop()
+pause()
+isPlaying() : bool
+jumpToTime()
+getCurrentTime()
+getDuration()
+setStartTime()
+setEndTime()

«interface»
AxMediaTimeControl

Class axMediaPlayerPanel is a panel containing the basic user interface for a media player allowing the
basic operations on media files (play/pause, stop, seek), see the following picture for an example on how it
may look like.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

78

Pause Stop

Playing: La traviata

Class AxMediaPlayer is an abstract class containing the basic functionalities that should be implemented by
a media viewer, other functionalities for time control and for visual control are in two specific interfaces
(AxMedisTimeControl, AxMediaVisualControl) that the class derived from AxMediaPlayer may on may not
implement. Class AxMedisPalyer is specialized in AxAudioPlayer, AxVideoPlayer and AxImageViewer.
Class AxAudioPlayer implements the functionalities for audio using a library (splay) for MP3 and other
code developed in WEDELMUSIC for WAV files. Another library to support AAC audio can be used.
However this player may be substituted by the VideoPlayer since this one can also do audio playing only.

The following sequence diagram depicts what happens when the Play/Pause button is pressed:

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

79

 : AxMediaPlayerPanel

onPlayPause()

 : AxAudioPlayer

play

 : AxObjectManager

conditions

canExecute(cmd)

Execute(cmd)

 : MpegThreadMpegThread(inputStream)

Play()

onStop()

stop

Stop()

getInputStream(index)

conditions returned report the conditions needed
to play the audio, if the user accepts the conditions
(e.g. the fee) the operation will be traced.

checkRight(cmd)

6.2 Internal Image Viewer (DSI,…………)

Module Profile
<name……..>

Executable or Library(Support) Library
Single Thread or Multithread Multiple
Language of Development C++
Responsible Name Ivan Bruno
Responsible Partner DSI
Status (proposed/approved)
Platforms supported Windows

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section
Many, practically all

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

80

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
ImageMagik ImageMagick LGPL
WxWIDGET WxWIDGET LGPL
wxImagick LGPL

The Internal Image Viewer will allow to display images and sequences of images (like multi image TIFF
format), it will support the image formats supported by the ImageMagick library.
Functionalities provided will allow to:

• zoom the image
• fit the image within a size
• display the next/previous image in a sequence or display a specific one
• print an image

+showControls(in show : bool = true)
+onPlayPause()
+onStop()
+onSeek()

AxMediaPlayerPanel

wxPanel

+bindTo(in axom : AxObjectManager)
+load(in index : ElementIndex)
+load(in url : string)
+play()
+extractTo(in ostream)
+getStatus() : string
+goNext()
+goPrev()
+goTo()
+getCount()
#checkRight(in cmd : AxCommand)
+getMediaTimeControl() : AxMediaTimeControl
+getMediaVisualControl() : AxMediaVisualControl

AxMediaPlayer

11

AxObjectManager

0..1

AxImageViewer

wxScrolledWindow

wxImagick

AxCommand

AxCommandPlay ElementIndex
1 1

+fit(in size)
+zoom(in ratio : double)
+fullScreen(in value : bool = true)
+isFullScreen() : bool
+print()
+getMediaClient() : wxWindow

«interface»audioplayer::AxMediaVisualControl

Class axImageViewer implements the functionalities of axMediaPlayer for viewing an image. It uses the
wxImagick library to view the images. wxImagick uses the ImageMagick library for encoding/decoding
images (multi platform) but the visualization works only under Windows.
The following is a possible user interface to view images.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

81

Play Stop

Mozart

6.3 Internal Video Player (DSI, ………)

Module Profile
<name……..>

Executable or Library(Support) Library
Single Thread or Multithread Multiple
Language of Development C++
Responsible Name Bellini
Responsible Partner DSI
Status (proposed/approved)
Platforms supported Windows

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section
AVI, MPEG, other video
depending on the Codecs

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

WxWIDGET C++

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

82

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
DirectX SDK DirectX v. 9

The Internal Video Player will be used to display video resources. It wiil provide functionalities to:

• control execution play/stop/pause
• seek to a time position
• fit the video frame in a dimension,
• zoom in or out
• go in full screen mode

AxObjectManager

0..1

axVideoPlayer

wxPanel

+bindTo(in axom : AxObjectManager)
+load(in index : ElementIndex)
+load(in url : string)
+play()
+extractTo(in ostream)
+getStatus() : string
+goNext()
+goPrev()
+goTo()
+getCount()
#checkRight(in cmd : AxCommand)
+getMediaTimeControl() : AxMediaTimeControl
+getMediaVisualControl() : AxMediaVisualControl

AxMediaPlayer

wxPanel

+showControls(in show : bool = true)
+onPlayPause()
+onStop()
+onSeek()

AxMediaPlayerPanel
1

1

«framework»
DirectShow

ElementIndex

AxCommand

AxCommandPlay

1 1

+fit(in size)
+zoom(in ratio : double)
+fullScreen(in value : bool = true)
+isFullScreen() : bool
+print()
+getMediaClient() : wxWindow

«interface»
AxMediaVisualControl

+stop()
+pause()
+isPlaying() : bool
+jumpToTime()
+getCurrentTime()
+getDuration()
+setStartTime()
+setEndTime()

«interface»
AxMediaTimeControl

Class AxVideoPlayer implements the functionalities of AxMediaPlayer, AxMediaTimeControl and
AxMediaVisualControl for playing a video.
Class AxVideoPlayer will be implemented using DirectShow under Windows. For other platforms
(Linux/MAC) the use of cross platform library will be investigated (like SDL – Simple DirectMedia Layer,
http://www.libsdl.org).
The main issue is on how to access a protected video without writing it in clear a as file. In DirectX it can be
done writing a custom AsyncSource node to be used in the decoding Graph. Have to be noted that this node
should not to be deployed as DLL otherwise a malicious user can build a Graph allowing to save in clear the
whole video.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

83

The following may be the user interface of the Internal Video Player:

Pause Stop

Playing: Batman Begins

Fit
Zoom In
Zoom Out

6.4 Internal MPEG-4 Player (EPFL)

Module Profile
MPEG-4 Player

Executable or Library(Support) Executable or library (current status: executable)
Single Thread or Multithread Multithread
Language of Development C++
Responsible Name
Responsible Partner EPFL
Status (proposed/approved) Proposed
Platforms supported Windows 2k/XP

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section
mp4 (MPEG-4 File Format)

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

DirectX / DirectSound MS Visual C++ (6, .NET 2002)
OpenGL
OpenAL

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

84

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,
proprietary, authorized or not

• faac (L-GPL)
• im1_dmif_mp4
• im1_dmif_trif
• im1_dmif_remote
• im1_dmifclientfilter
other players to be negotiated or
changed (see below)

MPEG-4 r.s.
MPEG-4 r.s.
MPEG-4 r.s.
MPEG-4 r.s.

L-GPL
ISO
ISO
ISO
ISO

 r.s. = reference software
MPEG-4 Player Proprietary (bSoft). Limited access

to the source code and Use for the
project can be negotiated with bSoft
directly as done during IST
CARROUSO. Also agreement with
ENTHRONE may be investigated

The MPEG-4 internal player constitutes a slightly different case of Media Player for AXMEDIS. In fact
MPEG-4 itself not only support media content in terms of different media files or streams, but it satisfies a
much more relevant number of requirements providing tools to multiplex and synchronize all the elementary
media streams even in the wider context of a rich multimedia scene (including user navigation, user
interaction, inherent behavior of the scene and presentation of natural and synthetic sounds and media). All
this is included in a compliant MPEG-4 Player, so that any kind of control description or rule is normally
coded inside the mp4 file or systems specific stream. The overall architecture of the Player in accordance to
the MPEG-4 specification is reported in the following picture (control flow in dotted lines):

Management of specific protection rules is also possible in relevant points of the above diagram according to
the MPEG IPMPX specification.

For all these reasons including the MPEG-4 Player into the internal AXMEDIS resources may result rather
straightforward as only a very reduces number of commands are transmitted from the current Player user
interface to the underlying architecture (executive control).

The overall player interface can be based on the abstract class axMediaPlayer (see previous sections above),
through the specialized class axMPEG4Player. The functionality that is implemented by this class is rather

control user
interact

scene

video

audio

nodes

pictures

frames

video
render

audio
render

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

85

reduced in terms of operations, given the complex architecture of the player itself and associated content
described above.
Currently the MPEG-4 Player can allow two working modes:
• Network Channel (DMIF): in this modality the only possible command is open of a network address

After this is done by validation of the rights through the AXOM, all the streaming content is received
and rendered including audiovisual objects and scene/interaction. Connection is closed when a new one
is open or the Player is closed.

• File (MP4): in this modality and under the AXOM control load of a file is possible and content is
available as for the network modality. In any case this mode may allow the implementation of simple
axMedia functions like start/stop/pause since file is available and no indeterminate buffering is
necessary. All more than this may be really complex as it will interact with the decoding process of all
built-in MPEG-4 decoders. More complex behavior for multiple media in AXMEDIS can be
implemented in single objects linked through SMIL in the main AXMEDIS Player (and Editor).

Once open or load are allowed, user activity can be monitored by built-in tracing capabilities and possibly
reported: it is in any case MPEG-4 activity in terms of operation on the MPEG-4 content by built-in sensors
and controls.

6.5 Internal SMIL Player (EPFL)

SMIL is an XML language for choreographing multimedia presentations where audio, video, text and
graphics are combined in real time. The language, the Synchronized Multimedia Integration Language
(SMIL, pronounced, "smile") is written as an XML application and is currently a W3C Recommendation.
Simply put, it enables authors to specify what should be presented when, enabling them to control the precise
time that a sentence is spoken and make it coincide with the display of a given image appearing on the
screen.

The SMIL player used in AXMEDIS will be based on the AMBULANT Player. The AMBULANT Open
SMIL Player is an open-source, full SMIL 2.0 media player. It is intended for researchers and developers
who want a source-code player upon which they can build higher-level systems solutions for authoring and
content integration, or within which they can add new or extended support for networking and media
transport components. The AMBULANT player may also be used as a complete, multi-platform media
player for applications that do not need support for closed, proprietary media formats. The AMBULANT
player written in C++, is distributed under a modified GPL license, and it is available for Windows, Linux,
and Macintosh.

The AMBULANT player can be used to play SMIL-compatible documents from AXMEDIS objects. A
SMIL player has to be able to render different kinds of media objects (text, audio, images, video...).
Currently the AMBULANT player delegates the rendering of images, video, or audio to third-party
specialized libraries. In case we wanted the SMIL player to be able to use the AXMEDIS internal MPEG-4
player the MPEG-4 player would have to implement the playable interface (see UML diagram below). The
playable interface is used by the SMIL player to control the objects being scheduled (renderers, animations,
timelines, transitions. There is a corresponding interface playable_notification that implementations of
playable will use to communicate back: things like media end reached, user clicked the mouse, etc.

The AXMEDIS Editor would control the SMIL player through the player interface. The player interface –
see C++ abstract class below- is the one used by embedding programs that want to control the SMIL player.
In AXMEDIS, all the players have to implement the axMediaPlayer interface. The AMBULANT player
does not implement this interface but it implements the player interface instead. To use the AMBULANT
player in AXMEDIS the player interface will have to be extended until it matches the axMediaPlayer
interface.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

86

Some functions of the axMediaPlayer interface and the SMIL player interface are the same and will not
need to be added. Some other functions of the SMIL Player will have to be slightly modified, for instance the
Play function will need, as input parameter, the index of the resource in the AXMEDIS document. Some
other functions are missing in the SMIL play interface and will need to be added. These are the most
important functions to be added to the AMBULANT player to use it, in AXMEDIS, as an internal player:

• bindTo(in axom: axObjectManager)
• load(in axoid)
• getMediaClient(): wxWindow

The bindTo function will be called on the SMIL player to attach it an AXMEDIS Object Manager. The
SMIL player needs a reference to an Object Manager because the player does not have direct access to the
AXMEDIS document. The SMIL player will use the reference to the Object Manager to read the AXMEDIS
document.
The load function will be used to load from the AXMEDIS document a resource with identifier axoid -the
parameter of the function.
The getMediaClient function returns a wxWindow reference. This poses a problem to the AMBULANT
player because, in its Windows version, it does not use wxWidgets but MFC. There is no easy conversion
from an MFC window object to a wxWidget window object. One solution could be adding another function
to the axMediaPlayer interface getMediaClientMM() which could return a reference to a custom object
axmedisWindow. The axmedisWindow object should implement the set of functions from wxWindow
that would be needed, for instance:

• SetSize(...)
• SetTitle(...)
• Show(...)
• Hide(...)

NB: the same problem occurs in the MPEG-4 Player above, since the management of windows is already
implemented either using MS API or OpenGL. Adapting in the proposed way may solve both.

/// This is the API an embedding program would use to control the
/// player, to implement things like the "Play" command in the GUI.
class player {
 public:
 virtual ~player() {};

 /// Return the timer this player uses.
 virtual lib::timer* get_timer() = 0;
 /// Return the event_processor this player uses.
 virtual lib::event_processor* get_evp() = 0;
 /// Start playback.
 virtual void start() = 0;
 /// Stop playback.
 virtual void stop() = 0;
 /// Pause playback.
 virtual void pause() = 0;
 /// Undo the effect of pause.
 virtual void resume() = 0;
 /// Return true if player is playing.
 virtual bool is_playing() const { return false;}
 /// Retirn true if player is paused.
 virtual bool is_pausing() const { return false;}
 /// Return true if player has finished.
 virtual bool is_done() const { return false;}
 /// Return index of desired cursor (arrow or hand).
 virtual int get_cursor() const { return 0; }
 /// Set desired cursor.
 virtual void set_cursor(int cursor) {}

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

87

// void set_speed(double speed);
// double get_speed() const;
};

6.6 Document Viewer (DSI)
The document viewer will support the visualization of documents like:

• HTML
• PDF
• MSWord Documents
• Postscript

The functionalities provided will be:
• go to next page, go to previous page, go to page
• zoom the page
• fit the page in the view
• print
• scroll the page within the view

To realize these functionalities different approaches can be used for each type of document

6.6.1 HTML
To view HTML files two possibilities are available:

• use the Internet Explorer ActiveX (only under Windows)
• use mozilla embedded inside the application (multi platform)

To host ActiveX controls inside wxWidgets applications a wrapper class is provided in a library called
wxActiveX (http://sourceforge.net/projects/wxactivex).

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

88

This library also provides an interface to host Internet Explorer as an ActiveX in wx applications.

class wxIEHtmlWin can be hosted as a client of any other wx component (like wxFrame, wxNotebook, etc.)
it provides functionalities to:

• load from a URL
• load from a wxString
• load from a stream object like wxInputStream or std::istream
• set the charset
• get/set the edit mode
• get the selected text inside the IE control (as HTML or not)
• get the text of the page shown in the IE control (as HTML or not)
• go back
• go forward
• go home
• go search
• refresh the window
• stop the page loading

moreover it allows to catch various events generated by the IE ActiveX like:

• when status text is changed
• before the connection to an URL
• when the title is changed
• when a new window is opened
• when progress during download changed

To access to protected content the use of streams will allow to avoid to save the HTML files in clear on disk
however it is not clear how to provide content referred from the protected html (e.g. images).
Some restrictions could be put to avoid the possibility of copy to clipboard selected text or to view the
HTML. To avoid this some filters on events could be set to filter the Ctrl+C and to block the right click in
case of protected content.

The other solution could be to use wxMozilla which is a wrapper of mozilla for wx applications. It does not
use the ActiveX technology thus allowing to use it also under other platforms (Linux, MACOS) but it seems
to not provide a load from a stream object but the fact that both the library and mozilla are in open source
gives the possibility to inspect and to adapt both to handle protection aspects.

6.6.2 MSWord Documents
To display MSWord Documents the Internet Explorer ActiveX can be used, however protection of such
content can be done only by filtering events (like Ctrl+C and right click).

6.6.3 PDF
To display PDF files the following possibilities are available:

1. use the InternetExplorer ActiveX to display PDF files (it uses the Acrobat ActiveX)
2. use directly the Acrobat ActiveX
3. use the embedded Mozilla to display PDF files (it uses the Acrobat ActiveX)
4. use ghostscript and Imagick libraries

the first three solution use directly on indirectly the Acrobat ActiveX control:
The wxActiveX library could used to host the Acrobat ActiveX inside a wx application.
The interface provided by the Actrobat ActiveX is very simple, basically it allows to open a file from the file
system. In case of protected content no way was found to load the pdf file from a stream object avoiding to
store the file in clear on the file system. However to protect pdf content the Acrobat DRM can be used and
customized for the AXMEDIS needs.
In particular Acrobat supports protection plugins allowing to define the key to encrypt the pdf file. This key
may be generated and stored with the pdf file on the file system. When the pdf is put inside an AXMEDIS

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

89

object also this key is put inside and protected. When the protected pdf file is opened it is stored on disk
(unusable without the key) and the Acrobat ActiveX is used to open it, the AXMEDIS specific protection
plugin for Acrobat will acquire the key from the AXEditor (e.g. via a protected channel) allowing it to
display the document. Note that the use of the protection plugin inside AcrobatReader is not free and it has a
not negligible cost.
Another solution is to use and adapt some free library for pdf rendering (Xpdf, ghostscript etc.) and to handle
protection mechanisms in a more effective way. However these libraries may not support all the features of
pdf files.

6.6.4 Postscript
Postscript documents may be visualized using ghostscript and the ImageMagick library (in the same way as
PDF files can be), regarding protection aspects the possibility of ghostscript to get content from a stream
object rather than from direct file access has to be investigated.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

90

7 External Editor/Viewer AXMEDIS Plug-ins and ActiveX Editor/Viewer

AXMEDIS Plug-ins (WP4.1.3: DSI, WP4.1.4: EPFL)

AXMEDIS Plug In including
AXOM

AXMEDIS Other Players/Editors/Viewers

Content Player/Editor/Viewer XX

Plug In Interface

AXMEDIS Plug-In Interface For
XX Tools

AXMEDIS Editor::AXMEDIS
Object Manager

AXMEDIS Editor::ActiveX Manager
for Editor/Viewer

COM Interface Frame Client to
be hosted

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

AXMEDIS Plug-In Interface For XX Tools module has to be realized for each Editor and Viewer in which
we would like to insert an AXMEDIS plug in.

AXMEDIS editor for images could be realized in this manner into third party editors (such as XX above) if
some DRM control is present via Plug In Interface in the those tools.

Some of the XX editor viewers can be available as ActiveX objects (such as ACROBAT reader). Those
cases the Content Editor/Viewer XX can be controlled even via ACTIVE X Manager for Editor/Viewer of
AXMEDIS. In these cases, the frame of the XX application can be hosted into the AXMEDIS Media Player
User Interface and Windows Support

The AXMEDIS plug-in for each device has to respect basic control features on the target external
player/editor/viewer.
Since the plug-in need to control the external player/editor/viewer in order to maintain the same security
level. It is not acceptable to lost the protected assets just to be edited in specific tools.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

91

AXMEDIS Editor
Calling External

Player

AXMEDIS External Editor/Players Interface

Content
Player/Editor/
Viewer XX

Commands

Data / Resources

Inhibitions of actions

Actions Logs AXMEDIS Plug In
including AXOM

AXMEDIS Plug-In
Interface For XX Tools

AXMEDIS
Editor::AXMEDIS
Object Manager

AXMEDIS
Editor::External Editor/

Viewer Activation
Manager

AXMEDIS
Editor::ActiveX

Manager for Editor/
Viewer

Content Player/
Editor/viewer XX
ACTIVE X client

IF ANY

Top Package::Final userTop Package::Object Builder

AXMEDIS Client Player::AXMEDIS Media Player User Interface and Window
Support

End19

End20

The EXEVAM uses a table to identify the accessible External Players, Editors and viewers with their profile
if any, in alternative it can use the MIME if the resource is not protected
The EXEVAM is responsible of verifying if the External Editor is a secure environment according to the
actions allowed by the license of the object under editing/playing, etc. If the external editor is not trusted the
demand is not possible.

The communication from the EXEVAM and the AXMEDIS Plug in Interface for XX Tool is performed by
means of a P2P communication layer with Discovery mechanism. This allows to see if a specific Editor is
Open to do a given activity.

The AXMEDIS Plug in for some XX Editor/Viewer has to be developed on the basis of:

• AXMEDIS Development Tool Kit for External Players
• Software Development Tool Kit of the External Content Player/Editor XX

7.1 External Editor/Viewer Activation Manager, EXEVAM, (DSI)

Module Profile
External Editor/Viewer Activation Manager

Executable or Library(Support) Library (Support)
Single Thread or Multithread Single Thread

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

92

Language of Development C++
Responsible Name Davide Rogai
Responsible Partner DSI
Status (proposed/approved) Proposed
Platforms supported All

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

External Editor/View Activation Manager and relative external application plug-ins – gives, to
AXMEDIS Editor, the capability of viewing/modifying resources by using external application which have
not ActiveX/COM interface;
The following figure depicts how the activation proceeds:

1. Once the AXMEDIS Editor receive a request by the user to open a give resource in the external
editor; it can run a system command to launch the proper executable (External Editor) eg. Word to
edit document, Photoshop to edit images

2. The external application installed the AXMEDIS Object Handler Plug-in; as soon as it is instantiated
by the application it activates a communication channel to receive requests or to report
notification/errors or to give back results.

3. The AXMEDIS Editor after the invocation it scan the local network interface in order to discover the
Object Handler Plug-in communication channel (more than one at time can be activated).

4. When the AXMEDIS Editor discover the plug-in the initialization process is commenced in this
phase several checks can be performed in order to assess the security level of the counter part plug-in
in performing specific operations.

5. If the security requirements are fulfilled by the External editor Object Handler plug-in capabilities,
than the object content is passed from the AXOM in the AXMEDIS Editor to the AXOM counter
part in the plug-in.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

93

The same utilization scenario can be adopted on the ActiveX external editor/viewer/players; the basic
functionalities are replicated for this architecture that simplifies the communication mechanism, as the latter
reuses the COM features to interoperate with the ActiveX object. The behaviour of the ActiveX has to
expose the same guaranties concerning security.

7.1.1 ActiveX Server
To host ActiveX controls inside wxWidgets applications a wrapper class is provided in a library called
wxActiveX (http://sourceforge.net/projects/wxactivex).
It provides functionalities to:

• construct an ActiveX inside a wxWindow using the ProgId (e.g.
“ShockwaveFlash.ShockwaveFlash”) or the ClsId (e.g. CLSID_WebBrowser) and giving the id,
position, size, style and name of the ActiveX Control.

• access to properties of the ActiveX
• call methods of the ActiveX
• receive and manage events generated from the ActiveX
• inspect properties, methods and events published by the ActiveX

The communication channel is not a strong assumption: it is possible to arrange different solutions in order
to make data available on both sides. The security does not depend on the communication channel, but is
maintained at the required level with the communication between the two AXOM instances.

External Application DLL

External Editor/View
AXMEDIS Plug-in

COM commands

Extra commands
and data transfer

AXMEDIS Editor

C
O

M
 In

te
rf

ac
e

AXMEDIS Object Handler

External Application

AXMEDIS Object
handler as a Plug-in

Communication
via e.g. socket

AXMEDIS Editor

Ex
te

rn
al

 V
ie

w
er

s
A

ct
iv

at
io

n

AXMEDIS Object Handler

 console execution
command

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

94

7.1.2 AXMEDIS Object Handler on the AXMEDIS Editor
A specific group of classes inside AXMEDIS editor provides different services in order to:

1. store a list of association between well-known mime-type and external editors (like what is provided
by an operating system; in such a list every mime-type is related to a group of external
player/viewer/editors descriptors: this descriptors collects relevant information about the related tool
like executable location in the file system, command line parameters…

2. manage the AXMEDIS Editor event of “Open this resource with…” triggered by the proper gui.
3. activate a communication able object in order to discover the plug-in counter part in the external

editor.

+getExternalHandlers(in mimetype : string) : ExternalHandlerDescription*
+activate(in handlerID : string)

MimeTypeManager

+onOpenResourceWithExternal()

AnyAXMEDISView

+activate()
+setExecutionParams()
+deactivate()

ExecutableActivator

+activate()
+setExecutionParams()
+deactivate()

ActiveXActivator

+activate()
+setExecutionParams()
+deactivate()

«interface»
Activator

ExternalHandlerDescription

+initialize()
+getSecurityProfile()
+writeAXObject()
+readAXObject()

PluginAXOMProxy

1

*1

1

From any view in the AXMEDIS editor a resource of an AXMEDIS object could be opened with an external
“handler” (with handler both cases of independent executable processes and ActiveX controls have been
modelled).
The MimeTypeManager class is a support entity to select the proper external handler and it operates in two
phases:

1. it allows to get a list of registered external handlers that can be activated for a specific resource mime
type;

2. it acts as the gateway of the activation since it associates on the basis of the description the proper
activator to invoke the external handler (Activator interface)

The MimeTypeManager exposes the interface to previously register the associations between mime type e by
a suitable configuration GUI.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

95

The detailed description of the external handlers is stored on a ExternalHandlerDescription.
Two different types of activators are conceived respectively with the aim to invoke the proper entity:

• basically the ExecutableActivator realizes the Activator interface to implement a console command
activation of the desired executable a class has been conceived in order to support different
platforms;

• the ActiveXActivator implements the activation via COM mechanism and host the ActiveX control
inside the AXMEDIS editor executable (which acts as a COM server). It is based on the
wxAutomationObject which provides functionalities to interact with OLE objects.

It is possible that, after the object manipulation in an external handler, that acts as a slave with respect to the
invoker (AXMEDIS editor), the handler is terminated by the AXMEDIS editor automatically; this is an
optional feature that should be managed by the activators.
Please note that the external editor (as an executable) could be already opened, when it is requested to
activate in order to run as a AXMEDIS Editor slave. In this case it is possible to proceed in two manners:

• do not open a new instance of the external editor and try to discover the plug-in activated in the
already opened

• open a new instance of the same external handler and discover the plug-in discovered in the new
instance just opened.

7.1.3 AXMEDIS Object Handler as Plug-in for external Editor XX
On the external handler side another Object Handler has been conceived to act as the protection counter part
in the secure architecture. In fact the security is based on the same protection mechanism of the AXMEDIS
Object: the AXOM and its ProtectionProcessor are hosted in the Object Handler Plug-in and the protected
object and its content are opened only inside the external handler memory context.
Ideally the plug-in should have the structure depicted in the figure below.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

96

The dashed lines represent the normal flow of the information for content handling.
The solid lines represent how the AXMEDIS plug-in can check the authorization of every action performed
by the user when it operates with the familiar external handler GUI.
The interception of the actions has the main role of enforcing only the rights licensed to the operating user;
according to the different operations that the external editor GUI can initiate, the plug-in has to redirect all of
them to the suitable “DRM-compliant” operation:

• an action can be directly inhibited, because is not bounded to any right described by a license
• an action can be realized by the instantiation of the required commands executable by the AXOM

module.
Please note that new commands can be added to the basic set provided by the AXOM library itself. Actually
it is the best way to include in the AXOM processing the specific content processing features that the
external handler exposes.

The commands to be implemented for the plug-in are the basic blocks of the secure manipulation of contents:
they must declare the required rights before the execution. The certification of plug-in is strongly based on
the well definition of such rights.

After the content encapsulated by the AXOM has been changed the rendering phase is needed in order to
feedback to the user what he has changed in the content. In the above diagram two different solution have
been depicted:

1. the content is extracted from the model and rendered by the plug-in (hard-coding solution, but
decoupled from external editor limitations)

2. the content is extracted from the model in the plug-in to update the usual model for content
modelling of the external editor; in this way the way of rendering the content model is totally reused.

7.1.4 Communication and discovery of plug-in counter-parts
Some basic functionalities are included in the transport mean of information regarding security, content,
commands, synchronization. A P2P framework can be used to allow several entities to communicate in a
decentralized manner. On this ad-hoc networking some basic services are provided like:

• Discovery of joining peers
• Send/receive text messages

Plug-in features

 Rendering

External Editor GUI

Content Processing features

Interception of actions

AXOM

AXMEDIS
Content
Model

XX Format
Content
Model

1

2

AXMEDIS Commands

inhibitions

2

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

97

A specific handler of the communication events has to be set up to deal with protocol notification such as “a
new message has been received”: after this notification a command can be acquired or new content
information can be transferred.

+initialize()
+getSecurityProfile()
+writeAXObject()
+readAXObject()

PluginAXOMProxy

+discoverPeers()

P2PSupport::PeerExplorer

+sendMessage(in peer, in message : string)

P2PSupport::PeerCommunicator

+onReceivedMessage()

«interface»
P2PSupport::PeerEventConsumer

+onReceivedMessage()
-masterPeer
PluginCommunicationManager

1

1

1

1

«uses»

On the plug-in side the handling of messages is similar. It is trivial to model the reference peer as a master in
the plug-in structure. The communication manager has the role of instantiating the content in a new AXOM
object inside the plug-in. The transferred object could come from the PeerCommunicator or it could be read
from a well-know file path: it is the resource that must be processed in the external handler.

7.1.5 Security level negotiation
In some cases the supposed architecture depicted in the above diagram cannot be provided by the plug-in
technology of the hosting program. If not all the user operation can be “handled” in the sense of avoided or
redirected to the secure command execution, this limitation could compromise the security framework built
on controlled content manipulation.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

98

Once the content (e.g. an image or a video) has reached the non-secure program the user can perform un-
authorized actions in an easy manner (e.g. save the content on the disk in another format).

Some incomplete secure architecture have to be declared by the plug-in and managed by the security
framework. The decision to transfer a content or not must be taken on the basis of matching the security
requirements of a particular content manipulation.
For example: An user has granted by a specific license the editing/adapting of a resource, but not to save it
on the disc in an unprotected form; he wants to edit outside of AXMEDIS editor that resource. If the external
editor cannot inhibit the save actions on its GUI, it has to be considered that the resource cannot be
transferred in the external editor, because this transfer compromises the DRM enforcement on the resource.

The decision can be taken automatically by a preference settings or asked to the used (resource editor).
A profile of the plug-in is needed for any external editor plug-in. The secure profile of any plug-in must be
certified, since it declares which action are (are not) inhibited by the plug-in development.
A policy has to be define in order to manage the rights/actions matching.

Collection of user rights
on a specific resource

(licence gathering)

User rights

Collection of user rights
on a specific resource

(licence gathering)

“Secured” actions

Requirements
fulfilment?

(set inclusion)

Content transfer
decision

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

99

8 Plug ins in other Players (DSI, EPFL, UNIVLEEDS)

8.1 General Plug-in Aim and Support

AXMEDIS Plug-In module has to be realized for each Player in which we would like to insert the capability
of processing content packaged in AXMEDIS objects.

It is reasonable that AXMEDIS players could add value to the AXMEDIS content if they are pluggable in:

• browsers like IE, Mozilla etc,
• multimedia players like WindowsMedia technology etc…

The different plug-in share the common feature that they has to manage AXMEDIS content; in some case
they must also provide the ability to render the content, in other cases they just have to extract from the
object and redirect to the target media format.

Three main architecture has been identified that cover most of the plug-in scenario of required integrated
players:

1. AXMEDIS ActiveX
2. AXMEDIS Plug-in for Mozilla
3. AXMEDIS Plug-in for Multimedia Players

In the following section the AXMEDIS client software architecture is tailored to fit these three different
utilization of AXMEDIS technology.

AXMEDIS Plug In including
AXOM

Content Player XX

AXMEDIS Plug In For
XX Player

AXMEDIS Editor::AXMEDIS
Object Manager

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

100

8.2 AXMEDIS ActiveX Control (DSI)

Module Profile
AXMEDIS plug-in into Microsoft Internet Explorer

Executable or Library(Support) Library
Single Thread or Multithread Multhread
Language of Development C++
Responsible Name Davide Rogai
Responsible Partner DSI
Status (proposed/approved) Proposed
Platforms supported Windows

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
ActiveX development provided
by Visual Studio

The ActiveX technologies allows the plug of an AXMEDIS player inside any compliant executable. First of
all the AXMEDIS content can be viewed in the most common interface, which is the Microsoft Internet
Explorer browser.
Several products designed for the windows platform have the capability of hosting ActiveX controls:
Microsoft Office Suite, Macromedia Tools, Authorware, ToolBook.

AXMEDIS
Client Player Software

Architecture

AXMEDIS
ActiveX

AXMEDIS
Plug-in for Mozilla

AXMEDIS
Plug-in for

Multimedia Player

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

101

In the main client view of the target application the AXMEDIS ActiveX can be rendered in a specific
bounded client area. The control takes the responsibility of render information and manage user interactions
regarding such an area.

Since the AXMEDIS ActiveX has to render itself on the screen portion it needs:

• some of the AXMEDIS viewers to be able to show hierarchy and metadata about content
• all the internal resource viewers (audio, video, image, document…)

Any hosting application

AXActiveX
- hierarchy
- metadata
- resource play

AXActiveX.dll

bounded
Client Area

AXMEDIS Active X

AXMEDIS Internal
Resource Viewers

AXOM

AXOM Content Processing

Protection Manager
Support Client

Protection
Processor

AXMEDIS Data
Model Support

AXMEDIS
Error and

Config.

Error and Configuration Manager

Adaptation & Fingerprint Algorithms

ActiveX Interface

Manager

AXMEDIS
Object Viewers

File System

 Software Architecture

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

102

8.3 AXMEDIS plug-in into Mozilla (SEJER)

Module Profile
AXMEDIS plug-in into Mozilla

Executable or Library(Support) Library
Single Thread or Multithread Single Thread (NPAPI Is NOT Thread Safe)
Language of Development C++
Responsible Name
Responsible Partner Sejer
Status (proposed/approved)
Platforms supported Windows, Linux, MacOsX

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

8.3.1 Introduction

In this section, a Mozilla Plug-in of the AXMEDIS Player is specified. This is a piece of code that knows
how to display an AXMEDIS object, at the request of Mozilla browser and inside the window of this Mozilla
Browser.
The AXMEDIS player is considered as being able to render the AXMEDIS content into its own window.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

103

A Mozilla plug-in is a dynamic code module that is native to the specific platform on which the Mozilla
browser is running. It is a code library, rather than an application or an applet, and runs only from the
browser.

The AXMEDIS plug-in may have to render many kind of content type (video, audio, text etc.). Some times,
it may be necessary for the plug-in to render a GUI allowing the user to manipulate the AXMEDIS content
(ala Acrobat Reader), sometimes it may be desirable to only display the AXMEDIS content without anything
around so that it integrates himself seamlessly into the hosting content. Thus, depending on the parameters
provided on the <embed> tag calling for the plug-in, the pug-in may choose to :

• Display the whole AXMEDIS Player GUI
• Display a lightweight, plug-in specific version of the Player GUI
• Display the content without any kind of GUI.

8.3.2 The Mozilla Plug-in Technology

With the Mozilla Plug-in API, one can create dynamically loaded plug-ins that can:

• register one or more MIME types
• draw into a part of a browser window
• receive keyboard and mouse events
• obtain data from the network using URLs
• post data to URLs
• add hyperlinks or hotspots that link to new URLs
• draw into sections on an HTML page
• communicate with Javascript/DOM from native code

The Mozilla Plug-in API has two levels. The first level is constituted by the basic, old Netscape Plug-in API
named NPAPI, which comes from the first ages of the Netscape browser and is recognized by practically
every browser on the market. Even MS Internet Explorer prior 5.5 understands this API, and for latter
version, after SP2 in which Microsoft has removed support for Netscape Plug-ins, there is a work around.

Thus the AXMEDIS Player plug-in implements this API. With some care the plug-in should then be able to
compile into a valid Opera Browser, Safari Browser and others plug-in, depending and the platforms the
Player can be compiled to.

Mozilla Browser

AXMozillaPlugIn
- hierarchy
- metadata
- resource play

AXMozPlugin
Library

<embed> tags to
include plug-in
rendering

Full Player GUI

Basic Player GUI Only specific resources player

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

104

At a second level, this API has been improved, in collaboration with Opera software, Sun, Apple, Adobe etc.
to extended interaction capacities between the plug-in and the hosting browser, that is:

 allowing the hosting browser to call some methods the plug-in exposes to him, that is making the
plug-in scriptable

 allowing the plug-in to access the DOM of the hosting Window to manipulate it.

The implementation status (stable or unstable) of this API is not clear for now but it should become stable
rapidly from now and it seems safe to rely on it, as it is said that the API is close to being frozen..

The API allows defining windowless or windowed plug-in, which mean respectively: plug-in that draw
themselves directly into the window of the hosting page, or plug-in that draws themselves in their own
window within the hosting web page. The second solution is used for the AXMEDIS plug-in, because, it is
safer.

Also, the id of the plug-in, which is an URI following a specific format to ensure unicity, must be in the
form: @Domain/ProductName,version=[?versionInfo&versioninfo=],*[ModuleIdentifier. @domain,
ProductName and Version are mandatory.
See http://www.mozilla.org/projects/plugins/plugin-identifier.html for further details.

Last, but not least, an “ACTIVEX Control for Hosting Netscape plug-ins in IE” project can be found on the
Mozilla web site at http://www.mozilla.org/projects/plugins/plugin-host-control.html. This control is able to
embed a Mozilla Plug-in to make it available to IE. This feature could be used to not do twice the same
coding effort at least for an initial validation of plug-in concept.

8.3.3 Authentication
For the plug-in to be able to manipulate AXMEDIS object and react to user requests through the browser &
player GUI, the user must be authenticated. When being instantiated, the plug-in:

• It pops up a dialog box asking the user to authenticate himself and request authentication through the
AXOM

• If authentication fails, display a message instead of the content
• If authentication succeeds, start processing the requested AXMEDIS content
• After a successful identification all the user licence are at disposal to consume the requested content.

Any other application

ActiveX Mozilla
Container

AXMozPlugin
Library

AXMozilla
PlugIn

ActiveXMozill
aContainer.dll

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

105

8.3.4 Architecture

Moz docs & API : http://www.mozilla.org/projects/plugins/

AXMEDIS Mozilla Plug-in

AXMEDIS Internal
Resource Viewers

AXOM

AXOM Content Processing

Protection Manager
Support Client

Protection
Processor

AXMEDIS Data
Model Support

AXMEDIS
Error and

Config.

Error and Configuration Manager

Adaptation & Fingerprint Algorithms

Mozilla plug-in Interface

Manager

AXMEDIS
Object Viewers

File System

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

106

8.4 AXMEDIS plug-in into Multimedia Players (DSI)

Module Profile
AXMEDIS plug-in into Microsoft Windows Media

Executable or Library(Support) Library (Support)
Single Thread or Multithread Singlethread
Language of Development C++
Responsible Name Davide Rogai
Responsible Partner DSI
Status (proposed/approved) Proposed
Platforms supported Windows, Linux, MacOsX

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)
Multimedia players plug-in
technologies

 DLLs – communication interfaces
dependent on the specific player

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

The main difference among AXMEDIS ActiveX/Mozilla Plug-in and AXMEDIS Plug-in for Multimedia
players is the rendering capabilities. The first manages all the client area assigned to it, full of controls,
scrollbars, options, tabs… etc. In the Plug-in for Multimedia the most important part is rendering of the
content. Since the content in AXMEDIS is a composition of most used multimedia formats, the resource can
directly be rendered by other multimedia players (i.e. Windows Media Player). Two important issues have to
be managed:

1. Adaptation capabilities of AXOM can play a great role inside other players as the plug-in capability
of play a content in a preferred player also if it was not designed explicitly for it

2. Since the plug-in of AXMEDIS in other player can really increase the AXMEDIS utilization in the
consumers’ world; the DRM has to be considered with much attention.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

107

The AXOM module and its protection processor grants the proper manipulation of content with respect to
the user licence. When this secure environment collides with external plug-in technology such a warranty
can only be treated at level of certification.
The best solution is that the plug-in acts as certified viewer/player of the AXMEDIS content.

8.4.1 Possible AXMEDIS plug-in into Multimedia Players

• AXMEDIS plug-in into
• Adobe Photoshop (DSI)
• Adobe Acrobat Reader (DSI)
• AXMEDIS plug-in into Macromedia tools (ILABS)

AXMEDIS Multimedia Player Plug-in

AXOM

AXOM Content Processing

Protection Manager
Support Client

Protection
Processor

AXMEDIS Data
Model Support

AXMEDIS
Error and

Config.

Error and Configuration Manager

Adaptation & Fingerprint Algorithms

plug-in Interface for Player XX

Manager

File System

AXOM
user rights

based handling

prot.
AXObj

Pl
ug

-in

In
te

rf
ac

e Player XX
content

handling

adaptation
algorithms

Resources
extraction

Resources
rendering

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

108

8.4.2 Analyzed plug-in technologies
Niagara (EPFL)
Niagara Streaming Systems is a component set that enables for the live video capturing and streaming over
the Internet. The system consists of a hardware card and an associated software package. The card captures
the audio and video and can perform real-time encoding. The software controls the hardware and allows the
internet broadcasting. The system is integrated with the RealNetworks and the Microsoft Media encoding
softwares and is compatible with common streaming formats.
Since AXMEDIS does not focus on streaming this system does not fit the best with the AXMEDIS
architecture. In addition it seems rather impossible to develop suitable plug-ins through which it may be
possible to send/receive specific commands and or data, especially because functionality is rather
implemented in hardware. Additional tools for video acquisition/manipulation may be investigated if needed,
fitting better into the overall AXMEDIS concept.

Adobe Premiere for video capture, editing (EPFL)
Adobe Premiere is a video editing tool. Premiere is used by video producers to manipulate video content.
Premiere is a tool oriented to professional users in contrast to Windows Movie Maker. This software is
designed to allow the use of third-party plug-ins. These plug-ins are used to enlarge Premiere capabilities.
The different plug-ins that Premiere allows are: filters for processing, transition schemes, additional file-
format supports, device controls (reduced capability), titling, or VST Audio plug-ins.
For the AXMEDIS project, first it is important to have file-format support plug-ins. An AXMEDIS plug-in
can be developed to use an AXMEDIS Objects inside Adobe Premiere. In Adobe terminology, this is an
importing plug-in. The plug-in may use the AXMEDIS blocks to extract and decrypt multimedia content that
can be used by Premiere –audio, video, and images-. The extracted and decrypted material would be
conveyed to the Premiere tool, etc. The complementary of the importing plug-in would be the exporting
plug-in. The exporting plug-in would allow e.g. saving the edited movie in AXMEDIS format.
The Premiere plug-in technology does not provide full control over the software (in AXMEDIS it would be
desirable to have full control over Premiere to ensure that the AXMEDIS Object and the resources it contains
are used according to the rights of the user). However, in the MS Windows version of Adobe Premiere it is
possible to apply some external control and to monitor over the tool by intercepting user commands. For
instance, it is possible to intercept a “Save as” user command and report it to the AXMEDIS OM. The plug-
in can be able to look up the user rights through the AXMEDIS OM and PMS and decide if the user is
allowed or not to do a “Save as”.

The Adobe Premiere Pro software development kit (SDK) contains examples of plug-in implementations.
The documentation recommends writing new plug-ins by modifying a sample plug-in. To program an
importing plug-in one can start by modifiying the sample named SDK_File_Import. This sample consists of
a few source code files and a project file for VisualC++ .NET. The output of this project is a dll library
renamed as prm. This prm file has to be copied to the plug-in directory of Adobe Premiere; the software
loads all the plug-ins located in this directory when the application is started. The software calls the function
xImportEntry to communicate with the plug-in. See the declaration of xImportEntry:

xImportEntry (
 int selector,
 imStdParms *stdParms,
 long param1,
 long param2)

The selector variable is the action Premiere wants the importer plug-in to perform.
stdParams provides callbacks to obtain additional information from Premiere or to have Premiere perform
tasks.
Parameters param1 and param2 vary with the selector; they may contain a specific value or a pointer to a
structure.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

109

Some examples of the selector variable are:
• imInit: Sent during application startup.
• imImportAudio: the plug-in has to give Premiere the specified amount of audio data in the format

specified.
• imImportImage: the plug-in has to give Premiere a frame of video by populating a buffer.

A simplified xImportEntry implementation would look like this:

DllExport xImportEntry (int selector, ...)
{
 switch (selector)
 {
 case imInit:
 //initialization of the plug-in
 break;
 case imImportImage:
 //decode image file and write raw output to a buffer
 break;
 case imImportAudio:
 //decode audio file and write raw output to buffer
 break;
 case imOpenFile:
 //open file and return handle
 break;
 case imCloseFile:
 break;
 }
 return OK;
}

When the user clicks on the menus of Premiere Windows messages are sent to the application. These
messages are processed by a window procedure. These messages can be intercepted by subclassing the
Premiere window or, what is the same, by changing the window procedure. The following snipped of code
shows how to do window subclassing.

//old window proc
long g_oldWndPrc = 0;
//window handle
HWND g_hWnd = 0;

//find window handle of Premiere window
g_hWnd = FindWindow(PREMIERE_MAIN_WINDOW, NULL);

//substitute Premiere window proc by our window proc
g_oldWndPrc = SetWindowLong(g_hWnd, GWL_WNDPROC, (long)WindowProc);

//our window proc
LRESULT CALLBACK WindowProc(
 HWND hwnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam)
{
 if(uMsg == BUTTON_MENU)

{
 //intercept only a few messages

if(wParam == SAVE || wParam == SAVE_A_COPY || wParam == SAVE_AS)
 {

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

110

MessageBox(g_hWnd, "Save Message Intercepted", "", MB_OK);
 return 0;
 }
 }
 //let the other messages to be processed normally

return CallWindowProc((WNDPROC)g_oldWndPrc, g_hWnd, uMsg, wParam, lParam);
}

Interaction with Adobe Premiere

Sending commands for content processing NO
Sending inhibitions, controls of DRM In Windows, when the user clicks on a menu, a message is

sent to the application. This message can be intercepted by
using “windows sublcassing” as explained above. One
way of doing inhibition is by intercepting and not
releasing the desired windows messages.

Sending data, receiving back processed data NO
Receiving logs (event reporting) Some events can be logged by using the same “windows

subclassing” method explained above. When, for instance,
the user clicks on the Open File menu, a message is sent to
the application. This message can be intercepted and
logged and then released.

Microsoft Windows Media Encoder (EPFL)
The Windows Media Encoder Software Developer Kit is a set of libraries compiled as automation servers.
This SDK can be used to encode multimedia content –mostly audio and video- in Windows compatible
formats. The SDK is designed to be usable by script languages like Visual Basic Script or high level
languages like C++. It also provides support for streaming and DRM management.
Rather than a plug-in technology, the Windows Media Encoder SDK is a library used by the AXMEDIS
Editor. The Windows Media Encoder 9 Series SDK can be used by the AXMEDIS Editor to encode
multimedia content in Windows compatible formats in form of internal components.

Windows Movie Maker (EPFL)
Windows Movie Maker is a simple video editing tool for home/end users. It is free and it is delivered so far
together with Windows XP operating system. The tool allows the user to perform all the basic video editing
operations: import a video into the tool, create scene transitions, add subtitles, add credits, cut scenes, and
save the resulting video in windows compatible formats. The same functions are available for the sound-
track of the film.
Up to the last version 5.1, that has been investigated, the Windows Movie Maker does not allow the creation
of a plug-in to communicate with AXMEDIS other blocks. Plug-ins can be developed only for additional
effects, transitions etc. (simple processing functions).
Windows Movie Maker is not an automation server and thus it cannot be controlled by another application
through an ActiveX interface. This means that Movie Maker cannot receive commands for processing,
cannot receive inhibitions, and cannot report event logs.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

111

9 AXMEDIS Players (EPFL, DSI)
Although AXMEDIS focuses on content production, a reduced number of players (and MPEG-21 terminals)
will be implemented in order to provide to the AXMEDIS Framework tools to be downloaded by end users
to play back AXMEDIS Objects. This may be required in cases when the target user is a consumer (B2C)
and especially when target platforms are such kind of devices that an Editor or other kind of sophisticated
tool is not supported or envisaged due to either computational, or functional or display
capabilities/limitations: such kind of tools may include PDAs, Mobiles, devices with embedded Multimedia
DSP processors, etc. In the following tool specifications for PC and similar platforms are reported (first
phase); then, specifications for a few mobile or lightweight devices which may be selected for the second
phase (WP 4.1.4) will be briefly discussed, keeping in mind that a precise description of some of these
aspects are rather difficult to define without the above mentioned selection of the devices themselves.

AXMEDIS Editor::AXMEDIS
Object Manager

AXMEDIS Editor::External
Editor/ Viewer Activation

Manager

AXMEDIS Editor::ActiveX
Manager for Editor/Viewer

AXMEDIS Editor::Internal
AXMEDIS Resource

Viewers

AXMEDIS
Editor::Other Plug In

AXMEDIS Editor::AXMEDIS
Editor Configuration

Manager

anObject : AXMEDIS Editor::AXMEDIS Object

Top Package::File
System

AXMEDIS Client Player

Fingerprint/Descriptor Extractors
Area::Fingerprint / Descriptor

Estimation Tools as
API for AXMEDIS Clients

«subsystem»
AXMEDIS Data Base Area::AXMEDIS Database Manager

AXMEDIS
Editor :: Protection
Manager Support

Client

AXMEDIS Editor::AXOM
Content Processing

AXMEDIS Editor::Plug
In Manager

Top Package::Object Builder

Top Package::Final user
AXMEDIS Media Player User

Interface and WindowSupport

Hierarchy
Viewer/Player

Metadata
Viewer

«uses»

AXMEDIS Editor::AXMEDIS
Content Tools Error

Manager

«uses»

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

112

AXMEDIS Client Player Software Architecture

AXMEDIS Internal
Viewers

AXOM

AXOM

AXOM Content Processing

Protection Manager
Support Client

Protection
Processor

AXMEDIS Data
Model Support

AXMEDIS
Error and

Configurat
ion

Manager

Error and Configuration Manager

External
Editor/
Viewer

Activation
Manager

 External
 Viewers

Adaptation & Fingerprint Algorithms

AXMEDIS Media Player User Interface and
Window Support

File System

Active X
Manager

9.1 AXMEDIS PC Player (DSI, EPFL)

Module Profile
AXMEDIS PC Player

Executable or Library(Support)
Single Thread or Multithread
Language of Development
Responsible Name
Responsible Partner
Status (proposed/approved)
Platforms supported

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

113

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

The AXMEDIS Player for PC platform has a strong architectural relationship with the AXMEDIS Editor, in
the sense that, being the Editor mainly targeted at WindowsOS and MacOS for their established platforms
and tools, the Player functionality may be seen as a subset of the Editor functionality; this subset only allows
playback according to DRM AXMEDIS rules and interaction according to the same rules and to the rules
embedded in the multimedia composited scenes. The Player may nevetheless allow, for his limited
capabilities (in comparison to the Editor), a simpler porting to other platforms like e.g. Linux OS. At the
same time, the Player may support additional media formats for which playback-only code or libraries are
available. The AXMEDIS Player for PC is in relationship with the content distribution on PC (over the
internet). Exact requirements, issues, specifications for this are also expected by discussion with Tiscali at
the meeting.

The AXMEDIS Player user interface should work through usual devices such as screen, mouse, joystick,
while the usage of the keyboard should be limited to a minimum; it should also work through touch screens,
if these are available. Interaction is needed when this is specifically described and coded in interactive
multimedia scenes such as those implemented by MPEG-4, VRML, Flash and the like.
The AXMEDIS Player contains an XML-parsing block able to parse AXMEDIS Objects and selects
additional tools necessary for the protection management and playback of the different media components
(???, see Editor for additional details ???). The AXMEDIS Player shall respect the protection of AXMEDIS
objects, by means of the Protection Support module.
The AXMEDIS Player shall allow Digital Content playback for several formats (WAV, MP3, MPEG-2/4,
AVC, AVI, PDF, etc…); this will be mainly accomplished through decoders and media players available as
source code and/or precompiled libraries and SDKs: media decoders which are not already available are to
be considered outside the scope of AXMEDIS (???). Then, the AXMEDIS Player shall use external
applications/ActiveX for Digital Content playback or it will provide interfacing mechanisms for
communicating with external applications in form of API.
The AXMEDIS Player also contains a module to communicate item adaptation requests to the media
provider, whenever this may be necessary for terminal limitations or overloading conditions.

9.1.1 AXMEDIS Player GUI
The AXMEDIS Player GUI for PC may look like the picture below. The user will be able to select among
the different views: Hierachy View, Annotations View, and Metadata View. These views will show the
Hierachy Editor, the Annotations Editor, and the Metadata Editor. However, these editors will not permit the
user to modify the AXMEDIS object, only to view it. This is because the AXMEDIS Player is meant to play
AXMEDIS objects while the AXMEDIS Editor is used to edit AXMEDIS objects.
To open an AXMEDIS object the user will click the File menu and then Open or he will drag and drop the
AXMEDIS file.

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

114

The Configuration menu will be used to tune the behaviour of the Player according to the user preferencs.
The user will be able to specify the default view to use when an AXMEDIS object is loaded, default volume,
the types of content allowed to reproduce –for instance disallowing the reproduction of content rated as
Restricted- etc
The AXMEDIS player will use the AXMEDIS internal Players to render the different types of content –
audio, video, text, and SMIL presentations.
If a single AXMEDIS object contains multiple media contents the user will have to use the Hierachy Viewer
to select which content to reproduce.

9.1.2 AXMEDIS PDA Player (EPFL, DSI)

Module Profile
AXMEDIS PDA Player

Executable or Library(Support) Executable
Single Thread or Multithread
Language of Development C/C++
Responsible Name Giorgio Zoia
Responsible Partner EPFL
Status (proposed/approved) Proposed
Platforms supported Windows PocketPC

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

115

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

The AXMEDIS Player may be ported on at least one of the most widespread PDA device with well
supported OS and platform.

In the case of PDAs, many of the existing and well supported devices are running on PalmOS or Windows
(WindowsCE and PocketPC) operating systems. Whereas Palm usually stress on application design (most
Palm applications are designed specifically and exclusively for the mobile use, in order to provide best fit for
user needs) WindowsCE derives huge Windows application base, concentrating on conversion of existing
applications. In the case of AXMEDIS, since the first platform and version of the Player will be developed
during the first phase for WindowsOS, the choice will most probably be a limited porting of the Player
software to a PocketPC device; some of the AXMEDIS partners are for instance familiar with the iPaq
device.

As mentioned, in terms of development the most characterizing issue is the limitation of resources due to
device constraints. A second additional issue is adaptation of the functionality to a rather different interface
and interaction devices.

It is difficult at this time to provide an exact specification for the AXMEDIS Player in PDA, but in fact some
guidelines can be stressed since now. In terms of platform features, current off-the-shelf PDAs (PocketPCs)
can be characterized as follows:

• Operating system: PalmOS or Windows Mobile
• Processor: 320 to 624 MHz clock speed (Intel, StrongARM…)
• Display: from CIF 64k colors to 4" Transflective type VGA 64K colors,
• Memory: 64MB to 192 MB total memory (ROM and SDRAM in different ratios)
• Audio: Integrated microphone, speaker and one 3.5 mm stereo headphone/headset jack, MP3 stereo

through audio jack and speaker, sometimes 5-band equalizer for playback through audio jack
• Other typical features: 4 shortcut programmable buttons, vavigation Touch-pad, touch-sensitive display

for stylus or fingertip, voice record button.

In terms of Player functionality and user interaction, it appears that the most limiting factors will be for the
overall processing power and screen size and resolution. The second issue partially or mainly masks limits
due to the first as it is hardly conceivable to play multiple audiovisual objects at the same time in a CIF or
VGA screen. Implementation of Player views may also be limited by graphic aspects. Nevertheless the
AXMEDIS Player will allow digital content playback for several audiovisual formats (AAC, MP3, MPEG-
1/4, AVC, AVI, etc…) at the most convenient profiles and levels, including scalable codecs and as far as
possible computational graceful degradation for complex bitstreams. In addition to already existing or
announced codecs and tools, PocketPC allows fast creation of some applications, because it supports
converting existing Windows applications to pocket platform. PocketPC development requires Microsoft

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

116

tools: the most important Windows APIs are available for Windows CE/PocketPC, sometimes in limited
form. For this, regular MSDN library is used for reference. For each API or feature, MSDN articles explain
differences or limitations on Windows CE/PocketPC, so portability issues can be considered already under
development of the PC Player.

For development, Windows CE edition of the Visual Studio package is needed. The package allows
compiling an application for Windows CE/PocketPC and testing it on PC in emulated environment (it is not
an emulation of the device, it is instead another compiler for PC with APIs redirected).

Portability of the AMBULANT or equivalent SMIL Player to PDA platform will be investigated in a
successive phase. Indeed some porting is announced under development already, as it is the case for the
MPEG-4 Player.

The AXMEDIS Player user interface should work almost exclusively through touch devices limiting to the
minimum interaction via keys or other interfaces. This will require a certain reworking in comparison to the
PC Player. A typical GUI for a PocketPC viewer is in the following picture

The AXMEDIS Player will be also capable to respect the playback protection of AXMEDIS objects, as
contained the content and decoded and dealt with through the MPEG-21/AXMEDIS client terminal.

9.2 AXMEDIS Mobile Player (EPFL, COMVERSE, DSI)
The AXMEDIS Player will be ported on at least one of the most widespread mobile devices with well
supported hardware and software platform. At the moment it is not clear how far will a mobile device
(smartphone like) from a PDA during the second phase of AXMEDIS in terms of functionality, but we can
safely assume a device characterized by an even more reduced display size and computational resources,
even if in comparable overall functionality.

The issue of porting the overall AXMEDIS Player concept to a Mobile platform is even more challenging
than in the case of PDA, it requires important compromises and an attentive investigation of the actual
possibilities, as resources are in this case extremely limited in comparison even to a PDA and development
almost surely does not allow simple porting of good portions of code.

As for PDAs some possibilities for adaptation exist; one possibility is to address Smartphones based on
Windows Mobile operating system; another possible solution is to use a SymbianOS device. In the case of

DE3.1.2B – Framework and Tools Specification (Viewers and Players)

AXMEDIS Project
CONFIDENTIAL

117

mobile devices it is in any case necessary to plan a considerable rework of the player and cutoff in
functionality, so the fact of remaining in the Windows environment may not constitute an advantage
anymore. In terms of platform features, current off-the-shelf Smartphones can be characterized as follows:

• Operating system: Symbian or Windows Mobile
• Processor: 120 to 200 MHz clock speed
• Display: in the order of 176x220 pixels, 64K colors
• Memory: 32MB to 96 MB total memory (ROM and SDRAM in different ratios)
• Multimedia: Integrated microphone, speaker and one 3.5 mm stereo headphone/headset jack, digital

camera, MP3 player, etc.

In terms of Player functionality and user interaction, even more than for the PDA the most limiting factors
will be for the processing power and screen size and resolution.
The second issue masks limits due to the first as it is not conceivable to play multiple audiovisual objects at
the same time on such a small display. In addition, it may be hard to have one audiovisual content decoded in
real time so that multiple objects may result impossible for yet another reason.
Implementation of Player may be limited by graphic aspects and by a single view allowing simple access and
control of audiovisual content and its metadata. The AXMEDIS Player will allow digital content playback
for several audiovisual formats (AAC, MP3, H263, H264/AVC, etc…) at the most convenient profiles and
levels, including low complexity codecs that may be available at the moment of development. Porting of a
SMIL player is probably not convenient, if useful at all, as simple synchronization of one audiovisual object
should be enough and no complex multimedia synchronization can be necessary or achieved.

In the case of Windows Mobile, a Mobile Application Development Toolkit provides development utilities
and easy integration and simulation inside Visual Studio .NET 2003 and the .NET Compact Framework
environment. In the case of SymbianOS, the SDK provides both native development in C++ as well as inside
PersonalJava runtime, including JavaPhone APIs. Choice of one of the two platforms may be based on
different factors but mainly availability of suitable players for the most important media object types used by
partners in AXMEDIS for distribution.

The AXMEDIS Player user interface should work almost exclusively through a limited number of keys
and/or interaction devices (pointing devices, joystick-like devices, etc.). This will imply some rework of the
GUI.
The AXMEDIS Player will also be capable to respect the playback protection of AXMEDIS objects,
exploiting some management strategy that may be adapted for the mobile platform.

9.3 AXMEDIS Tablet PC Player for School Bag on Mozilla (SEJER)
This AXMEDIS Player which can run on a TabletPC is based on the internet browser provided with this
technology: Mozilla. The AXMEDIS objects are rendered with AXMEDIS plug in for Mozilla.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

