
DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

1

AXMEDIS

Automating Production of Cross Media Content
for Multi-channel Distribution

www.AXMEDIS.org
DE3.1.2C

Framework and Tools Specifications
(Content Production)

Version: 2.2
Date: 15/03/2005
Responsible: DSI
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: Report
Visible to User Groups: No
Visible to Affiliated: No
Visible to the Public: No.
Deliverable Number: DE3.1.2 part C
Contractual Date of Delivery: January 2005
Actual Date of Delivery: 15 March 2005
Title of Deliverable: Document
Work-Package contributing to the Deliverable: WP3.1
Task contributing to the Deliverable: WP3, WP2
Nature of the Deliverable: report
Author(s): DSI, EPFL, UNIVLEEDS, DIPITA< FUPF, FHGIGD, CRS4, EXITECH.

Abstract: This part of the specification deals with problems related to the Automatic Content Production
and more in general with content processing, therefore the specification of the Content Processing and tools
are reported. Specification is structured in 3 sections dealing with different aspects of content production:
Automatic Content Processing Area based on rules and a distributed system, using JavaScript language for
rules and definition of AXMEDIS Data Types for JavaScript Engine, Adaptation Tools and Algorithms for
content processing, formatting, etc…
Keyword List:
Content production, Javascript, Adaptation tools

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

2

AXMEDIS Copyright Notice
The following terms (including future possible amendments) set out the rights and obligations licensee will be requested
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by
any other means.

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT.

1. DEFINITIONS

i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the
document have been accepted.

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a
Document.

iii. "Licensor" is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in
terms of companies and/or associations, see www.axmedis.org

iv. "Document" means the information contained in any electronic file, which has been published by the
Licensor’s as AXMEDIS official document and listed in the web site mentioned above or available by any
other means.

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.

2. LICENCE

1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to
present terms and conditions (the Licence) for the parts that are own and proprietary property the of
AXMEDIS consortium or its members.

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and
conditions.

3. TERM AND TERMINATION

1. Granted Licence shall commence on Acceptance Date.

2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions
of this Licence.

3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of
termination.

4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the
accessed Copyright.

5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or
obligations, shall survive termination of this Licence and shall continue in full force and effect.

6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it
as stated in the document itself will remain in force for a period of 5 years after license issue date or the
period stated in the document whichever is the longer.

4. USE

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:

i. remove this Copyright Notice on a Document or any of its reproduction in any form in which those
may be achieved;

ii. change or remove the title of a Document;

iii. use all or any part of a Document as part of a specification or standard not emanating from the
Licensor without the prior written consent of the Licensor; or

iv. do or permit others to do any act or omission in relation to a Document which is contrary to the
rights and obligations as stated in the present license and agreed with the Licensor

5. COPYRIGHT NOTICES

1. All Works shall bear a clear notice asserting the Licensor’s Copyright. The notice shall use the wording
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

3

6. WARRANTY

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.

2. For the avoidance of doubt the licensee should be aware that although the Copyright in the
documents is given under warranty this warranty does not extend to the content of any document
which may contain references or specifications or technologies that are covered by patents (also
of third parties) or that refer to other standards. AXMEDIS is not responsible and does not
guarantee that the information contained in the document is fully proprietary of AXMEDIS
consortium and/or partners.

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of
action which the Licensor may have, at all times keep the Licensor fully and effectively
indemnified against all and any liability (which liability shall include, without limitation, all
losses, costs, claims, expenses, demands, actions, damages, legal and other professional fees and
expenses on a full indemnity basis) which the Licensor may suffer or incur as a result of, or by
reason of, any breach or non-fulfilment of any of his obligations in respect of this Licence.

7. INFRINGEMENT

1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the
Copyright which comes to licensee notice and shall, at the Licensor’s request and expense, do all such
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.

8. GOVERNING LAW AND JURISDICTION

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.

2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.

Please note that:

• You can become affiliated with AXMEDIS. This will give you the access to
a huge amount of knowledge, information and source code related to the
AXMEDIS Framework. If you are interested please contact P. Nesi at
nesi@dsi.unifi.it. Once affiliated with AXMEDIS you will have the
possibility of using the AXMEDIS specification and technology for your
business.

• You can contribute to the improvement of AXMEDIS documents and
specification by sending the contribution to P. Nesi at nesi@dsi.unifi.it

• You can attend AXMEDIS meetings that are open to public, for additional
information see WWW.axmedis.org or contact P. Nesi at nesi@dsi.unifi.it

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

4

Table of Content

1 EXECUTIVE SUMMARY AND REPORT SCOPE (DSI, ALL) ... 6

2 AXMEDIS CONTENT PROCESSING AREA (DSI)... 6
2.1 CONTENT PRODUCTION (DSI)... 7

2.1.1 Scenarios on Content Production .. 10
2.2 CONTENT PROTECTION (FHGIGD) .. 14
2.3 CONTENT PUBLICATION ON AXEPTOOL (CRS4)... 14
2.4 AXCP CONTENT PROCESSING FLOW DIAGRAM... 15
2.5 AXCP CONTENT PROCESSING AREA UML DECOMPOSITION... 16
2.6 AXCP RULE GENERAL FORMAT .. 18

2.6.1 AXCP Rule XML formalisation.. 21
2.6.2 AXCP Rule Class Diagram.. 25
2.6.3 AXRule Loader and Saver Modules (DSI) ... 26

2.7 AXCP RULE EDITOR (DSI)... 28
2.7.1 AXCP Rule Editor User Interface (DSI) ... 29
2.7.2 AXCP Rule Editor Configuration (DSI) ... 38
2.7.3 Debugging Rules (DSI) ... 38
2.7.4 User Commands and Reporting - AXMEDIS Workflow Manager interaction (DSI) 39
2.7.5 External Procedures Profile Manager (FHGIGD, DSI) .. 39

2.8 AXCP RULE ENGINE (DSI) .. 40
2.8.1 JSENGINE (SpiderMonkey by Mozilla) .. 42

2.9 RULE SCHEDULER ... 45
2.9.1 Scheduler Command Manager .. 45
2.9.2 Engine command and reporting (AXMEDIS Workflow Manager interaction)... 46
2.9.3 Communication with the AXMEDIS Rule Editor .. 47
2.9.4 Internal Scheduler .. 47
2.9.5 Rule Scheduler User Interface ... 50
2.9.6 Dispatcher of the Rule Scheduler .. 54
2.9.7 Grid Peer Interface... 55
2.9.8 Grid Peer .. 55
2.9.9 Structure of messages exchanged between Scheduler and Remote Executor .. 56
2.9.10 Rule Scheduler Class Diagram.. 58

2.10 RULE EXECUTOR... 61
2.10.1 Rule Executor Manager... 61
2.10.2 Launcher .. 62
2.10.3 Script Executor .. 62
2.10.4 Executor Profile and XML formalisation ... 63
2.10.5 Rule Executor Configuration file .. 65
2.10.6 Rule Executor Class Diagram ... 66

3 THE AXMEDIS DATA TYPE AND FUNCTIONS FOR JS... 67
3.1 A JAVASCRIPT CLASS IN C++ ... 67

3.1.1 Step 1 - The JavaScript class. .. 67
3.1.2 Step 2 - Initialize your JavaScript object... 68
3.1.3 Step 3 - Adding properties ... 69
3.1.4 Step 4 - Adding methods ... 70
3.1.5 An example .. 70

3.2 WRAPPING FUNCTIONS.. 71
3.3 JS_AXOM (DSI) .. 71
3.4 JS_FUNCTIONS FROM AXOM_CONTENT_PROCESSING (DSI)... 72
3.5 JS_AXINFO (DSI) ... 72
3.6 JS_DUBLIN_CORE (UNIVLEEDS) .. 72
3.7 JS_SELECTION (DSI) .. 73
3.8 JS_RESOURCE (DSI) ... 73

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

5

3.9 JS_CRAWLERDB ACCESS (DSI WITH SUBCONTRACT) ... 73
3.10 JS_PROTECTION (FHGIGD) ... 73
3.11 JS_DRM (FHGIGD)... 74
3.12 JS_PUBLISHER (CRS4) ... 75
3.13 JS_DOWNLOADER(CRS4) .. 75
3.14 JS_LOADER (CRS4).. 75
3.15 JS_FUNCTIONS .. 76

4 ADAPTATION TOOLS AND ALGORITHMS (DSI, EPFL, UNIVLEEDS) ... 77
4.1 TOOLS AND ALGORITHMS FOR DOCUMENTS ADAPTATION (DIPITA, DSI, EXITECH) 77
4.2 TOOLS AND ALGORITHMS FOR VIDEO ADAPTATION (EPFL).. 85
4.3 TOOLS AND ALGORITHMS FOR IMAGES ADAPTATION (DSI)... 90
4.4 TOOLS AND ALGORITHMS FOR AUDIO FILES ADAPTATION (FHGIGD, UNIVLEEDS, EPFL)......................... 96

4.4.1 FFMPEG/FOBS... 96
4.4.2 LIBSNDFILE (http://www.mega-nerd.com/libsndfile/)... 98
4.4.3 SoundTouch Audio Processing Library (http://sky.prohosting.com/oparviai/soundtouch/) 102

4.5 TOOLS AND ALGORITHMS FOR MULTIMEDIA ADAPTATION (EPFL)... 102
4.6 TOOLS AND ALGORITHMS FOR METADATA/AXINFO ADAPTATION (UNIVLEEDS) 104

4.6.1 Xerces: XML parsers in Java and C++ (plus Perl and COM) .. 105
4.6.2 Xalan : XSLT stylesheet processors in Java & C++... 106

4.7 TOOLS AND ALGORITHMS FOR DRM INFORMATION ADAPTATION (FUPF).. 106
4.7.1 Architecture of the module .. 107

4.8 ADAPTATION ALGORITHMS PROFILES (FHGIGD) ... 111
5 BIBLIOGRAPHY ... 113

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

6

1 Executive Summary and Report Scope (DSI, all)
The full AXMEDIS specification document has been decomposed in the following parts:
A. general aspects up to the description of the content model
B. Viewers and players, including plug ins, etc.
C. Content Production tools and algorithms
D. Fingerprint and descriptors algorithms and tools
E. Database area, query support and Content Crawling from CMS
F. AXEPTool area, for B2B distribution and Programme and Publication for B2C distribution
G. Workflow aspects and tools
H. Protection tools and support, Certification and Supervision and Accounting tools
I. Distribution tools and AXMEDIS Portal
J. Definitions, tables, terminology, acronyms, lists, references, links and Appendixes

This document contains Part C only.

This document is focused on producing a first version of the specification without having deep details to be
adopted as a baseline in the specification tasks of the different work packages that will be developed in the
first 18 months of the project.
The part C of the specification deals with problems related to the Content Production and more in general
with content processing, therefore the specification of the Content Processing and tools are reported.
Specification Part C is structured in 3 sections dealing with different aspects of content production:

• AXMEDIS Content Processing Area (under responsibility of DSI): this section describes the goals,
the activity and tools of AXMEDIS Content Processing Area. This area will cope with the problem
of automatic content production, adaptation and protection of AXMEDIS object and their
publication on a P2P environment (AXEPTool). The proposed solution will be based on rules that
will include a procedural description using the Javascript language (script) and a Javascript engine
for the their execution derived from SpiderMonkey by Mozilla. To cope with the amount of needed
resources (computational, time, etc…) during the content processing activity, a distributed
environment will be defined and based on GRID computing. The AXMEDIS Content Processing
Area specification is then further illustrated by means of UML diagrams, scenarios, tables, GUI
definitions and design, definition of a Grid communication protocol and the XML schema for rules.

• AXMEDIS Data Types for JavaScript Engine: In this section how to use C++ classes and functions
in the Spidermonkey Javascript engine are described. This mechanism will be used with the set of
classes (methods and attributes) and functions that will have to be wrapped to be used with the
Javascript code are reported. A first set of classes and functions are also reported.

• Adaptation Tools and Algorithms: in this section external tools and libraries for content processing,
content format transcoding, content formatting and adaptation (digital audio, video, animation,
multimedia, metadata, etc…) are discussed. They will be used to implement and customise the set of
functions and algorithms to be used inside the automatic content processing area.

2 AXMEDIS Content Processing Area (DSI)
The AXMEDIS Content Processing Area will provide a set of digital content processing tools and will aid
the content designer to:

• efficiently collect the components needed, using advanced query options
• find/produce alternatives for the components that present potential distribution problems (files too

big).
• structure the components, highlighting the semantic relations between them.
• bind the structure content to some presentation styles.
• the same broadcast/broadband-quality content must also be formatted for delivery to a variety of

channels, necessitating repurposing and even re-authoring.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

7

• cope with different delivering channels according to different formatting styles and constrains about
the profile of the final user device.

• cope with digital content protection and security
• cope with technical metadata and licensing,
• cope with composition, formatting and adaptation of digital resources
• cope with automatic definition of DRM rules for the new composite item, etc…
• cope with publication of contents on a P2P network (AXEPTool)

The structuring information provided by the user is of high value and should be stored and used when
building other similar activities. This structuring information could also be shared with the other content
designers of the P2P network. To this end the AXMEDIS Content Processing Area will be governed by
rules. Rules will be the way to described the work to do for producing and distributing digital contents in
automatic and secure manner. More in general, the AXMEDIS content processing area will group:

1. Content Production – New AXMEDIS objects will be produced by means of composition,
formatting, adaptation of digital resources according to the publication, distribution channel and user
profile requirements.

2. Content Protection – AXMEDIS objects will be protected in terms of DRM definitions, PAR,
encryption, etc…

3. Content Publication on AXEPTool – It will perform content sharing and distribution among
content producers and distributors. It will work directly with the P2P Network. It will enable the
sharing of both content under DRM rules and unprotected content , monitoring of content movement
and exploitation, etc.

In the user requirements analysis, the AXMEDIS objects Production (in terms of Composition and
Formatting), Protection and Publication on AXEPTool were considered as separate areas with own tools and
engines. A deep analysis shows that all these areas have many common aspects:

• the architecture
• the way to work
• the script language for implementing rules

These aspects suggest to design a unified solution that will provide many advantages:
• The definition of a single shared rule engine
• The definition of a unique rule format
• The design of a unique rule editor
• A single script language support
• A common set of data types derived from AXMEDIS Framework
• The possibility to assume such engine as a tool to be used in different context in the AXMEDIS

framework: AXEPTool, Metadata manipulation, Content Production (Composition and formatting)
and Protection. In this way, all these activity could be executed all together or separately or in group
according to the content designer and publisher needs.

In this context, all types of rules involved in the three areas of content processing will be named as AXCP
Rules. This unified solution will provide a versatile and customizable way to produce and manage digital
content respecting legal aspects, DRM, ownership, user and publishers requirements.

2.1 Content Production (DSI)
The automatic production of contents, called AXMEDIS Object, will be based on the composition and
formatting process.
The composition is the action of putting together content component to create a new digital item in an almost
automatic manner. The final result is a new composite AXMEDIS object. The compositional activity should
allow composing different kinds of raw assets such as Text, Images, Audio, Video (actual shot), Animation
(synthetic), etc… coming from the AXMEDIS database. The composition could generate:
Basic Combined assets, for example:

• Texts + Image
• Texts + Audio

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

8

• Texts + Image + Audio
• Audio + Texts
• Animation + Texts
• Video + Texts
• Video compilations
• Audio compilations
• Image compilations
• All other different combinations of raw assets

Advanced Combined assets, for example:
• Multimedia presentation embedding sets of raw assets such as MPEG4, etc.
• Multimedia presentations composed of basic combined objects, such as HTML, etc..

The composition could produce homogenous (where all digital resources are the same type) or
heterogeneous (different kinds of digital resources) composite AXMEDIS objects.

Example:
Let suppose to get a Selection of digital documents from a large database of content. The Selection can be a
the identification of a AXMEDIS components (digital objects) Italian singer Eros Ramazzotti, that is:

• 100 Audio, 50 Documents, 30 Images
Some solutions for different compositions could be:

• Any composition of 2 audio, 2 images and 4 documents
• Collection year by year with audio, documents and images of the same year
• Any two audio ordered by time, take these images and the doc number 45 which is the biography
• Any combination of 2 over the 100, plus put in any new object a specific document (for instance

a given version of the bio plus its image, that could be the cover).

Protection

Composing Formatting

Fingerprint Adaptation

Distribution

channels

AXMEDIS
database

Your Your CMSsCMSs

AXMEDIS
P2P TOOL
(AXEPTool)

Automatic Content
Crawling and AXMEDIS
Component Production

Providers

Integrators

Providers

Adaptation of Adaptation of
Content, Metadata, Content, Metadata,

DRM, etc.DRM, etc.

Object Protection, Object Protection,
Encoding, License Encoding, License gengen, ,

Governed Object GenGoverned Object Gen

Fingerprint Extraction,Fingerprint Extraction,
Descriptor Extraction, Descriptor Extraction,

etc.etc.

Protection

Composing Formatting

Fingerprint Adaptation

Distribution

channels

AXMEDIS
database

Your Your CMSsCMSs

AXMEDIS
P2P TOOL
(AXEPTool)

Automatic Content
Crawling and AXMEDIS
Component Production

Providers

Integrators

Providers

Adaptation of Adaptation of
Content, Metadata, Content, Metadata,

DRM, etc.DRM, etc.

Object Protection, Object Protection,
Encoding, License Encoding, License gengen, ,

Governed Object GenGoverned Object Gen

Fingerprint Extraction,Fingerprint Extraction,
Descriptor Extraction, Descriptor Extraction,

etc.etc.

ProtectionProtection

Composing Formatting

FingerprintFingerprint AdaptationAdaptation

Distribution

channels

AXMEDIS
database
AXMEDIS
database

Your Your CMSsCMSs

AXMEDIS
P2P TOOL
(AXEPTool)

Automatic Content
Crawling and AXMEDIS
Component Production

Providers

Integrators

Providers

Adaptation of Adaptation of
Content, Metadata, Content, Metadata,

DRM, etc.DRM, etc.

Object Protection, Object Protection,
Encoding, License Encoding, License gengen, ,

Governed Object GenGoverned Object Gen

Fingerprint Extraction,Fingerprint Extraction,
Descriptor Extraction, Descriptor Extraction,

etc.etc.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

9

Formatting is the process to exploit the contained components in some integrated visualisation (editorial)
format for their distribution and usage from the end user. A simple compounded object comprised of several
parts (e.g., an audio, a video and a document), can be formatted in several different ways according to
several manner according to different formatting styles (graphic layout, temporal scheduling of the content,
speech generation from text, etc.) producing final content for i-TV, mobile, PC usage, etc…
These activities will be based on content features, generic user profile and needs, specific user profile (in the
case of composition on demand), formatting style, optimisation parameters, end-user device profile,
interactivity level and paradigms, content type and features, metadata, categorization, business information
(price, localization, etc.), temporal evolution, DRM rules, delivery time, etc…
The formatting has to take into account the specific problems of the distribution channel:
• Location of the content and time to delivering
• Business and transaction models, thus DRM of content
• Model of delivering: streaming, download, off-line distribution, etc.
• Format for delivering: MPEG-4, simple audio files, documents, video, etc.
A wide set of formatting algorithms should be developed during project life-time. Each of such algorithms
should be based on:
• AXMEDIS components with their description content type,
• Different content usage paradigms, which are the editorial formats.

o page or formatting style/layout,
o evolution of page style along the time,
o Final format to be produced: MPEG-4, WAP, HTML, AXMEDIS integrated format, etc….

• Selected on the basis of formatting rules based on
o User profiling, Program or channel profile, User’s request, interactivity level,
o availability of the content components and their costs
o final device on which the content has to be received and used
o Duration and complexity of each content component combined for creating the page.

• Shaping details for each content type…..
o Video: time, size, frame rate, compression
o Audio: time, sample rate, compression
o Image: size, complexity, size
o Text: #words, size of text (proportionally scalable)
o Music: #measures, time, voices
o Animation: size and time

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

10

2.1.1 Scenarios on Content Production

Scenario description:

1. Start composition process. The Rule Engine receives a running rule request coming from the
AXMEDIS Workflow Manager or the internal scheduler activates a rule from the Active
Composition Rules.

2. Rule execution request. The scheduler sends a rule execution request to the rule executor with the
corresponding rule.

3. AXMEDIS Objects selection request. For each selection and/or query specified in the rule, the rule
executor sends queries to the AXMEDIS Query Support to obtain references to AXMEDIS objects
that match the request.

4. Embedding request. An embedding object request with the relative object reference are sent to the
AXOM to perform the inclusion.

5. Physical Objects request. If the physical embedding option is specified in the rule the physical
object is requested to the AXMEDIS Database by means its reference, else the object is embedded
as a reference.

6. Adaptation request. This request is performed via AXOM in order to adapt objects according to the
adaptation parameters specified in the rule.

7. Fingerprint request. This request is performed via AXOM in order to apply the fingerprint to the
embedded object according to the fingerprint parameters specified in the rule.

8. Protection request. This request is performed via AXOM. A protection request is sent to the
Protection tool in order to apply protection to the new AXEMDIS composite object.

9. Storing AXMEDIS object. The new AXMEDIS Object is stored into the AXMEDIS Database.

Obj. Request

Rule
Executor

Fingerprint Adaptation

AXMEDIS
Query Support

AXMEDIS
database

Protection

AXOM

Query j

Selection i Obj. Refs

Active
Composition Rule

AXMEDIS
DB Manager

Rule
Scheduler

Active
Composition

Rules

RRuullee EEnnggiinnee
CCoommppoossiittiioonn

1
2

2

3

3

3
4, 5, 6, 7, 8, 9

5

5
5, 9

5

5

7

7

6 6
8

8

9

AXMEDIS Workflow
Manager

3

1

10

Scenario on Automatic Content Composition – Rule Engine for composition

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

11

10. End process notification. The End of the composition is notified to the AXMEDIS Workflow
Manager.

Scenario description for the activation of an existing rule:

1. The actor loads the Composition rule from the rules database
2. The actor activate the rule
3. The rule is sent to the Active Composition rules repository

Actor

Rules

Database

Load Rule

Rule Editor

Rule
Debugger

Rule Engine

Editing of Composition Rule

Rule
Activator

Active
 Rules

Save Rule

1

2

3

Scenario on Editing of Composition Rule

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

12

Scenario description:

1. Start formatting process. The Rule Engine receives a running rule request coming from the
AXMEDIS Workflow Manager, or from the AXMEDIS Publication & Programme, or from the
internal scheduler that activates a rule from the Active Composition Rules.

2. Rule execution request. The scheduler sends the rule execution request to the rule executor with the
corresponding rule (Active formatting rule).

3. AXMEDIS Objects selection request. For each selection and/or query specified in the rule, the rule
executor sends queries to the AXMEDIS Query Support to obtain references to AXMEDIS objects
that match the request.

4. AXOM using. An embedding object request with the relative object reference are sent to the AXOM
to perform the inclusion.

5. Physical Objects request. The physical object is requested to the AXMEDIS Database by means
its reference.

6. Adaptation request. This request is performed via AXOM in order to perform a formatting
paradigm or a set of customised formatting parameters. This phase could:

a. Perform adaptation algorithm (change resolution, change dimension, time or spatial best
fitting, etc…)

b. Apply spatial and temporal constrains specified in the rule (i.e. graphic layout,
temporisation, transitions effects, etc…)

c. Perform synchronisation algorithm (audio and text audio and images, video and text, etc…)
d. Convert the whole formatted object into a specific output format (i.e. MPEG4).

7. External tools calling. This request allow calling external functionalities available on external
formatting tools. In this way some formatting operation can be delegated and performed in other

Obj. Request

Rule
Executor

Fingerprint Adaptation

AXMEDIS
Query Support

AXMEDIS
database

Protection

AXOM

Query j

Selection

Obj. Refs

Active Formatting Rule

AXMEDIS

DB Manager

Rule
Scheduler

Active
Formatting

Rules

RRuullee
EEnnggiinnee

FFoorrmmaattttiinngg
1

2

2

3

3

3 4, 5, 6, 7, 8, 9, 10
5

5
5, 10

5
5

8

8

6 6 9 9

10

AXMEDIS Workflow
Manager

3

1

11

Ext. Tools

7
7

AXMEDIS Programme &
Publication

1

Scenario on Automatic Content Formatting – Rule Engine for formatting

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

13

formatting environment. These call are properly coded in the formatting rule and refer to portion of
code written by using for example the script language available on the external tool.

8. Fingerprint request. This request is performed via AXOM in order to apply the fingerprint to the
formatted object according to the fingerprint parameters specified in the rule.

9. Protection request. This request is performed via AXOM. A protection request is sent to the
Protection tool in order to apply protection to the new AXEMDIS formatted object.

10. Storing AXMEDIS object. The new formatted AXMEDIS Object is stored into the AXMEDIS
Database.

11. End process notification. The End of the formatting process is notified to the AXMEDIS Workflow
Manager.

Scenario on Editing of Formatting Rule

Scenario description for the activation and modification of an existing formatting rule:

1. The actor loads an existing formatting rule from the rules database
2. The actor edits the rule by the RULE Editor
3. The actor saves the new rule into the rules database
4. The actor activate the rule
5. The rule is sent to the Active rules repository.

Actor

Rules
Database

Load Rule

Rule Editor

Rule
Debugger

Rule Engine

Editing of Formatting Rule

Rule
Activator

Active
Rules

Save Rule

1

2

5

3 3

4

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

14

2.2 Content Protection (FHGIGD)
The Content Processing Area provides support for the protection of AXMEDIS objects and the license
generation and verification. In this context the Content Protection will include:

• Applying Protection to AXMEDIS object : encryption, scrambling, compression, FP, … and creation
of new Protection Information

• Sending the Protection Information to the database of the AXCS via the PMS.
• Creating a new object with license (called AXMEDIS Governed Object).
• Generating a license from license model and additional information.
• Check/Verification of an issued License or an existing PAR against some RIGHTS written in clear

such as: “the play on the AXOID 34 in July 2005 for 5 times, the print of AXOID 56 in Spain in
May 2006 at least one, etc.”

• Check/Verification if it is possible to issue/generate a License with some RIGHTS written in clear
such as: “the play on the AXOID 34 in July 2005 for 5 times, the print of AXOID 56 in Spain in
May 2006 at least one, etc.”

• Addition of rights or removal from a PAR/license (PAR/license adaptation): Generation of a new
license (with new or less rights) AND Revocation of the old licenses in ONE TRANSACION.

A further detailed descriptions of the different scenarios about Protection can be found in section 5.1 of part
H of the AXMEDIS framework specification “Scenarios on Content Protection Area”.

2.3 Content Publication on AXEPTool (CRS4)
Axmedis contents are handled in the AXEPTool domain to publish, download and load objects. The
AXEPTool performs content sharing and distribution among content producers and distributors. It works
directly with the P2P Network. It will enable the sharing of both content under DRM rules and unprotected
content, monitoring of content movement and exploitation, etc. It is involved in data flows between itself and
the AXMEDIS Database Area and performs collaborative tasks. The main modules involved in content flow
are the Loading Module, the Downloading Module and the Publication Module. It can be viewed as a stack
due to the fact that it involves layer with different level of abstraction with respect to the network, data, and
users.
Content publishing and loading in the AXEPTool is driven by AXCP Rules. Three different types of rules
are used for publishing and loading:

• Publication Rule: when executed publishes a selection of objects in the P2P network. The component
performing the publication is the Publication Component of AXEPTool

• Loading Rule: when executed loads a selection of objects from AXDBIN to AXDB. The component
performing the publication is the Loading Component of AXEPTool

• Downloading Rule: when executed downloads a selection of objects from the P2P network to the
AXDBIN. The component performing the publication is the P2P Active Selections Component of
AXEPTool

For more details see document DE3.1.2F Framework and Tools Specifications (AXEPTool and Progr. and
Pub.).

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

15

2.4 AXCP Content Processing Flow Diagram
In this section, main actors involved in the AXMEDIS Content Processing Area are described. The picture,
reported below, shows the unified solution and relationships among the AXMEDIS Workflow Manager, the
AXCP Rule Editor and Engine.

1. Workflow Manager – It will perform the role of supervisor by monitoring and controlling the AXCP

Rule engine and editor activity.
2. AXCP Rules Editor – It will be an editor for writing protection, production and publication on

AXEPTool rules. It will be supported by a repository of rule rules and will interact with the AXCP Rule
Engine.

3. AXCP Rule Engine – It will perform the automatic production, protection, adaptation process by means
specific AXCP rules. It will generate new composite, formatted, adapted, protected AXMEDIS objects.
Such objects will be successively stored in the AXMEDIS database or delivered via distribution channels
or published by means the AXEPTool. The Engine will be supported by following modules and tools:

a. Protection – It will provide functionalities and algorithms performing the protection of the
AXMEDIS object via Protection Support

b. Fingerprint – It will provide functionalities and algorithms performing the Fingerprint
estimation of a new AXMEDIS object. The fingerprint could be based on component’s
fingerprint or could be a new one.

ProtectionFingerprint

Fingerprint Extraction,
Descriptor Extraction,

etc.

Adaptation
of Metadata

Ext. Tools

External Functions
(composition,

formatting, adaptation)

Adaptation of
DRM, PAR,

License, etc.

Object Protection,
Encoding, Compress,

Scrambling, etc.

License
generation

Governed Object
Generation

License
Verification, etc

Content
Adaptation

Adaptation

AXCP

Rule Engine

AXCP Rule EDITOR

(Protection, Production,
Pubblication on AXEPTool)

Workflow
Manager

Pub. on
AXEPTool

Metadata mapping,
publish/unpublish on

AXEPTool

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

16

c. Adaptation – It will provide functionalities and algorithms performing the Content adaptation
for different distribution channels and format paradigm.

d. External tools - Tools for using external formatting functionalities. It will provide a set of plug-
ins that will allow using external tools (Macromedia suite, Adobe suite, etc…) and extending
functionalities of the composition and formatting engine and AXMEDIS Editor.

e. Publication on AXEPTool – It will provide functionalities and algorithms performing metadata
manipulation and mapping, publication of AXMEDIS object on the AXEPTool.

2.5 AXCP Content Processing area UML Decomposition
In this section the UML decomposition of the AXMEDIS Content Processing Area is described. It represents
the unified solution that integrates the following engines:

• AXMEDIS Compositional/Formatting Engine
• AXEPTool Loading Tool Engine
• AXEPTool Publication Tool Engine
• AXEPTool P2P Active Selection Engine
• The Protection Tool Engine

 According to the UML diagram, the AXMEDIS Content Processing Area will include:
• AXCP Rule Editor: A graphic editor that will allow writing and editing composition, formatting,

protection and publication on AXEPTool rules.
• Repository of AXCP Rules: It will be a simple repository of rules; it will be the file systems or a

database. The rules will be described by means an XML schema.
• Active Rules: They are rules that will be scheduled to be run by the rule engine.
• AXCP Rule Engine: It will be the rule executor and will be comprised of a scheduler and a rule

engine.
• AXMEDIS Database Manager – It will allow the engine to retrieve AXMEDIS objects involved in

the execution of a rule.
• AXMEDIS Query Support – It will allow the engine to make queries to the AXMEDIS Database

Manager
• AXMEDIS Object Manager (AXOM) – It will allow managing AXMEDIS objects during the

execution of a rule. It will provide functions and methods for manipulating and managing resources
and metadata,

• AXOM Content Processing – It will based on a Plugin Manager and the External Procedures
Profile Manager. It will allow extending the engine capabilities by providing the interface to Plug-ins
such as:

o Adaptation Tools and Algorithms as Plugin for AXOM: They will be a collection of
algorithms and tools that will provide functions for content adaptation . The role of such
component will be to provided different methods to manipulate digital contents in order to
satisfy several and different user profile.

o Fingerprint/Descriptor Estimation Tools as Plugin for AXOM - They will be a collection
of algorithms and tools that will provide functions for fingerprint/descriptors estimation
from digital contents.

• Protection Manager support – It will provide the support to manage the protection of AXMEDIS
objects.

• AXEPTool Publication Module – it will provide the support to manage the publication aspects in
the AXEPTool

• AXEPTool Loading Module - it will provide the support to manage the publication aspects in the
AXEPTool

• AXEPTool P2P Active Selection Module - it will provide the support to manage the publication
aspects in the AXEPTool

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

17

AXCP Rules Editor

AXCP Rule Engine

Active AXCP Rules

Repository of AXCP Rules

Adaptation Tools and
Algorithms as Plugin

for AXOM

AXMEDIS Object Manager

AXOM Content Processing

Fingerprint/Descriptor
Estimation Tools as

Plugin for AXOM

AXMEDIS Query Support

«uses»

Object Builder

Protection Managaer Support

«subsystem»
AXMEDIS Certifier and Supervisor

«subsystem»
AXMEDIS Database Manager

AXMEDIS Workflow Manager

Protection Manager
Support Client

Object Protector

AXEPTool
Publication Module

AXEPTool IN
AXMEDIS Data Base

AXEPTool OUT
AXMEDIS Data Base

AXEPTool P2P Active
Selection Module

AXEPTool Loading
Module

Programme Producer/Manager

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

18

AXCP Rule
Scheduler

AXCP
 Rule
Editor

AXCP
Rule Debugger

AXMEDIS
WorkFlow
Manager

Grid Support

Rule Executor

External Procedures
Profile Manager

Grid Support

Plug In Manager

Adaptation
Algorithms

Fingerprint
Algorithms

Descriptors
Algorithms

DLL API DLL API DLL API

Yellow: Rule Engine
Green: Editor

AXOM

Query Support Web Service
Interface

AXMEDIS Content Processing Area SW Architecture

2.6 AXCP Rule General Format
The entire production process will be driven by rules called AXMEDIS Content Processing rules (AXCP
Rule). They will allow an automatic and customizable process that responds to the distribution and end user
needs.
A rule will have to:

• describe what resources are involved in the processing (i.e. extracting digital resources from the
AXMEDIS database by means of queries built on metadata and licensing information or from a
composite AXMEDIS object);

• describe distribution channel properties, user device features, user profile, etc…
• describe the final output using a specific integration format (MPEG-4, SMIL,…) or using DIP

capabilities provided by MPEG-21 objects
• describe how to combine different digital resources and create relationships in terms of:

o spatial relationships (for graphic layout, resource adaptation, …)
o time relationships (for synchronisation, transitions effect, fitting (shrinking or stretching,

cutting,)…);

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

19

• describe how to manage and combine DRM rules for the new formatted resource;
• describe operations or actions that have to be performed during the formatting process, for example:

o which formatting algorithms have to be used (synchronisation, image scaling, resolution
scaling, format conversion, etc…)

o which external functionalities (by dynamic call to services provided by external tools) have
to be used

o Fingerprint estimation and application for the new composite item
o Object ID assignment for the new composite item.

• describe how to protect resources
In general, a rule could be formalised as a function in the following way:

R = f(S1,S2,..,Sn,P1,…,Pm)

Where:
• Si – It defines a selection. It is a sequence of query to be sent to the Query Support for AXMEDIS

objects retrieval or references to digital resource embedded into an composite AXEMDIS object;
• Pi – It is a parameter (basic type as integer, string, Boolean);
• f is the identifier of rule (name of rule or other);
• R is the resultant of rule application. It will be a new AXMEDIS object, or a metadata manipulation,

the protection of an AXMEDIS object, etc…

In this section the structure of a rule is described. A rule is constituted of three main sections:

• Header – General metadata about the AXCP rule
• Schedule – Temporal metadata that describes conditions for firing the AXCP rule
• Definition – The definition of the AXCP rule

Header
This section contains metadata related to general information associated with a rule. It is constituted of::

Header
Data Type Values/Format Description Issues

Rule Name String e.g. “Audio Collection” It defines the name of the
rule

AXRID String It defines the AXMEDIS
Rule ID

Rule Version String e.g. “1.0” It defines the version of
the rule

Rule Type String AXCP Rule, AXPnP
Rule

It defines the type of rule AXCP rules identifies all
rules related to the
Content Processing Area,
whereas the AXPnP rules
are the rule of the P&P
area

Software Name String “Axmedis Rule Editor” It specifies the name of
software used

Version of software String e.g. “2.0” It defines the version of
software used.

Date of production Date dd.mm.yy It defines when the rule
has been created

Time of production Time hh.mm.ss am/pm It defines at what time
the rule has been created

Author String e.g. “John Brown” It defines the name of
author who has created
the rule

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

20

Affiliation String e.g. “DSI” It defines the name of
Affiliation

URL String e.g. “http://www....” It defines the Internet
address of the Affiliation

Comment String It allows describing what
the rule does

Last_Modification Date Who is last modified
Terminal_ID String The Id of the terminal

used to write the rule.

Cost Enum Estimation of Cost
Work_Item_ID String External reference, for

instance the commitment

Schedule
This section contains the sequence of metadata for programming the activation of a rule:

Schedule
Data Type Values/Format Description Issues

Run Section It defines a subsection of metadata that
describe information needed for
scheduling the execution of the rule.

Status String “Active”, “Inactive” It defines if a rule:
• is active and can be executed
• is inactive

The list of status
identifiers could be
extended if it is
necessary.

Run

Data Type Values/Format Description Issues
Start Date Date dd.mm.yy It defines when the rule has to be executed

by the engine in terms of day, month and
year.

Start Time Time hh.mm.ss am/pm It defines when the rule has to be executed
by the engine in term of time clock.

Periodicity String “Monthly”, “Daily”,
“Weekly”, etc…

It defines if a rule has to be executed
periodically

Optional

Expiration
date

Date dd.mm.yy To stop the periodicity Optional

Expiration
time

Time hh.mm.ss am/pm To stop the periodicity Optional

Definition
This section include the AXCP Rule section containing the procedural description of the rule.

AXCP Rule
Data Type Values/Format Description Issues

Arguments Section It includes the set of
selections and parameters that
rule has in input.

Preconditions Section It includes the list of
DLL/functions, Plug In used
by the script preconditions

This is information could be
used to check the feasibility of
rule before running it

Rule Body Section It includes the JavaScript code
that defines the Rule

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

21

Files
Complexity

TBD TBD It will specify the complexity
of the rule in terms of
computational, file transfer
parameters, estimated amount
of disk space required by the
digital resources involved in
the rule and other parameters

This will be better defined
during the project life

The Arguments subsection contains the list of Selections and Parameters that will be used by the rule.

For each Selection see the “XML Selection Schema” in Part E.

Each Parameter is defined as following:

Parameter
Data Type Values/Format Description Issues

Name String It specifies the name of the
parameter

Type String Integer, String, Float, Double, etc… It specifies the type of
parameter

Value string It specifies the value that the
parameter assumes

The Preconditions subsection contains information about the AXMEDIS Editor Plug In that could be
required by the Rule Body. This mechanism is similar to the import directive in JAVA language.

Preconditions
Data Type Values/Format Description Issues

Plug_In_Name String e.g.: “Adaptation" It provides the name of the AXMEDIS Editor
Plug In used by the script. This information has to
be matched with that provided by the DLL from
its profile.

Version String e.g.: “2.0” Version of the Plug In. This information has to be
matched with that provided by the DLL from its
profile.

The Rule Body section provides two possible ways to refer the adopted script:

Rule Body
Data Type Values/Format Description Issues

JS_Script String It could be used to embed the whole script
(JavaScript code) inside the XML rule format.

Choice

Path URL It could be used to specifies reference to a “.js” file
that contains the source script of the current rule
(JavaScript code).

Optional

2.6.1 AXCP Rule XML formalisation
The set of metadata defined previously could be formalised by means of the following XML Schema:

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

22

Where the Selection XML schema will be:

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

23

The file associated with the rule is an XML file whose name will be generated as following:

< Rule_Filename > = <Rule_Name> + <Rule_Version> + AXRID + “.xml “

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com) by Paolo Nesi (University of Florence) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:include schemaLocation="Selection-v1-4.xsd"/>
 <xs:element name="Rule">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Header">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Rule_Name" type="xs:string"/>
 <xs:element name="AXRID" type="xs:string"/>
 <xs:element name="Rule_Version" type="xs:string"/>
 <xs:element name="Rule_Type">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Compositional"/>
 <xs:enumeration value="Formatting"/>
 <xs:enumeration value="Comp_Form"/>
 <xs:enumeration value="Prog_Pub"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Software_Name" type="xs:string"/>
 <xs:element name="Version_of_software" type="xs:string"/>
 <xs:element name="Date_of_production" type="xs:date"/>
 <xs:element name="Author" type="xs:string"/>
 <xs:element name="Affiliation" type="xs:string"/>
 <xs:element name="URL" type="xs:anyURI"/>
 <xs:element name="Comment" type="xs:string"/>
 <xs:element name="Last_Modifications" type="xs:date"/>
 <xs:element name="Terminal_ID" type="xs:ID"/>
 <xs:element name="Cost" type="xs:string"/>
 <xs:element name="Work_Item_ID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Schedule">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Run">
 <xs:complexType>
 <xs:sequence>

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

24

 <xs:element name="Date" type="xs:date"/>
 <xs:element name="Time" type="xs:time"/>
 <xs:element name="Periodicity" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Daily"/>
 <xs:enumeration value="Weekly"/>
 <xs:enumeration value="Monthly"/>
 <xs:enumeration value="Yearly"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Expiration_Date" type="xs:date" minOccurs="0"/>
 <xs:element name="Expiration_Time" type="xs:time" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Status">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Active"/>
 <xs:enumeration value="Inactive"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Definition">
 <xs:complexType>
 <xs:choice minOccurs="0">
 <xs:element name="AXCP_Rule">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Arguments">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Parameter" type="xs:string"
maxOccurs="unbounded"/>
 <xs:element ref="selection" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Rule_Body">
 <xs:complexType>
 <xs:choice>
 <xs:element name="JS_Script" type="xs:string"/>
 <xs:element name="Path" type="xs:anyURI" minOccurs="0"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="Preconditions" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Plug_In_name" type="xs:string"/>
 <xs:element name="Version" type="xs:time"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="PnP_Rule"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

25

The following example shows the XML structure for a generic rule:

<Rule>

<Header>
<Rule_Name> Audio Collection </Rule_Name>
<AXRID> 0010001 </AXRID>
<Rule_Version> 1.0 </Rule_Version>
<Rule_Type> Compositional </Rule_Type>
<Software_Name> Axmedis Rule Editor </Software_Name>
<Version_of_software> 2.0 </Version_of_software>
<Date_of_production> 24.12.2004 </Date_of_production>
<Time_of_production> 12:00 am </Time_of_production>
<Author> John Brown </Author>
<Affiliation> DSI </Affiliation>
<URL> http://www.dsi.unifi.it </URL>
<Comment> This rule embeds only audio file </Comment>
<Last_Modifications> 25.12.2004 </Last_Modifications>
<Terminal_ID> </Terminal_ID>
<Cost> What is cost? </Cost>
<Work_Item_ID> What? </Work_Item_ID>

</Header>
<Schedule>

<Run>
<Date> 24.12.2004 <Date>
<Time> 12:00 pm </Time>
<Periodicity> Weekly </Periodicity>
<Expiration_Date> 01.01.2005 </Expiration_Date>
<Expiration_Time> 12:00 pm </Expiration_Time>

 </Run>
<Status> Active </Status>

 </Schedule>
 <Definition>
 <AXCP_Rule>

<Arguments>
<selection name="TEST" timestamp="2005-01-20T18:20:46.275+01:00">
 <AXOID>3y7932469236</AXOID>
 <AXOID>824375832741723</AXOID>
 <query>
 <source>
 <location>CRAWLER</location>
 </source>
 <AXinfoQuery>
 <querycondition>
 <nesting>
 <test>
 <field>AUTHOR</field>

 <operator>STARTWITH</operator>
 <value>MOZ</value>
 </test>
 </nesting>
 </querycondition>
 </AXinfoQuery>
 </query>
</selection>

 <Parameter name=”count” type = “integer” > 20 </ Parameter >
 ……
 <Parameter> ……</ Parameter >

</ Arguments>
<Preconditions>
 <Plug_In_Name> Adaptation </Plug_In_Name >
 <Version> 2.0 </Version>
</Preconditions>
<Preconditions>
 ………….
</Preconditions>
<Rule_Body>
 …
</Rule_Body>

 </AXCP_Rule>
 </Definition>
</Rule>

2.6.2 AXCP Rule Class Diagram
According to the XML schema, the data model of the rule will be realised by means of the following class
diagram:

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

26

AXRule

ScheduleHeader

AXCP Rule

1

1

1

1

AXPnP Rule

Selection List1

1

1

1

Parameters List

1

1

«subsystem»
XML Library

«uses»

The AXRule is the main class for a rule. It will encapsulate a Header and a Schedule class. They will model
respectively the Header and Schedule section according to Rule XML Schema.
The AXRule class will be the common class for the AXCP and AXPnP rules. Each of them will define the
Definition section according to Rule XML Schema and then specialise the AXRule.

2.6.3 AXRule Loader and Saver Modules (DSI)
To manage the repository of rules it is necessary to have the possibility to load and save a rule in/from the
system. For this purpose, the following modules respond to such requirement.
AXRule Loader - It is the module for loading an XML representation of the rule in the AXCP Rule Editor
and AXCP Rule Engine. It will work according to the XML rule specification and it will be based on an
XML library for managing metadata. It provides the following functionalities:

• Load the XML file of the AXCP rule from disk and generates an AXCP memory representation
of rule (AXCP Rule object)

AXRule Saver – It is the module for saving an XML representation of the rule on disk. It will work
according to the XML rule specification. It provides the following functionalities:

• Save the XML representation of the rule by replacing the existing one
• Save as function for saving the XML representation of the rule with a name

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

27

Both modules will be implemented by using an abstract class called AXRuleVisitor. This solution will allow
building an AXRuleLoader and an AXRuleSaver class that could manage different types of rules by
implementing different Visit methods (see the class diagram reported below). Both classes are related to a
DOM in order to perform the necessary read/write operations on an XML file. The XML representation of a
rule is stored in the DOMDocument class from which it is possible to build the memory representation of the
AXCP rule. The AXRule class will have a Load and Save method and a virtual method Visit that will have to
be redefined in the AXCP Rule class. In this way, the Visit method of AXCP Rule will call the Visit method
of AXRuleLoader on the AXCP Rule object by using the this pointer. In the following picture, the class
diagram for the Rule Loader and Saver modules is reported:

The adopted solution can be used to implement a loader and saver also for the AXPnP rule.

XML file format

lo
ad

in
g saving

DOMDocument

AXCP Rule

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

28

2.7 AXCP Rule Editor (DSI)

Module Profile
AXCP Rule Editor

Executable or Library(Support) Executable
Single Thread or Multithread Multi-Thread
Language of Development C++
Responsible Name Ivan Bruno
Responsible Partner DSI
Status (proposed/approved) Proposed
Platforms supported Microsoft Windows, Linux, MACOS X

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)
AXMEDIS Workflow manager Command and reporting Web Service
AXCP Rule Engine

File Formats Used Shared with File format name or reference to a

section
Config Files

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Views Manager C++ wxWidgets 2.4.2 C++ library

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets 2.4.2 wxWidgets 2.4.2 C++ library LGPL
XERCES-C++ XERCES 2.6.0 LGPL
FL C++ Lib contribution to
wxWidgets Lib

 LGPL

STC C++ based on Scintilla
editor, contribution to the
wxWidgets Lib

 LGPL

The AXCP Rule Editor is the tool that will permit to obtain well formed rules by the means of both graphic
and scripting tools. The AXCP Rule Editor will be launched by the Workflow Web User Interface when the
user/Rule producer will click on a specified button in the Web page. During the launching an incomplete
Rule XML will be sent to the AXCP Rule Editor. Some information could be already available in the header
of rule (rule type, AXRID, comments etc…) and in the schedule. The Rule Editor will be able to interact
with the Rule Executor derived from the AXCP Rule Engine in order to perform debugging and feasibility
check on rules. The main capabilities provided by the editor will be:

• AXCP rule editing
• AXCP Rule Activation
• Internal textual editor for writing the script code
• Debugging support to test and verify the script
• Communication support with the AXCP Rule Engine
• Communication support with the AXMEDIS Workflow Manager

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

29

The specific components and aspects regarding protection and DRM can be found in section 5.2 of part H of
the AXMEDIS framework specification “Protection Rule Editor”.

 Compositional/Formatting Rule Editor
To be taken as an example of others Rule/Selection EDITOR

Rule Editor User
Interface

AXMEDIS Content Production
Area::Compositional/
Formatting Engine

AXMEDIS Content Production
Area::Active Compositional/

Formatting Rules

AXMEDIS Content
Production Area::Repositor

of Compositional/
Formatting Rules

User Commands
and Reporting

AXMEDIS Editor::Plug In Manager

Rule Saver

Created Selection

AXMEDIS Data Base
Area::AXMEDIS Query Support

«uses»

«uses»

Top Package::Object Builder

AXMEDIS Content Production
Area::Adaptation Tools and

Algorithms

Fingerprint/Descriptor Extractors
Area::Fingerprint/Descriptor

Estimation Tools as
Plugin for AXOM

AXMEDIS Editor::AXMEDIS
Editor WorkFlow Plug In

Compositional/
Formatting Engine::Rule

Loader

Adaptation Algorithms Profiles

Descriptor Estimators Profiles

Fingerprint Estimators Profiles

Worflow Procedures Profiles

External Procedures Profile
Manager

2.7.1 AXCP Rule Editor User Interface (DSI)
The AXCP Rule Editor will be a multithread application and will be developed by using the wxWidgets ver.
2.4.2 library. This should allow having a multiplatform rule scheduler.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

30

The AXCP Rule Editor GUI will be a MDI window that will manage a rule document. It will be developed
to provide a set of tools and views to help the user during the editing and building of rule. It will host an
instance of the rule executor in order to provide functionalities for debugging, testing and validating the
script code associated with a rule. To help the user in writing rule, the editor will be equipped with an Help
on line and area where the user will be able to access to a library of script functions. The main architecture of
GUI will be based on the following structure:

Title Bar

Menu Bar

Tool Bar Area

Workspace Area

Document View

Status Bar

Output Area

Document View

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

31

The Menu Bar
The menu bar will be constituted of the following main entries:

File
o New – create a new rule document
o Open – Open a document in the Rule Editor (rules and java script)
o Close – Close the current rule document
o Save – save the current rule using the current file name
o Save as – save the current rule by name
o Recent Files – History of files
o Exit – Quit the editor

Edit

o Copy – copy a selection in the clipboard
o Paste – paste a selection available in the clipboard
o Cut – delete and copy a selection in the clipboard
o Delete – delete a selection
o Find… – Search a word in the text
o Replace… – replace a word with another
o Select All – select all content
o Go to… – go to a specific line text

View
o Workspace – It opens the Workspace area
o Output – It opens the Output area

Insert

o Selection – Adds a selection item in the rule
o Parameter – Adds a parameter item in the rule
o Schedule – Adds a schedule item in the rule
o Script - Adds a script item in the rule
o Precondition - Adds a precondition item in the rule

Commands

o Activate Rule – It is the activate rule command and will allow sending the current rule to the
scheduler and the notification to the AXMEDIS Workflow Manager. A connection with the Rule
Engine Scheduler will be open in order to perform the installation of rule in the Scheduler.

o Check rule – Tests the feasibility of the rule (like a compiler plus some tests on AXMEDIS
objects and estimation of some parameters such as the files complexity and required workload)

o Rules List… – Shows the list of rules inside the repository of the Rule Editor
o Find Rule… – Allows making queries to the rules repository of the Rule Editor

Debug
o Run – Enter in the debug mode or if the script is stopped, continue execution until the script is

finished, or a breakpoint is reached.
o Stop – Stop the script execution and close the debug mode
o Step - Executes the current line of the script, then pauses. This differs from the "Trace"

command in that it will not step into functions and scripts that are called by the current line.
o Trace – Executes the current line of the script, then pauses. This differs from the "Step"

command in that if the current line calls a function, or another script, the debugger will trace into
the called function or script.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

32

o Skip - Skips over current line without executing it. The script will resume execution on the
subsequent line.

o Watches – It will open the table of current variables showing name and values
o Stack – It will open the stack of functions
o Set Breakpoint – Set a breakpoint on the currently selected line of the script code. Every time

the selected line is reached, the debugger will stop
o Remove Breakpoint - Clear a breakpoint from the currently selected line of the script code.
o Remove All Breakpoint - Clear a all breakpoint in the script code.

Messages

o Last message – Displays the last message sent by the AXMEDIS Workflow Manager
o Messages List - Displays the list of messages sent by the AXMEDIS Workflow Manager

Window (provided automatically by the MDI GUI)

o Cascade
o Tile Horizontal
o Tile Vertical
o Next – Activate the next document view
o Previous - Activate the previous document view
o Arrange Icons – Arrange the all minimised document views
o Close All – Close all document views
o Windows list

?

o Help – Call the on line help
o About – Information about the authors, version, etc

ToolBar Area
The toolbar area will host a set of icon buttons that will allow calling functions without accessing to the
menu bar. The toolbar area will be based on dockable toolbars and will allow the dynamic customisation by
adding or removing sub-toolbars. For this end the editor will provide sub-toolbars for:

• Standard – it will provide main functionalities for managing rule files and editing (new, open, save,
etc…)

• Debug – it will provide main controls
• Messages – it will provide the access to the message list and the last message
• Commands – it will provide main commands

Workspace Area
This will be a resizable panel and will include a notebook control constituted of the following view items:

1. Rule View – In this area the structure of rule is displayed. It will be realised by using a Tree control
that will permit to show and browse components according the rule XML schema.
A dynamic popup menu will be available for a quick access to functions that will allow the quick
management of items (edit and view metadata, delete,…). Appropriate icons will be also drawn in
order to identify intuitively components of rule in the tree control view. In the following picture the
structure of the Rule View area is depicted:

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

33

2. Info View – It will be as an on-line book that could be used as help by the user. It will display the set
of functionalities provided by the Plugins installed and automatically detected by the editor. It will
be realised by using a Tree control that will permit to show and browse plugins module and the
functionalities that they provide according to their profile. The profile will be used to build on the fly
an html or txt documentation page. The user will be able to see the documentation associated with
each selected function by interacting with each item of the tree. To this end a contextual popup menu
will be designed. The selected documentation will be displayed in the Text/Html document view.

Output Area
This is a text control where messages, textual description, errors, debugging info, alert, etc… will be
displayed.

Tools, Viewers and Editors
Some different types of tools and editor will be designed for visualizing and/or editing different type of
documents.

1. Textual script editing window – This is the window client where the user will be able to write the script

code. It will be based on a multiline text control where it will be possible to edit the script. The textual
editor will support some facilities such as:

• Auto completion of words - a window listing possible completions for strings the user has typed
• Syntax highlighting – keywords will be colourised
• Brace highlighting

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

34

• Folding/Hiding - making lines invisible or visible. It shows or hides a range of lines.
• Multiple views - to have multiple views of the same Document. (Split view)
• Breakpoint insertion/removal – to control the code in the debugging session
• Visualisation of line numbers

2. Text/Html document view – This is the window for the visualisation of the documentation provided by
the help on line. It will be opened when the user will make double click on a voice of the index in the
Info view or when the internal help is called. It will provide functionalities for browsing TXT or HTML
pages. For example, all the information related to the description of a function selected from the Info
view will be shown in such window.

3. Selection Editor - It will be an interactive html page that will be displayed by means the HTML

document viewer. It will provide functionality for:
a. Edit a selection
b. Save/Load a selection
c. Actualise the selection

For more details about the Selection editing see the DE3.1.2E Framework and Tools Specifications
(Database and Gathering)

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

35

4. Mapper Editor [CRS4]
Mapper editor GUI will be an editor for Metadata Mapping AXEPTool. It will be the interface used to
creates the map for incoming metadata translation. The GUI allows the user to decide which origin fields
have to be converted in destination fields. The GUI will be invoked by the AXCP Editor.
For more details see document DE3.1.2F Framework and Tools Specifications (AXEPTool and Progr. and
Pub.).

Interactive Dialogs
The editor will provide a set of dialogs for facilitate the editing of a rule. To this end, the following dialogs
will be designed:

1. Header Rule Edit Dialog – This is the dialog that will allow to fill fields of the header section. The

dialog will be designed as an OK/Cancel modal dialog in a notebook style with General, Producer and
Comment tab where the list of items to edit.will be displayed.

2. Precondition Edit Dialog - This will be a dialog that will allow to fill fields for a precondition item.

The dialog will be designed as an OK/Cancel modal dialog and will display the list of items to edit. The
dialog will show the list of plugin installed in order to facilitate the choice.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

36

3. Parameter Edit Dialog - This will be a dialog that will allow editing/filling fields for a parameter item.

The dialog will be designed as an OK/Cancel modal dialog and will display the list of items to edit.

4. Schedule Edit Dialog – This will be a dialog that will allow filling/editing fields for a schedule item.

The dialog will be designed as an OK/Cancel modal dialog and will display the list of items to edit.

ScheduleSchedule

Enter Text

Enter Text

Run Condition

OK Cancel

Start Date

Start Time

Expiration Time

Enter TextExpiration Date

Enter Text

Periodicity Enter Text

5. Repository Rule List Dialog - The Rule List command will open a rules list modal dialog displaying all

rules stored in the repository of the AXCP Rule editor. In this window, the list of rules will be organised
in a table built on the following subset of metadata:

• Rule Name
• Rule Version
• Author
• Date of composition
• Rule ID (AXRID)

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

37

The user will be able to select a specific rule in order to open it in the rule editor. Such operation will be
possible by pushing the Open button or double clicking on the line of the chosen rule. The user will be able
to visualize the comment associated with rule by pushing the View Comment button, the comment will be
displayed the Output Area. Otherwise the user will be able to cancel the operation by closing the dialog or
pushing the Close button.

6. Find – This will be a common/standard find text no modal dialog where the user will put strings he

wants to search in the text.

7. Go To – This will be an OK/Cancel no modal dialog where the user will put the number of the line

where he wants to set the cursor

8. Find Rule dialog – The find rule command will open a dialog that will allow setting a query in order to

search a specific rule inside the repository. The query will be built on the following set of metadata:
• Rule Name
• Rule Version
• Rule Type
• Date (day, month and year)

Two logical operators will be available to make query: OR and AND.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

38

In event of some metadata missing, the query on the repository will be done with the available metadata. An
empty query will be not executed, this will be controlled by activating the OK button when at least a
metadata has been input.
Clicking on the OK button will start the search in the rule repository. The Cancel button aborts the operation.

2.7.2 AXCP Rule Editor Configuration (DSI)
In this section the set of parameters regarding the configuration of the editor are listed:

• Rules Repository – it is the directory where the rule will be saved
• Rule Engine URL – it is the network address of the rule engine.
• Workspace Area – it indicates if the workspace area will have to be shown or not when the

application starts
• Output Area – it indicates if the area will be shown or not when the application starts
• Toolbar – it indicates which toolbars will have to be put in the main frame
• Client Size – it is the information about the last width and height of the main frame
• Client Position - It is the information about the last position (x,y) of the main frame
• Plugins Path – It is the directory where the DLL of plug-ins with their profiles (workflow,

adaptation, descriptor and fingerprint estimators) are stored.

This set will be extended if necessary during the life of the project.

2.7.3 Debugging Rules (DSI)
The editor will provide the debug mode for rule debugging. The debugging mode will be possible by using
an instance of the Script Executor in the AXCP Rule Editor. The Rule Executor will be used in the
Debugging mode. The debug mode will be based on the following set of functions:

o Run – Enter in the debug mode or if the script is stopped, continue execution until the script is
finished, or a breakpoint is reached.

o Stop – Stop the script execution and close the debug mode
o Step - Executes the current line of the script, then pauses. This differs from the "Trace"

command in that it will not step into functions and scripts that are called by the current line.
o Trace – Executes the current line of the script, then pauses. This differs from the "Step"

command in that if the current line calls a function, or another script, the debugger will trace into
the called function or script.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

39

o Skip - Skips over current line without executing it. The script will resume execution on the
subsequent line.

o Set Breakpoint – Set a breakpoint on the currently selected line of the script code. Every time
the selected line is reached, the debugger will stop.

o Remove Breakpoint - Clear a breakpoint from the currently selected line of the script code.
o Remove All Breakpoint - Clear a all breakpoint in the script code.

To this end the editor will be equipped with a module that will manage the debug mode and specific
functions and data structure to:

- maintain the list of breakpoints to put in the code
- put traps in the code corresponding to breakpoints
- open the watch and stack windows
- call the rule engine and initialise it to the debugging mode
- control the debug mode by means the previous set of function.

2.7.4 User Commands and Reporting - AXMEDIS Workflow Manager interaction (DSI)
It provides communication support from/to the AXMEDIS Workflow Manager. Such services are divided in
commands for the user and reporting.

• Messages coming from the AXMEDIS Workflow Manager:
o Description of the work to perform
o AXRID to associate with the rule to be prepared
o Rule type
o Schedule information
o Some other information related to header of the rule (according to the XML schema)

• Reporting to the AXMEDIS Workflow Manager
o Notification (end work with success)
o Exception

Communication with the AXCP Rule Engine

• Commands to the AXMEDIS Rule Engine:
o Get list of rules
o Activate rule
o Deactivate rule
o Remove rule
o Install rule in the scheduler (xml file transfer)
o Get Rule

• Notification, messages, files and exception returned by the AXMEDIS Rule Engine.
The communication between the AXCP Rule Editor and the Engine will be based on the same protocol used
by the Workflow Manager for communicating with the AXCP Rule Engine. It will based on Web Service.
This will allow avoiding duplications.

2.7.5 External Procedures Profile Manager (FHGIGD, DSI)
To enable AXMEDIS to be a flexible structure, which can be extended according to the specific user needs,
plug-ins can be easily be integrated into the AXMEDIS framework. The plug-ins are handled by the Plug-In
Managers (AXMEDIS Editor::Plug-In Manager and the Collector Engine::Collector Plug-In Manager).

The Plug-in Managers takes care about the installation, registration, and loading of plug-ins. Different kinds
of plug-ins are supported, including:

• Data-manipulation plug-ins shall be able to modify AXMEDIS object structure, i.e. plug-ins which
shall be able to delete or move existing components, insert new components, etc…

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

40

• Metadata show/manage plug-ins shall be used by Metadata View to adequately display and modify
user-defined sets of metadata;

• Metadata production shall be able, through AXMEDIS object (and parts thereof) analysis, to produce
metadata to be included into the object;

• Configuration plug-ins shall be used by AXMEDIS Editor Configuration Manager to manage and
display specific configuration information;

• Workflow plug-ins which shall permit interaction of AXMEDIS Editor with AXMEDIS Workflow
subsystem;

• Protection plug-ins, which contain protection algorithm enriching the set of those available for the
Protection Processor;

To enable an effective management, a profile manager is responsible for the handling of the profile
descriptions. This profile manager is very close to the Plug-In manager. It is responsible for loading the
profiles from installed libraries. The relevant information includes:

• the category of the plug-in, e.g. content processing;
• the unique identifier of the plug-ins
• the signature of the plug-in
• data specific for the kind of plug-in
• the signature

As the external procedures profile is closely related to Plug-in Manager and the content processing
algorithms details can be found in DE3-1-2B (Framework and Tools Specification – Viewers and Players)
and in DE3-1-2D (Framework and Tools Specification – Fingerprint and Descriptors).

2.8 AXCP Rule Engine (DSI)

Module Profile
AXCP Rule Engine

Executable or Library(Support) Executable
Single Thread or Multithread Multi-Thread
Language of Development C++
Responsible Name Ivan Bruno
Responsible Partner DSI
Status (proposed/approved) Proposed
Platforms supported Microsoft Windows, Linux, MACOS X

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)
AXMEDIS Workflow manager Command and reporting Web Service

File Formats Used Shared with File format name or reference to a

section
Config Files

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Views Manager C++ wxWidgets 2.4.2 C++ library

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

41

 SpiderMonkey JavaScript Engine
ver. 1.5 by Mozilla

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets 2.4.2 wxWidgets 2.4.2 C++ library LGPL
SpiderMonkey JavaScript
Engine

SpiderMonkey JavaScript Engine
ver. 1.5 by Mozilla

LGPL

XERCES-C++ XERCES 2.6.0 LGPL

In this section, the specification of the AXCP Rule Engine will be discussed. As already discussed, the
content processing activity (production, protection and publication on AXEPTool) will be based on a unified
and shared solution. In these terms, the AXCP Rule Engine will play the role of:
• AXMEDIS Compositional/Formatting Engine
• AXEPTool Loading Tool Engine
• AXEPTool Publication Tool Engine
• AXEPTool P2P Active Selection Engine
• The Protection Tool Engine

By delegating the processing activity to a single rule engine seems to be not the best solution since the
amount of work and the dimension of data that the engine will have to manage is high. The main idea is to
design a distributed environment of engines for the AXMEDIS object processing based on GRID. This
solution will maintain advantages of a unified solution and allow enhancing the capabilities of the
AXMEDIS content processing area by running rules in parallel.
According to the UML diagram, the AXCP Rule engine will be divided in two main components:

• Rule Scheduler (Server Side) – It consists of the Scheduler and Dispatcher. It performs the
operations of rule firing, rule executor discovering and management, rules dispatching,
communication with the AXMEDIS environment, etc….

• Rule Remote Executor (Client Side) – It is the executor of rules and consists of a script engine

based on JavaScript (JS) SpiderMonkey released by Mozilla. It receives the JavaScript code
associated with rule and performs the necessary operations for: Script preparation, JS Engine
initialisation, JS Engine running script

The Grid infrastructure will be realised by means P2P technology. For these reason both the Rule
Scheduler and the Rule Executors will be equipped with a P2P communication support.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

42

Compositional/Formatting Engine
To be taken as an example of others AXMEDIS Engine for Rules

Rule Executor

Rule Scheduler

AXMEDIS Content Production
Area::Active Compositional/

Formatting Rules

Time

AXMEDIS Query
Support::Query Support
Web Service Interface

AXMEDIS Editor::AXMEDIS
Object Manager

Engine Commands
and Reporting

AXMEDIS Editor::Plug In
Manager

AXMEDIS Database
Manager::AXMEDIS Object Loader/

Saver

AXMEDIS Editor::Plug In
Manager

AXMEDIS Editor::AXMEDIS
Editor WorkFlow Plug In

WorkFlow Management
Area::WF Engine Plug In

WorkFlow Management
Area::AXMEDIS Workflow

Manager

AXMEDIS Content Production
Area::Adaptation Tools and

Algorithms

Fingerprint/Descriptor Extractors
Area::Fingerprint/Descriptor

Estimation Tools as
Plugin for AXOM

From the compositional/formatting
engine it is possibile to protect the
Objects on demand by passing from
the WF manager that may host
some specific flow rules to activate
on the basis of messages of the
Protection Tool Engine.

Rule Loader

AXMEDIS Editor::AXOM Content
Processing

GRID Library and
Tools

«uses»

«uses»

Compositional/Formatting Rules
Editor::External Procedures Profile

Manager

2.8.1 JSENGINE (SpiderMonkey by Mozilla)
The AXMEDIS Rule Executor will be equipped with a JavaScript Engine based on SpiderMonkey, the
Mozilla's C implementation of JavaScript ([1]). The JS engine supports JS 1.0 through JS 1.5, JS 1.4., JS 1.3
and greater conform to the ECMAScript-262 specification. At its simplest, the JS engine parses, compiles,
and executes scripts containing JS statements and functions. The engine handles memory allocation for the
JS data types and objects needed to execute scripts, and it cleans up--garbage collects--the data types and
objects in memory that it no longer needs. Generally, the JS engine is built as a shared resource. For
example, the engine is a DLL on Windows and Windows NT, and a shared library on Unix. The JS engine's
API provides functions that fall into the following broad categories:

• Data Type Manipulation
• Run Time Control

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

43

• Class and Object Creation and Maintenance
• Function and Script Execution
• String Handling
• Error Handling
• Security Control
• Debugging Support

Conceptually, the JS engine is a shared resource on the system. By embedding engine API calls in the
application, requests can be passed to the JS engine for processing. The engine, in turn, processes requests,
and returns values or status information back to the application. The following picture illustrates this general
relationship:

In truth, the actual relationship between the application and the JS engine is somewhat more complex than
shown in Figure 1.1. For example, it assumes that you have already built the JS engine for your platform. It
assumes that your application code includes jsapi.h, and it assumes that the first call your application
makes to the engine initialises the JS run time.

When the JS engine receives an initialisation request, it allocates memory for the JS run time. The picture
reported below illustrates this process:

The run time is the space in which the variables, objects, and contexts used by the application are
maintained. A context is the script execution state for a thread used by the JS engine. Each simultaneously
existent script or thread must have its own context. A single JS run time may contain many contexts, objects,
and variables.

Almost all JS engine calls require a context argument, so one of the first things the application must do after
creating the run time is call JS_NewContext at least once to create a context. The actual number of
contexts the application needs depends on the number of scripts expected to use at the same time in the
application. One context is needed for each simultaneously existing script in the application. On the other
hand, if only one script at a time is compiled and executed by application, then you need only create a single
context that you can then reuse for each script. After contexts creation, the built-in JS objects in the engine
must be initialized by calling JS_InitStandardClasses. The built-in objects include the Array,
Boolean, Date, Math, Number, and String objects used in most scripts.

Most applications will also use custom JS objects. These objects are specific to the needs of applications.
They usually represent data structures and methods used to automate parts of your application. To create a
custom object, you populate a JS class for the object, call JS_InitClass to set up the class in the run
time, and then call JS_NewObject to create an instance of your custom object in the engine. Finally, if
your object has properties, you may need to set the default values for them by calling JS_SetProperty
for each property. Even though you pass a specific context to the JS engine when you create an object, an
object then exists in the run time independent of the context. Any script can be associated with any context to

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

44

access any object. The following figure illustrates the relationship of scripts to the run time, contexts, and
objects.

As the previous figure also illustrates, scripts and contexts exist completely independent from one another
even though they can access the same objects. Within a given run time, an application can always use any
use any unassigned context to access any object. There may be times when you want to ensure that certain
contexts and objects are reserved for exclusive use. In these cases, create separate run times for your
application: one for shared contexts and objects, and one (or more, depending on your application's needs)
for private contexts and objects.
NOTE: Only one thread at a time should be given access to a specific context.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

45

2.9 Rule Scheduler
The Rule Scheduler is the application involved in the rules engines management. It plays the role of server in
the distributed environment. It will be a multithread application and will be developed by using the
wxWidgets ver. 2.4.2 library. This should allow having a multiplatform rule scheduler.
Referring to the picture, it is constituted of following parts:

2.9.1 Scheduler Command Manager
The Scheduler Manager is the main application and provides the interface to the Scheduler GUI. The main
provided functionalities are:

• Load/Save the configuration file.
• Initialisation of the scheduler
• Starting the scheduler
• Stopping the scheduler
• Exporting the list of rules and remote executors
• Browsing the list of jobs/rules and remote executors
• Performing backup of current status (list of rules)
• Performing the restore of the last list of rules
• Load/Install rules
• Providing commands for managing, controlling and monitoring the execution of rules and the

activity of remote executors.
• Logs and reports management

GRID PEER INTERFACE

GRID PEER

DISPATCHER

Rule Remote
Executor
On PC#1

………

INTERNAL SCHEDULER

AXMEDIS Distributed Engines

GRID PEER
INTERFACE

GRID PEER

Rule Remote
Executor
On PC#2

GRID PEER
INTERFACE

GRID PEER

Rule Remote
Executor
On PC#n

GRID PEER
INTERFACE

GRID PEER

SCHEDULER COMMAND
MANAGER

ENGINE COMMANDS
AND REPORTING

SCHEDULER GUI

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

46

The Scheduler Manager will manage the configuration parameters stored in a “Schedeuler.ini” configuration
file. The set of parameters will contain information about:

• Backup Time - Backup interval for logging the set of submitted rule and tracing operations. It
will be expressed in minutes.

• Time Out - Time out on client activity. It will be expressed in seconds.
• Time Resolution - Time Resolution of the scheduler. It will be expressed in seconds.
• Refresh Time - Time Resolution for discovering new rule executors
• Rules Path - Rule Repository Path
• Log Path - Log Repository Path
• Profile Path - Executor Profile Repository Path
• Backup Path – The path where the scheduler periodically will save the current rules list.

The management of configuration parameters will be done by using the AXMEDIS Configuration Manager.

2.9.2 Engine command and reporting (AXMEDIS Workflow Manager interaction)
It will provide the communication and the interaction layer with the AXMEDIS Workflow Manager and to
external applications such as the AXMEDIS Rules Editor. It will based on Web Service (GSOAP) and
Workflow PlugIn. This module provides communication functionalities and allows managing:

• Commands coming from the AXMEDIS Workflow Manager:
o Run rule(AXRID, arguments, when) – Ask for a running of a rule specified by means the

AXRID, this command could override the arguments value of the rule by sending the xml
descriptions about the arguments section(according to the XML schema) and could specify
when the rule has to be run by overriding the schedule. If the command does not override the
arguments the rule will be executed with the current arguments. If the command does not
override the schedule, the rule will be executed immediately. Also all other combinations of
overriding will be considered.

o Activate rule(AXRID) – Switch the status of the rule specified by means the AXRID in the
“ACTIVE” status

o Deactivate rule(AXRID) - Switch the status of the rule specified by means the AXRID in the
“INACTIVE” status

o Remove rule(AXRID) – Remove the rule specified by means the AXRID from the Scheduler
o Pause rule(AXRID) – Put the rule specified by means the AXRID in the “PAUSE” status
o Suspend rule(AXRID) - Put the rule specified by means the AXRID in the “SUSPENDED”

status for a specific time.
o Resume rule(AXRID) – Resume the rule specified by means the AXRID
o Kill rule(AXRID) – Stop the running of the rule specified by means the AXRID
o Install and activate rule (rule xml file) – Install a new rule in the Scheduler by sending the

XML file.
o Reschedule Rule(AXRID, schedule) – Override the Schedule information of the rule

specified by the AXRID. The schedule parameter will be the xml description according to
the XML schema.

o Get list of rules – Request the list of AXRIDs related to rules currently in the scheduler.
o Get logs(AXRID) – Request the current action log generated by the Rule Scheduler. The

action log will be pre-filtered to make available to the workflow an action log that is
structured per each rule.

o Get rule status(AXRID) – Request the current status of the rule specified by means the
AXRID and the start time if rule is running or the next running time if it is not

o Get xml rule(AXRID) - Request the XML file of the rule specified by means the AXRID

• Reports, messages and files returned to the AXMEDIS Workflow Manager:
o Error notification (failure messages)
o Complete rule notification
o Log of the current activity

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

47

o List of AXRIDs related to the currently scheduled rules
o Xml file of Rule
o Rule status (current status plus schedule information)

2.9.3 Communication with the AXMEDIS Rule Editor
• Commands coming from the AXMEDIS Rule Editor:

o Get list of rules
o Activate rule
o Deactivate rule
o Remove rule
o Install rule in the scheduler (xml file transfer)
o Get Rule

The communication between the AXCP Rule Editor and the Engine will be based on the same protocol used
by the Workflow Manager. It will based on Web Service. This will allow avoiding duplications.

2.9.4 Internal Scheduler
The internal scheduler is the manager of active rules. It has to detect, fire, launch and manage the execution
of a rule. During its activity, the internal scheduler has to:

1. preserve the scheduled work from interruption of service (crash of the application) giving the
possibility to restore the last status of activity

2. manage and update the list of rules to be scheduled and their status
3. manage and update the list of available rule executors
4. notify to the AXMEDIS Workflow Manager messages due to:

• errors during the phase of rule association with an executor
• errors due to the launching phase
• errors during the rule execution on remote executor.
• errors due to the time out deadline missing (the executor did not respond to request)

To this end, the functionalities provided by the rule scheduler are:
• Select from the internal scheduled rules the rule that matches conditions for the execution. This is

performed by:
o checking the execution time and date
o receiving an immediate run command from the AXMEDIS Workflow Manager

• Modify and set the time resolution for the control of rules execution
• Add a new submitted rule in the list of jobs

o Loading the corresponding rule xml file from the repository directory
o Extracting the metadata for scheduling
o Generating and assigning a Job Id to the rule

• Remove a rule from the list of jobs
• Run a rule on demand
• Reschedule a rule (by overriding the schedule information)
• Override rule arguments (by replacing the current arguments)
• Check expiration conditions of a rule
• Provide the list of jobs/rules
• Update firing conditions of a periodic rule
• Browse the list of jobs/rules
• Modify the status of rules
• Remove an executor from the list of executors
• Provide the list of executors
• Browsing the list of executors
• Save periodically on disk a backup copy of the list of jobs
• Restore the last status by loading the backup copy of the list of jobs

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

48

• Route messages coming from the dispatcher and the remote executors to the AXMEDIS Workflow
Manager

Rule Life Cycle
The life cycle of rule represents the evolution of a rule from the activation to its completion. The evolution
is strictly linked to the activities performed by the scheduler, the dispatcher and the executor and it can be
described by means of a status attribute. The status of a rule will assume the following values:

1. Active – The rule is waiting for the execution
2. Inactive – The rule will be not executed
3. Failure – An error occurred during the execution or control of rule. The execution is blocked and the

executor is released.
4. Launching – The rule will be associated with a remote executor.
5. Delayed – The launch of rule has been delayed. Available executors are temporary busy with

another rule.
6. Running – The rule is running on a remote executor
7. Pause – The run of rule has been stopped temporary
8. Suspended – The run of rule is suspended by defining a temporal interval. The time unit is second.
9. Complete – The run is finished

State Diagram for a rule

The general evolution of the rule status is depicted in the State Diagram representation, whereas the
description of each transition is reported in the following.

INACTIVE

ACTIVE

SUSPENDED

RUNNING

COMPLETE

Rule Editor::Enable
AXWF:: Enable

Rule Editor::Disable
AXWF::Disable

Scheduler::End

Scheduler::Run

Scheduler::Pause

Scheduler::Resume

If Periodic
Scheduler::Refresh If Not Periodic

Scheduler:: Disable

FAILURE

Rule Editor::Disable
AXWF::Disable

Rule Editor::Enable
AXWF:: Enable

If error
Scheduler::Failure

LAUNCHING

If executor!=NULL
Scheduler::Failure

Scheduler::Launch

If executor!=’Available’
Scheduler::Delay

If deadline OR time
Scheduler::Failure

DELAYED

If executor==’Available’
Scheduler::Run

PAUSE

Scheduler::Suspend
Scheduler::Resume

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

49

Complete to Active Transition – The transition from COMPLETE to ACTIVE status is performed if the rule
has to be executed periodically. In this case, the rule is re-submitted to the scheduler and its run-conditions
are updated on the basis of the specified period.

Complete to Inactive Transition – The transition from COMPLETE to INACTIVE status is performed when
the rule has to be executed once. In this case, the rule is ready to be removed from the scheduler or to be
modified by means of the Rule Editor or to be run on demand.

Active to Launching – The transition from ACTIVE to LAUNCHING status is performed when the
scheduler fires a rule. The rule has to be associated with a remote executor.

Launching to Running Transition – The transition from LAUNCHING to RUNNING status is performed
when a rule is running on the remote executor.

Launching to Delayed Transition – The transition from LAUNCHING to DELAYED status is performed
when the executor that could run the rule is busy. The rule is placed temporally in a delay queue to be run
when the executor will be ready.

Delayed to Running Transition – The transition from DELAYED to RUNNING status is performed when
the remote executor is ready to run the rule.

Launching To Failure Transition – The transition is performed when during the rule check operation, the
rule profile does not match any available executor profiles.

Running to Failure Transition – The transition from RUNNING to FAILURE status is performed if the
following conditions occur:

• when during the execution of rule the corresponding rule executor sends a run-time error message.
• when during the execution of the rule, the executor does not respond to sever call (Time out).

Running to Complete Transition – The transition from RUNNING to COMPLETE status is performed
when the execution of rule is successfully completed.

Running to Pause Transition – The transition from RUNNING to PAUSE status is performed when a pause
rule request comes from the Scheduler. The status of PAUSE can be conditioned by deadline condition.

Pause to Running Transition – The transition from PAUSE to RUNNING status is performed when a
resume rule request comes from the Scheduler.

Failure to Inactive Transition – The transition from FAILURE to INACTIVE status is performed when a
disable rule request comes from the AXMEDIS Workflow Manager or from the Rule Editor.

Failure to Active Transition – The transition from FAILURE to ACTIVE status is performed when a disable
rule request comes from the AXMEDIS Workflow Manager or from the Rule Editor.

Suspended to Failure Transition – The transition from SUSPENDED to FAILURE status is performed
when the suspension misses the deadline condition.

Running to Suspended Transition – The transition from RUNNING to SUSPENDED status is performed
when a rule suspension request comes from the Scheduler. The status of SUSPENDED is conditioned by a
deadline condition (e.g. a temporal interval).

Suspended to Running Transition – The transition from SUSPENDED to RUNNING status is performed
when a resume rule request comes from the Scheduler. Since the status of SUSPENDED can be conditioned

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

50

by deadline condition, a rule is automatically resumed by the scheduler when the deadline condition is
matched.

Jobs as Rules
From the scheduler point of view, a rule is a job to be executed. Each job is described by using the metadata
contained in the Header, Schedule and Definition section of the rule.
Jobs are organised in a table, called Table of Jobs. Such table will be monitored by the internal scheduler
periodically to detect the rule to be fired. A periodic backup of the table will have to be performed to
guarantee a certain degree of reliability in case of critical problems that could require to restart the scheduler.
The backup copy will permit to restore the last status of the scheduler.

Job
Attributes Description

Rule Name The name of rule. It comes from the corresponding data in the Header section of the rule
Rule Version The version of rule. It comes from the corresponding data in the Header section of the

rule
Rule Type The type of rule. It comes from the corresponding data in the Header section of the rule
Start Time The start time of execution. It comes from the corresponding data in the Schedule section

of the rule
Start Date The start date of execution. It comes from the corresponding data in the Schedule section

of the rule
Periodicity The name of rule. It comes from the corresponding data in the Schedule section of the

rule
Expiration Time The expiration time of job life. It comes from the corresponding data in the Schedule

section of the rule
Expiration Date The expiration date of job life. It comes from the corresponding data in the Schedule

section of the rule
Executor ID It is the identifier of the current executor associated with the rule by the Dispatcher
N° of Run Number of times that the rule has been run
Job ID Identifier associated with the rule by the scheduler
Profile List of dependencies (AXMEDIS Plug In, external tools, etc…). It comes from the Uses

data in the Definition section of the rule
URL The complete path of the rule xml file.

2.9.5 Rule Scheduler User Interface
The Scheduler GUI will be the main window that will allow the interaction with the Scheduler. It will be
constituted of:

1. A menu bar
2. Two main areas where the list of rules and the list of remote executors are displayed.
3. A status bar where the current clock and the current date are displayed.

Menu bar – It will provide the access to the following set of functions:

1. Program
a. Launch scheduler - Start the scheduler activity.
b. Stop scheduler - Stop the scheduler activity.
c. Restore - Backup Copy of the last jobs list.
d. Minimize - It reduces at icon on the taskbar.
e. Exit - Close the application.

2. Settings
a. Preferences - Open an editable dialog with the set of configuration parameters.

3. View
a. Refresh – Update the list of jobs and list of remote executors.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

51

b. Arrange – Repainting modes of tables in the main frame
i. Top – It shows only the top table (Table of rules)

ii. Bottom – It shows only the bottom table (Table of executors)
iii. Vertical – It shows tables vertically
iv. Horizontal – It shows tables horizontally

c. Rule Properties… - Open a Rule Properties dialog.
d. Executor Profile…- Open an Executor Profile dialog.
e. Logs…- Open a dialog to show the list of log messages

4. Commands
a. Activate Rule - Put in the “ACTIVE” status the current selected inactive rule.
b. Deactivate Rule - Put in the “INACTIVE” status the current selected active rule.
c. Kill Rule - Kill the current execution of the current selected rule.
d. Pause Rule - Put in pause the execution the current selected rule.
e. Resume Rule - Resume the execution of the current selected rule.
f. Remove Rule – Remove the rule from the list of rules
g. Suspend Rule… - Open a dialog to edit the temporal interval for rule resuming and then

suspend the current selected rule.
5. ?

a. Help - Open the On Line help.
b. About - Open a dialog with credits.

All this functionalities will be also accessible by means shortcuts.

Rules/Jobs Table - It is the area where scheduled rules are displayed. It will be a list control constituted of a
set of columns where the following list of metadata will be displayed:

• Rule name – it will display the name of the rule
• Rule version – it will display the version of rule
• Rule status – it will display the current status of rule
• Rule ID – it will display the identifier of rule
• Executor ID – it will display the identifier of the executor associated with rule
• Start Time – it will display the time to fire the rule
• Start Date – it will display the date to fire the rule

RULES/JOBS Table

 AXMEDIS – Rule Scheduler

REMOTE EXECUTORS Table

Program Settings View Commands ?

Current Date Current Clock

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

52

• Periodicity – it will display the periodic attribute
• N° Runs – it will display the number of time the rule was fired.

The following functionalities will be provided by means a contextual popup menu:

• Ordering rules alphabetically by name
• Ordering rules by start running time
• Ordering rules by ID

Remote Executors Table - It is the area where remote executors are displayed. It will be a list control
constituted of a set of columns where the following list of metadata will be displayed:

• Name - Computer Name
• IP - IP address
• CPU - CPU & Clock
• OS - OS & Version
• Ping – The network capabilities in term of transmission time.
• HD Space – The space available on the disk of the executor
• Status – The status of the executor
• Rule ID – The ID of the running rule
• Executor ID – The Id of the executor assigned by the scheduler
• Start Time – At what time the run is started.

The following functionalities will be provided by means a contextual popup menu:

• Ordering executors alphabetically by computer name
• Ordering executors by ID

Name IP CPU OS Status RuleID Start TimeIDPing HD Space

Name Version Status ID Executor ID Start Time PeriodicityStart Date N° Runs

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

53

Auxiliary dialogs
The Scheduler GUI will be supported by the following set of dialogs:

Rule Properties Dialog - It will be an editable no modal dialog where the properties of the selected rule are
displayed. Part of such properties will be extracted from the XML file associated with rule.

Executor Profile Dialog - It will be a not editable no modal dialog where the properties of the selected
executor are displayed. Such properties will be extracted from the executor profile.

Logs Dialog – It will be a not editable no modal dialog where the log messages will be played.

Suspend Rule Dialog – It will be an editable no modal dialog where the user will put the time for the
suspension.

Preferences Dialog – It will be a no modal dialog that will display configuration parameters. Such
parameters will be editable and will allow customizing the configuration of the scheduler. The main structure
of the dialog is shown in the following picture:

The dialog is divided in two main areas: (i) Temporal parameters and (ii) Paths. The former area will display
parameters related to temporal constrains and deadlines. The latter area will display the paths for rules,
profiles of executors, log and backup files storage.
The OK button confirms the value of each parameter and updates settings.
The Cancel button rejects possible update maintaining the old settings.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

54

2.9.6 Dispatcher of the Rule Scheduler
The main role of the dispatcher is to:

• associate a remote executor with the rule to be run
• engage the selected remote executor
• launch the execution of rule on the remote executor
• monitoring the status of remote executors
• managing the possible errors messages and notifications coming from executors
• creating logs and tracing the activity of each remote executor involved in the execution of a rule
• discovering new remote executor
• requesting and receiving the profile from remote executors

Remote Executors
A remote executor is the virtual image on the scheduler side of a real machine equipped with the rule
executor. Knowing the availability and capabilities of a remote executor is mandatory to identify the
machine that will execute the rule. To this end, the association of executors with rules will be based on the
list of available remote executors (computer) and their profiles. Such list will be persistent and it will be
managed at run-time. Each remote executor belonging to the list will be described by means of internal
attributes (managed by the scheduler) and a profile that will be provided by each real executor during the
discovery and refreshing phase. The profile will contain a set of metadata that will describe the capabilities
of the remote executor (see Section 2.10.4).

Executor
Attributes Description

Current Status It provides the status of the executor
Executor ID Identifier of the executor
Profile It is the set of information related to :

1. Identity of the executor (computer name, IP address, location, etc…)
2. Computational capabilities: (CPU, RAM, Clock, etc…)
3. Functionalities that the executor provides:

• AXMEDIS Plug-In installed (For each plug in the name and version are
provided).

• External tools Plug-In installed For each plug in the name and version
are provided).

To realise that, the dispatcher will be divided in four main components.

Resource Controller – It periodically will control and refresh the availability of remote executors in the
network of AXMEDIS factory. To this end, it will perform the following activities:

• discovering new remote executors
• requesting profiles of remote executors
• refreshing and managing the list of available remote executors (adding a new discovered executor,

remove an executor from the list, loading the profile)
• generating and assigning an unique Executor ID (process Id) with the remote executor
• initialising the remote executor (by sending the Executor ID, the port number to use for sending

messages to the Rule Monitor)
• managing and updating the status of each remote executor.
• generating an error in case of time out or deadline missing (the remote executor did not respond to a

request within a time interval specified by a time out)

Optimizer – It will receive rules to be launched. Such rules will be put in an internal queue that will include
rules to be associated with a remote executor. The choice of an executor will be performed by checking the
rule profile with the best profile among available remote executors. If all available remote executors do not

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

55

match the profile of rule, the association fails, the status of rule is set to “Failure” and an error message is
generated and sent to the internal scheduler. If all remote executors matching the profile of the current rule
are running different rules, the launch of the current rule is delayed and the rule is maintained in the internal
queue of rules waiting for an available executor.
Future version of the optimizer will include optimisation algorithm based on artificial intelligence such as:
Taboo Search, Genetic Algorithm, etc…that will improve the scheduler capability.

Rule Launcher – The role of the rule launcher will be to:

1. send commands generated by the scheduler (kill, pause, run, resume) to remote executors
2. engage the remote executor associated with the rule and launch the execution of rule. If the

engaging fails an launch error is generated.
To this end, the rule launcher will provide functionalities for:

• communicating with the remote executor (by sending and receiving messages and commands)
• transferring the rule to the remote executor
• communicating errors messages to the internal scheduler if the launch phase fails
• tracing the commands and controls sending to remote executors by updating an activity log file

Rule Monitor – It will monitor persistently the execution of rules by:

• listening to messages and notifications coming from remote executors
• interpreting messages
• managing the log file and trace the activity of each rule executor (by reporting all messages and

notifications in input)
• communicating the status of a rule to the internal scheduler for updating
• routing possible errors messages and notifications to the internal scheduler

To this end, the rule monitor will provide functionalities for:
• communicating with the remote executor (by receiving messages and notifications)
• parsing messages of executors
• providing and managing a queue of input messages
• updating log files associated with each remote executor for each message or notification received
• routing errors and messages to the internal scheduler coming from executors

2.9.7 Grid Peer Interface
It is the interface to the Grid Peer. It will provide functionalities for:

• Sending message to a peer
• File transfer to a peer
• Discovering peers
• Engaging/Launching a peer
• Managing messages coming from other peers

2.9.8 Grid Peer
It will provide the support for the distributed system management.
It will be based on TCP/UDP socket and will be constituted of the following components:

• Peer Explorer – It will provide functionalities and support for querying the presence of other peers.
It will be based on UPD broadcast messages.

• Peer Communicator – It will provide functionalities and support for communicating with available
peers (already discovered). It will be based on TCP connection.

• Peer File Transfer – It will provide functionalities and support for transferring file to a selected
peer. It will be based on TCP connection.

• Peer Event Consumer – It will provide functionalities and support for handling events of
communication, file transfer and discovering.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

56

These components will be used singularly and independently. It will be developed in C++ with STL and
WindowsSocket library.

2.9.9 Structure of messages exchanged between Scheduler and Remote Executor
Messages exchanged between the Scheduler and the Remote Executor can be different types and grouped in
two set of messages: (i) from Scheduler to Rule Executor and (ii) from Rule Executor to Scheduler.

Messages from Scheduler to Rule Executor:

1. Command – the message is a specific command
Messages from Rule Executor to Scheduler:

2. Notification – the message is a notification
3. Error – the message reports an error
4. Response – the message is a response to a request or a command

The main idea is to have a common message structure that allows covering all these types. In addition, to
guarantee a fast delivery on the network, messages shall be light. To this end, they will be based on a
formatted text and structured according to the following EBNF formalisation:

<message> := <Sender ID>’#’<Type_Msg>

<Sender ID> := <string>
<Type_Msg> := <CMD_MSG> | <REQ_MSG> | <NOTIFY_MSG> | <ERR_MSG> | <RESP_MSG>

<CMD_MSG> := ‘COMMAND#’<ID_MSG>’#’<command>
<command> := RUN | KILL | PAUSE | RESUME | GET <request> | SET <attribute> <value>
<request> := PROFILE | STATUS | ID
<attribute> := ID | …
 <value> := <string>

<NOTIFY_MSG> := ‘NOTIFICATION#’<what notified>
<what notified> := ‘END PROCESS’ | <msg>
<msg> := ‘MSG’ <string>

<ERR_MSG> := ‘ERROR#’<error from>’#’<error description>
<error from> := ‘RULE’ | ‘EXECUTOR’
<error description> := <error code> | <string>

<RESP_MSG> := ‘RESPONSE#’<to msg>’#’<response argument>
<response argument> := <status> | <executor ID> | ‘CMD OK’
<to msg> = <ID MSG>

<ID MSG> = <timestamp>

Where:
<timestamp>: it indicates the generation time of a message and allows indexing a message. It could be used
as reference to link a response message to command messages and to monitor the activity of the rule
executor.

<Sender ID>: it indicates the identifier of the sender. By default, the ID of the Scheduler is ‘0’, whereas for
all rule executors will be the Executor ID

<error code>: it reports the code of the error

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

57

Example 1:
The scheduler requests the profile to a rule executor by means the message:

0#COMMAND#12:00:00 pm#GET PROFILE

where:

• ‘0’ is the sender ID associated with the scheduler (server).

Example 2:
The scheduler sends to the rule executor its Executor ID:

0#COMMAND #12:20:00 pm#SET ID 34

The scheduler requests the value of status to the executor identified by “34” by means of the message:

0#COMMAND #12:20:00 pm#GET STATUS

The rule executor “34” responds to the request by means of:

34#RESPONSE#12:20:00 pm#’value of status’
where:

• ‘34’ is the sender ID associated with the Executor ID of the rule executor.

Example 4:
The rule executor ‘34’ sends to the scheduler:

• a message generated by the rule:

34#NOTIFICATION#MSG ”AXMEDIS Database connection error”

• a run time error

34#ERROR#EXECUTOR#”Disk Full” or 34#ERROR#EXECUTOR#001

where ‘001’ could be for instance the error code associated with “Disk Full”

• an end process notification

34#NOTIFICATION#END PROCESS

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

58

2.9.10 Rule Scheduler Class Diagram

Class diagram of Scheduler GUI

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

59

Class diagram of Internal Scheduler

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

60

Class diagram of the GridInterface class

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

61

2.10 Rule Executor
The rule executor is an application running on a remote computer. It is a computational unit in the distributed
rule engines environment. It will be the based on Javascript engine and will execute JavaScript code. To this
end it will host the SpiderMonkey Javascript Ending realised by Mozilla. The main architecture of the Rule
Executor is depicted in the following picture:

The main components will be:

• Grid Peer Interface – the communication support with the AXCP rule scheduler
• Rule Executor Manager – the command interface of the engine
• Script Executor – It will host the SpiderMonkey Javascript Engine (called JS Engine)

2.10.1 Rule Executor Manager
The Rule Executor Manager is the main program and the interface between the script executor and the
scheduler. It will host a Grid Peer Interface for the communication in the distribute environment based on the
technology of the Grid Peer on the scheduler side. This interface will be the same hosted by the Scheduler or
a specialised version if necessary and will allow:

1. receiving commands, messages, requests and files from the Scheduler
2. sending messages, notifications and files to the Scheduler
3. being discovered by the Scheduler during the discovering phase.

The main activity is to:
• generate the profile of the executor to send to the Scheduler

…

…

RULE EXECUTOR MANAGER GRID PEER INTERFACE

SCRIPT EXECUTOR

SCRIPT
INITIALIZATOR

JS ENGINE (API Functions)

AXOM

JS_AXOM

AXOM
Content

Processing

JS_ Funtions
from AXOM

Content

Resource

Types

JS_
Resource

Types

Selection

JS_
Selection

AXMEDIS Rule Executor

LAUNCHER

Protection

JS_
Protection

GRID PEER

DRM

JS_
DRM

PAR

JS_
PAR

Functions

JS_
Functions

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

62

• receive the rule file from the Scheduler
• load the rule in the executor
• manage the launch of the rule execution by means the Launcher
• provide to the Script Executor the support of communication with the Scheduler.
• notify errors, status and the end of execution to the Scheduler.

To realize that, the Rule Executor Manager will provide functionalities for:

• Routing messages produced by internal components to the scheduler
• Receiving control messages and commands from the Scheduler
• Parsing and executing commands coming from the scheduler such as:

o Launch the execution of rule
o Kill the execution of rule
o Pause the execution of rule
o Resume the execution of rule
o Request profile
o Request status

• File Transferring to:
o send the profile of the Rule Executor
o receive the rule to be executed

• Sending messages and notification to the Scheduler
• Creating the profile of the executor according to the XML schema
• Managing the status of the Executor

Status of the Rule Executor
The Rule Executor status describes the activity of the rule engine. If it is available for running a rule the
status value will be “READY”, otherwise if it is working with a rule the value will be “RUNNING”. In event
of errors that could break the execution, if they could be managed by software, the executor notifies them to
the Scheduler stopping definitively the current execution and resetting the status to the “Ready” value.

2.10.2 Launcher
The role of the Launcher is to start the execution of the script. The main steps that the Launcher has to
perform, are:

• Loading the rule XML file received by the Scheduler
• Extracting the script included in the Rule (all the information included in the Definition section of

the XML file)
• Calling the Script Initializator for preparing the script
• Calling the Script Executor for executing the script

Script Initializator – Before running the script, the Launcher calls the Script Initializator to check and
prepare the script code for the execution on JS Engine. In this phase, The Engine and the JavaScript script
code are prepared according to the SpiderMonkey JS Engine guideline. All the functions related to
AXMEDIS plug-ins and arguments of rule will be initialised. The arguments initialisation will allow
defining global variables associated with the arguments used in the script by actualising them with values
specified in XML rule description. In event of possible errors during the script initialization, a failure
message will be generated and sent to Rule Executor Manager that will route it to the Scheduler.

2.10.3 Script Executor
The Script Executor receives the script code and arguments (Selections and parameters), then, it performs the
necessary operations for:

• Invoking and initialising the JS Engine and variables.
• Sending the script to the JS Engine.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

63

• Running and managing the communication with the JS Engine according to the capabilities and
functionalities provided by the JS Engine.

• Routing errors coming from the JS Engine to the Rule Executor Manager.
• Sending Messages coming from the script in execution to the Rule Executor Manager.

The Script Executor will be developed to be used also in the AXCP Rule Editor. As depicted in the software
architecture, the editor will be equipped with a Rule Executor. When used inside the AXCP Rule Editor it
will be able to work also in two different modes: the rule debugging mode and rule check mode. This will be
useful during the definition of a rule since the user will be able to test the rule and to solve possible errors

Script Executor: Debugging Mode
The Executor will be realised by using the debug function provided by JSDebug API of SpiderMonkey and
to be controlled by the AXCP Rule Editor. The Spidermokey APIs permit to :

- put traps in the code corresponding to breakpoints (interrupting the execution)
- watch variables
- manage the stack of functions
- realise the interface for debug functions and controls for the AXCP Rule Editor.

Script Executor: Check Mode
This modality will be mainly used by AXCP Rule Editor when it will be necessary to check the feasibility of
a rule. In the testing mode, the rule will be executed in order to:

• verify the correctness of the rule before to send it to the AXCP Rule Engine
• estimate some parameters related to the complexity of the rule. Such parameters will be identified

and defined during the project life. They will be used to define a complete profile of the rule in
terms of required computational resources.

2.10.4 Executor Profile and XML formalisation

The executor profile is the set of metadata that allows to describe the executor in terms of:

1. Computational capabilities
2. Functionalities that the executor provides such as:

• AXMEDIS Plug-In installed.
• External tools Plug-In installed

The following table describes each metadata of profile:

Attributes Description
Computer Name Name of the computer hosting the rule executor
URL IP address
AXTID The ID of a specific instance related to the AXTID
AXRTID The AXMEDIS Registered Tool Id associated with the Rule Executor application
SO The Operating System
Version The SO version
CPU The type of CPU
Clock The clock of CPU
RAM size The amount of memory
HD-space The amount of disk space available
Location Where the computer is located
Workload The percentage of availability during the time period
Transfer rate from
AXDB

The network capability for transferring a file from the AXMEDIS Database to the rule
executor machine.

Plug-In It provides the name and the version. Since the executor can host many plug-in, this is
field represents a list of Plug-In

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

64

The set of metadata is organised in the XML format as depicted in the following schema:

In the following, the textual representation of the XML schema:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v2004 rel. 3 U (http://www.xmlspy.com) by Paolo Nesi (University of Florence) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Profile">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Computer_Name" type="xs:string"/>
 <xs:element name="IP_Address" type="xs:anyURI"/>
 <xs:element name="CPU" type="xs:string"/>
 <xs:element name="Clock" type="xs:float"/>
 <xs:element name="Location" type="xs:string"/>
 <xs:element name="AXTID" type="xs:string"/>
 <xs:element name="AXRTID" type="xs:string"/>
 <xs:element name="OS" type="xs:string"/>
 <xs:element name="OS_Version" type="xs:string"/>
 <xs:element name="RAM_Size" type="xs:string"/>
 <xs:element name="HD_Space" type="xs:string"/>
 <xs:element name="Transf_Rate" type="xs:unsignedInt"/>
 <xs:element name="WorkLoad">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Percentage" type="xs:float"/>
 <xs:element name="Start_Time" type="xs:time"/>
 <xs:element name="End_Time" type="xs:time"/>
 </xs:sequence>
 </xs:complexType>

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

65

 </xs:element>
 <xs:element name="Plug_In" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:time"/>
 <xs:element name="Version" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

2.10.5 Rule Executor Configuration file
The rule executor will need some configuration parameters:

• Disk Unit - The logical disk unit to use for storage
• Rule Path - The path of the download folder where the executor will receive rules
• Workload - The specification of workload availability in terms of:

o Percentage
o Start Time
o End Time

• Location – Where the computer is placed.
Plus other parameters that will be defined during the project life.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

66

2.10.6 Rule Executor Class Diagram

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

67

3 The AXMEDIS DATA Type and Functions for JS
In addition to using the engine's built-in objects, it is possible to create, initialize, and use own JS objects and
JS Functions. This is especially true if the JS engine is used with scripts to automate the application. Custom
JS objects can provide direct program services, or they can serve as interfaces to program's services. For
example, a custom JS object that provides direct service might be one that handles all of an application's
network access, or might serve as an intermediary broker of database services. Or a JS object that mirrors
data and functions that already exist in the application may provide an object-oriented interface to C code
that is not otherwise, strictly-speaking, object-oriented itself. Such a custom object acts as an interface to the
application itself, passing values from the application to the user, and receiving and processing user input
before returning it to the application. Such an object might also be used to provide access control to the
underlying functions of the application.
There are two ways to create custom objects that the JS engine can use:

• Write a JS script that creates an object, its properties, methods, and constructor, and then pass the
script to the JS engine at run time.

• Embed code (wrapping) in the application that defines the object's properties and methods, call the
engine to initialize a new object, and then set the object's properties through additional engine calls.
An advantage of this method is that the application can contain native methods that directly
manipulate the object embedding.

3.1 A JavaScript class in C++
In this section is reported an example of how to wrap a C++ class by embedding code without using
inheritance ([2], [3]). For more details about JS API please see the official site of SpiderMonkey on Mozilla
web page. The class used in the example is the following:

 class Customer
 {
 public:
 int GetAge() { return m_age; }
 void SetAge(int newAge) { m_age = newAge; }
 std::string GetName() { return m_name; }
 void SetName(std::string newName) { m_name = newName; }

 private:
 int m_age;
 std::string m_name;
 };

3.1.1 Step 1 - The JavaScript class.
Create a new C++ class that derives from the C++ class you want to use in JavaScript or create a new C++
class which has a member of the type of that C++ class.
A class is defined in JavaScript with a JSClass structure. Create a static member of this type. Declare it as a
public member, because this structure can be useful for other classes. It can be used by other classes to
determine the type of an object. (see JS_InstanceOf API)

 // JSCustomer.h
 class JSCustomer
 {
 public:
 JSCustomer() : m_pCustomer(NULL)
 {
 }

 ~JSCustomer()
 {
 delete m_pCustomer;
 m_pCustomer = NULL;
 }

 static JSClass customerClass;

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

68

 protected:
 void setCustomer(Customer *customer)
 {
 m_pCustomer = customer;
 }

 Customer* getCustomer()
 {
 return m_pCustomer;
 }

 private:
 Customer *m_pCustomer;

 };

The JSClass structure contains the name of the JavaScript class, some flags and the name of callbacks used
by the engine. For example a callback is used when the engine needs to retrieve a property from your class.
Define the JSClass structure in the implementation file of the C++ class as below.

 // JSCustomer.cpp
 JSClass JSCustomer::customerClass =
 {
 "Customer", JSCLASS_HAS_PRIVATE,
 JS_PropertyStub, JS_PropertyStub,
 JSCustomer::JSGetProperty, JSCustomer::JSSetProperty,
 JS_EnumerateStub, JS_ResolveStub,
 JS_ConvertStub, JSCustomer::JSDestructor
 };

The used callbacks are JSCustomer::JSGetProperty, JSCustomer::JSSetProperty and
JSCustomer::JSDestructor. JSGetProperty is called when the engine needs a property, JSSetProperty is
called when the engine sets a property and JSDestructor is called when the JavaScript object is destroyed.
The flag JSCLASS_HAS_PRIVATE is used so that the engine provides memory you can use to attach some
data to a JavaScript object. You can use this to store a pointer to your class.
The callbacks are static member functions of the C++ class.

 static JSBool JSGetProperty(JSContext *cx, JSObject *obj, jsval id, jsval *vp);
 static JSBool JSSetProperty(JSContext *cx, JSObject *obj, jsval id, jsval *vp);
 static JSBool JSConstructor(JSContext *cx, JSObject *obj, uintN argc,
 jsval *argv, jsval *rval);
 static void JSDestructor(JSContext *cx, JSObject *obj);

3.1.2 Step 2 - Initialize your JavaScript object
Create another static method called JSInit. See below for an example. This method will be called by the
Application that creates the JavaScript runtime.
 static JSObject *JSInit(JSContext *cx, JSObject *obj, JSObject *proto);

The implementation looks like this
 JSObject *JSCustomer::JSInit(JSContext *cx, JSObject *obj, JSObject *proto)
 {
 JSObject *newObj = JS_InitClass(cx, obj, proto, &customerClass,
 JSCustomer::JSConstructor, 0,
 NULL, JSCustomer::customer_methods,
 NULL, NULL);
 JS_DefineProperties(cx, newObj, JSCustomer::customer_properties);
 return newObj;
 }

The static method JSConstructor will be called when your object is instantiated in a script. This method is
very handy to attach your data to the object using the JS_SetPrivate API.
 JSBool JSCustomer::JSConstructor(JSContext *cx, JSObject *obj, uintN argc,
 jsval *argv, jsval *rval)
 {
 JSCustomer *p = new JSCustomer();

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

69

 p->setCustomer(new Customer());
 JS_SetPrivate(cx, obj, p);
 return JS_TRUE;
 }

This constructor method can have multiple arguments, which you can use to initialize your class. Now that
you've created a pointer on the heap, you also need a way to destroy the pointer. This is done in the static
method JS_Destructor.
 void JSCustomer::JSDestructor(JSContext *cx, JSObject *obj)
 {
 JSCustomer *p = JS_GetPrivate(cx, obj);
 delete p;
 p = NULL;
 }

3.1.3 Step 3 - Adding properties

Add a static array member of the type JSPropertySpec. This array will contain the information of a property.
Create also an enum for the property ids.
 static JSPropertySpec customer_properties[];
 enum
 {
 name_prop,
 age_prop
 };

Initialize this array in the implementation file as follows
 JSPropertySpec JSCustomer::customer_properties[] =
 {
 { "name", name_prop, JSPROP_ENUMERATE },
 { "age", age_prop, JSPROP_ENUMERATE },
 { 0 }
 };

The last element of the array must be a null element. Each element contains another array with 3 elements.
The first element is the name that will be used in JavaScript. The second is a unique id for the property. This
will be passed to the callback functions. And the third one is a flag. JSPROP_ENUMERATE means that a
script will see this property when it's enumerating the properties of the Customer object. You can also
specify JSPROP_READONLY to indicate that the property can't be changed in the script.

Now you can implement the callbacks for getting and setting properties.
 JSBool JSCustomer::JSGetProperty(JSContext *cx, JSObject *obj, jsval id, jsval *vp)
 {
 if (JSVAL_IS_INT(id))
 {
 Customer *priv = (Customer *) JS_GetPrivate(cx, obj);
 switch(JSVAL_TO_INT(id))
 {
 case name_prop:

 break;
 case age_prop:
 *vp = INT_TO_JSVAL(priv->getCustomer()->GetAge());
 break;
 }
 }
 return JS_TRUE;
 }

 JSBool JSCustomer::JSSetProperty(JSContext *cx, JSObject *obj, jsval id, jsval *vp)
 {
 if (JSVAL_IS_INT(id))
 {
 Customer *priv = (Customer *) JS_GetPrivate(cx, obj);
 switch(JSVAL_TO_INT(id))
 {

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

70

 case name_prop:
 break;
 case age_prop:
 priv->getCustomer()->SetAge(JSVAL_TO_INT(*vp));
 break;
 }
 }
 return JS_TRUE;
 }

It's recommanded to return JS_TRUE in the property callbacks. When you return JS_FALSE a prototype will
not be searched when the property is not found in your object.

3.1.4 Step 4 - Adding methods
Create a static member array of JSFunctionSpec type.
 static JSFunctionSpec customer_methods[];

Initialize this array in the implementation file as follows
 JSFunctionSpec wxJSFrame::wxFrame_methods[] =
 {
 { "computeReduction", computeReduction, 1, 0, 0 },
 { 0 }
 };

The last element of the array must always be a null element. Each element is another array with 5 elements.
The first element is the name of the method that's used in the script. The second one is the name of a global
or static member function. The third element is the number of arguments of this method. The last two
elements are ignored.

Create a static method in the class
 static JSBool computeReduction(JSContext *cx, JSObject *obj, uintN argc,
 jsval *argv, jsval *rval);

You return JS_TRUE when the function is successful. Otherwise you return JS_FALSE. The actual return of
your JavaScript method is placed in the rval argument.

A sample implementation of this method
 JSBool JSCustomer::computeReduction(JSContext *cx, JSObject *obj, uintN argc,
 jsval *argv, jsval *rval)
 {
 JSCustomer *p = JS_GetPrivate(cx, obj);
 if (p->getCustomer()->GetAge() < 25)
 *rval = INT_TO_JSVAL(10);
 else
 *rval = INT_TO_JSVAL(5);
 return JS_TRUE;
 }

3.1.5 An example

The following script uses the previously created object
 var c = new Customer();
 c.name = "Franky";
 c.age = 32;
 var reduction = c.computeReduction();

Don't forget to initialize the JavaScript object when you create the context:
 JSObject *obj = JSCustomer::JSInit(cx, global);

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

71

3.2 Wrapping functions

To wrap a native function you use JS_DefineFunction or to register multiple functions with one API call
JS_DefineFunctions.
/* Define a bunch of native functions first: */
static JSBool
my_abs(JSContext *cx, JSObject *obj, uintN argc, jsval *argv, jsval *rval)
{
 jsdouble x, z;

 if (!JS_ValueToNumber(cx, argv[0], &x))
 return JS_FALSE;
 z = (x < 0) ? -x : x;
 return JS_NewDoubleValue(cx, z, rval);
}

. . .

/*
 * Use a JSFunctionSpec array terminated with a null name to define a
 * bunch of native functions.
 */
static JSFunctionSpec my_functions[] = {
 /* name native nargs */
 {"abs", my_abs, 1},
 {"acos", my_acos, 1},
 {"asin", my_asin, 1},
 . . .
 {0}
};

/*
 * Pass a particular object to define methods for it alone. If you pass
 * a prototype object, the methods will apply to all instances past and
 * future of the prototype's class (see below for classes).
 */
JS_DefineFunctions(cx, globalObj, my_functions);

3.3 JS_AXOM (DSI)
JS_AXOM Class is the mapping of AXOM for JavaScript. According to the specification of the AXOM,
JS_AXOM will provide and wrap AXOM methods that will permit to:

• Create an empty AXMEDIS object. The root of the object will be identified by the ElementId fixed
to 0;

• Load an AXMEDIS object from the AXMEDIS database by using the AXOID
• Create/Remove an Element to the AXMEDIS object. The creation of an element will return an

ElementId
• Get all ElementIds by giving the parent ElementId. It will return an array of ElementId
• Get Element type by giving the ElementId. It will return a string descriptor type.
• Add Resource, it will add a digital resource (audio, video, text, etc…) to a specific Element using the

ElementId. It will return the ResourceId
• Remove a Resource (audio, video, text, etc…) by using the ResourceId
• Get a Resource by using the ResourceId. It will return a Resource object
• Add an AXInfo metadata object. It will return a MetadataId.
• Add a Dublin Core metadata object. It will return a MetadataId
• Add a generic XML metadata object by using a string containing an XML description. It will return

a MetadataId
• Remove any metadata object by using the MetadataId.
• Store the AXMEDIS object on: file system or AXMEDIS Database

The ResourceId, ElementId and MetadataId will be integer numbers.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

72

3.4 JS_Functions from AXOM_CONTENT_PROCESSING (DSI)
JS_AXOM_CONTENT_PROCESSING class will refer and wrap the AXOM Content Processing. It will
provide and manage the access to the set of functions exposed by DLLs discovered by the Plugin Manager
and related to AXMEDIS content production, protection, adaptation algorithms and tools.

Functions provided by the Axmedis Plugins for content processing

• Fingerprint functions
• Digital Resource Adaptation functions
• Protection functions
• Metadata Adaptation functions
• Functions for using External tools

3.5 JS_AXINFO (DSI)
JS_AXINFO will map and allow managing the metadata of the AXINFO in the JavaScript. This class
manages the access to individual elements and fields in AXINFO metadata, this class will map all the
functionalities provided by AxInfo class (see section 8.2.2.2 of Part A for a complete description).
It will allow to manage:

• ObjectCreator information
• Owner information
• Distributor information
• Object Status information
• PromoOf information
• Workflow information
• Fingerprints information
• PAR information
• Additional Metadata information
• Object History information

3.6 JS_DUBLIN_CORE (UNIVLEEDS)
JS_DUBLIN_CORE maps the metadata in the JavaScript. This class manages the access to individual
elements and fields in the Dublin Core metadata (Get and Set methods).

Creating an DC object

• JSCreateDC(AXOID)
 create an object of the Dublin Core

Composing and Editing a DC object for adaptation

• JSAddDCElement(“dc_element”, value)
 Add elements to the DC object

• JSDeleteDCElement(“dc_element”, ref_num=1)
 To delete a particular DC element. To delete all instances of

• JSSetDCElement
 Set the text field related to the specified element

• JSGetDCElement
 retrieve the text filed related to the specified element

Saving the new DC object

• JSUpdateDC()
 Update the object to the originator

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

73

3.7 JS_Selection (DSI)
JS_Selection class maps the Selection in the JavaScript. This class allows using Selection objects to manage
the access and to make queries to the AXMEDIS database, and to retrieve AXMEDIS objects ID (AXOID).
It will manage the array of AXOID.

3.8 JS_Resource (DSI)
It could be whatever digital resource type: Image, video, animation, etc…They derive from classes that
model the single resource in AXMEDIS object model.
This class will wrap the AxResource class (see section 8.2.2.7 of Part A).
It will provide functionalities to:

• access to the mime type
• access to the byte stream of the resource
• create a new resource and to embed a file inside a resource object

3.9 JS_CrawlerDB access (DSI with subcontract)
The Crawler class will provide all the functionalities exposed by its SOAP interface to:

• get a Focuseek File Format (FFF) version of a document giving the document id
• get the original document by using the document id
• perform queries on the crawler DB
• update a FFF version of a document
• and other functionality for crawler management

Moreover a class to access in a structured way to specific portions of FFF documents will be provided.

3.10 JS_Protection (FHGIGD)
The JS_Protection class provides the protection methods, which are needed by the rules editor, to the
JavaScript.

The following functionalities are provided by JS_Protection as a JavaScript stub using AXOM and PMS:

• Requesting keys from PMS (encryption keys)
• Applying Protection to AXMEDIS object : encryption, scrambling, compression, FP.
• Creation of new Protection Information
• Sending the Protection Information (keys and parameter, see IPMP standard of MPEG21) to the

database of the AXCS via the PMS

JS_ProtectionInfo
The protection information holds the IPMP information as stated in MPEG-21 Part 4 IPMP standard and
more. The information may include:

• How each element of an AXMEDIS object has been protected, i.e. encrypted, encoded, compressed
and scrambled.

• How each chunk of a resource has been protected, e.g. specifying that a given set of protection tools
has to be applied from byte X to byte Y of a given resource (and not to the whole resource). In that
way, different protection can be applied to a resource along its consumption.

• It is based on an XML schema which allows to describe sort of protection procedures as en-
/decryption, (de-)compression, (de-)scrambling

The syntax and semantics is still under discussion, the actual state of the standard is contained in the output
document w6772 of the 70th MPEG meeting (see http://mpeg.nist.gov/).
MPEG-21 Part 4 divides protection information into two XML schemas:

• one is used to declare the list of needed protection tools (or commands as defined in this section) to
unprotect the whole digital item;

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

74

• the other is used to describe, for each protected element, how to use those tools (e.g. the execution
order, keys, initialization parameters, etc…) to unprotect a specific element.

JS_ProtectionStamp
To identify the correct ProtectionInfo for an AXMEDIS object also the so-called ProtectionStamp is needed
which binds an object to the different protection models that can be applied to the object.

3.11 JS_DRM (FHGIGD)
JS_DRM defines the DRM data type and methods for the Protection Tool Engine.

The following functionalities are provided by JS_DRM as a JavaScript stub using AXOM and PMS:

• Creating a new governed object (with license)
• Sending a License to the PMS and saving the license into the database
• Loading a License from the database via the License ID
• Loading a License Model from the database via the License Model ID
• Generating a license from license model and additional information (principal, AXOID)
• Check/Verification of an issued License against some RIGHTS written in clear such as: “the play on

the AXOID 34 in July 2005 for 5 times, the print of AXOID 56 in Spain in May 2006 at least one,
etc.”

• Check/Verification if it is possible to issue/generate a License with some RIGHTS written in clear
such as: “the play on the AXOID 34 in July 2005 for 5 times, the print of AXOID 56 in Spain in
May 2006 at least one, etc.”

• Check/Verification of existing PAR against some RIGHTS written in clear such as: “the play on the
AXOID 34 in July 2005 for 5 times, the print of AXOID 56 in Spain in May 2006 at least one, etc.”

• Addition of rights or removal from a license (license adaptation): Generation of a new license (with
new or less rights) AND Revocation of the old licenses in ONE TRANSACION

• Addition of rights or removal from a PAR (PAR adaptation): Generation of a new PAR (with new or
less rights) AND Revocation of the old licenses in ONE TRANSACION

• Check/Verification of license against PAR

In order to express DRM rules associated to AXMEDIS objects it has been decided to use MPEG-21 REL as
primary rights expression language. A common structure is imposed for licenses and PAR.

JS_License – class that models a License
The following objects are needed to fully represent a license and all of its components in JavaScirpt:

• JS_License
• JS_Issuer
• JS_GrantGroup
• JS_Grant
• JS_Right
• JS_Principal
• JS_Resource
• JS_Condition

o Fee
o Territory
o Number
o Interval

Each license has an issuer and a GrantGroup. Each GrantGroup contains a set of Grants. Each Grant
contains the information of the right granted, the resource, the principal and an optional set of conditions

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

75

related to that right. In addition, we have to realise that a resource can be a GrantGroup (in case of
Distributor Licenses).

For expressing the different types of conditions JS_CONDITION, the following information was defined:
- ConditionType: It indicates which kind of condition we are expressing.
- Five Tvalue fields and two NValue fields (more can be added if desired), whose values depend on the

conditionType.

JS_PAR – class that models a PAR
The following objects are needed to fully represent a PAR and all of its components in JavaScript:

• JS_PAR
• JS_Grant
• JS_Right
• JS_Resource
• JS_Condition

o Fee
o Territory
o Number
o Interval

The relationship between the different objects and the meaning is the same as for JS_LICENSE.

3.12 JS_Publisher (CRS4)
It is the class loaded by the script engine and wrapped by a JS_Publisher Javascript class, so that its methods
can be invoked in scripts.

• publish() publishes the actualized selection
• unpublish() un-publishes the actualized selection
• publishedObjects() returns the ID of objects published by the current instance of the Publisher

As Meatadata mapping is wrapped within loading process, mapping support is not required
For more details see document DE3.1.2F Framework and Tools Specifications (AXEPTool and Progr. and
Pub.).

3.13 JS_Downloader(CRS4)
It is the class loaded by the script engine and wrapped by a JS_Downloader Javascript class, so that its
methods can be invoked in scripts. It contains one fundamental method:

• download(), download the actualized selection of objects
As Meatadata mapping is wrapped within loading process, mapping support is not required
For more details see document DE3.1.2F Framework and Tools Specifications (AXEPTool and Progr. and
Pub.).

3.14 JS_Loader (CRS4)
It is the class loaded by the script engine and wrapped by a JS_Loader Javascript class, so that its methods
can be invoked in scripts.

• load() publishes the actualized selection
• loadedObjects() returns the ID of objects loaded by the current instance of the Loader

As Meatadata mapping is wrapped within loading process, mapping support is not required
For more details see document DE3.1.2F Framework and Tools Specifications (AXEPTool and Progr. and
Pub.).

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

76

3.15 JS_Functions

JS Functions will be a set of auxiliary functions wrappred into Javascript. They will be divided into the
following categories:

Statistical

• MAX – return the maximum value of an numerical array
• MIN - return the minimum value of an numerical array
• VAR – return the variance of an numerical array
• AVERAGE – return the average of an numerical array
• MODE – return the mode of an numerical array
• ….

Combinatorial

• Data Permutation
• Sort data

Set Management

• Intersection – A∩B, it will return the list of common items
• Union – A∪B, it will return the list of items as union of sets
• Inclusion – return true if A⊆B≠∅

Generic

• File system functions – File exists, dir exists, create dir, etc…
• Communication functions – A message() function will provide the support for the communication

via JavaScript. Messages will be routed via the Engine to the Axmedis Workflow Manager.
• Typeof function – it will return the type of data by returning the string that describes the type.

Other functions could be added during the life of the Project.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

77

4 Adaptation Tools and Algorithms (DSI, EPFL, UNIVLEEDS)

In this section, tools and algorithms that will be used in the content adaptation task will be described.
According to the UML diagram reported below, several content adaptation modules will be developed in
order to cope with different types of contents, in particular: video, audio, document, multimedia, DRM,
metadata. Each of them will be based on existing library, executable or others. Other and specific algorithms
could be added during the life of project.

Adaptation Tool and Algorithms

4.1 Tools and algorithms for Documents Adaptation (DIPITA, DSI, EXITECH)

TextPreprocessingTools

DocumentConverter TextAnalysisTool
<<uses>>

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

78

IDL of the module that contains classes used to convert text documents an to extract low-level information
from plain text files.

module TextPreprocessingTools {

 /** Text formats accepted by the tool
 * Acronyms are taken from DE3-1-2J §4.6
 */
 enum DOCUMENT_FORMATS { PDF, HTML, TXT, RTF, PS };

 /** ****** TO BE REVIEWED ***********
 * DocumentFile is the input format of the document.
 * It's defined as a octet sequence just for being the
 * most general (BLOB format). It will be changed as soon as it will
 * be defined input types specifications for plugins.
 */
 typedef sequence <octet> DocumentFile;

 /** This interface provides the description of classes that are able to
 * convert a text document.
 */
 interface DocumentConverter {

 /** The document to be analyzed */
 attribute DocumentFile document;

 /** Contains the original format of the document.
 * This attribute can be set in case the user
 * knows the document format.
 */
 attribute DOCUMENT_FORMATS type;
 /** Sometimes the document cannot be converted.
 * E.g.: copy protected PDF, ill-formed RTF,...
 * This attribute shows if the conversion returned a success value.
 */
 readonly attribute boolean conversion_success;
 /** Converts the document from its original format to
 * the one specified by the 'out_type' parameter.
 * 'name_out' specifies the name of the new file.
 */
 DocumentFile convert(in DOCUMENT_FORMATS type_in, in DOCUMENT_FORMATS
type_out, in string name_out);
 /** Tries to guess the input document format and then
 * converts it to the format specified by the 'out_type' parameter.
 * 'name_out' specifies the name of the new file.
 */
 DocumentFile guessInputFormatAndConvert(in DOCUMENT_FORMATS type_out, in
string name_out);
 };

 /** This interface provides some utility methods to
 * manage plain text file and to get some technical metadata
 */
 interface TextAnalysisTool {

 /** Output type of text tokenization */
 typedef sequence <wstring> TextTokens;

 /** Sets the document to be analyzed */
 void setDocument(in DocumentFile doc2analyze);
 /** Delete all whitespaces and formatting chars
 * from the plain text document, then returns it.
 */
 wstring getTextWithoutSpaces();
 /** Delete all punctuation chars from the plain

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

79

 * text document, then returns it.
 */
 wstring getTextWithoutPunctuation();
 /** Delete all consonants chars from the plain text
 * document, then returns it.
 */
 wstring getOnlyVowels();
 /** Delete all vowels chars from the plain text
 * document, then returns it.
 */
 wstring getOnlyConsonants();
 /** Get the byte size of the plain text file */
 unsigned long getSizeInByte();
 /** Get the chars number of the plain text file */
 unsigned long getCharsNumber();
 /** Get the words of the plain text file */
 TextTokens getWords();
 /** Get the lines of the plain text file */
 TextTokens getLines();
 /** Get the periods of the plain text file */
 TextTokens getPeriods();
 /** Get the paragraphs of the plain text file */
 TextTokens getParagraphs();
 /** Get the graphic words number of the plain text file
 */
 unsigned long getWordsNumber();
 /** Get lines number of the plain text file */
 unsigned long getLinesNumber();
 /** Get periods number of the plain text file */
 unsigned long getPeriodsNumber();
 /** Get the paragraphs number of the plain text file
 */
 unsigned long getParagraphsNumber();
 /** Get the character encoding format of the plain text file.
 * ******** TO BE ASSESSED ************
 * Define which encodings are supported
 * ************************************
 */
 string getCharacterEncoding();
 };
};

WSDL of the module that contains classes used to convert text documents an to extract low-level
information from plain text files.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2005 sp2 U (http://www.altova.com) by Marco Fabbri (LABLITA) -->
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://axmedis.org/wsdl/TextPreprocessingTool/"
xmlns:ns="http://axmedis.org/wsdl/TextPreprocessingTool/types/"
targetNamespace="http://axmedis.org/wsdl/TextPreprocessingTool/">
 <types>
 <xs:schema
targetNamespace="http://axmedis.org/wsdl/TextPreprocessingTool/types/"
xmlns="http://axmedis.org/wsdl/TextPreprocessingTool/types/"
elementFormDefault="unqualified" attributeFormDefault="unqualified">
 <xs:element name="DocumentFile" type="xs:hexBinary"/>
 <xs:element name="DOCUMENT_FORMATS">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="PDF"/>

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

80

 <xs:enumeration value="HTML"/>
 <xs:enumeration value="TXT"/>
 <xs:enumeration value="RTF"/>
 <xs:enumeration value="PS"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:schema>
 <xs:schema
targetNamespace="http://axmedis.org/wsdl/TextPreprocessingTool/types/"
xmlns="http://axmedis.org/wsdl/TextPreprocessingTool/types/"
elementFormDefault="unqualified" attributeFormDefault="unqualified">
 <xs:element name="HashSignature" type="xs:string"/>
 <xs:complexType name="TextTokens">
 <xs:sequence>
 <xs:element name="token" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>
 </types>
 <message name="doc2analyze">
 <part name="parameters" element="ns:DocumentFile"/>
 </message>
 <message name="signature_out">
 <part name="parameters" element="ns:HashSignature"/>
 </message>
 <message name="docFormat_out">
 <part name="parameter" element="ns:DOCUMENT_FORMATS"/>
 </message>
 <message name="docFormat_in">
 <part name="parameter" element="ns:DOCUMENT_FORMATS"/>
 </message>
 <message name="conversion_success">
 <part name="parameter" type="xs:string"/>
 </message>
 <message name="doc_out">
 <part name="parameter" element="ns:DocumentFile"/>
 </message>
 <message name="convert_in">
 <part name="type_out" element="ns:DOCUMENT_FORMATS"/>
 <part name="type_in" element="ns:DOCUMENT_FORMATS"/>
 <part name="name_out" type="xs:string"/>
 </message>
 <message name="guess_in">
 <part name="type_out" element="ns:DOCUMENT_FORMATS"/>
 <part name="name_out" element="" type="xs:string"/>
 </message>
 <message name="text_out">
 <part name="parameters" type="xs:string"/>
 </message>
 <message name="number_out">
 <part name="parameters" type="xs:unsignedLong"/>
 </message>
 <message name="toks_out">
 <documentation>Output type of text tokenization</documentation>
 <part name="parameters" type="ns:TextTokens"/>
 </message>
 <portType name="DocumentConverter">
 <documentation>This interface provides the description of classes with which
 the hash signature of a document can be calculated.
 Different classes must be implemented in order to menage
 binary and plain text file.
 </documentation>
 <operation name="getConversion_success">
 <output message="tns:conversion_success"/>
 </operation>
 <operation name="setDocument">

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

81

 <documentation>Sets the document to be analyzed</documentation>
 <input message="tns:doc2analyze"/>
 </operation>
 <operation name="getDocument">
 <output message="tns:doc2analyze"/>
 </operation>
 <operation name="guessInputFormatAndConvert">
 <output message="tns:doc_out"/>
 <input message="tns:guess_in"/>
 </operation>
 <operation name="convert">
 <output message="tns:doc_out"/>
 <input message="tns:convert_in"/>
 </operation>
 </portType>
 <portType name="TextAnalysisTool">
 <operation name="getTextWithoutSpaces">
 <documentation>Delete all whitespaces and formatting chars
 from the plain text document, then returns it.</documentation>
 <output message="tns:text_out"/>
 </operation>
 <operation name="getTextWithoutPunctuation">
 <documentation>Delete all punctuation chars from the plain
 text document, then returns it.</documentation>
 <output message="tns:text_out"/>
 </operation>
 <operation name="getOnlyVowels">
 <documentation>Delete all consonants chars from the plain text
 document, then returns it.</documentation>
 <output message="tns:text_out"/>
 </operation>
 <operation name="getOnlyConsonants">
 <documentation>Delete all vowels chars from the plain text
 document, then returns it.</documentation>
 <output message="tns:text_out"/>
 </operation>
 <operation name="getSizeInByte">
 <documentation>Get the byte size of the plain text
file.</documentation>
 <output message="tns:number_out"/>
 </operation>
 <operation name="getCharsNumber">
 <documentation>Get the chars number of the plain text
file.</documentation>
 <output message="tns:number_out"/>
 </operation>
 <operation name="getWords">
 <documentation>Get the words of the plain text file.</documentation>
 <output message="tns:toks_out"/>
 </operation>
 <operation name="getLines">
 <documentation>Get the lines of the plain text file.</documentation>
 <output message="tns:toks_out"/>
 </operation>
 <operation name="getPeriods">
 <documentation>Get the periods of the plain text
file.</documentation>
 <output message="tns:text_out"/>
 </operation>
 <operation name="getParagraphs">
 <documentation>Get the paragraphs of the plain text
file.</documentation>
 <output message="tns:text_out"/>
 </operation>
 <operation name="getWordsNumber">
 <documentation>Get the graphic words number of the plain text
file.</documentation>

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

82

 <output message="tns:number_out"/>
 </operation>
 <operation name="getLinesNumber">
 <documentation>Get lines number of the plain text
file.</documentation>
 <output message="tns:text_out"/>
 </operation>
 <operation name="getPeriodsNumber">
 <documentation>Get periods number of the plain text
file.</documentation>
 <output message="tns:text_out"/>
 </operation>
 <operation name="getParagraphsNumber">
 <documentation>Get the paragraphs number of the plain text
file.</documentation>
 <output message="tns:text_out"/>
 </operation>
 <operation name="getCharacterEncoding">
 <documentation>Get the character encoding format of the plain text
file.
 * ******** TO BE ASSESSED ************
 * Define which encodings are supported
 * ************************************
 </documentation>
 <output message="tns:text_out"/>
 </operation>
 </portType>
 <binding name="bind_DocumentConverter" type="tns:DocumentConverter">
 <operation name="getConversion_success">
 <output/>
 </operation>
 <operation name="setDocument">
 <input/>
 </operation>
 <operation name="getDocument">
 <output/>
 </operation>
 <operation name="guessInputFormatAndConvert">
 <input/>
 <output/>
 </operation>
 <operation name="convert">
 <output/>
 <input/>
 </operation>
 </binding>
 <binding name="bind_TextAnalysisTool" type="tns:TextAnalysisTool">
 <operation name="getTextWithoutSpaces">
 <output/>
 </operation>
 <operation name="getTextWithoutPunctuation">
 <output/>
 </operation>
 <operation name="getOnlyVowels">
 <output/>
 </operation>
 <operation name="getOnlyConsonants">
 <output/>
 </operation>
 <operation name="getSizeInByte">
 <output/>
 </operation>
 <operation name="getCharsNumber">
 <output/>
 </operation>
 <operation name="getWords">
 <output/>

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

83

 </operation>
 <operation name="getLines">
 <output/>
 </operation>
 <operation name="getPeriods">
 <output/>
 </operation>
 <operation name="getParagraphs">
 <output/>
 </operation>
 <operation name="getWordsNumber">
 <output/>
 </operation>
 <operation name="getLinesNumber">
 <output/>
 </operation>
 <operation name="getPeriodsNumber">
 <output/>
 </operation>
 <operation name="getParagraphsNumber">
 <output/>
 </operation>
 <operation name="getCharacterEncoding">
 <output/>
 </operation>
 </binding>
 <service name="serviceName"/>
</definitions>

Module Profile
Tools and Algorithms for Document Adaptation

Executable or Library(Support) Library
Single Thread or Multithread
Language of Development C++
Responsible Name Moneglia
Responsible Partner DIPITA
Status (proposed/approved) Purposed
Platforms supported MS WINDOWS, Mac OS X, Linux

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

84

proprietary, authorized or not
DOCFRAC LGPL
GNU Ghostscript GPL
XPDF GPL
HTMLDOC GPL

Document adaptation tools provide functions which can convert a text document file modifying its format
and can extract some low-level information. TextPreprocessingTools is the module containing classes which
will be used to deal with document adaptation: it’s the same module described in DE3-1-2D §2.6.1.
As described in that section some libraries distributed under GPL will be used, so the conversion part of the
tool will be developed as a separated executable program: this part (that will be distributed under GPL) will
contain code that will use those libraries while the plug-in will make calls to the converter and won’t make
direct calls to the libraries so it has not to be licensed under GPL.
The communication protocol between the two parts of the tool has to be defined.

The following conversion libraries will be used for text document conversion:
DOCFRAC (http://docfrac.sourceforge.net/)
Conversion Formats

• RTF to HTML

• RTF to TEXT

• HTML to RTF

• HTML to TEXT

• TEXT to RTF

• TEXT to HTML
Uses

• converting many documents at a time;

• active web pages; and

• converting output from Microsoft's Internet Explorer RTF control to HTML.
Platforms

• Windows;

• Linux command line; and

• programming kit (ActiveX and DLL).
DocFrac is free. It is released under the LGPL.

GNU Ghostscript (http://www.cs.wisc.edu/~ghost/)
Ghostscript is the name of a set of software that provides:

• An interpreter for the PostScript (TM) language and the Adobe Portable Document Format, and

• A set of C procedures (the Ghostscript library) that implement the graphics and filtering (data
compression / decompression / conversion) capabilities that appear as primitive operations in the
PostScript language and in PDF.

Versions entitled "GNU Ghostscript" are distributed with the GNU General Public License.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

85

XPDF (http://www.foolabs.com/xpdf/)
Xpdf is an open source viewer for Portable Document Format (PDF) files. The Xpdf project also includes a
PDF text extractor, PDF-to-PostScript converter, and various other utilities.
Xpdf runs under the X Window System on UNIX, VMS, and OS/2. The non-X components (pdftops,
pdftotext, etc.) also run on Win32 systems and should run on pretty much any system with a decent C++
compiler.
Xpdf is designed to be small and efficient. It can use Type 1, TrueType, or standard X fonts.
Xpdf is licensed under the GNU General Public License (GPL), version 2.

HTMLDOC (http://www.easysw.com/htmldoc/)
HTMLDOC converts HTML source files into indexed HTML, PostScript, or Portable Document Format
(PDF) files that can be viewed online or printed.
The program is free software and is distributed under GPL.

4.2 Tools and algorithms for Video Adaptation (EPFL)

Module Profile
Tools and Algorithms for Video Adaptation

Executable or Library(Support) Library
Single Thread or Multithread Single
Language of Development C++
Responsible Name Schmucker
Responsible Partner FHGIGD
Status (proposed/approved) Purposed
Platforms supported Linux, Max OS, Win32 (MinGW)

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section
See the tables below

User Interface Development model, language, etc. Library used for the development,

platform, etc.
Simple direct call

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
FFMPEG LGPL
FOBS LGPL

Format transcoding is one of the main adaptation functions needed by the AXMEDIS Framework as it
implies bitrate reduction when transcoding among compressed formats. In the case of video objects (but this
also applies to audio and multimedia objects), the FFMPEG and the FOBS library may be used.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

86

FFMPEG:

FFMPEG is a complete solution to record, convert and stream audio and video. It is developed under
Linux but it can be operated under most operating systems, including Windows.

FFMPEG provides a C API and two libraries:

• Libavcodec: a library containing all the FFMPEG audio/video encoders and decoders; most
codecs were developed from scratch to ensure best performances and high code reusability;

• Libavformat: a library containing parsers and generators for all common audio/video
formats.

FFMPEG is licensed under LGPL. However, it incorporates several modules that are covered under
the GPL, notably liba52 (a library for decoding ATSC A/52 streams) and libpostproc (a library for
post-processing). If these components are used in a project, then the all project should be distributed
under the GPL. Yet, it is possible to avoid linking to these GPL libraries ensuring a full LGPL use of
FFMPEG.

FOBS:

FOBS is an object-oriented wrapper for FFMPEG library (FOBS are Ffmeg OBjectS). It is a set of
object oriented APIs to deal with media. It relies on the FFMPEG library but provides a much
simpler programming interface. FOBS is currently available in C++ and has been successfully tested
in a range of platforms (Linux, Max OS, Win32 (MinGW)). FOBS is released under the LGPL
licence.

Here is a short C++ example of how to transcode a video file using FOBS’ API. The example
transcodes an “avi” file into an “mp4”. The examples illustrates how to set the parameters of the
transcoded output file (bit rate, frame rate, number of audio channels…).

#include <iostream>
#include “transcoder.h”

int main()
{
 omnivedia::fobs::returnCode error;
 std::string inputFile(“test.avi”);
 std::string outputFile(“test.mp4”);

 // create transcoder object
 omnivedia::fobs::transcoder t (inputFile.c_str(), outputFile.c_str());

 // choose output video codec:
 // - width: 352 pixels
 // - height: 288 pixels
 // - bit rate: 400 kb/s
 // - frame rate: 25 f/s
 // - codec: msmpeg4
 error = t.chooseVideoCodex(352, 288, 400, 25, “msmpeg4”);
 if(isError(error)) {
 std::cout << “Error choosing video codec” << std::endl;
 exit(-1);

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

87

 }

 // choose output audio codec:
 // - samples per second: 44100
 // - number of channels: 2
 // - bit rate: 64 kb/s
 // - codec: mp2
 error = t.chooseAudioCodec(44100, 2, 64, “mp2”);
 if(isError(error)) {
 std::cout << “Error choosing audio codec” << std::endl;
 exit(-1);
 }

 // choose output file format:
 // - output file format: mp4
 error = t.chooseFormat(“mp4”);
 if(isError(error)) {
 std::cout << “Error choosing file format” << std::endl;
 exit(-1);
 }

 // perform the actual transcoding:
 error = t.transcode();
 if(isError(error)) {
 std::cout << “Error in transcoding” << std::endl;
 exit(-1);
 }

 return 0;

}

Here is a list of the file formats supported by FFMPEG through the libavformat library; “X” means that
encoding (resp. decoding) is supported:

Supported File Format Encoding Decoding Comments

MPEG audio X X
MPEG 1 systems X X Muxed audio and video
MPEG 2 PS X X Also known as VOB file
MPEG 2 TS X Also known as DVB transport stream
ASF X X
AVI X X
WAV X X
Macromedia flash X X Only embedded audio is decoded
FLV X X Macromedia flash video files
Real audio and video X X
Raw AC3 X X

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

88

Raw MJPEG X X
Raw MPEG video X X
Raw PCM 8/16 bits, mulaw/Alaw X X
Raw CRI ADX audio X X
SUN AU format X X
NUT X X NUT open container format
Quicktime X X
MPEG4 X X MPEG4 is a variant of Quicktime
Raw MPEG4 video X X
DV X X
4xm X 4X Technologies format, used in some

games
Playstation STR X
Id RoQ X Used in Quake III, Jedi Knight II, other

computer games
Interplay MVE X Format used in various Interplay computer

games
WC3 Movie X Multimedia format used in Origin’s Wing

Commnader III computer game
Sega FILM/CPK X Used in many Sega Saturn console games
Westwood Studios VQA/AUD X Multimedia formats used in Westwood

Studios games
Id Cinematic (.cin) X Used in Quake II
FLIC format X .fli / ,flc files
Sierra VMD X Used in Sierra CD-ROM games
Sierra Online X .sol files used in Sierra Online games
Matroska X
Electronic Arts Multimedia X Used in various EA games; files have

extensions like WVE and UV2

Furthermore, FFMPEG can read and write images for each frame of a video sequence. The following image
formats are supported:

Supported Image Format Encoding Decoding Comments

PGM, PPM X X
PAM X X PAM is a PNM extension with alpha

support
PGMYUV X X PGM with U and V components in YUV

4:2:0
JPEG X X Progressive JPEG is not supported
.Y.U.V. X X One raw file per component
Animated GIF X X Only uncompressed GIF are generated
PNG X X 2 bit and 4 bit/pixel not supported yet
SGI X X SGI RGB image format

Here is a list of video codecs supported by FFMPEG through the libavcodec library:

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

89

Supported Codec Encoding Decoding Comments

MPEG1 video X X
MPEG2 video X X
MPEG4 X X Also known as DIVX 4/5
MSMPEG4 V1 X X
MSMPEG4 V2 X X
MSMPEG4 V3 X X Also known as DIVX 3
WMV7 X X
WMV8 X X Not completely working
H. 261 X X
H. 263 (+) X X Also known as Real Video 1.0
H. 264 X
MJPEG X X
Lossless MJPEG X X
Apple MJPEG-B X
Sunplus MJPEG X Fourcc: SP5X
DV X X
Huff YUV X X
FFmpeg video 1 X X Experimental lossless codec (fourcc: FFV1)
FFmpeg snow X X Experimental wavelet codec (fourcc:

SNOW)
Asus v1 X X Fourcc: ASV1
Asus v2 X X Fourcc: ASV2
Creative YUV X Fourcc: CYUV
Sorenson Video 1 X X Fourcc: SVQ1
Sorenson Video 3 X Fourcc: SVQ3
On2 VP3 X Still experimental
Theora X Still experimental
Intel Indeo 3 X Only works on i386 right now
FLV X X Sorenson H. 263used in Flash
ATI VCR1 X Fourcc: VCR1
ATI VCR2 X Fourcc: VCR2
Cirrus Logic AccuPak X Fourcc: CLJR
4X video X Used in certain computer games
Sony Playstation MDEC X
Id RoQ X Used in Quake III, Jedi Knight II, other

computer games
Xan/WC3 X Used in Wing Commander III .MVE files
Interplay video X Used in Interplay .MVE files
Apple Animation X Fourcc: ‘rle’
Apple Graphics X Fourcc: ‘smc’
Apple Video X Fourcc: rpza
Apple Quickdraw X Fourcc: qdrw
Cinepak X
Microsoft RLE X
Microsoft Video-1 X
Westwood VQA X
Id Cinematic Video X Used in Quake II
Planar RGB X Fourcc: 8BPS
FLIC Video X
Duck TrueMotion v1 X Fourcc: DUCK

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

90

VMD Video X Used in Sierra VMD files
MSZH X Part of LCL
ZLIB X X Part of LCL, encoder experimental
TechSmith Camtasia X Fourcc: TSCC
IBM Ultimotion X Fourcc: ULTI
Miro VideoXL X Fourcc: VIXL

4.3 Tools and algorithms for Images Adaptation (DSI)

Module Profile
Tools and Algorithms for Images Adaptation

Executable or Library(Support) Library
Single Thread or Multithread Single
Language of Development C++
Responsible Name Ivan Bruno
Responsible Partner DSI
Status (proposed/approved)
Platforms supported Windows and probably also LINUX and MAC

Interfaces with other tools: Name of the

communicating tools
Communication model and format
(protected or not, etc.)

File Formats Used Shared with File format name or reference to a section
Many formats see the following
table

User Interface Development model,

language, etc.
Library used for the development, platform,
etc.

Simple direct call C+ compiler libs

Used Libraries Name of the library and

version
License status: GPL. LGPL. PEK,
proprietary, authorized or not

Image Magik Version 6.1.9.4 Similar to LGPL, ImageMagick is available
for free, may be used to support both open
and proprietary applications, and may be
redistributed without fee.

This module will give the possibility to use algorithms and tools for adaptation of images. The main
adaptation functions needed by the AXMEDIS Framework could be summarised in:

• Scaling
• Resolution improvement/reduction
• Colour to Greyscale conversions
• Format transcoding
• Composition with other images
• Adding widgets and graphic motifs

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

91

• Text drawing
• Image decomposition

These functions will be implemented by defining specific algorithms or using graphic libraries. An example
of library is given by the ImageMagick Library.

The ImageMagick Library
ImageMagickTM, version 6.1.9-4 (http://www.imagemagick.org), is a free software suite for the creation,
modification and display of bitmap images. It can read, convert and write images in a large variety of
formats. Images can be cropped, colors can be changed, various effects can be applied, images can be rotated
and combined, and text, lines, polygons, ellipses and Bézier curves can be added to images and stretched and
rotated. ImageMagick is free software: it is delivered with full source code and can be freely used, copied,
modified and distributed. Its license is compatible with the GPL. ImageMagick is available for free, may be
used to support both open and proprietary applications, and may be redistributed without fee. It runs on all
major operating systems. Most of the functionality of ImageMagick can be used interactively from the
command line; more often, however, the features are used from programs written in the programming
languages Perl, C, C++, Python, PHP, Ruby or Java, for which ready-made ImageMagick interfaces
(PerlMagick, Magick++, PythonMagick, MagickWand for PHP, RubyMagick, and JMagick) are available.
This makes it possible to modify or create images automatically and dynamically.

Features and Capabilities - Here are just a few examples of what ImageMagick can do:

• Convert an image from one format to another (e.g. TIFF to JPEG)
• Resize, rotate, sharpen, color reduce, or ali special effects to an image
• Create a montage of image thumbnails
• Create a transparent image suitable for use on the Web
• Turn a group of image into a GIF animation sequence
• Create a composite image by combining several separate image
• Draw shapes or text on an image
• Decorate an image with a border or frame
• Describe the format and characteristics of an image

ImageMagick includes a number of ready-made ImageMagick interfaces. This makes it possible to modify or
create images automatically and dynamically. The following table shows supports to different programming
languages.

Programming
language

Tool/library

C Use MagickWand to convert, compose, and edit images from the C language.
There is also the low-level MagickCore library but is only recommended for
wizard-level developers.

C++ Magick++ provides an object-oriented C++ interface to ImageMagick.
Java JMagick provides an object-oriented Java interface to ImageMagick.
Perl Use PerlMagick to convert, compose, and edit images from the Perl language.
PHP MagickWand for PHP a native PHP-extension to the ImageMagick MagickWand

API.
Python PythonMagick an object-oriented Python interface to ImageMagick.
Ruby RubyMagick is an interface between the Ruby programming language and the

ImageMagick image processing libraries.

Supported Image Formats - ImageMagick supports reading over 90 major file formats (not including sub-
formats). The following table provides a summary of the supported image formats. The Mode column reports
the availability to read and/or write the format.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

92

Tag Mode Description Notes
ART R PFS: 1st Publisher Format originally used on the Macintosh (MacPaint?) and

later used for PFS: 1st Publisher clip art.
AVI R Microsoft Audio/Visual

Interleaved

AVS RW AVS X image
BMP RW Microsoft Windows bitmap
CGM R Computer Graphics Metafile Requires ralcgm to render CGM files.
CIN RW Kodak Cineon Image Format Cineon Image Format is a subset of SMTPE DPX.
CMYK RW Raw cyan, magenta, yellow,

and black samples
Set -size and -depth to specify the image width, height,
and depth.

CMYKA RW Raw cyan, magenta, yellow,
black, and alpha samples

Set -size and -depth to specify the image width, height,
and depth.

CUR R Microsoft Cursor Icon
CUT R DR Halo
DCM R Digital Imaging and

Communications in
Medicine (DICOM) image

Used by the medical community for images like X-rays.

DCX RW ZSoft IBM PC multi-page
Paintbrush image

DIB RW Microsoft Windows Device
Independent Bitmap

DIB is a BMP file without the BMP header. Used to
support embedded images in compound formats like
WMF.

DPX RW Digital Moving Picture
Exchange

EMF R Microsoft Enhanced
Metafile (32-bit)

Only available under Microsoft Windows.

EPDF RW Encapsulated Portable
Document Format

EPI RW Adobe Encapsulated
PostScript Interchange
format

Requires Ghostscript to read.

EPS RW Adobe Encapsulated
PostScript

Requires Ghostscript to read.

EPS2 W Adobe Level II Encapsulated
PostScript

Requires Ghostscript to read.

EPS3 W Adobe Level III
Encapsulated PostScript

Requires Ghostscript to read.

EPSF RW Adobe Encapsulated
PostScript

Requires Ghostscript to read.

EPSI RW Adobe Encapsulated
PostScript Interchange
format

Requires Ghostscript to read.

EPT RW Adobe Encapsulated
PostScript Interchange
format with TIFF preview

Requires Ghostscript to read.

FAX RW Group 3 TIFF See TIFF format. Note that FAX machines use non-square
pixels which are 1.5 times wider than they are tall but
computer displays use square pixels so FAX images may
appear to be narrow unless they are explicitly resized using
a resize specification of "150x100%".

FIG R FIG graphics format Requires TransFig.
FITS RW Flexible Image Transport

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

93

System
FPX RW FlashPix Format Requires FlashPix SDK.
GIF RW CompuServe Graphics

Interchange Format
8-bit RGB PseudoColor with up to 256 palette entires.
Specify the format "GIF87" to write the older version 87a
of the format.

GPLT R Gnuplot plot files Requires gnuplot3.5.tar.Z or later.
GRAY RW Raw gray samples Use -size and -depth to specify the image width, height,

and depth.
HPGL R HP-GL plotter language Requires hp2xx-3.2.0.tar.gz
HTML RW Hypertext Markup Language

with a client-side image map
Also known as "HTM". Requires html2ps to read.

ICO R Microsoft icon Also known as "ICON".
JBIG RW Joint Bi-level Image experts

Group file interchange
format

Also known as "BIE" and "JBG". Requires jbigkit-
1.0.tar.gz.

JNG RW Multiple-image Network
Graphics

JPEG in a PNG-style wrapper with transparency. Requires
libjpeg and libpng-1.0.2 or later, libpng-1.2.5 or later
recommended.

JP2 RW JPEG-2000 JP2 File Format
Syntax

Requires jasper-1.600.0.zip

JPC RW JPEG-2000 Code Stream
Syntax

Requires jasper-1.600.0.zip

JPEG RW Joint Photographic Experts
Group JFIF format

Requires jpegsrc.v6b.tar.gz

MAN R Unix reference manual pages Requires that GNU groff and Ghostcript are installed.
MAT R MATLAB image format
MIFF RW Magick image file format Open ImageMagick's own image format (with ASCII

header) which ensures that no image attributes understood
by ImageMagick are lost.

MONO RW Bi-level bitmap in least-
significant-byte first order

MNG RW Multiple-image Network
Graphics

A PNG-like Image Format Supporting Multiple Images,
Animation and Transparent JPEG. Requires libpng-1.0.2
or later, libpng-1.2.5 or later recommended.

MPEG RW Motion Picture Experts
Group file interchange
format (version 1)

Requires mpeg2vidcodec_v12.tar.gz.

M2V RW Motion Picture Experts
Group file interchange
format (version 2)

Requires mpeg2vidcodec_v12.tar.gz.

MPC RW Magick Persistent Cache
image file format

The native "in-memory" ImageMagick uncompressed file
format. This file format is identical to that used by Open
ImageMagick to represent images in memory and is read
in "zero time" via memory mapping. The MPC format is
not portable and is not suitable as an archive format. It is
suitable as an intermediate format for high-performance
image processing. The MPC format requires two files to
support one image. When writing the MPC format, a file
with extension ".mpc" is used to store information about
the image, while a file with extension “.cache” stores the
image pixels. The storage space required by a MPC image
(or an image in memory) may be calculated by the
equation (5*QuantumDepth*Rows*Columns)/8.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

94

MSL RW Magick Scripting Language MSL is the XML-based scripting language supported by
the conjure utility.

MTV RW MTV Raytracing image
format

MVG RW Magick Vector Graphics. The native ImageMagick vector metafile format. A text
file containing vector drawing commands accepted by
convert's -draw option.

OTB RW On-the-air Bitmap
P7 RW Xv's Visual Schnauzer

thumbnail format

PALM RW Palm pixmap
PBM RW Portable bitmap format

(black and white)

PCD RW Photo CD The maximum resolution written is 768x512 pixels since
larger images require huffman compression (which is not
supported).

PCDS RW Photo CD Decode with the sRGB color tables.
PCL W HP Page Control Language For output to HP laser printers.
PCX RW ZSoft IBM PC Paintbrush

file

PDB RW Palm Database ImageViewer
Format

PDF RW Portable Document Format Requires Ghostscript to read.
PFA R Postscript Type 1 font

(ASCII)
Opening as file returns a preview image.

PFB R Postscript Type 1 font
(binary)

Opening as file returns a preview image.

PGM RW Portable graymap format
(gray scale)

PICON RW Personal Icon
PICT RW Apple Macintosh

QuickDraw/PICT file

PIX R Alias/Wavefront RLE image
format

PNG RW Portable Network Graphics Requires libpng-1.0.2 or later, libpng-1.2.5 or later
recommended.

PNM RW Portable anymap PNM is a family of formats supporting portable bitmaps
(PBM) , graymaps (PGM), and pixmaps (PPM). There is
no file format associated with pnm itself. If PNM is used
as the output format specifier, then ImageMagick
automatically selects the most appropriate format to
represent the image. The default is to write the binary
version of the formats. Use +compress to write the ASCII
version of the formats.

PPM RW Portable pixmap format
(color)

PS RW Adobe PostScript file Requires Ghostscript to read.
PS2 RW Adobe Level II PostScript

file
Requires Ghostscript to read.

PS3 RW Adobe Level III PostScript
file

Requires Ghostscript to read.

PSD RW Adobe Photoshop bitmap
file

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

95

PTIF RW Pyramid encoded TIFF Multi-resolution TIFF containing successively smaller
versions of the image down to the size of an icon. The
desired sub-image size may be specified when reading via
the -size option.

PWP R Seattle File Works multi-
image file

RAD R Radiance image file Requires that ra_ppm from the Radiance software package
be installed.

RGB RW Raw red, green, and blue
samples

Use -size and -depth to specify the image width, height,
and depth.

RGBA RW Raw red, green, blue, and
alpha samples

Use -size and -depth to specify the image width, height,
and depth.

RLA R Alias/Wavefront image file
RLE R Utah Run length encoded

image file

SCT R Scitex Continuous Tone
Picture

SFW R Seattle File Works image
SGI RW Irix RGB image
SHTML W Hypertext Markup Language

client-side image map
Used to write HTML clickable image maps based on a the
output of montage or a format which supports tiled images
such as MIFF.

SUN RW SUN Rasterfile
SVG RW Scalable Vector Graphics Requires libxml2 and freetype-2. Note that SVG is a very

complex specification so support is still not complete.
TGA RW Truevision Targa image Also known as formats "ICB", "VDA", and "VST".
TIFF RW Tagged Image File Format Also known as "TIF". Requires tiff-v3.6.1.tar.gz or later.

Note that since Unisys claims a patent on the LZW
algorithm (expiring in the US as of June 2003) used by
LZW-compressed TIFF files, ImageMagick binary
distributions do not include support for the LZW algorithm
so LZW TIFF files can not be written. Although a patch is
available for libtiff to enable building with LZW support.
Users should consult the Unisys LZW web page before
applying it.

TIM R PSX TIM file
TTF R TrueType font file Requires freetype 2. Opening as file returns a preview

image.
TXT RW Raw text file
UIL W X-Motif UIL table
UYVY RW Interleaved YUV raw image Use -size command line option to specify width and

height.
VICAR RW VICAR rasterfile format
VIFF RW Khoros Visualization Image

File Format

WBMP RW Wireless bitmap Support for uncompressed monochrome only.
WMF R Windows Metafile Requires libwmf. By default, renders WMF files using the

dimensions specified by the metafile header. Use the -
density option to adjust the output resolution, and thereby
adjust the ouput size. The default output resolution is
72DPI so "-density 144" results in an image twice as large
as the default. Use -background color to specify the
WMF background color (default white) or -texture

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

96

filename to specify a background texture image.
WPG R Word Perfect Graphics File
XBM RW X Windows system bitmap,

black and white only
Used by the X Windows System to store monochrome
icons.

XCF R GIMP image
XPM RW X Windows system pixmap Also known as "PM". Used by the X Windows System to

store color icons.
XWD RW X Windows system window

dump
Used by the X Windows System to save/display screen
dumps.

YCbCr RW Raw Y, Cb, and Cr samples Use -size and -depth to specify the image width, height,
and depth.

YCbCrA RW Raw Y, Cb, Cr, and alpha
samples

Use -size and -depth to specify the image width, height,
and depth.

YUV RW CCIR 601 4:1:1

4.4 Tools and algorithms for Audio Files Adaptation (FHGIGD, UNIVLEEDS, EPFL)

Module Profile
Tools and Algorithms for Audio Adaptation

Executable or Library(Support) Library
Single Thread or Multithread Single
Language of Development C++
Responsible Name Mattavelli
Responsible Partner EPFL
Status (proposed/approved)
Platforms supported Linux, Win32 (MinGW)

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section
See the tables below

User Interface Development model, language, etc. Library used for the development,

platform, etc.
Simple direct call

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
FFMPEG LGPL
FOBS LGPL
LIBSNDFILE LGPL
SoundTouch LGPL

4.4.1 FFMPEG/FOBS

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

97

Format transcoding is one of the main adaptation tool needed by the AXMEDIS framework as it implies
bitrate reduction when transcoding into a compressed format. For audio transcoding, the FFMPEG and
FOBS library should be used. For more details on those two libraries, see section 4.2 (Tools and Algorithms
for video adaptation)

Here is a list of audio codecs supported by FFMPEG through the libavcodec library (“I” means that an
integer only version is available too, ensuring highest performances on systems without hardware floating
point support; “X” means that encoding (resp. decoding) is supported):

Supported Codec Encoding Decoding Comments

MPEG Audio Layer 2 IX IX
MPEG Audio Layer 1/3 IX IX MP3 encoding is supported through the

external library LAME
AC3 IX IX Liba52 (GPL) is used internally for

decoding
Vorbis X X Supported through the external library

libvorbis
WMA V1/V2 X
AAC X X Supported through the external library

libfaac/libfaad
Microsoft ADPCM X X
MS IMA ADPCM X X
QT IMA ADPCM X
4X IMA ADPCM X
G. 726 ADPCM X X
Duck DK3 IMA ADPCM X Used in some Sega Saturn console games
Duck DK4 IMA ADPCM X Used in some Sega Saturn console games
Westwood Studios IMA ADPCM X Used in Westwood Studios games like

Command and Conquer
SMJPEG IMA ADPCM X Used in certain Loki game ports
CD-ROM XA ADPCM X
CRI ADX ADPCM X X Used in Sega Dreamcast games
Electronic Arts ADPCM X Used in various EA titles
Creative ADPCM X
RA 144 X Real 14400 bit/s codec
RA 288 X Real 28800 bit/s codec
RADNET X IX Real lowbitrate AC3 codec, liba52 (GPL) is

used for decoding
AMR-NB X X Supported through an external library
AMR-WB X X Supported through an external library
DV audio X
Id RoQ DPCM X Used in Quake III, Jedi Knight II, other

computer games
Interplay MVE DPCM X Used in various Interplay computer games
Xan DPCM X Used in Origin’s Wing Commander IV AVI

files
Sierra Online DPCM X Used in Sierra Online game audio files
Apple MACE 3 X
Apple MACE 6 X
FLAC X
FFmpeg Sonic X X Experimental lossly/lossless codec

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

98

4.4.2 LIBSNDFILE (http://www.mega-nerd.com/libsndfile/)

Libsndfile is a C library for reading and writing files containing sampled sound (such as MS Windows WAV
and the Apple/SGI AIFF format) through one standard library interface. It is released in source code format
under the Gnu Lesser General Public License.

The library was written to compile and run on a Linux system but should compile and run on just about any
Unix (including MacOSX). It can also be compiled and run on Win32 systems using the Microsoft compiler
and MacOS (OS9 and earlier) using the Metrowerks compiler. There are directions for compiling libsndfile
on these platforms in the Win32 and MacOS directories of the source code distribution.

It was designed to handle both little-endian (such as WAV) and big-endian (such as AIFF) data, and to
compile and run correctly on little-endian (such as Intel and DEC/Compaq Alpha) processor systems as well
as big-endian processor systems such as Motorola 68k, Power PC, MIPS and Sparc. Hopefully the design of
the library will also make it easy to extend for reading and writing new sound file formats.

It has been compiled and tested (at one time or another) on the following systems:

• i586-pc-linux-gnu (Linux on PC hardware)
• powerpc-unknown-linux-gnu (Linux on Apple Mac hardware)
• powerpc-apple-darwin7.0 (Mac OS X 10.3)
• sparc-sun-solaris2.8 (using gcc)
• mips-sgi-irix5.3 (using gcc)
• QNX 6.0
• i386-unknown-openbsd2.9
• Win32 (Microsoft Visual C++)

At the moment, each new release is being tested on i386 Linux, PowerPC Linux, MacOSX on PowerPC and
Win32.
Features

libsndfile has the following main features :

• Ability to read and write a large number of file formats.
• A simple, elegant and easy to use Applications Programming Interface.
• Usable on Unix, Win32, MacOS and others.
• On the fly format conversion, including endian-ness swapping, type conversion and bitwidth scaling.
• Optional normalisation when reading floating point data from files containing integer data.
• Ability to open files in read/write mode.
• The ability to write the file header without closing the file (only on files open for write or

read/write).
• Ability to query the library about all supported formats and retrieve text strings describing each

format.

libsndfile has a comprehensive test suite so that each release is as bug free as possible. When new bugs are
found, new tests are added to the test suite to ensure that these bugs don't creep back into the code. When
new features are added, tests are added to the test suite to make sure that these features continue to work
correctly even when they are old features.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

99

The following table lists the file formats and encodings that libsndfile can read and write. The file formats
are arranged across the top and encodings along the left edge.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

100

 Micro-
soft

WAV

SGI /
Apple
AIFF /
AIFC

Sun /
DEC /
NeXT
AU /
SND

Header-
less

RAW

Paris
Audio
File
PAF

Commo-
dore

Amiga
IFF / SVX

Sphere
Nist

WAV

IRCAM
SF

Creative
VOC

Sound
forge
W64

GNU
Octave

2.0
MAT4

GNU
Octave

2.1
MAT5

Portable
Voice

Format
PVF

Fasttracker 2
XI

HMM
Tool Kit

HTK

Unsigned 8
bit PCM

R/W R/W R/W R/W R/W R/W

Signed 8 bit
PCM

 R/W R/W R/W R/W R/W R/W R/W

Signed 16
bit PCM

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Signed 24
bit PCM

R/W R/W R/W R/W R/W R/W R/W R/W

Signed 32
bit PCM

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

32 bit float R/W R/W R/W R/W R/W R/W R/W R/W
64 bit
double

R/W R/W R/W R/W R/W R/W R/W

u-law
encoding

R/W R/W R/W R/W R/W R/W R/W R/W

A-law
encoding

R/W R/W R/W R/W R/W R/W R/W R/W

IMA
ADPCM

R/W R/W

MS
ADPCM

R/W R/W

GSM 6.10 R/W R/W R/W R/W
G721
ADPCM
32kbps

 R/W

G723
ADPCM
24kbps

 R/W

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

101

G723
ADPCM
40kbps

 R/W

12 bit
DWVW

 R/W R/W

16 bit
DWVW

 R/W R/W

24 bit
DWVW

 R/W R/W

Ok
Dialogic
ADPCM

 R/W

8 bit DPCM R/W
16 bit
DPCM

 R/W

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

102

4.4.3 SoundTouch Audio Processing Library
(http://sky.prohosting.com/oparviai/soundtouch/)

SoundTouch is an open-source audio processing library for changing the Tempo, Pitch and Playback Rates
of audio streams or files:

• Tempo (time-stretch): Changes the sound to play at faster or slower speed than original, without
affecting the sound pitch.

• Pitch (key) : Changes the sound pitch or key, without affecting the sound tempo or speed.
• Playback Rate : Changes both the sound tempo and pitch, as if an LP disc was played at wrong RPM

rate.

The SoundTouch library is suited for application developers writing sound processing tools that require
tempo/pitch control functionality, or just for playing around with the sound effects. The SoundTouch library
source kit includes also an example utility SoundStretch that allows processing .wav audio files with
command-line interface.

Features:

• Easy-to-use implementation of time-stretch, pitch-shift and sample rate transposing routines.
• High-performance object-oriented C++ implementation.
• Full source codes available for both the SoundTouch library and the example application.
• Clear and easy-to-use programming interface via a single C++ class.
• Supported audio data format : 16Bit integer or 32bit floating point PCM mono/stereo
• Capable of real-time audio stream processing:

• input/output latency max. ~ 100 ms.
• Processing 44.1kHz/16bit stereo sound in realtime requires a 133 Mhz Intel Pentium processor

or better.
• Platform-independent implementation: The SoundTouch library can be compiled for any processor

and OS platform supporting GNU C compiler (gcc) or Visual Studio, for example Win32, Linux,
AIX.

• Additional assembler-level and Intel-MMX instruction set optimizations for Intel x86 compatible
processors (Win32 & Linux platforms), offering several times increase in the processing
performance.

• Compiled executable binaries available for Windows.
• Released under the GNU Lesser General Public License (LGPL).

4.5 Tools and algorithms for Multimedia Adaptation (EPFL)

Module Profile
Tools and Algorithms for Multimedia Adaptation

Executable or Library(Support) Library
Single Thread or Multithread
Language of Development C++
Responsible Name Mattavelli
Responsible Partner EPFL
Status (proposed/approved)
Platforms supported MS Windows, Linux

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

103

Interfaces with other tools: Name of the communicating tools Communication model and format
(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language, etc. Library used for the development,

platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

Multimedia documents are composed of a set of different media objects: text, picture, animations,
synthesised and natural video, synthesized and natural audio. Hypermedia documents add the possibility for
the user to interact with the document.

To allow for the composition of the various media streams, most multimedia formats define some XML-like
language describing how the various media streams are associated. Here is a list of the major multimedia
languages:

• VRML (Virtual Reality Modelling Language) and its new generation X3D (eXtensible 3D)
• XMT (eXtensible MPEG-4 Textual format)
• SMIL (Synchronised Multimedia Integration Language)

XML being at the basis of most of the major multimedia languages, it is possible to build compilers to
transform files from one language to the other.

As far as known, there are only two tools available for multimedia documents manipulation. Actually these
tools do not satisfy some basic requirements of AXMEDIS as one is written in Java and the other is released
under a GPL licensing scheme. In the case of those formats that can be considered as multimedia (notably
PDF, PS, and SVG), the Lib ImageMagick library can be used for adaptation (see section 4.3).

GPAC

GPAC is an implementation in ANSI C of the MPEG-4 Systems standard (ISO/IEC 14496-1), with
additional audiovisual codecs. Its goal is to integrate multimedia standards such as SVG/SMIL, VRML, X3D
or SWF into a single framework following the XMT specification.

GPAC is currently running under Windows and Linux platforms. Windows CE/Pocket PC platform is not
actively maintained but GPAC 0.2.3 is running on an iPaq device.

GPAC is released under the GNU General Public License.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

104

IBM Toolkit for MPEG-4

The IBM toolkit for MPEG-4 consists of a set of technologies compliant with the MPEG-4 standard. It is
implemented as a set of Java classes and APIs which can be used to develop MPEG-4 applications for
authoring and playback. It is the main toolset around which the XMT specification has been built, as a case
study for compatibility of the different XML-based languages mentioned above.

Since the toolkit is Java-based, the applications built on top of it will run on any platform that supports Java.

The IBM toolkit for MPEG-4 is released under a commercial licensing scheme.

4.6 Tools and algorithms for Metadata/AXInfo Adaptation (UNIVLEEDS)

Module Profile
Tools and Algorithms for Metadata Adaptation

Executable or Library(Support) Executable
Single Thread or Multithread Single Thread
Language of Development C++
Responsible Name
Responsible Partner UNIVLEEDS
Status (proposed/approved) Proposed
Platforms supported Windows

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)
Query Support
AXOM Commands and
Reporting

File Formats Used Shared with File format name or reference to a

section
XML

User Interface Development model, language, etc. Library used for the development,

platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
Xerces Xerces C++ Parser v-2.6.0 Apache Software Licence, v-2.0
Xalan Xalan-c++ v-1.9 The Apache Software License, v1.1

This module provides a collection of algorithms and tools for adaptation of XML metadata. The main
adaptation functions needed by the AXMEDIS Framework could be summarised in:

• Scaling metadata by filtering elements

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

105

o This can be done by specifying look-up tables (including XSLT) to define the valid/invalid
elements.

• Adapting field (could be different name or size or others)
o Xerces can also use a given schema to validate the elements. With this validation function,

the elements can be detected for adaptation. Look-up tables (including XSLT) have to be
setup in order to adapt metadata from one standard to the other.

For XML metadata transcoding, the Xerces Libraries can be used to parse a given piece of XML data.

4.6.1 Xerces: XML parsers in Java and C++ (plus Perl and COM)

Xerces (named after the Xerces Blue butterfly) provides XML parsing and generation. The library available
for both C++ and Java, implementing the W3C XML and DOM (Level 1 and 2) standards, as well as the de
facto SAX (version 2) standard. The parsers are highly modular and configurable. Initial support for XML
Schema (draft W3C standard) is also provided.

A Perl wrapper is provided for the C++ version of Xerces. It also provides full access to Unicode strings. A
COM wrapper (also for Xerces-C) provides compatibility with the Microsoft MSXML parser.

The libraries feature:

1. Source code, samples, and documentation is provided
2. Programmatic generation and validation of XML
3. Pluggable catalogs, validators and encodings
4. Customizable error handling

Xerces includes three Metadata interfaces making it possible to modify or create metadata automatically and
dynamically. The following table shows support to the different programming languages (sources are taken
from http://xml.apache.org/, http://xml.apache.org/xerces-c/, http://xml.apache.org/xerces2-j/,
http://xml.apache.org/xerces-p/).

Programming

language
Tool/library Standards Supported

C++ Use Xerces-C++ Version 2.6.0 to
read and write XML data. A shared
library is provided for parsing,
generating, manipulating and
validating XML documents

• XML 1.0 (Third Edition)
• XML 1.1 (First Edition) (Note: Normalization

Checking has not been implemented)
• DOM Level 1 Specification
• DOM Level 2 Core Specification
• DOM Level 2 Traversal and Range Specification
• SAX 1.0 and SAX 2.0
• Namespaces in XML
• XML Schema Part 1: Structure
• XML Schema Part 2: Datatypes
• Namespaces in XML 1.1
• DOM Level 3 Core Specification (Partial

implementation)
• DOM Level 3 Load and Save Specification

Java Use Xerces2 Java Parser 2.6.2 and the
Cerces Native Interface (XNI) to build
parser components and configurations
that is modular. Xerces2 is able to
parse documents written according to
the XML1.1 Recommendation.

• XML 1.0 (Third Edition)
• Namespaces in XML
• XML 1.1 (First Edition)
• Document Object Model (DOM) Level 2 Core,

Events, and Traversal and Range
Recommendations

• Simple API for XML (SAX) 2.0.1 Core, and
Extensions

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

106

• Java APIs for XML Processing (JAXP) 1.2
• XML Schema 1.0 Structures and Datatypes

Recommendations
Perl The XML::Xerces 2.3.0-4 Perl API is

implemented using Xerces C++ API.
Based on Xerces-C, provides a
validating XML parser to read and
write XML data and provides most of
the C++ API. Classes are provided for
parsing, generating, manipulating, and
validating XML documents

• String I/O (Perl strings versus XMLch arrays)
• List I/O (Perl lists versus DOM_NodeList's)
• Hash I/O (Perl hashes versus

DOM_NamedNodeMap's)
• Combined List/Hash classes
• DOM Serialization API
• Implementing Perl handlers for C++ event

callbacks
• handling C++ exceptions
• XML::Xerces::XMLUni unicode constants

COM A COM wrapper (also for Xerces-C)
provides compatibility with the
Microsoft MSXML parser.

• See Perl standard supports

4.6.2 Xalan : XSLT stylesheet processors in Java & C++
Xalan is an XSLT processor for transforming XML documents into HTML, text, or other XML document
types. Implementations for XSL Transformations (XSLT) Version 1.0 and the XML Path Language (XPath)
Version 1.0, it works with the appropriate Xerces XML parser

Programming

language
Tool/library Description

C++ Use Xalan-C++ Version 1.9 to
transform XML documents into
HTML, text, or other document types.

• implements XSL Transformations (XSLT) Version
1.0

• XML Path Language (XPath) Version 1.0
• Works with a compatible release of the Xerces-

C++ XML parser: Xerces-C++ version 2.6.0
Java Use Xalan-Java Version 2.6.0 to

transform XML documents into
HTML, text, or other document types.

• implements XSL Transformations (XSLT) Version
1.0

• XML Path Language (XPath) Version 1.0
• implementation of the Transformation API for

XML (TrAX) interfaces, part of the Java API for
XML Processing 1.2

• builds on SAX 2 and DOM level 2

4.7 Tools and algorithms for DRM information adaptation (FUPF)

Module Profile
Tools and Algorithms for DRM Adaptation

Executable or Library(Support) Executable
Single Thread or Multithread Multithread
Language of Development C++
Responsible Name
Responsible Partner FUPF
Status (proposed/approved) Proposed
Platforms supported MS Windows

Interfaces with other tools: Name of the communicating tools Communication model and format

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

107

(protected or not, etc.)

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language, etc. Library used for the development,

platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
Xerces
Xalan

DRM adaptation involves the adaptation of the related licenses, as derived AXMEDIS objects or digital
resources within the AXMEDIS objects can be seen as new creations with regard to original ones. Therefore,
new licenses must be created during the adaptation process, always respecting the terms and conditions fixed
in the original license or licenses for the adapted AXMEDIS objects or contents within these objects.

Nevertheless, DRM information (mainly licenses and PARs) inside the AXMEDIS project, that are related to
AXMEDIS Objects will be expressed in XML language by using MPEG-21 REL.

In order to adapt this information to different rights expression languages, also based in XML or to adapt a
license to be more compact in order to use it into portable devices (for instance, mobile phones or PDAs), we
will make use of existing libraries for manipulating XML documents.

The main adaptation function produced by this module can be summarised in:

• Compacting licenses for their use in portable devices
• Translating licenses from one rights expression language to another
• Automatic generation of a license when an adaptation over the content it applies is done

For XML DRM rules transcoding, the Xerces Libraries can be used to parse a given piece of XML data.

4.7.1 Architecture of the module

The following figure shows the UML diagram of the Tools and Algorithms for DRM adaptation module.

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

108

DRMAdaptation

generateTranslation(sourceLicense : String, destinationLanguage : String) : String
adaptDRMRules(sourceLicense : String, constraints : String) : String
adaptPAR(PAR : String, constraints : String) : String

DRMChecker

checkLicense(license : String) : boolean
checkPAR(PAR : String) : boolean
verifyLicenseRules(license : String, parentLicense : String, PAR : String) : boolean
verifyPARRules(PAR : String, PARparentObject : String) : boolean

1..1

1..1

+license 1..1

+check 1..1

Class diagram for tools and algorithms for DRM Adaptation

DRMAdaptation: Provides the needed functionality to perform adaptation of DRM rules and PAR.

DRMChecker: Provides syntactical checking of licenses and PAR and verifying functionality of PAR and
licenses against parent licenses and PAR.

DRMAdaptation
WSDL <wsdl:definitions name='DRMAdaptation' targetNamespace='urn:DRMAdaptation'

 xmlns:tns='urn:DRMAdaptation'
 xmlns:ns0='http://systinet.com/xsd/SchemaTypes/'
 xmlns:map='http://systinet.com/mapping/'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'
 xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'>
 <wsdl:types>
 <xsd:schema targetNamespace="http://systinet.com/xsd/SchemaTypes/"
 elementFormDefault="qualified"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://systinet.com/xsd/SchemaTypes/">
 <xsd:element name="sourceLicense" type="xsd:string"
 nillable="true"/>
 <xsd:element name="destinationLanguage" type="xsd:string"
 nillable="true"/>
 <xsd:element name="string_Response" type="xsd:string"
 nillable="true"/>
 <xsd:element name="constrains" type="xsd:string" nillable="true"/>
 <xsd:element name="PAR" type="xsd:string" nillable="true"/>
 </xsd:schema>

 </wsdl:types>
 <wsdl:message name='DRMAdaptation_adaptPAR_1_Request'>
 <wsdl:part name='PAR' element='ns0:PAR'/>
 <wsdl:part name='constrains' element='ns0:constrains'/>
 </wsdl:message>
 <wsdl:message name='DRMAdaptation_generateTranslation_Response'>
 <wsdl:part name='response' element='ns0:string_Response'/>
 </wsdl:message>
 <wsdl:message name='DRMAdaptation_adaptDRMRules_1_Request'>
 <wsdl:part name='sourceLicense' element='ns0:sourceLicense'/>
 <wsdl:part name='constrains' element='ns0:constrains'/>
 </wsdl:message>
 <wsdl:message name='DRMAdaptation_generateTranslation_1_Request'>
 <wsdl:part name='sourceLicense' element='ns0:sourceLicense'/>
 <wsdl:part name='destinationLanguage' element='ns0:destinationLanguage'/>
 </wsdl:message>

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

109

 <wsdl:message name='DRMAdaptation_adaptDRMRules_Response'>
 <wsdl:part name='response' element='ns0:string_Response'/>
 </wsdl:message>
 <wsdl:message name='DRMAdaptation_adaptPAR_Response'>
 <wsdl:part name='response' element='ns0:string_Response'/>
 </wsdl:message>
 <wsdl:portType name='DRMAdaptation'>
 <wsdl:operation name='generateTranslation' parameterOrder='sourceLicense destinationLanguage'>
 <wsdl:input message='tns:DRMAdaptation_generateTranslation_1_Request'/>
 <wsdl:output message='tns:DRMAdaptation_generateTranslation_Response'/>
 </wsdl:operation>
 <wsdl:operation name='adaptDRMRules' parameterOrder='sourceLicense constrains'>
 <wsdl:input message='tns:DRMAdaptation_adaptDRMRules_1_Request'/>
 <wsdl:output message='tns:DRMAdaptation_adaptDRMRules_Response'/>
 </wsdl:operation>
 <wsdl:operation name='adaptPAR' parameterOrder='PAR constrains'>
 <wsdl:input message='tns:DRMAdaptation_adaptPAR_1_Request'/>
 <wsdl:output message='tns:DRMAdaptation_adaptPAR_Response'/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name='DRMAdaptation' type='tns:DRMAdaptation'>
 <soap:binding transport='http://schemas.xmlsoap.org/soap/http' style='document'/>
 <wsdl:operation name='generateTranslation'>
 <map:java-operation name='generateTranslation'
signature='KExqYXZhL2xhbmcvU3RyaW5nO0xqYXZhL2xhbmcvU3RyaW5nOylMamF2YS9sYW5nL1N0cmluZ
zs='/>
 <soap:operation
soapAction='urn:DRMAdaptationDRMAdaptation#generateTranslation#KExqYXZhL2xhbmcvU3RyaW5nO0xqY
XZhL2xhbmcvU3RyaW5nOylMamF2YS9sYW5nL1N0cmluZzs=' style='document'/>
 <wsdl:input>
 <soap:body use='literal'/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use='literal'/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name='adaptDRMRules'>
 <map:java-operation name='adaptDRMRules'
signature='KExqYXZhL2xhbmcvU3RyaW5nO0xqYXZhL2xhbmcvU3RyaW5nOylMamF2YS9sYW5nL1N0cmluZ
zs='/>
 <soap:operation
soapAction='urn:DRMAdaptationDRMAdaptation#adaptDRMRules#KExqYXZhL2xhbmcvU3RyaW5nO0xqYXZ
hL2xhbmcvU3RyaW5nOylMamF2YS9sYW5nL1N0cmluZzs=' style='document'/>
 <wsdl:input>
 <soap:body use='literal'/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use='literal'/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name='adaptPAR'>
 <map:java-operation name='adaptPAR'
signature='KExqYXZhL2xhbmcvU3RyaW5nO0xqYXZhL2xhbmcvU3RyaW5nOylMamF2YS9sYW5nL1N0cmluZ
zs='/>
 <soap:operation
soapAction='urn:DRMAdaptationDRMAdaptation#adaptPAR#KExqYXZhL2xhbmcvU3RyaW5nO0xqYXZhL2xh
bmcvU3RyaW5nOylMamF2YS9sYW5nL1N0cmluZzs=' style='document'/>
 <wsdl:input>
 <soap:body use='literal'/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use='literal'/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name='DRMAdaptation'>
 <wsdl:port name='DRMAdaptation' binding='tns:DRMAdaptation'>
 <soap:address location='http://cjlab1:6060/DRMAdaptation/'/>
 </wsdl:port>
 </wsdl:service>

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

110

</wsdl:definitions>
Method generateTranslation
Description Generates the translation of a license to a given (different) rights expression language. If the

translation is successful, the result is a license in the destination format.
Input
parameters

sourceLicense: String, the license to be translated
destinationLanguage: String, the language in which the license has to be translated

Output
parameters

String, the translated license

Request
Sample
Message

<e:Envelope xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:d="http://www.w3.org/2001/XMLSchema"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wn0="http://systinet.com/xsd/SchemaTypes/">
 <e:Body>
 <wn0:sourceLicense i:type="d:string">&lt;r:license/&gt;</wn0:sourceLicense>
 <wn0:destinationLanguage i:type="d:string">ODRL</wn0:destinationLanguage>
 </e:Body>
</e:Envelope>

Response
Sample
Message

<e:Envelope xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:d="http://www.w3.org/2001/XMLSchema"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wn0="http://systinet.com/xsd/SchemaTypes/">
 <e:Body>
 <wn0:string_Response i:type="d:string">&lt;odrl:license/&gt;</wn0:string_Response>
 </e:Body>
</e:Envelope>

Method adaptDRMRules
Description Adapts the given license using the given constraints
Input
parameters

SourceLicense:String, the license to be adapted
Constraints:String, the adaptation constraints to be applied over the license

Output
parameters

String, the adapted license

Request
Sample
Message

<e:Envelope xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:d="http://www.w3.org/2001/XMLSchema"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wn0="http://systinet.com/xsd/SchemaTypes/">
 <e:Body>
 <wn0:sourceLicense i:type="d:string">&lt;r:license/&gt;</wn0:sourceLicense>
 <wn0:constrains i:type="d:string">adapt</wn0:constrains>
 </e:Body>
</e:Envelope>

Response
Sample
Message

<e:Envelope xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:d="http://www.w3.org/2001/XMLSchema"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wn0="http://systinet.com/xsd/SchemaTypes/">
 <e:Body>
 <wn0:string_Response i:type="d:string">&lt;r:license/&gt;</wn0:string_Response>
 </e:Body>
</e:Envelope>

Method adaptPAR
Description Adapts the given PAR using the given constraints
Input
parameters

PAR:String, the PAR to be adapted
Constraints:String, the adaptation constraints to be applied over the PAR

Output
parameters

String, the adapted PAR

Request
Sample
Message

<e:Envelope xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:d="http://www.w3.org/2001/XMLSchema"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wn0="http://systinet.com/xsd/SchemaTypes/">
 <e:Body>
 <wn0:PAR i:type="d:string">&lt;PAR/&gt;</wn0:PAR>
 <wn0:constrains i:type="d:string">adapt</wn0:constrains>
 </e:Body>
</e:Envelope>

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

111

Response
Sample
Message

<e:Envelope xmlns:e="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:d="http://www.w3.org/2001/XMLSchema"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wn0="http://systinet.com/xsd/SchemaTypes/">
 <e:Body>
 <wn0:string_Response i:type="d:string">&lt;PAR/&gt;</wn0:string_Response>
 </e:Body>
</e:Envelope>

DRMChecker

Method checkLicense
Description Verifies a license syntactically against the schemas defined within the license.
Input
parameters

xsd:string license: the license to be verified

Output
parameters

xsd:boolean: true if the license is correct, false if not.

Method checkPAR
Description Verifies a PAR syntactically against the schemas defined within the PAR.
Input
parameters

xsd:string PAR: the PAR to be verified

Output
parameters

xsd:boolean: true if the PAR is correct, false if not.

Method verifyLicenseRules
Description Verifies if the license can be generated according to the PARs and the parent licenses (e.g.

Distributor or Creator licenses).
Input
parameters

xsd:string license: the license to be verified
xsd:string parentLicense: distributor license
xsd:string PARs: PARs of the corresponding AXMEDIS object

Output
parameters

xsd:boolean: true if the license can be generated, false if not.

Method verifyPARRules
Description Verifies if the PAR can be generated according to the parent licenses and PARs.
Input
parameters

xsd:string PAR: the PAR to be verified
xsd:string PARs: PARs of the parent AXMEDIS object
xsd:string parentLicense: distributor license

Output
parameters

xsd:boolean: true if the PARs can be generated, false if not.

4.8 Adaptation Algorithms Profiles (FHGIGD)

Content adaptation algorithms as well as content description estimation and calculation algorithms are
dynamically loaded into the AXMEDIS framework. The correct handling of the plug-ins is performed by the
plug-in managers (AXMEDIS Editor::Plug-In Manager and the Collector Engine::Collector Plug-In
Manager). They scan a specific directory upon their initialisation. The available plug-ins are loaded and their
functionality is checked by loading the libraries description, the so-called algorithm profiles. In each profile
human and machine readable information about the algorithms provided in the library are stored.

This description includes information like:

• General information about the library itself
• Information about the functions accessible in this library
• Information about the functions’ parameters and the return value

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

112

Some of the information, like library name, vendor name, and version name, are relevant for the user. But
this information can also be required for the management of the available plug-ins: For users a human
understandable description is needed, e.g. a brief help function summarizing the main characteristics of the
functions collected in this library.

The description of the functions depends on the individual function, which should be described. As content
adaptation and content description algorithms can be distinguished but are closely related detailed
information about content adaptation algorithms is available at DE3-1-2D (Framework and Tools
Specification – Fingerprint and Descriptors). The relationship between the content adaptation and content
description profiles and the plug-in interface can be found in DE3-1-2B (Framework and Tools Specification
– Viewers and Players).

DE3.1.2C – Framework and Tools Specification (Content Production)

AXMEDIS Project
CONFIDENTIAL

113

5 Bibliography
[1] “JavaScript C Engine Embedder's Guide”, http://www.mozilla.org/js/spidermonkey/apidoc/jsguide.html
[2] Jens Thiele, “Embedding SpiderMonkey - best practice” http://egachine.berlios.de/embedding-sm-best-

practice/embedding-sm-best-practice-index.html
[3] “Scripting C++ with JavaScript using SpiderMonkey”,

http://home.tiscali.be/franky.braem17/spidermonkey.htm
[4] The Extensible Stylesheet Language Family (XSL), http://www.w3.org/Style/XSL/
[5] Xerces, http://xml.apache.org/#xerces
[6] Xalan, http://xml.apache.org/#xalan

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

