
DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

1

AXMEDIS
Automating Production of Cross Media Content

for Multi-channel Distribution
www.AXMEDIS.org

DE3.1.2G
Framework and Tools Specifications

(Workflow)

Version: 6.6
Date: 14/03/2005
Responsible: IRC (DSI supervision)
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: report
Visible to User Groups: no
Visible to Affiliated: no
Visible to the Public: no.

Deliverable Number: DE3.1.2 Part G
Contractual Date of Delivery: January 2005
Actual Date of Delivery: 15 March 2005
Title of Deliverable: Document
Work-Package contributing to the Deliverable: WP3.1
Task contributing to the Deliverable: WP3, WP2
Nature of the Deliverable: report
Author(s): IRC, HP, XIM

Abstract: This Part G broadly comprises five parts. The first part supports the rationale for the four distinct
categories of interfaces deemed required for a streamlined architecture; i.e. workflow plug-ins with
AXMEDIS Editor, Engines, Rule Editor/Viewers and Query Support Interface. It describes a Neutral
Exchange Format that has been devised for the plug-ins as a logical transaction format to serve as a generic
standard that remains both AXMEDIS-compliant as well as technologically realisable and consistent with the
capabilities of existing workflow systems given their available method invocations and transaction protocols.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

2

The semantic analysis that is also included recommends a set of Object Status Types for consideration re
design of the AXMEDIS Object Schema. The AXMEDIS workflow integration specification is then further
illustrated by means of UML diagrams, tables of transactions syntax and protocol specifications as well as
eight generic scenario specification diagrams that are fully described.

The second part further specifies the design of the workflow plug-ins including actual input, output and
method invocations for all the workflow plug-ins based on the exchange format for the interfaces as
established in the first part. The third part gives an outline of the rationale for the choice of the two selected
workflow systems (i.e. the open-source workflow, Openflow, and the proprietary workflow system BizTalk).
The final part includes an overview of the structure and terminology of the selected workflow systems as
well as references for the relevant tools, engine downloads and further information including a Glossary and
References.

Keyword List workflow, interface, plug-in, neutral exchange format, protocol, semantic types,
Object status, tracking, metadata, session, bridge, workspace, open-source, Openflow, BizTalk,
API, xml_rpc, dll, dcom, Zope, Python

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

3

AXMEDIS Copyright Notice
The following terms (including future possible amendments) set out the rights and obligations licensee will be requested
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by
any other means.

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT.

1. DEFINITIONS

i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the
document have been accepted.

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a
Document.

iii. "Licensor" is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in
terms of companies and/or associations, see www.axmedis.org

iv. "Document" means the information contained in any electronic file, which has been published by the
Licensor’s as AXMEDIS official document and listed in the web site mentioned above or available by any
other means.

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.

2. LICENCE

1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to
present terms and conditions (the Licence) for the parts that are own and proprietary property the of
AXMEDIS consortium or its members.

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and
conditions.

3. TERM AND TERMINATION

1. Granted Licence shall commence on Acceptance Date.

2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions
of this Licence.

3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of
termination.

4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the
accessed Copyright.

5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or
obligations, shall survive termination of this Licence and shall continue in full force and effect.

6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it
as stated in the document itself will remain in force for a period of 5 years after license issue date or the
period stated in the document whichever is the longer.

4. USE

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:

i. remove this Copyright Notice on a Document or any of its reproduction in any form in which those
may be achieved;

ii. change or remove the title of a Document;

iii. use all or any part of a Document as part of a specification or standard not emanating from the
Licensor without the prior written consent of the Licensor; or

iv. do or permit others to do any act or omission in relation to a Document which is contrary to the
rights and obligations as stated in the present license and agreed with the Licensor

5. COPYRIGHT NOTICES

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

4

1. All Works shall bear a clear notice asserting the Licensor’s Copyright. The notice shall use the wording
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.

6. WARRANTY

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.

2. For the avoidance of doubt the licensee should be aware that although the Copyright in the
documents is given under warranty this warranty does not extend to the content of any document
which may contain references or specifications or technologies that are covered by patents (also
of third parties) or that refer to other standards. AXMEDIS is not responsible and does not
guarantee that the information contained in the document is fully proprietary of AXMEDIS
consortium and/or partners.

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of
action which the Licensor may have, at all times keep the Licensor fully and effectively
indemnified against all and any liability (which liability shall include, without limitation, all
losses, costs, claims, expenses, demands, actions, damages, legal and other professional fees and
expenses on a full indemnity basis) which the Licensor may suffer or incur as a result of, or by
reason of, any breach or non-fulfilment of any of his obligations in respect of this Licence.

7. INFRINGEMENT

1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the
Copyright which comes to licensee notice and shall, at the Licensor’s request and expense, do all such
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.

8. GOVERNING LAW AND JURISDICTION

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.

2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.

Please note that:

• You can become affiliated with AXMEDIS. This will give you the access to a huge amount of
knowledge, information and source code related to the AXMEDIS Framework. If you are interested
please contact P. Nesi at nesi@dsi.unifi.it. Once affiliated with AXMEDIS you will have the
possibility of using the AXMEDIS specification and technology for your business.

• You can contribute to the improvement of AXMEDIS documents and specification by sending the
contribution to P. Nesi at nesi@dsi.unifi.it

• You can attend AXMEDIS meetings that are open to public, for additional information see
WWW.axmedis.org or contact P. Nesi at nesi@dsi.unifi.it

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

5

Table of Content

1 EXECUTIVE SUMMARY AND REPORT SCOPE (DSI, ALL) ... 7

2 WORKFLOW MANAGEMENT AREA (WP4.3.3. IRC, WP5.5.5: CRS4, XIM) .. 8
2.1 OUTLINE OF THE WORKFLOW MANAGEMENT SYSTEM FUNCTIONAL REQUIREMENTS 9
2.2 WORKFLOW INTEGRATION DESIGN .. 10
2.3 ADOPTION OF A NEUTRAL EXCHANGE MESSAGING FORMAT: THE SEMANTIC FRAMEWORK 11

2.3.1 Objects of Type Workitem .. 11
2.3.2 Objects of Type Workflow (Processflow)... 11
2.3.3 Objects of Type Task ... 12
2.3.4 Objects of Type Session .. 12
2.3.5 Objects of Type User_Credentials... 12
2.3.6 Objects of Type Workspace... 12
2.3.7 Objects of Type Bridge.. 13
2.3.8 Objects of Type Exchange... 13
2.3.9 Logical Analysis of Semantics and Syntax of the WF-Exchange_ID.. 15
2.3.10 Sufficiency and Necessity Criteria for the Design of Exchange Messaging Format............................... 35

2.4 WORKFLOW TRANSACTIONS SPECIFICATION FOR ALL INTERFACES AND SELECTED SCENARIOS...................... 36
3 WORKFLOW DATABASE... 45

3.1 SEMANTIC ANALYSIS OF STATUS DATA REQUIRED FOR OBJECT TRACKING AND AXWFM CONTROL............ 45
3.2 SEMANTIC TYPES AND REPRESENTATION SPACES PARTITIONING ... 47
3.3 ESTABLISHING METADATA/DESCRIPTOR AXINFO, AXWFDB, AXDB & PMSDB DATA SCHEMA
COMPLEMENTARITY ... 48

3.3.1 Tracking/ Messaging and Control Semantics To be Represented ... 49
3.3.2 Representing Projected Work-To-be-done on an (AXMEDIS)Object... 50
3.3.3 Examples of Integrative Database Inference Types to be made possible... 50

3.4 CHOICE OF WORKFLOW DATABASE TECHNOLOGY .. 51
3.5 THE SEMANTIC ELEMENTS TO BE STORED IN THE WORKFLOW DATABASE (AXWFDB) 51

3.5.1 Workflow-Embedded / Triggered Object Retrieval and Discovery Service Spaces.................................... 53
3.5.2 Unknown Objects Sought & Found Exchange Messaging Contexts ... 54

3.6 GENERIC SCENARIOS FOR THE WORKFLOW INTERACTION WITH AXMEDIS COMPONENTS............................. 55
3.7 AXMEDIS WORKFLOW AREA UML DECOMPOSITION .. 66
3.8 WORKFLOW AND AXMEDIS INTEGRATION ARCHITECTURE.. 67
3.9 WORKFLOW TECHNOLOGIES .. 72
3.10 WORKFLOW ENGINE... 72
3.11 WORKFLOW USER INTERFACES AND TOOLS (IRC, HP, XIM).. 73

3.11.1 Typical Transactions between AXWF and AXMEDIS in Delivering the UseCases 74
3.11.2 WorkFlow User Interface Mock-ups (OpenFlow).. 77

4 WORKFLOW REQUEST ADAPTERS (OPENFLOW)... 77
4.1 WORKFLOW INPUT QUEUE ADAPTERS (OPENFLOW)... 78
4.2 WORKFLOW GATEWAYS (OPENFLOW) .. 79
4.3 WORKFLOW GATEWAYS (MICROSOFT BIZTALK) .. 85

5 AXMEDIS WORKFLOW INTERFACE SPECIFICATIONS ... 85
5.1 THE AXMEDIS EDITOR WORKFLOW CHANNEL ... 85

5.1.1 The Interface between the WF Editor Request Gateway and the AXOM Command and Reporting 86
5.1.2 Interface between the WF AXOM Request Adapter and the WF Editor Request Gateway........................ 96
5.1.3 The Interface between the WF AXOM Input Queue Adapter and the WF Editor Response Gateway....... 97
5.1.4 The Interface between the AXOM Command and Reporting and the WF Editor Response Gateway 98

5.2 THE WORKFLOW ENGINE CHANNEL .. 100
5.2.1 The Interface between the WF Engine Request Gateway and the Engine Command and Reporting 100
5.2.2 Interface between the WF Engine Request Adapter and the WF Engine Request Gateway 113
5.2.3 The Interface between the WF Engine Input Queue Adapter and the WF Engine Response Gateway 114

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

6

5.2.4 The Interface between the Engine Command and Reporting and the WF Engine Response Gateway..... 116
5.3 THE WORKFLOW RULE EDITOR CHANNEL... 119

5.3.1 The Interface between the WF Rule Editor Request Gateway and the User Command and Reporting.... 119
5.3.2 Interface between the WF Rule Editor Request Adapter and the WF Rule Editor Request Gateway 124
5.3.3 The Interface between the WF Rule Editor Input Queue Adapter and the WF Rule Editor Response
Gateway ... 125
5.3.4 The Interface between the User Command and Reporting and the WF Rule Editor Response Gateway . 127

5.4 THE WORKFLOW QUERY AND DATABASE CHANNEL.. 129
5.4.1 The Interface between the WF DB Request Gateway and the Loader/Saver and Query Support
WebService Interface .. 129
5.4.2 Interface between the WF DB Request Adapter and the WF DB Request Gateway................................. 138
5.4.3 The Interface between the WF DB Input Queue Adapter and the WF DB Response Gateway................ 139
5.4.4 WebServices exposed by the WF DB Response Gateway to the AXMEDIS Object Loader/Mover and
Query Support WebService Interface ... 140

6 AXMEDIS INTEGRATION WITH AVAILABLE WORKFLOW ENVIRONMENTS............................... 142
6.1 AXMEDIS INTEGRATION AND USAGE WITH THE OPEN-SOURCE AXWF: OPENFLOW.................................... 142

6.1.1 The Rationale for Choice of Openflow as an AXWF... 142
6.1.2 AXMEDIS Tools Interacting with Openflow ... 143
6.1.3 Openflow as the AXWF Interfacing with the AXMEDIS Components .. 145
6.1.4 Openflow Structures and Terminology ... 145

6.2 AXMEDIS INTEGRATION AND USAGE WITH THE PROPRIETARY AXWF: BIZTALK 148
6.2.1 The Rationale for the Choice of BizTalk as an AXWF .. 149
6.2.2 Outline Description of the BizTalk ... 149
6.2.3 Overview of BizTalk Architecture .. 151

6.3 OPEN-SOURCE LICENSING OF AXMEDIS-DEVELOPED WORKFLOW INTEGRATION SOFTWARE 152
7 GLOSSARY OF TERMS AND ABBREVIATIONS (PART G) ... 153

7.1 GLOSSARY OF TERMS USED WITH WORKFLOW MANAGEMENT SYSTEMS INTEGRATION 153
7.2 TABLE OF ACRONYMS RELEVANT TO WORKFLOW MANAGEMENT SYSTEMS INTEGRATION 155
TABLE OF ACRONYMS RELEVANT TO WORKFLOW MANAGEMENT SYSTEMS INTEGRATION.. 156

8 REFERENCES TO WFMS, OPENFLOW, ZOPE, PYTHON ETC AND DOWNLOADS.......................... 157
8.1 OPENFLOW WORKFLOW MANAGEMENT SYSTEM .. 157
8.2 AXMEDIS TECHNICAL WATCH AREA WORKFLOW FOLDER.. 157

8.2.1 Downloads.. 157
8.3 WORKFLOW MANAGEMENT COALITION(WFMC) ... 157
8.4 WORKFLOW AND RE-ENGINEERING INTERNATIONAL ASSOCIATION (WARIA)... 158
8.5 XPDL.. 158

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

7

1 Executive Summary and Report Scope (DSI, all)

The full AXMEDIS specification document has been decomposed in the following parts:
A. general aspects up to the description of the content model
B. Viewers and players, including plug ins, etc.
C. Content Production tools and algorithms
D. Fingerprint and descriptors algorithms and tools
E. Database area, query support and Content Crawling from CMS
F. AXEPTool area, for B2B distribution and Programme and Publication for B2C distribution
G. Workflow aspects and tools
H. Protection tools and support, Certification and Supervision and Accounting tools
I. Distribution tools and AXMEDIS Portal
J. Definitions, tables, terminology, acronyms, lists, references, links and Appendixes

This documents contains Part G only.

This Workflow Management Area (Part G) of the Frameworks and Tools Document is intended to set out the
knowledge engineering basis and conclude the specification design of the workflow interface plug-ins for the
relevant AXMEDIS components. This is to ensure that the AXMEDIS platform when integrated with its
adopted workflow systems will be able to deliver all the functionalities expected by various user scenarios as
outlined within the Requirements Document (multi-sectorial Workflow Requirements Elicitation and
Domain Knowledge Analysis).

Part G broadly comprises five parts. The first part, namely the Workflow Management Area Integration
Specification, builds on the earlier requirements analysis to support the rationale for the four distinct
channels of interfaces deemed required for a streamlined architecture; i.e. workflow interfaces with
AXMEDIS Editor, Engines, Rule Editor/Viewers and Query Support Web Servicces Interface. This first
part describes a Neutral Exchange Format that has been devised for the plug-ins as the logical, necessary and
sufficient transaction protocol to remain both AXMEDIS-compliant as well as technologically realisable and
consistent with the capabilities of existing workflow systems given their available method invocations and
transaction protocols Thus the devised WF-Exchange_ID Messaging Format is expected to serve as a
generic standard to be readily adoptable by most workflow systems as potential candidates for integration
with the AXMEDIS Framework.

Based on domain transaction semantics, and ontological analysis, this part sets out its analysis of AXMEDIS
workflow integration semantic types as well as query types; thus concluding a set of query categories that
the Query Support Module and the AXDB are to be able to accommodate and also a set of candidate Object
status types for the design of AXMEDIS Object Schema. The AXMEDIS workflow integration specification
is then further illustrated by means of UML diagrams, tables of transactions syntax and protocol
specifications as well as eight generic scenario specification diagrams that are fully described.

The second part then specifies the actual input, output and method invocations for all the workflow plug-ins
based on the exchange format for the interfaces as established in the first part. In this way the plug-ins are
specified such that they satisfy all the logical, necessary and sufficient criteria as stipulated earlier, and, are
readily realisable with most workflow systems.

The third part gives an outline of the rationale for the choice of the two selected workflow systems (i.e. the
open-source workflow, Openflow, and the proprietary workflow system BizTalk). This part describes how
the specified plug-in input/output structures could be realised given the native protocol and method
invocations in Openflow. The fourth part includes an overview of the structure and terminology of the
selected workflow systems. The final part comprises Glossary and References; it concludes with references
for relevant tools, engine downloads and further information.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

8

2 Workflow Management Area (WP4.3.3. IRC, WP5.5.5: CRS4, XIM)

AXMEDIS Data Model Schema will define a structure by which it is possible to track the workflow of
content and digital items during the production phase. For example, the schema will include standardised (at
least within the AXMEDIS project and hopefully within the MPEG-21 multimedia framework) metadata
related to the author, authoring tool, authoring date, etc. Such metadata may be included in each relevant
sub-part of an AXMEDIS object. For example, consider a compounded item which is composed of an e-
book and its corresponding movie, these two sub-parts may be created by different authors using different
tools and then they can be put together by a third-party integrator using another tool. Each of these
operations should be stored into the object by means of the above mentioned metadata.

In short, to enable the locating of any entities involved in the production and distribution of any digital
assets, it is possible for the AXMEDIS data model to create all the necessary and sufficient status metadata to
be incorporated into the object in order to allow traceability of the relevant lifecycles involved. This implies
that there must be sufficient data fields to include, where necessary, data about all actors/tools which have
worked on any instance of a workitem/object and the history of such work done on the said workitem/object
instance.

Internally and separately the workflow management system will typically need to keep some additional
lifecycle information so as to support user enquiries, re project resources management and cost accounting
for line managers at various levels of the workflow/project information abstraction (workflow-native status
data).

The AXMEDIS Object metadata and the internal workflow engine lifecycles status data when fully
integrated have to provide all the information needed to enable the workflow management system to locate
and track the progress status of any involved entity anywhere in any (sub)workspaces to enable the user to
enquire about the lifecycles status of the three interacting types of entities (workflow, actors, objects)
involved in any project..

Thus the AXWF has to be able to answer the following questions from the standpoint of any of the above
four separate lifecycle viewpoints which may provide some overlapping information as follows:

Who, which actors and/or tools? (involved actors lifecycles viewpoint query)
Scope: So far (previously) and/or at this moment
Substance: At any time (including right now, and also so far since the beginning of any relevant lifecycle)
who is, or has been working on which workitem/object instance in what workspace(s)?

What objects/workitems? (involved objects/workitems lifecycle viewpoint query)
Scope: So far (previously) and/or at this moment
Substance: What work is or has been done on which objects in which projects?

Wherefrom/object repositories? (involved repositories/licensor’s viewpoint query)
Scope: So far (previously) and/or at this moment
Substance: Where has a particular object been or to be sourced from?

Which Project/workflow? (involved projects/workflow-instances/(sub)workspace-instances viewpoint
query)
Scope: So far (previously) and/or at this moment
Substance: Which state of progress has any project reached and what process(es) are right now ongoing
within it

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

9

2.1 Outline of the Workflow Management System Functional Requirements

Before we specify the design of the Workflow Plug-ins it is appropriate to give an outline of the
requirements now established for the AXWF by the Consortium, as follows:

i. Operate within the key Operating Systems (OS); for example the Windows, Linux, Mac Environments.

ii. Interact with the AXMEDIS Object Manager to access objects and track/update their status (i.e. allow
workflow metadata visualisation, editing, automated updating and storage).

iii. Monitor the progress of assigned process activities and be capable of managing more than one

workflow process instance so as to provide workflow support for multi-agency co-design and co-
production of multimedia content based on open-source distributed products through LGPL, BSD or
similar licences.

iv. Provide time-and-status metadata updates that remain accessible to other Enterprise Project

Management Applications, such as SAP for example (OPTIONAL).

v. Provide a Service Interface (API) to be used for developing the plug ins for AXMEDIS Editors,
Engines and Query Support.

vi. Provide a seamless interface to AXMEDIS-native tools (e.g. tools for Content Production, Formatting,

Packaging/Bundling and Distribution) for the range of operating systems selected above, i.e.
specifically to provide interfaces for the following tools, engines and Query Support functions:

a) Editor
b) Rule Editor/Viewers for various tools
c) Composition and Formatting Engine
d) Programme and Publications Engine
e) Protection Tool Engine
f) P2P Active Selection Engine
g) Collector Engine
h) Publication/Loading Rules/Selections Editor
i) Publication Tool Engine of AXEPTool
j) Loading Tool Engine of AXEPTool
k) Administrative Information Integrator
l) Administrative Information Manager
m) Accounting Manager and Reporting Tools
n) User Query Support

Here we outline the main principles and scenarios for the usage of Workflow inside AXMEDIS:

• The Workflow is used for streamlining the publishing and distribution process activities performed
in AXMEDIS.

• The Workflow is tightly integrated with the AXMEDIS View/Editing tools, in order to be able to

automatically streamline editing/viewing activities inside publishing and distribution processes.
With this kind of integration, the Workflow automatically launches AXMEDIS Editors/Viewers on
the AXMEDIS Objects.

• The AXMEDIS Editors/Viewers run on the Client PC (either Microsoft Windows or MAC/OS), so

typically the objects being edited must be downloaded to the PC local disk.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

10

• The AXMEDIS View/Editor tools can be executed outside the Workflow environment (this is to
accommodate those enterprises that wish to work with AXMEDIS Objects but without necessarily
adopting structured processes).

• We expect that some publishing and distribution companies will not be able to adopt the fully

integrated AXMEDIS framework, as:

o They can use editing/viewing tools different from AXMEDIS ones
o Even if they use the same editing/viewing tools, they may be unable to use the required

AXMEDIS plug-ins, due to technical reasons (difficulties of distributing plug-ins,
incompatibilities of AXMEDIS plug-ins with other PC tools, security reasons, heterogeneity
of Client configurations, etc).

• For the latter kind of publishing/distribution companies, we shall provide a simple AXMEDIS

Object check-in/check-out interface. It will be up to the user to download the AXMEDIS objects on
their own PC disk, to launch the appropriate editor/viewer, to upload the modified objects and finally
to inform the Workflow that the activity is terminated.

• We expect every AXMEDIS tool to update the AXMEDIS Object tracking information, while

performing its actions. However, when the check-in / check-out interface is used, it will be up to the
particular Workflow Object Manager to update such information. Unfortunately the Workflow
cannot know what exactly the user performed between the check-in and check-out. We can provide
a field to be filled in by the user during the check-out; describing what was done.

2.2 Workflow Integration Design
For now we can examine the specification of the Plug-ins from the point of view of the integration
technology required for the delivery of a fully interoperable set of the Plug-ins with the APIs available from
Openflow and BizTalk. This is to serve the integration with the AXMEDIS-native engines, tools and the
Query Support Interface. It implies the design of the Plug-ins for full Connectivity, messaging
Communication, Command and Control (C4) as well as AXMEDIS Object transfers across the relevant
interfaces in particular such that the workflow will be able to provide seamless interaction with all the
relevant AXMEDIS components involved in any of the 8 Workflow Scenarios that are now proposed and
established.

For this we envisaged that the design specification of the required interfaces will involve the specification of:

A. HOW the interaction will be enabled i.e. the integration technology to be deployed, for example,
for the two adopted workflow systems, as specified above, examining their APIs, available data
libraries and structures; the compatible operating systems, programming languages, dynamic and
static structures and protocols e.g. HTTP, dll, Active X, COM, J2EE, XML-RPC, C/C++, Lisp,
Python, Perl, Java, Frontier, PHP, MSoft.NET, WebObjects.

B. WHAT will be passed across the interface i.e. parameter passing and data exchange syntax and

semantics; e.g. the most efficient and expressive means of specifying the WF-EXchange_ID for
each transaction between the AXWF and the relevant AXMEDIS components. This is to aid in
developing a standard unique AXWF data exchange bridge to support workspaces using MPEG21
type work-items; providing a consistent mapping and interpretation of the exchange data passed
across this bridge as needed. Because of the need for locating and tracking the workspaces and
lifecycles involved, as described earlier, internally within workflow, the WF-Exchange_ID can be
expanded to point to the workflow/work-item instance, the actors/Objects/tools_ID involved in any
interaction so that the AXWF can provide for continuity, persistence, and integration semantics over
dynamic scenarios of work.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

11

The above two aspects have to be tackled for the range of neutral bridge instances for which we have to
specify and design plug-ins as follows:

1) Programme and Publication Engine
2) AXEPTool Publishing Engine
3) AXEPTool Loading Engine
4) AXEPTool P2P Active Selection Engine
5) AXEPTool Objects Monitoring Tool
6) AXEPTool Publication and Loading Editor/Viewer
7) Programme and Publications Rule Editor/Viewer
8) Composition Engine
9) Compositional Commands and Reporting
10) Formatting Engine
11) Collector Engine
12) Protection Engine
13) AXOM Editor Plug-in
14) Compositional Rule Editor/Viewer
15) Protection Tool
16) Protection Tool Editor/Viewer
17) User Interface

2.3 Adoption of a Neutral Exchange Messaging Format: The Semantic Framework

At the outset it is essential to set out the domain transaction data type definitions by establishing the
knowledge basis for the denotational semantics of any objects, attributes and relationships that may be
relevant to any Workflow-AXMEDIS transaction content; as follows:

2.3.1 Objects of Type Workitem

This is any version of a digital object, or compound object, which may or may not be as yet a known
AXMEDIS Object but which in any case is the version of any object that is undergoing an activity or
sequence of activities being performed on it at any level within what can equivalently be seen here as a
workspace-instance/session/workflow-instance/processflow-instance as is defined in Section 2.2.2 below.

Depending on the number of versions of the same that need to be currently relevant and thus need to be
distinguished, it is possible to envisage of both a workitem_ID (AXWID) as well as a workitem –
instance_ID (AXWID) to distinguish between a parent workitem and its possible renderings currently in play
as work_Instance_IDs. [As will be seen, the logical class of workitem as defined here can be supplanted by
an implementationally expedient sub-classing (merging) of this class (workitem) with the workflow-
instance/processflow/activity class (defined in 2.1.2 below). This will enable efficient storage and re-call of
each dynamic instance of an evolving process using single nodes per instance in a timeline activity graph
structure with each node effectively acting as a container for the storage and re-call of the history of
concomitant state changes in all participating entities. The participating entities will include the executing
tool and the workitem object upon which the activity is being executed (as implemented in Openflow, see
Section 4.1.4). However this is only an implementation issue and does not affect the validity of this logical
class as defined above].

2.3.2 Objects of Type Workflow (Processflow)

This is an object hierarchy including various workflow management systems (WFMS). Within each WFMS
various types of workflows can be defined and configured representing essentially activity networks encoded

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

12

as a workflow-instance. Each workflow-instance controls some specific set of coordinated actions. These
are invoked to ensure some specific goals are achieved using some allocated business resources and
processes. Each workflow-instance is set up to realise the goals of a specific new project and is associated
with and shares the same lifecycle as a New Product Development (NPD). A reference to a workflow-
instance can be at any level of elaboration (detail) hierarchy including at the (sub)workflow level down to the
lowest level of elaboration which encodes a processflow.

Processflow coordinates the required processes of the workflow-instance and as such has in turn to encode
coordination of the lowest level of associated actions (tasks) as per the activity network concerned. An
activity network can be seen as a means of connecting all the required tasks to be co-ordinated and a
processflow is a part of the workflow-instance that encodes the tasks according to business rule sets (defined
company processes) as appropriate; i.e. processflows are a mapping of the tasks encoded consistent with the
rules and resources of the particular NPD or company. Just as tasks, consist of sub-tasks and, at the lowest
level, subtasks are accomplished through a set of actions, so also a processflow is an encoding of a set of
coordinated actions.

2.3.3 Objects of Type Task

Every NPD will have to achieve some goal(s) which in turn may consist of a set of sub-goals and
accordingly there exist corresponding tasks and sub-tasks that when accomplished together in an
appropriately coordinated fashion lead to the fulfilment, respectively, of all the sub-goals and therefore the
realisation of the NPD/project goal. At the elemental level sub-tasks consist of a set of co-ordinated actions
as described above.

2.3.4 Objects of Type Session

A session is any occasion/event whereby some user or proxy (automatic actor/tool/engine) executes a single
or any number of closely associated actions on any workitem(s) in the course of performing a single
(sub)task within a processflow by logging onto and using one or a number of associated tools or resource
sets (involving a single or multiple sign-ons).

A session lifecycle begins with the start of the (sub)task and the processflow level to which the (sub)task
maps. A session lifecycle ends with the completion of the respective (sub)task and therefore with the ending
of the processes that supported it as coordinated by the processflow level concerned. A session is the
elemental level of authentication, authorisation and auditing (AAA) for the purpose of secure login, resource
consumption accounting, costing and billing. Therefore session costs are to coherently map to (sub)task or
process costs and are billable to the (sub)task/process/NPD owners/clients. Hence sessions will have a
unique session_ID that is essential for a variety of control and audit reference purposes. A session may
involve one or more workspace-instances (to be defined later).

2.3.5 Objects of Type User_Credentials

Any session owner/client will have to have a set of data to identify itself and to be used as a passport
reference for access and accounting. This usually includes at least one of client/owner _ID with pointers to
the password, NPD reference, session_ID and perhaps other user identity data (e.g. biometric and security
data) to allow the appropriate level of secure tracking, control, costing, auditing and identity management on
user activities depending on the practice within the particular company and its enterprise computing
environment.

2.3.6 Objects of Type Workspace

This is the set of sessional computing states distinguished by a set of participating entities including
principally a client-session/owner_ID plus the identity of any tasks, tools and objects involved and their
states so that the foregoing references will constitute a necessary and sufficient set of identifiers for the said

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

13

workspace environment to be distinguished, indexed, stored and restored internally by the workflow and
systemically for the said workspace to be tracked, subjected to any AAA – single sign on, single all in billing
etc as may be practised in the said system.

Thus a workspace_Instance_ID is a practically realisable identifier of a client-session/owner_ID in a given
context of a single task being progressed. A workspace instance can therefore take all the attributes of a
workspace such as being started, ended, interrupted, suspended or awaiting certain other events before its
possible resumption. It will remain traceable and restorable throughout its lifecycle.

2.3.7 Objects of Type Bridge

At the interface between an adopted AXMEDIS Workflow (AXWF) and relevant core AXMEDIS
Components (tools/engines/Query Support), for the purpose of indexing, tracking, storing, as well as
optionally to support AAA with single sign-on and all-in single-billing, we define an object of type bridge as
a container of all the transactions required (1 to n, but typically at least 2) during the lifecycle of each single
task element or notification as required for the task to be brought to a closure (success/failure).

A transaction comprises all the requests/notifications conveyed from one transactor (typically the AXWFM)
to another (typically an AXMEDIS tool/engine/QSUI) i.e. essential exchanges between them to bring the
(sub)task to a closure. A session may involve one or more transactions. A session bridge includes all the
transactions that took place between the client/process-owner and the relevant (AXMEDIS) service
providers. Thus a bridge has the same lifecycle as the session that was set-up to carry out the (sub)task
concerned and as such the bridge lifecycle begins with the first request of the client/process-owner and ends
with the closing response to the client’s last request pertinent to the closure of the task concerned.

A bridge_ID refers to a family of exchange_IDs (as defined below) which together link all the exchanges
that occurred during the lifecycle of a session so that in this way a bridge_ID can be used to store and re-call
all such exchanges as well as the sessional costs, rights used, DRM and billing.

2.3.8 Objects of Type Exchange

Thus a transaction object type called a bridge itself comprises a family of co-related exchanges. An
Exchange itself is the composite data structure, the whole of each particular message, that is passed across
from entity A to entity B or from B to A each time that entity A or B wishes to communicate something, one
to the other. At the limit an Exchange can become a multi/broad-cast where a transactor may wish to send a
message, including links to objects etc, to a number of other transactors.

In principle an Exchange must satisfy the following specification criteria

1) must be able to identify and index itself (Self-referentiality Criterion)

2) must carry the user_credentials (including session_ID and any other data that may be required for

AAA of the originating client-session-owner), (AAA Criterion)

3) must be able to bear an explicit link or implicit pointer to link it to other co-related sessional
exchanges to which it refers or which might refer to it (Co-referentiality Criterion)

4) must be able to convey data sufficient for the goal of the exchange to be achievable such that each

transactor in turn need only process elements of data sufficient and necessary for it to achieve the
exchange sub-goals for which it is responsible within its own sub-system environment (Necessity
and Sufficiency Criterion)

Each Exchange is an Exchange-instance and has to be indexable as an Exchange_Instance_ID. Any
Exchange between the adopted AXMEDIS workflow system (AXWF) and relevant AXMEDIS service

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

14

providing components (Editors, Engines, Tools, Query Support) can thus be uniquely distinguished by
means of an AXWF-Exchange-instance –ID or WF-Exchange_ID for short.

Accordingly a WF-Exchange_ID, shall in principle be a data structure as a string comprising the following
data sub-fields:

Self_ID: this is the sub-field to help distinguish any particular exchange string from its nearest neighbour in
the exchange-instances pattern space.

In practice a single bit to denote directionality (to or from the AXWF) should suffice in combination with the
rest of the WF-Exchange_ID to constitute a uniquely indexable request/response string, given that it also
contains the relevant client-session-owner’s_ID, the workflow-instance_ID, and
workitem/object_ID/temporary Object (AXWID/AXOID/AXTOID) with/for which the Exchange is being
initiated (workspace_Instance_ID is itself an AXWF-native construct to serve as an internal pointer used by
the AXWFM to track and bind data to various thus re-callable client workspaces-instances). In principle if
there are going to be more responses to a request the Self_Id in its response can be incremented accordingly
i.e., carry a number 1, 2, 3, ..n that is the sequential number of each of the various responses to a given
request.

Workspace_instance_ID: this is the set of subfields required to specify completely and uniquely all the
information about relevant client (i.e. workspace-instance) associated with the Exchange; i.e. the identity of
session participants (session_ID/client_ID, running_applications_ID, workitems_ID) and their respective
states including those awaiting the response to the request and which can thus be re-storable and progressed,
as appropriate, upon the arrival of the response. Naturally this composite structure includes at least a
session_ID.

Session_ID: this is the sub-field sufficient to identify the workspace-instance owner to which the exchange-
instance relates and any other sub-fields deemed necessary by either transactors for housekeeping purposes
(audit, accounting, billing, scheduling).

Addressee_ID: this is the sub-field as a reference to the transactor who is to receive and process the data
conveyed in the exchange structure as a whole; typically this is either the address of a relevant AXMEDIS
tool/engine/QSUI as a registered service provider with known directory ID/address e.g. a URL or
alternatively it is the AXWFM itself that is being addressed by a responding/notifying AXMEDIS
component (this can be an implicit/hard-wired address by virtue of the self_ID bit in the requesting
Exchange_ID that is thus inverted, or incremented appropriately to denote directionality and the sequence
placing of the string as responding to the requesting string i.e. the initiating Exchange instance).

Method_ID: this is the sub-field to specify the task to be carried out by the receiving tool/engine/QSUI

Parameters: this is the set of sub-fields required to enable the goals of the exchange-instance to be tackled
and potentially be brought to a closure (success/failure). This should comprise the specified Method
Invocation Parameters.

AXMEDIS AXOID: This could exist as a distinct sub-field or as one of the above Methods Invocation
Parameters so that the identity of the AXMEDIS Object concerned could be specified for processing by the
recipient of the exchange-instance.

Message: This could include any number of necessary and sufficient subfields up to a systemic limit.
Typically it should include a command-line string to effect a query/request/command/notification to or from
the AXWFM. It could also include references to any objects concerned by means of an AXMEDIS AXOID.

Thus in principle each such Exchange instance should be a logical, necessary, sufficient and technology-
neutral data structure. Such an exchange instance, itself part of the data structure referred to as a sessional

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

15

bridge instance comprises of a string; essentially of the following sub-strings and logical structure whereby
“parameters” can optionally also include Rule_ID (AXRID), as well as AXOID data types,and
Workspace_instance_ID would include pointers to workitem_ID (AXWID) and Session_ID.

{{<Exchange-instance_self_ID>},
{workspace-instance_ID}, {<Session_ID>,<Addressee_ID>},{<Method_ID>},
{<Parameters>},{<AXOID>},{<Message>}}

The actual realisation of the above structure is addressed in the following sections of this document in
developing the logical design of what we refer to as WF-Exchange_ID, as a neutral exchange format for
accessing any transaction (and its purpose and contents as passed to and fro) between the AXWFM
environment and any relevant AXMEDIS components. This is to be achieved hopefully without imposing
additional metadata requirements on the AXMEDIS Object Model.

Thus the WF-Exchange-ID can be designed as a transparently decomposable ASCII string, a composite
structure -itself an instance of an object type Bridge.

2.3.9 Logical Analysis of Semantics and Syntax of the WF-Exchange_ID

In essence the information exchange at the interface occurs at two levels and may require the exchange of
simple but composite computing structures as follows:

2.3.9.1 The Data Exchange Semantics

The Base Level Device and Communications Bus Status:

This consists of handshake flags about device availability state and Bus Access; i.e. signals for explicit
access requests, non-availability etc, to avoid contention, deadlock etc. This is expected to be universally in
place as part of the low level device and communication logic.

Such handshaking status information typically includes:

{{request <0:1>},{ack:<0:1>},{busy:<0:1>},{waiting:<0:1>},{ready:<0:1>}}

The process level AXWF and AXMEDIS Exchange Semantics:

Schema handshake.xsd

schema location: \\sirfs1\dfs\venus\AXMEDIS\WorkFlow\Schema\handshake.xsd
attribute form default: unqualified
element form default: qualified

Elements
handshake

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

16

element handshake
diagram

properties content complex

children source destination busstatus

annotation documentation Comment describing your root element

source <xs:element name="handshake">
 <xs:annotation>
 <xs:documentation>Comment describing your root element</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="source">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="busy" type="xs:boolean" minOccurs="0"/>
 <xs:element name="source_id" type="xs:string"/>
 <xs:choice>
 <xs:element name="ack" type="xs:boolean"/>
 <xs:element name="request" type="xs:boolean"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="destination">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="busy" type="xs:boolean" minOccurs="0"/>
 <xs:element name="destination_id"/>
 <xs:choice minOccurs="0">
 <xs:element name="ack" type="xs:boolean"/>
 <xs:element name="request" type="xs:boolean"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="busstatus">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="busy" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element handshake/source

diagram

properties isRef 0

content complex

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

17

children busy source_id ack request

source <xs:element name="source">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="busy" type="xs:boolean" minOccurs="0"/>
 <xs:element name="source_id" type="xs:string"/>
 <xs:choice>
 <xs:element name="ack" type="xs:boolean"/>
 <xs:element name="request" type="xs:boolean"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element handshake/source/busy

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="busy" type="xs:boolean" minOccurs="0"/>

element handshake/source/source_id

diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="source_id" type="xs:string"/>

element handshake/source/ack

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="ack" type="xs:boolean"/>

element handshake/source/request

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="request" type="xs:boolean"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

18

element handshake/destination

diagram

properties isRef 0

content complex
children busy destination_id ack request

source <xs:element name="destination">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="busy" type="xs:boolean" minOccurs="0"/>
 <xs:element name="destination_id"/>
 <xs:choice minOccurs="0">
 <xs:element name="ack" type="xs:boolean"/>
 <xs:element name="request" type="xs:boolean"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element handshake/destination/busy

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="busy" type="xs:boolean" minOccurs="0"/>

element handshake/destination/destination_id

diagram

properties isRef 0

source <xs:element name="destination_id"/>

element handshake/destination/ack

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="ack" type="xs:boolean"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

19

element handshake/destination/request

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="request" type="xs:boolean"/>

element handshake/busstatus

diagram

properties isRef 0

content complex
children busy

source <xs:element name="busstatus">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="busy" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element handshake/busstatus/busy

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="busy" type="xs:boolean"/>

Typically transactions between the AXWF, on behalf of its workspace instances (or sessions), and, the
AXMEDIS environment will be as follows:

i) AXWFM Requesting/commanding work to be done by AXMEDIS
Engines/Editors/Tools

ii) AXWFM Requesting Objects from Query support

iii) AXWFM Receiving Report back/Response/Results from any of the relevant AXMEDIS
components (Engines, Editors, Tools, QS)

iv) AXWFM Requesting single sign-on, single-sign-off, single-session-billing and/or
requesting cancellation of one or all previous requests on behalf of particular client
sessions.

Essentially the WF-Exchange_ID needs to allow the Workflow system to be selected for results/reports
being returned (through Command and Reporting Module) and/or for it internally to select any workflow
instance, workspace-instance workitem-instance, actor (including persons, tools, engines) and/or object(s)
relevant to the exchange, and process the data in play accordingly at the point of transaction i.e. effect the

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

20

appropriate tracing back and binding of the AXMEDIS responses/reports to the relevant workspace-
instances.

A (sub)workspace-instance is a transient environment of execution of any workflow-instance at any level
including the leaf-node level whereby a single task is being performed on a workitem-instance involving a
tool (and probably also a user) in some state of execution stored and recallable by reference to the
workspace-instance-ID.

Any AXWF will have to have an appropriate mechanism for persistence and seamless continuity upon
restoration of workspaces and thus will have to have some way of storing and retrieving this bundle of
coupled states from its database.

At this stage the primary focus is to explore the spaces, semantics and syntax of the required parameters to
be available for exchange at the interaction between an adopted AXWF (say Openflow) and the AXMEDIS
Plug-in at the interface to an environment (AXWF) which is external to the AXMEDIS core components.

Within the AXWF we require to be able to distinguish and index the various possible instances of all
workflows, NPDs, objects, workitems, actors/devices (including partners, persons, tools, engines, interfaces)
as defined earlier in this document. It is clear that we also need to be able to refer to bundles of states of co-
implicated objects/workitems and tools so as to be able to deliver seamless semantic integration, continuity
and dynamic persistence of the (sub) workspaces.

Irrespective of the chosen protocol, it would appear that information within an exchange packet can be
organised in pairs or tuples denoting any ID and its value pair of structures separated by some delimiter such
as a colon and bounded by another set of delimiters that can allow nesting such as brackets and/or braces. It
would then be possible to express the information regarding bundles of (sub)workspace states and their
dynamic instances by a unique reference such as e.g. instance-ID. An Instance_ID is an internally generated
and internally used AXWF vector i.e. some internally used encoding of a required bundle of pointers
(composed by the AXWF, combining IDs as internal pointers to workspace entities), decomposable later
within the AXWF so as to service the initiating workspace. Such a vector, as the required workspace-
instance-ID can be embedded within the structure passed across the WF-AXMEDIS bridge i.e. within WF-
EXchange_ID with parameters in nested braces that express the tuples related to the IDs of each of the co-
implicated objects, actors and their values as follows:

{ WF-EXchange_ID}

The above composite string or packet will embody information about the following logical structures:

1) Is the traffic that is moving across this bridge instance an AXWF Request/Command or a Response

from some component to this or any other previous request?

Thus the exchange needs to include:

{Request :<1>}

{Response:<0;1:2:3: n>}

As mentioned before if more responses are expected in principle we can have: 0 : Request => 1, 2 …
responses

2) What is the identity of the client-session that has initiated the request?
Or more fully but only of interest internally to the AXWF:
What is the value of the pointer generated internally by the AXWF to index the workspace-instance that is
relevant to this AXWF request or any response received by the AXWF? i.e. what are the IDs of the session,

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

21

the user, tools being used and their current state, and, what is the identity of workitem-instances being
worked on and their state (if of interest for session save and restoration later to enable resumption of any
interrupted/pending work)? This group of identities put together as a packet of identities constitute what is
referred to loosely in some workflow terminology as session_ID and/or user_credentials_ID but more
accurately and consistent with our earlier lifecycles-based semantic analysis we shall refer to it coherently as
the workspace_Instance_ID; Thus the exchange needs to include:

{AXWF-workspace_Instance_ID < >}

3) What is the identity/address of the relevant AXMEDIS tool/engine/service-provider module that is
involved/is-to-be-deployed for the workspace/task to which this request is being Targeted and /or which is
hereby Responding ? Thus the exchange needs to include:

{AXMEDIS_service_provider_registry_ID}

4) What is the identity of any relevant AXMEDIS object(if known) and/or workitem that is the subject of this
Exchange? Thus the exchange needs to include:

{AXMEDIS object_ID:”< AXOID>”}

and/or

{workitem_ID :”<AXWID>” }

5) What is the service being Requested/Responded to and with what qualifying parameters?
Thus the exchange needs to include:

{{Method_ID: < >},
{parameters_ID: <parameter1>……..< parameter n>, <AXRID>}}

To what extent, if any, are any other message elements (including natural language input as processable by
addressees) involved relating to the actors/objects, that need to be passed across and coupled to this WF-
EXCHANGE_ID Packet ?

Thus the exchange needs to include:

{Message_ID: < message number/status flags/object_IDs if any, separated by delimiters--:-->}

The above is appended to the WF-Exchange_ID data packet as a command_line string, i.e. the last subfield
within the integrated string that gives the session_ID i.e. the last element of the WF-Exchange_ID.

Self-referential/Reflexive AXWF workspace-instance Requests
If it is desired to have an explicit facility for cancelling/re-calling/modifying an AXWF-submitted service
request that has been issued in error or needs revising (e.g. because the initiating client session/work-item
has since been suspended/cancelled due to unforeseen events such as an un-expected rights withdrawal
notification etc) then although a cancellation request can be included within the above message field as a
command line element, it is more expressive to include an explicit “cancellations” field appended to the
above. To allow for most types of cancellations, such a sub-field can be a tri-state device appended to all the
requests for each session with 0 denoting that the session request remains valid, 1 denoting that the relevant
(indexed by work-item/session-id) request is to be cancelled, and -1 to cancel all previous requests so far
issued for the given session. A need for modification can also be accommodated in this way by a
cancellation of the relevant previous request and submission of a new request.

Thus to allow explicitly for requests to cancel and/or modify an earlier request or group of requests
appertaining to a particular workspace-instance (as e.g. indexable by work-item_ID/session_ID sub-fields

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

22

within the workspace-instance_ID), the WF-Exchange_ID can have a cancel sub-field appended to it after
the message field as follows:

{Cancel_status:<0:1:-1>}

In a minimalist implementation, the interpretation of the various subfields that constitute any AXWF
workspace_Instance_IDs can be said to be largely irrelevant to the AXMEDIS components interacting with
the AXWF as most fields of this code can be ignored by the AXMEDIS components which could simply
echo it back in their eventual response.

Thus it is possible to envisage the following overall logical structure for the WF-Exchange_ID string:

Schema WF_Exchange_ID.xsd

schema location: \\sirfs1\dfs\venus\AXMEDIS\AXMEDIS

FW&TS\WF\Schema\WF_Exchange_ID.xsd
attribute form default: unqualified
element form default: qualified

Elements
WF-Exchange_ID

{{“Request/Response_ID”: “<0:1:n>”},

{“Axwf_workspace_instance_ID”:”<WFWINID >”},
{“Axmedis_service_provider_registry_ID”: “<AXSERVPID >”},

{“Axmedis_object_ID”:”<AXOID>”},

{“Method_ID”: “<AXMethID>”},
{“Parameters_ID”: “<AXMethID_PARA1>”……..”< AXPARA_n>”, “<AXRID>”},

{“Message”:” <message_ID, AXOID, “messages separated by delimiters”>},

{“Cancel_status”:”<0:1:-1>”}}

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

23

element WF-Exchange_ID
diagram

properties content complex

children Request Response AXWF-Workspace_Instance_ID AXMEDIS_service_provider_registry_ID AXOID AXWID
Method_ID Parameters_ID Messages Cancel_status

annotation documentation Comment describing your root element

source <xs:element name="WF-Exchange_ID">
 <xs:annotation>
 <xs:documentation>Comment describing your root element</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:choice>
 <xs:element name="Request" type="xs:positiveInteger"/>
 <xs:element name="Response" type="xs:positiveInteger"/>
 </xs:choice>
 <xs:element name="AXWF-Workspace_Instance_ID" type="xs:positiveInteger"/>
 <xs:element name="AXMEDIS_service_provider_registry_ID"/>
 <xs:sequence>
 <xs:element name="AXOID"/>
 <xs:element name="AXWID" minOccurs="0"/>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="Method_ID"/>
 <xs:element name="Parameters_ID">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Parameter" maxOccurs="unbounded"/>
 <xs:element name="AXRID"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:element name="Messages">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Message_ID"/>
 <xs:element name="AXOID"/>
 <xs:element name="Message" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Cancel_status"/>
 </xs:sequence>
 </xs:complexType>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

24

</xs:element>

element WF-Exchange_ID/Request

diagram

type xs:positiveInteger

properties isRef 0
content simple

source <xs:element name="Request" type="xs:positiveInteger"/>

element WF-Exchange_ID/Response

diagram

type xs:positiveInteger

properties isRef 0
content simple

source <xs:element name="Response" type="xs:positiveInteger"/>

element WF-Exchange_ID/AXWF-Workspace_Instance_ID

diagram

type xs:positiveInteger

properties isRef 0
content simple

source <xs:element name="AXWF-Workspace_Instance_ID" type="xs:positiveInteger"/>

element WF-Exchange_ID/AXMEDIS_service_provider_registry_ID

diagram

properties isRef 0

source <xs:element name="AXMEDIS_service_provider_registry_ID"/>

element WF-Exchange_ID/AXOID

diagram

properties isRef 0

source <xs:element name="AXOID"/>

element WF-Exchange_ID/AXWID

diagram

properties isRef 0

source <xs:element name="AXWID" minOccurs="0"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

25

element WF-Exchange_ID/Method_ID

diagram

properties isRef 0

source <xs:element name="Method_ID"/>

element WF-Exchange_ID/Parameters_ID

diagram

properties isRef 0

content complex
children Parameter AXRID

source <xs:element name="Parameters_ID">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Parameter" maxOccurs="unbounded"/>
 <xs:element name="AXRID"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element WF-Exchange_ID/Parameters_ID/Parameter

diagram

properties isRef 0

source <xs:element name="Parameter" maxOccurs="unbounded"/>

element WF-Exchange_ID/Parameters_ID/AXRID

diagram

properties isRef 0

source <xs:element name="AXRID"/>

element WF-Exchange_ID/Messages

diagram

properties isRef 0

content complex
children Message_ID AXOID Message

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

26

source <xs:element name="Messages">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Message_ID"/>
 <xs:element name="AXOID"/>
 <xs:element name="Message" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element WF-Exchange_ID/Messages/Message_ID

diagram

properties isRef 0

source <xs:element name="Message_ID"/>

element WF-Exchange_ID/Messages/AXOID

diagram

properties isRef 0

source <xs:element name="AXOID"/>

element WF-Exchange_ID/Messages/Message

diagram

properties isRef 0

source <xs:element name="Message" maxOccurs="unbounded"/>

element WF-Exchange_ID/Cancel_status

diagram

properties isRef 0

source <xs:element name="Cancel_status"/>

Potentially the session or workspace-instance owner’s_ID is the only part of the workspace_Instance_ID that
is of interest globally, both within the AXWF as well as within the AXMEDIS components. The AXWF
session identity can enable seamless service provision through session identity relay/broadcast and thus
enabling single-sign on.

Typically if we designate the first element of the WF-Exchange_ID to encode for whether the current
exchange is a AXWF request <0> or a response from an AXMEDIS component <1> then in a response to an
AXWF request, the responding/reporting AXMEDIS component will be expected to start the first element of
the Exchange_ID with a 1 i.e. turning it from zero (as it would have been for the request string) to an 1. The
responding component will normally be expected to return, without any changes, the AXMEDIS
tool/engine_ID and the workspace_Instance_ID to which the response relates thus appending only a response

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

27

status code or message string in response to the original AXWF-supplied WF-Exchange_ID request message
string to indicate complete fulfilment, end, or failure status etc. in the response packet.

The unknown object_ID, where applicable, is the only other remaining element of the WF-Exchange_ID still
to be discussed in the context of what should be the composition of the Response WF-Exchange_ID packet
coming back from the responding AXMEDIS components. The object_ID is also returned in the Response
string from the relevant AXMEDIS component except in cases when the object_ID in the request string is a
code for an unknown object e.g. X000001 whereupon either the discovered AXMEDIS AXOID replaces this
code in the Response WF-Exchange_ID packet string or the unknown object_ID is returned as it was and the
discovered AXMEDIS AXOID(s) appended to the WF-Exchange_ID in the messaging field as the Result.
This will be the case for fishing requests for unknown objects with a particular quality (sought_properties
string) whereupon in the subsequent Response from the Query Support, the initiating query string may also
be appended to the Response in its messaging field.

Note that when such a hitherto unknown object of a desirable property is being sought by a workspace
instance, this has to be communicated to the Query Support through a Request WF-Exchange_ID packet
with a default AXWF-native sought-object_ID, compliant with the AXMEDIS AXOID format (imagine this
to be X000001 just for argument’s sake for the moment); this number can be passed by the AXWF to the
Query Support and later upon return of any discovered AXOIDs, some internal mechanism within the
AXWF will be able to effect the binding between any given AXRQID for a sought-object_ID (e.g. X000001)
and the actual found AXMEDIS AXOIDs returned by the Query Support as candidate objects in response to
the WF-Exchange_ID which carried the AXRQID for the objects.

So the desirable properties of the unknown object that is being thus sought by such a Request can be inserted
in the messaging field appended to the WF-Exchange_ID. This messaging field is to be available for full
duplex messaging which thanks to the above design will always remain relevantly and highly efficiently
context-aware as it is coupled with pointers to relevant workspace contexts (i.e. AXWF-
workspace_Instance_IDs) as known to and readily restorable by the AXWF. In principle, this messaging
field can be populated by the sending and receiving parties by appending or overwriting with any set of
strings to constitute the desired message back and forth between the transactors involved. In practice they
will have to overwrite it to avoid inefficiencies as described later.

For example in the case of a AXWFM Request for an object, the desirable object properties can be inserted
in terms of keyword particulars or any other available strings that can be interpreted by the Query Support. If
and when suitable object or objects are found in response, then their AXMEDIS AXOIDs can be made to
overwrite the received message field or appended to it (every subset e.g. every AXOID or response messages
as distinct from received messages will be separated by some delimiter such as :).

Please note that although appending such a message field does provide a running history of requests and
responses between the AXWFM and the relevant AXMEDIS components, appending is actually not an
option as it can lead to uncontrolled packet size for the WF-Exchange_ID. Internally within AXWF, a
history of the messages back and forth relating to any workspace_Instance_IDs should be available at any
time by simply popping the stack of WF_Exchange_IDs used in the context of any workspace_Instance_ID
(logs may be kept, locally and/or globally by any parties), and there will have to be some form of messaging
register attached with the particular workspace_Instance_IDs within the AXWF. The relevant AXMEDIS
components transacting with the AXWFM can also trigger a save of a stack of their own WF-Exchange_IDs
and logs to serve internal AXMEDIS Audits for Usage, Service Levels and Rights Accounting and Billing
purposes.

Further, although the workspace_Instance_ID that is embedded within the WF-Exchange_IDs as a sub-field
is only to serve internal AXWF bindings and as such is to be left un-processed by the receiving AXMEDIS
components; it can nevertheless serve as a unique, albeit opaque, identifier for usage audit and royalties
billing chain purposes because ultimately it remains traceable to a human user or partner organisation’s

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

28

workflow instance and thus to a project and product that has initiated the service requests thus conveyed by
the AXWF by way of its WF-Exchange_IDs.

In specially customised applications of AXMEDIS, and, AXWF for some enterprises, if the
workspace_Instance_ID is not internally precompiled and encoded somehow as a single vector but itself
remains as a set of distinct sub-fields as carried within the WF-EXCHANGE_ID, then its first subfield can
be made to identify the human user/partner_ID or project_ID to which the workspace-instance belongs. This
can make the Workspace_instance_ID itself partially transparent to the AXMEDIS platform to help verify
for the relevant AXMEDIS modules (e.g. CAMART-DRM, with the usage/service/rights/royalties
accounting and billing thus becoming readily traceable to each service atom and instance.

In practice it is not envisaged that any unsolicited messages will be sent by any AXMEDIS components to
the AXWF. Therefore any report sent to the AXWF will normally be in reactive mode and relating to an
earlier request/command initiated by the workflow thus a simple replacement of 0 by 1 in the response and
the return of the originating exchange_ID with the message field appropriately filled by the respondent
should suffice. Any associated files that might be pointed to in the message field and/or passed as attached
files could have the associated WF-Exchange_ID included somewhere in a header or subject field of all
related automated mail messaging.

2.3.9.2 WF-Exchange_ID for an AXMEDIS Component Responding/Reporting

The above Exchange Messaging Format is recommended for adoption by the relevant AXMEDIS service
provider modules including the gateway module, namely the Command and Reporting module.

As discussed previously, the n-element field as an internal AXWF pointer to a (sub)workspace instance is the
only part of the above string that may be ignorable by some AXMEDIS components depending on the AAA
policy etc practiced within the Enterprise Computing Environment concerned.

Each AXWF will have its own way of saving and retrieving its workspace-instances as subsets of a
workflow instance. Each workflow will thus generate its own workspace_instance_IDs for internal use.
From a minimalist standpoint, all that is required from any AXMEDIS component responding to a AXWF
request is to return the same code in the workspace_instance_ID as that received in the Request string so that
the AXWF can effect the appropriate binding of the response to the relevant workspace-instance wherefrom
the Request was initiated.

2.3.9.3 Logical Semantics and Syntax for a workspace_Instance_ID

A workspace-instance set-up can have the following characteristics:

i) may have been scheduled for automatic execution
ii) may have already started/ended
iii) may be about to start/end
iv) may be currently live – i.e. ongoing
v) may have been interrupted for some reason
vi) may be about to be resumed
vii) may have been suspended or be pending some CPA/rights-critical trigger
viii) is usually part of a workflow-instance or bundle of co-dependent workspace instances

Implicitly the workspace_Instance_ID as a complex structure will point to a set of requisite pre-defined and
pre-stored state descriptors with their respective state values for each relevant entity involved in a workspace
instance.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

29

This could for example link a set of participating entities contained in co-related workspaces together with
their state at the time of interest as a snapshot to be re-storable later.

This could include reference to an AXMEDIS AXOID via its being-worked-on instance, i.e. the
workitem_Instance_ID in such a workspace and any tool(s) used and their relevant state descriptors and
values, and, any other actors such as person(s) who might have been participating in the respective
workspace and the descriptors for their state and the values for such states.

2.3.9.4 Workspace Hierarchy Dynamic Persistence, Storage and Retrieval within the
AXWF

Although the possible structure of the workspace_instance_ID is only of interest for internal processing
within the AXWF, and thus will not concern the processing of the Exchange_IDs by the relevant AXMEDIS
components, it can be of interest to explore what the logical elements of the workspace-instance-ID might
be:

Schema Workspace_Instance_ID.xsd

schema location: \\sirfs1\dfs\venus\AXMEDIS\WorkFlow\Schema\Workspace_Instance_ID.xsd
attribute form default: unqualified
element form default: qualified

Elements
WF_Instance_ID

{{{“AXWF_Instance_ID”: “<WFISID >”},

{“AXWF-workitem_Instance_ID”: “< WKITID/AXWID/AXTOID >”},

{“AXWF-native actor/application_instance_ID”: “<WFAPID>”},

{“AXWF_Instance_ID_start”: “<start-time>”},
{“AXWF_Instance_ID_end”:”<end-time>”},

{{“AXWF_Instance_ID_interrupt”:”<0:1>”},
{“AXWF-instance_interrupter_ID”: “<WFINTID >”}, {interrupt_time: <WFINTT>}},
{{AXWF_Instance_ID_resume: <0:1>, {resume_time: “< WFIRST>”}},

{AXWF_Instance_ID_suspended <0:1>},
{AXWF_Instance_ID_cpa-slack_critical: <0:1>}}

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

30

element WF_Instance_ID
diagram

properties content complex

children AXWF_Instance_ID AXWF_Workitem_instance_id WFAPID AXWF_Instance_ID_Start AXWF_Instance_ID_End
AXWF_Instance_ID_Interrupt AXWF_Instance_interrupter_ID Interrupt_time AXWF_Instance_ID_resume
resume_time AXWF_Instance_ID_Suspended AXWF_Instance_ID_cpa-slack_critical

annotation documentation Comment describing your root element

source <xs:element name="WF_Instance_ID">
 <xs:annotation>
 <xs:documentation>Comment describing your root element</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AXWF_Instance_ID"/>
 <xs:element name="AXWF_Workitem_instance_id"/>
 <xs:element name="WFAPID"/>
 <xs:element name="AXWF_Instance_ID_Start" type="xs:time"/>
 <xs:element name="AXWF_Instance_ID_End" type="xs:time"/>
 <xs:sequence>
 <xs:element name="AXWF_Instance_ID_Interrupt" type="xs:boolean"/>
 <xs:element name="AXWF_Instance_interrupter_ID"/>
 <xs:element name="Interrupt_time" type="xs:time"/>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="AXWF_Instance_ID_resume" type="xs:boolean"/>
 <xs:element name="resume_time" type="xs:time"/>
 </xs:sequence>
 <xs:element name="AXWF_Instance_ID_Suspended" type="xs:boolean"/>
 <xs:element name="AXWF_Instance_ID_cpa-slack_critical" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element WF_Instance_ID/AXWF_Instance_ID

diagram

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

31

properties isRef 0

source <xs:element name="AXWF_Instance_ID"/>

element WF_Instance_ID/AXWF_Workitem_instance_id

diagram

properties isRef 0

source <xs:element name="AXWF_Workitem_instance_id"/>

element WF_Instance_ID/WFAPID

diagram

properties isRef 0

source <xs:element name="WFAPID"/>

element WF_Instance_ID/AXWF_Instance_ID_Start

diagram

type xs:time

properties isRef 0
content simple

source <xs:element name="AXWF_Instance_ID_Start" type="xs:time"/>

element WF_Instance_ID/AXWF_Instance_ID_End

diagram

type xs:time

properties isRef 0
content simple

source <xs:element name="AXWF_Instance_ID_End" type="xs:time"/>

element WF_Instance_ID/AXWF_Instance_ID_Interrupt

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="AXWF_Instance_ID_Interrupt" type="xs:boolean"/>

element WF_Instance_ID/AXWF_Instance_interrupter_ID

diagram

properties isRef 0

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

32

source <xs:element name="AXWF_Instance_interrupter_ID"/>

element WF_Instance_ID/Interrupt_time

diagram

type xs:time

properties isRef 0
content simple

source <xs:element name="Interrupt_time" type="xs:time"/>

element WF_Instance_ID/AXWF_Instance_ID_resume

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="AXWF_Instance_ID_resume" type="xs:boolean"/>

element WF_Instance_ID/resume_time

diagram

type xs:time

properties isRef 0
content simple

source <xs:element name="resume_time" type="xs:time"/>

element WF_Instance_ID/AXWF_Instance_ID_Suspended

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="AXWF_Instance_ID_Suspended" type="xs:boolean"/>

element WF_Instance_ID/AXWF_Instance_ID_cpa-slack_critical

diagram

type xs:boolean

properties isRef 0
content simple

source <xs:element name="AXWF_Instance_ID_cpa-slack_critical" type="xs:boolean"/>

The above data structure is internally generated and managed by the AXWFM.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

33

In the above structure, the emboldened sub-fields are the candidate sub-fields of the workspace-instance_ID
that will be necessary and sufficient for session identification by AXMEDIS service providers (AXMEDIS-
native tools, engines, QS) and these are to be included within WF-Exchange_ID.

The above workspace_Instance_ID complex structure can be nested to any level sufficient to allow the
storage and retrieval of the relevant control/tracking-critical states of all participant entities in any workflow
instance and workspace scenario. For computational efficiency the above workspace_Instance_ID can be
partitioned so that only the relevant elements of it can be passed on and processed by each respective
transactor i.e. within the AXWF internally versus within the environment of each AXMEDIS component
interacting with AXWF and external to it. For example within the AXWF all the above sub-fields relevant
to a workspace_Instance_ID will be used to a greater or lesser degree by all types of workflow management
systems to effect various tracking control functions and other user services as required.

Thus whenever any actor or any AXWFM may wish to store away, retrieve, resume and/or update such
“workspace instances” they would be able to do so whilst ensuring the semantic and logical integrity and
continuity of the entire dynamic system. In this way there will be a consistency of representation that would
allow the traversal within and indexation into any permutation of AXMEDIS Object LifeCycle spaces (LC1-
LC5) and Workflow Interaction Environments (AXWF-IE, 0-2) for any scenario of (sub)workspace
storage/re-call - as outlined later in this document and described in the AXMEDIS Requirement Document
as described in the AXMEDIS Requirements Document.

2.3.9.5 WF-Exchange_ID Protocols and Methods

An Exchange_ID is defined as a logical neutral format. This means it indicates what should logically
minimally and necessarily be passed but it rightly defines itself not in terms of some local dialect from any
particular WFMS currently in the market but in terms of generic knowledge engineering-led ontology which
is designed exactly to ensure efficient effective as well as complete, consistent, and coherent messaging.

So as long as all the necessary data from WF-Exchange_ID as described, are made available appropriately to
various contexts of transaction, i.e. to each transactor as required, so that:

a) Those systems that need specific Exchange data elements in order to pass the right data back and
forth can efficiently find, within the WF-Exchange_ID, the data for targeting/linking/
binding/tracking their Requests/Responses and any related Objects

b) Those systems that do not need to know/process certain elements of the Exchange data are not

forced to process those bits

Then the WF-Exchange_ID design will have satisfied our requirements.

2.3.9.6 Mapping the WF-Exchange_ID to WebServices XML Envelope or DCOM Call
in .NET

The WF-Exchange-ID format (which is basically a text string) can be conveyed using any communication
protocol as desired.

It must be noted therefore that the WF-Exchange-ID as devised above includes:

As a WebServices XML Envelope

0) RequestD
1) addresseeID
2) User_Credentials
3) The method invocation,

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

34

4) INPUT/OUTPUT/NOTIFICATION parameters mapped in the WS XMl Envelope
5) ObjectID (Optional)
6) Any other Message

Or in .NET remote method invocation (DCOM):

Same as the above but parameters mapped in the DCOM Call and WF-Exchange_ID encoded as C++ string.

Where WebServices are deployed for AXWF transactions with the AXMEDIS Service Provider Components
such as tools/engines/editors etc, the WF-Exchange-ID has to be encoded as an XML string and accordingly
its parameters (e.g. the invoked engine and method etc) will have to find an appropriate mapping or
expression in the WebService XML envelope. On the other hand if .Net remote method invocation
(DCOM), were to be used then some of the WF-Exchange_ID parameters have to be mapped (i.e.
appropriately expressed) in the DCOM call and the WF-Exchange-ID would be encoded as a C++ string.
Accordingly some replication of the WF-Exchange-ID parameters will occur in the invocation call or
envelope.

The above data exchange requirements are protocol invariant but should be deliverable by for example the
XML-RPC protocol over HTTP as deployed by some workflow engines such as OpenFlow

The available Workflow engines as candidates for integration with AXMEDIS will not be expected to use
the term WF-Exchange_ID necessarily but will have to have their own equally capable WF-Exchange format
and library for parameters that will thus be logically consistent with the AXMEDIS WF-Exchange_ID
syntax and Semantics as presented herein. For example some systems such as Openflow use AXRQID but
the content of their respective WF-Exchange format is in any case found to comply with our WF-
Exchange_ID that is devised as a neutral standard. Most Workflow systems, as applications that are
designed to make an inroad into the marketplace, are expected to be relatively generic and customisable; thus
accommodating; particularly with respect to their applicable library and so should be either readily WF-
Exchange_ID–compliant or be easily made to conform.

2.3.9.7 Secure Session Identity Management, Single AAA-Sign-on and Single All-in-
Billing

Within the environment of the relevant AXMEDIS components transacting with the AXWF to provide
services, the only sub-fields of the workspace_Instance_ID of interest to be processed shall be those that are
essential for clients’ secure session identity management, single sign-on and single-all-in-billing
requirements for each session and each session owner so as to provide and bind services/notifications
coupled to the requesting session and chargeable to its owner as well as to ensure globally complete and
consistent service delivery, rights accounting and billing with traceable audit trails.

In practice for the AXMEDIS components this means that only a few sub-fields from the
workspace_Instance_ID structure, as described above, will be required to satisfy their needs for binding and
tracking.

Thus every usage instance has to be afforded secure triple A services with a single sign on i.e. secure
Authentication, Authorisation and Auditing assured on the basis of the available enterprise computing
platform. Strictly, this is outside the scope of the provisions foreseen within the AXMEDIS Framework.
However such modalities of operation as above that may be deemed desirable for at least certain enterprise
platforms have to be borne in mind to ensure Maximum AXMEDIS Integration with some potential client
enterprise platforms.

In this context, a primary consideration is the domain for the single sign-on system, that is the applications
which are expected to jointly use the single sign-on system and thus to "trust" each other. In our case the

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

35

domains are all the AXMEDIS modules (engines, editors, WF, AXOM, etc) inside a Company's AXMEDIS
framework.

In principle to operate a secure session identity management, it is assumed that three infrastructural layers
should be in place:

1) A secure relay (PKI-based) of only the relevant “session-and-owner-specific_ID” to help targeting

the requested services for delivery to the right session of course but also for billing and accounting.

2) A central global Rights/Services –usage module to which each service-providing component within

the AXMEDIS framework sends its record of services delivered for each session and Owner_ID so
that each user/project-owner can get a single cumulative bill for all services (rights used up so far
etc) for each of its sessions within each project

3) A Trusted System for secure (wireless) sign-on must be in place

It is however important to note at this stage that in practice, as a single sign-on facility falls outside the scope
of this R&D work, we need to address only the taken-for-granted technological facility that must exist within
the AXMEDIS User Environment for sharing the relevant Exchange_ID sub-fields between all modules of
AXMEDIS, without needing to login for every module/application (this in generic terms boils down to
passing some selected sub-fields from the “workspace_Instance_ID”, itself a sub-field of Exchange_ID. In
Openflow “credentials_ID” plays the same representation role as envisaged for workspace_Instance_ID and
as such it would be “credential_ID” as an equivalent that would be passed). We have also to consider that
we assume that all the AXMEDIS components used inside a Company (e.g. Giunti) trust each other and so a
simple mechanism for sharing credentials is sufficient; for example:

The first application or service to which a user connects, has to identify him, using the single sign-on system
User Directory and getting the required credentials (whose content and format depends on the single sign-on
system in operation) valid for this new session (and typically with an expiration time). As soon as the same
user connects to a new application or service, these credentials are passed to the respective application,
which can check their validity of the relayed single sign-on signature thus made available to it.

Typically the first application is expected to ask for user/password and check with the User Directory. The
application maintains the user/password in session memory; these become the “credentials”.

- when a new application is called, the user/password is sent to the new application
(possibly encrypted).

- The new application decrypts the credentials and checks again with the User Directory

In this context within a Microsoft environment, the Microsoft Identity framework will be deployed.

2.3.10 Sufficiency and Necessity Criteria for the Design of Exchange Messaging Format

The AXMEDIS Workflow Data Exchange Format (AXWF-DXF) is to be designed as a canonical standard
such that it allows a seamless and unique mapping of transaction syntax and semantics for:

• the AXWF and all the relevant AXMEDIS-native components likely to interact with the AXWF

• the workflow-native indexing of the above lifecycles internally to cater for the above questions i.e. fulfil

all the requirements for object/actor/workflow locating and tracking as well as allowing seamless
interrupts and resumption of (sub) workspaces i.e. workspaces save and restore at any levels.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

36

However the purpose of the above analysis is not to demand that the AXMEDIS Object Model or the
AXMEDIS Workflow Data Exchange Format should in any way be overloaded with additional internal
workflow status data but that the Exchange Format must allow a binding (mutual referencing) of each
request/command from the workflow with the response to it (and vice versa) to or from any AXMEDIS-
native components as well as to the involved workspace instance internally within the AXWF.

In this way a generic model for AXWF-AXMEDIS transactions is created that abstracts from the
idiosyncrasies of design/processing modes within individual adopted workflow engines. At the same time
the generic model provides a vehicle for sufficient and necessary status data/parameters to be exchanged
between any AXWF and the relevant AXMEDIS components through a single composite string structure,
here to be named WF-EXchange_ID. This WF-EXchange_ID is transparently and uniquely decodable and
decomposable within the individual workflow engines to provide all the necessary lifecycles information.
For some workflow engines depending on the number of users and the range of user queries and
functionalities supported, some of the fields within the above canonical WF-EXchange_ID format may be
unused and thus will be a null-set but this is of no concern once a neutral exchange format is established as
sufficient, necessary and thus canonical for all transactions.

The design of such WF-EXchange_ID in a way that delivers all the above requirements is one of the critical
challenges in achieving full AXMEDIS Framework integration whilst recognising the distinct boundaries
between workflow-native and AXMEDIS-native status data and providing an elegant and generic bridge that
will work seamlessly in all cases. The Conceptual, Logical and Physical design of such a bridge will be
addressed later in this document.

2.4 Workflow Transactions Specification for all Interfaces and Selected Scenarios

N
o.

Workflow Manager
Interface/Plug-in

Data Exchange Spec’
Between Transactors

Description of Transaction

A Editor/Viewer WF Plug-in
1 AXMEDIS Editor: Plug-in

Manager
In the first instance, the Workflow
Manager will inform the Plug-in
manager of its role and then a
method to invoke (API/ActiveX)
the workflow editor (registration).

Any module which wants to access
a plug-in (in our case the
AXMEDIS WorkFlow and, from
the other side the AXMEDIS
Command and Reporting) calls the
Manager in order to know how to
invoke it.

Thus, the information exchanged
will be the role of any plug-in
associated with the plug-in
manager and API/ActiveX invoker.
(This can also include the path for
the executable file).

The interface will be based on the
definition provided by the

This should allow the use of external
plug-ins which can be deployed for
accomplishing various tasks (e.g.,
workflow plug-ins).

These plug-ins have to be certified in
some manner to guarantee the safety
of their environment. Thus
communication through these plug-
ins has to be performed in some
protected manner since the content is
going to be processed by them.

AXMEDIS Editor is assumed to be
as versatile and flexible as possible.
In order to achieve this goal, various
AXMEDIS Editor modules need to
support plug-in technology.

Hence, an AXMEDIS Editor Plug-in
Manager is needed. Such a manager
will be able to support installation/
registration of plug-ins, to load such

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

37

workflow manger.

Through this interface the data will
be exchanged between WF
Manager and AXOM (Commands
and Reporting)

plug-ins for AXMEDIS Editor
modules which request it and to
maintain/manage the relationships
among plug-ins and related entities
or actions, e.g. the AXMEDIS Editor
Plug-in Manager shall maintain
relations among a specific set of
metadata and the corresponding
production or visualisation plug-ins

2 AXMEDIS Editor:
Commands and Reporting

The WFM will pass control
(commands) for any actions needed
and will receive messages (results)
as defined by this component.
These commands will be as defined
by the AXMEDIS Editor.

As a result of the interaction
activity the WF will receive
information like the kind of action,
actor and the tool involved, e.g. the
relevant time-stamps, etc.

For an Editor/Viewer the typical
command is “launch the
Editor/Viewer passing parameters
(e.g. ID of the object to be edited)”;
(see later).

For the AXOM typical command is
add/delete/ modify an Object with
parameters (see later).

The Interface will be through
AXOM_WebService_Listener
module which will handle
incoming Request and sends the
notifications back to Workflow.

This plug in interface allows the
control of action of the AXMEDIS
Object Manager and the send
messages and controls outside;

3 AXMEDIS Object
Manager

The WF will interact with the
AXOM through the Command and
Reporting tool.

So all the commands defined by
the AXMEDIS Editor will be used.

As a result of the activities, the WF
will receive information like the
kind of action, actor and tool
involved, e.g. the relevant time-
stamps, etc.

An AXMEDIS object model
container wrapped for secure
AXMEDIS object content
manipulation;

AXMEDIS Object Manager is the
coordinator of all other modules used
by or built in the AXMEDIS Editor

4 AXMEDIS Editor
Workflow plug-in

This is the native editor/viewer for
the WF; hence the data exchanged
here will be the definition of the

The workflow editor and viewer is
the gateway interface for creating
and changing new project

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

38

WF and its components. workspaces referred to as NPDs in
the terminology adopted for the
AXMEDIS Workflow and object life
cycle analysis elsewhere in the
AXMEDIS Requirements documents

B WF Engine Plug-in
In principle, the exchange information in terms of the parameters to be passed from the AXWF to
invoke a particular engine are typically confined to essential session_ID-specific type of information;
i.e. AXOID(s), AXRID, start_time, end_time, user_ID, and perhaps also AXTID (AXTID), tool_ID
(AXTID), result (success/failure,…), new AXOID.

However in practice, the scheduler is capable of managing the allocation of a large number of
processes and thus as the allocation is run-time dependently decided by the scheduler. It is therefore
unnecessary to pre-specify the AXTID or the tool_ID for this class of transactions involving AXWF on
the one side, and, the Engines as the providers of registry specified services, on the other side.

In what follows the session_ID is used to suffice as a reference synonymous to
client/session_owner/workspace_Instance_ID.

1 AXMEDIS Editor Plug-in
Manager

Same as in Section A.

2 Compositional/Formatting
Engine: Engine Commands
and Reporting

A Composition/ Formatting request
is sent to the compositional/
Formatting engine passing the
required parameters for e.g.

AXOID(s), AXRID, start _time,
end_time, session_ID, result
(success/failure,…), new object id.

The engines are activated through
the rule editor: this is used by WF
only for receiving notifications.

What has to be done is to
generalise a control behaviour
instead of creating several identical
modalities of work.

All the Engines are activated
through invocation of given Rule
that has to have been included in
the activation call or can send an
activation signal that is detected by
the Scheduler through to the
Engine.

The activation parameters can
include, for example:
• a Selection (see for details the

part on database)
• a rule
• activation time

The Compositional/ Formatting
Engine receives a composition
request coming from the AXMEDIS
Workflow Manager or the internal
scheduler activates a rule from the
Active Composition Rules

PnP engine requires the formatting
engine on quick trial will provided a
response on whether the
functionality to accomplish the task
required is possible and return the
results through WF to the PnP
Engine before actual activation of
the rule. On full trial or actual
activation, a new AXOID will be
returned or an error response, via
WF to PnP Engine.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

39

• etc.

The WF can de-activate or stop a
rule, etc…

3 Collector Internal Engine:
Engine Commands and
Reporting

Used by WF for receiving
notifications from the engine.

4 Collector Internal Engine Collector/Transcoder Engine will
migrate the content from the
Crawled Results Integrated Database
(created by the Crawler Collector
Indexer) to the AXMEDIS database
format. These tools will be capable
of processing data; automatically
updating the content into the
AXMEDIS database when these are
updated into the CMSs. In addition,
the same engine tool will be capable
of integrating tools (by means of
plug-in) for direct estimation of
fingerprint to complete the indexing
by using the results of the following
task

5 AXEPTool Command and
Reporting

Used by WF for receiving
notifications from the engines
(Publication and Loading) and
from Monitoring and Active
Selection

6 AXEPTool: Publishing and
Monitoring Object

The WF will receive the data
produced by the monitors to update
the history of the object.

Based on these data the WF can
trigger further tasks.

The main tasks of this component are
the following:
1. when an object is published or

updated (by the Publishing Tool
Engine) in the AXEPTool OUT
Database of an AXEPTool
connected to the P2P Network, a
related event is generated and
broadcast to the P2P Network.

2. When events of the types
referred to in step 1 above are
received from the P2P Network,
it alerts the AXEPTool Active
Selection Engine.

The AXEPTool Monitor performs
the task of continuously giving real-
time feedback about status of
possible downloads and uploads of
AXMEDIS objects from and to the
P2P Low Level Virtual Database.

At a first level of detail there are two
main components responsible for

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

40

these tasks; The Downloads Monitor
for downloads and the Uploads
Monitor for uploads.

These modules give feedback about
related operations status, working
with information taken from the P2P
Network and information taken from
the IN/OUT Database Managers.
Data produced by Monitors is used
by the AXEPTool Monitor GUI
which gives a graphical
representation of status.

7 AXEPTool: Publication
Tool Engine

A request for publishing is sent to
the Publish Tool passing the
required parameters for e.g.

AXOID(s), AXRID, start _time,
end_time, session_ID, result
(success/failure,…), new AXOID.

The engine is activated through the
rule editor; this is used by WF
only for receiving notifications

The Publishing Tool Engine,
according to the Rules and Active
Selections as edited by the user with
the Publication/Loading Rules/
Selections Editor, moves the elected
objects to the AXEPTool OUT
Database, so that they could be
published and made visible in the
P2P Low Level Virtual Database.
After the objects are published the
Publishing and Monitoring Objects
component is notified and it
broadcasts the event to the P2P
Network.

8 AXEPTool: Loading Tool
Engine

A request for Loading is sent to the
Loading Tool passing the required
parameters for e.g.

AXOID(s), AXRID, start_time,
end_time, session_ID, result
(success/failure,…), new object id.

The engine is activated through the
rule editor; this is used by WF
only for receiving notifications

The Loading Tool Engine, according
to the Rules and Active Selections
(as edited by the user with the
Publication/Loading
Rules/Selections Editor), moves the
objects to the AXMEDIS Database.

If an event arrives through the P2P
Network, related to a new object
publication or update, the Publishing
and Monitoring Objects component
is notified; it alerts the AXEPTool
P2P Active Selection Engine which
downloads the new or updated object
and verifies whether it is in an
Active Selection. If so, the Loading
Tool Engine is advised and it loads
the object.

9 AXEPTool:P2P Active
selection

The WF will receive the signal (as
defined) from P2P active selection
engine for the loading of the new
AXMEDIS object.

The WF will record the time-
stamps and update the object
history.

This component, mainly, provides
for the following tasks:

1. It receives an event sent from the

Publishing and Monitoring
Objects component. This event
is to notify it of a new object
having been published on the

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

41

The result is also notified to the
WF.

P2P Network or an object having
been updated on the P2P
Network.

2. It verifies if the new or updated
object, as referred to under point
1 above, belongs to an Active
Query. If so, then it alerts the
Loading Tool Engine because a
new loading operation must be
performed for such an object.

It periodically expands Active
Selections according to their time
slices as defined.

An Active Selection is a selection of
AXMEDIS objects (i.e. as a result of
a query) or Queries that the user
selects to be expanded and
maintained by the AXEPTool P2P
Active Selection Engine. If an Active
Selection is a Query, then the
Selection should be expanded to
include new objects because it is
possible that new published objects
are published in the P2P Network
and they are “suitable” for that
Selection.

10 Protection Tool Command
and Reporting

Used by WF for receiving
notifications from the Protection
Tool engine

11 Protection Tool Engine

12 PnP Command and
Reporting

Used by WF for receiving
notifications and commands from
the PnP engine

In general PnP uses command and
reporting to report its status to WF
and any programme activation
status.

Command and Reporting
communication can be used between
WF and PnP in order to requiest
formatting of AXMEDIS object, i.e.
for PnP to request the formatting
engine to performe some operation
on an AXMEDIS object via WF.

This can be done in different level
including quick-trail, full-trail and
actual activation. WF also channel
back the completed request from the
formmating engine to the PnP engine
together with the new AXMEDIS
object ID resulted from the
operation.

13 PnP Engine In order to activate an on-demand
operation, a request is sent from
WF to the PnP engine with a valid
PnP programme passing the

The Programme and Publication
Engine will be developed exploiting
the work performed for the
Publication tool in WP4.4. This will

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

42

required parameters for e.g.
AXOID(s), AXRID, start _time,
end_time, session_ID, AXTID,
result (success/ failure,…), new
object id etc, as specified in the
PnP schema.

The PnP engine is activated by WF
at system initialisation.

PnP Engine require WF to
communicate with the Formatting
Engine. A request of formatting
can be done by, for example:
CallFormatEng(ProcessingFuncI
D, "xml-of-the-formatting-req",
WhoCalled) (e.g. CallFormatEnm
mg(ID_of_a_scale_func,
"<selection>AX_Obj_ID</selectio
n><parameter:size_width>88</><p
arameter:size_height>888</><for
mat>xyz</>...", ID_PnP_Eng);)

This is called from the PnP Engine
to WF and WF to Formatting. After
that Formatting calls WF and WF
calls PnP Engine via TCPIP GSoap
with the resulted new object ID.
WF is responsible to send the
actual rules to the Formatting
Engine.

For object distribution to a
specified channel/terminal, the PnP
Engine requests the object via WF
with the AXMEDIS Object ID and
WF return the PnP Engine an URI
to obtain the object.

allow the reception of specific
commands (requests) for creating
content produced by exploiting the
capabilities of the AXMEDIS
formatting engine. In addition, the
Programme and Publication Engine
will also have the capabilities for
producing the programme based on
the specific rules.

The active engine is continuously
running software; accessing the
system clock to process a list of
programmes, which consists of
“rules” to make available AXMEDIS
objects to the specified destination
channels at the correct time, taking
into account the transfer and/or
formatting time (if required). This is
achieved by the input of activated
rules to control scheduled
distribution.

For on-demand PnP processes, WF
activate the PnP engine via web
services interface with a valid PnP
programme with AXObjID, time
(immediate), channel, terminal, ….
The time is set to immediate and PnP
Engine process this immediately
(formatting as necessary, delivery to
the channel specified or terminal
specified if this is possible. On
completion, send notification
(success/failure) to WF.

Profiles of the users and Profiles of
the distribution channel (including
bandwidths, formats etc) are required
by the PnP so that the PnP can
request for the proper formatting
operations depending on the profiles.
PnP is to request the profiles from
WF.

C WF Rule Editor Plug-in
1 AXMEDIS Editor Plug-in

Manager
Same as in Section A

2 Compositional/Formatting
Engine: User Commands
and Reporting

Same as in Section B

3 Compositional/Formatting
Rule Editor UI

AXOID, start_time, end _time,
session_ID, AXTID, tool_ID,

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

43

result (success/failure), rights, etc.

 As a result of the activities, the
WF will receive information like
the kind of action, actor and tool
involved, e.g. relevant time-stamps,
etc.

4 PnP Editor: User
Commands and Reporting

Same as in Section B

5 PnP Editor AXOID, start_time, end _time,
session_ID, terminal _ID, tool_ID,
result (success/failure), rights, etc.

 As a result of the activities, the
WF will receive information like
the kind of action, actor and tool
involved, e.g. the relevant time-
stamps, etc.

Actor/user can start the Editor
manually and WF start the PnP
editor.

PnP Editor uses command and
reporting to report status to WF,
via TCPIP GSoap. PnP Editor
repository does not report to WF.
PnP Editor send programme
activation request to PnP Engine
directly and send a notification
message to WF.

A Programme Manager (user) can
use the PnP Editor (a GUI) to
interact with the Query Engine and
to make selections from the Query
Engine results in order to schedule
some programmes (e.g. on a daily,
weekly, monthly, yearly basis) with
the following rules:

• WHAT: the AXMEDIS object of

interest

• WHERE: destination channel,
where to publish e.g. iTV or
kiosk or other, and “where”
profile

• WHEN: date, time, slot, duration

• HOW: direct transfer, reference
or the requiring formatting
engine

One or more of the above rules make
up a PnP programme which is
represented using XML as specified
in the PnP schema.

6 AXEPTool: User
Commands and Reporting

Same as in Section B

7 Publication Rule
Editor/Selector

AXOID, start_time, end _time,
session_ID, terminal _ID, tool_ID,
result (success/failure), rights, etc.

 As a result of the activities, the
WF will receive information like
the kind of action, actor and tool
involved, e.g. the relevant time-
stamps, etc.

8 Loading Rule
Editor/Selector

AXOID, start_time, end _time,
session_ID, terminal _ID, tool_ID,

The Publication/loading Rules/
Selection Editor is the AXEPTool
GUI for editing Rules/Selections in
order to Publish/Load AXMEDIS
objects.

Also, using the Publication/Loading
Rules/Selections Editor, the user can
activate a Selection submitting it to
the P2P Active Selections

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

44

result (success/failure), rights, etc.

 As a result of the activities, the
WF will receive information like
the kind of action, actor and tool
involved, e.g. the relevant time-
stamps, etc.

9 Protection Tool: User
Commands and Reporting

Same as in Section B

10 Protection Tool Rule
Editor UI

AXOID, start_time, end _time,
user_ID, terminal _ID, tool_ID,
result (success/ failure), rights, etc.

 As a result of the activities, the
WF will receive information like
the kind of action, actor and tool
involved, e.g. the relevant time-
stamps, etc.

D Query Support
1 QS Web Service UI The WF will use the QS to enable

users to query the AXMEDIS DB.

The WF will invoke the UI for the
user.

The WF will pass the query to the
QS based on the syntax defined.
The result (list) of the query will be
collected by the WF and may be
further filtered

This interface will be based on Web-
services.

2 QS UI Same as above.
3 AXMEDIS Object

Loader/Saver
The WF will pass the AXOID
which is to be loaded or saved
through WF’s Check-out, Check-in
interfaces respectively. In addition
to it WF will also pass start_time,
end _time, user_ID, terminal _ID,
tool_ID, result (success/ failure),
rights, path for loading/saving, etc

AXMEDIS object Loader/Saver is a
Web service that is capable of
getting an AXMEDIS object (in the
MPEG21 compliant format plus the
additional information stored inside)
and putting it in the database, that is
the loading function; and it is also
capable, given an Object ID
(AXOID) to return the AXMEDIS
object in the MPEG21 compliant
format, that is the saving function.
The AXMEDIS Loader/Saver
interact, or better is part of, the
AXMEDIS database Interface

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

45

3 Workflow DataBase

Before specifying the workflow database, an analysis of the status types and partitions is presented as
follows:

3.1 Semantic Analysis of Status Data Required for Object Tracking and AXWFM
Control

From the requirements for tracking, audit and control of objects and workflow as determined following our
extensive process of multi-sector workflow knowledge elicitation, (as reported in the AXMEDIS
Requirements Document), the following knowledge analysis arises pertinent to the logical design of the
interface spaces, syntax and semantics as required to deliver full AXWF-AXMEDIS integration.

In particular this analysis has supported the rationale for the development of the 4-tiered design of interfaces
to accommodate all types of possible interactions between the AXWF and the relevant AXMEDIS
components i.e. a streamlined integration via separate classes of interfaces designed for the integration of

1. The AXWF and the AXMEDIS Workflow Editor,

2. The AXWF and the AXMEDIS Rule Editor/Viewers,

3. The AXWF and the AXMEDIS Engines

4. The AXWF and the AXMEDIS Query Support Interface

as illustrated in the 4 UML diagrams and the 8 Scenario diagrams included in this document (see Sections
2.3 and 2.8).

The Domain Knowledge Analysis based on the requirements elicitation data has allowed an initial set of
Semantic Types to emerge as candidates for inclusion in various metadata partitions, based on our analysis of
workflow interaction environment and AXMEDIS Object lives abstraction spaces as follows:

Here we simply list the initial, the indicative but not the actual form of the semantic types emerging as being
relevant to tracking and control at this stage.

In practice Generalisation Ontologies can be deployed to allow the hierarchical decomposition and horizontal
partitioning of the full domain ontology to (sub)ontologies. In this way, for any given context, the semantic
integration and reasoning required for the workflow tracking of an AXMEDIS Object will remain adequately
expressive, efficient, effective and above computationally manageable.

The object birth here starts when the object is first registered and deposited as an AXMEDIS Compliant
Object known to, and indexable by, the AXMEDIS Object Manager.

In principle this should be a perpetual life extending into the future with object death being triggered only in
the unlikely event of a full-rights object owner or an AXMEDIS Authority deciding to withdraw the object
and all its versions from AXMEDIS Compliance.

This can use a set of 10 canonical Situation Assessment (SA) primitives, the 10P-SA; i.e. purpose, period
(these first two status attributes are possibly to serve as a viewpoint selector i.e. filter for metadata
partitioning), place, project, phase, process, partner, person, progress(-to-date), projected(-work-remaining),
(using the “10P-stamped” project workflow objects, Ref Use Case Document, table 1).

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

46

We distinguish 3 distinct interaction environments for the workflow control of the AXMEDIS multimedia
project processes and AXMEDIS object lives development as follows:

The Global AXWF-AXOM Interaction Environment: AXWF-IE0

This is the highest level control involving the AXWF interacting with the AXMEDIS Object Database,
which is the generic level of global tracking and audit of development of object and versions of object lives.

This is associated with the following object life abstraction spaces and associated candidate triggers and
states:

LifeCycle 1, (LC1): Global Reference AXMEDIS Repository Object LifeCycle:

This is that object life known to the AXMEDIS Object Manager which is to act as the universal custodian of
such global reference versions of AXMEDIS Objects.

LifeCycle 1, LC1 Semantic Types:

These are candidate semantic types, including triggers, for global tracking and control of Object States at the
interaction space of the AXMEDIS Workflow with the AXMEDIS Object Manager:

new-usage-instance-needed, new action, full-rights, relative-rights, rights-updated, rights-granted, rights-
denied, protection-status/(un)protected, modified/rendered, new-view-created, metadata-updated, metadata-
viewed, metadata missing/incomplete, ready, not-ready, interrupted-process-n, barred/stopped, history,
formatted, packaged-n, edit-started, edit-completed, protection-tool-started, protection-tool-ended, license-
manager-started, licence-manager-ended, wanted, deposited, owned, viewed-n, taken-n, requested-n, time-
done, phase-done, process-done, waiting-on/for-process-n, awaited-by-process-n, suspended, internal,
external, authorised/signed-off

The Project Manager Level AXWF Interaction Environment: AXWF-IE1

This is the next high level interaction environment between project workers and the workflow management
system, whereby line managers from a particular partner or the overall project coordinator can be interacting
with the workflow to enquire the overall progress of the project including the various states of progression of
development of groups or individual AXMEDIS object lives, e.g. the states of all embedded sounds, videos,
etc.

Thus LC3 is the overarching lifecycle which tracks the global evolutionary development path of an object as
it is worked on, as the object is passed back and forth across Enterprise Boundaries in the course of its
development within a project. This extends from inception to completion of a product as happens in net-
economy virtual value chain constellations, for collaborative New Product Development or multi-agent
contract fulfilment projects.

These are candidate semantic types, including triggers, for global tracking and control of Object Usage
Instances and Rights Compliance within an Enterprise (similar to internal policing of software licences
processing and compliance).

This is associated with the following object life abstraction spaces and associated candidate triggers and
states:

Version-type, view-type, usage-instances-in-credit, licence-manager-request-pending, rights-last-re-newed,
full-rights, relative-rights, right-last-updated, rights-granted, rights-denied, protection-status, (un)protected,
metadata-updated, not-available, stopped, X-bar, Stuck-at-Y, license-suspended/rejected, wanted, owned,

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

47

viewed-n, taken-n, requested-n, internal, external, authorised/signed-off, internal/external-copyrighted,
DRM-needed, DRM-added, DRM-ok, binned/discarded, running, first-pass-sealed, packaged-n, bundled-n.

The Base User Operations Level AXWF Interaction Environment: AXWF IE2

This is the environment of any project team member/user interaction with the workflow in controlling and
progressing their own individual work load. Thus LC4 tracks the evolutionary path of an AXMEDIS object
whilst it is being worked on in any of the distributed project cells by each single Manufacturing Cell/Work
Group/Unit/Team/Person. This is associated with the following object life abstraction spaces and associated
candidate triggers and states:

LifeCycle 3 and LifeCycle 4: LC3 and LC4 Semantic Types:
These are candidate semantic types, including triggers, for Project–specific local and global tracking and
control of object development trajectories (Situation Assessment) in distributed New Product Development
Zones; as follows:

Early, late, ready, not-ready, stuck-at-Z, pending-Y, terminated-at-N, binned/discarded, running, earliest-
started, latest-finished, CPA-slack-(non)-critical, first-pass-sealed, re-drafted-n, re-sealed-n, (re)composed-n,
(re)formatted-n, (re)packaged-n, (re)bundled-n, distributed, within-phase-n, starting-phase-n, at-end-of-
phase-n, within-process-n, starting-process-n, at-end-of-process-n, project-part-n, time-done, phase-done,
place-done, partner-done, person-done, process-n-awaited, process-n-awaiting, suspended, contingent,
authorised/signed-off, handed-over-sealed, internal-copyrighted, external-copyrighted, DRM-needed, DRM-
added, DRM-ok.

3.2 Semantic Types and Representation Spaces Partitioning

The total available capability for AXOID/AXWID/workspace-instance status tracking, control and
inferencing is dependent upon the integrated representations of objects across four distinct but mutually
supportive sub-spaces for objects and workitem states recording and indexing namely the Metadata
(AXinfo), Descriptors (AXdb), PMS database serving the AXMEDIS Certifier and Supervisor (PMSdb-
AXCS) all of which are within the AXMEDIS Framework, and, the database of the adopted Workflow
(AXWFDB). In what follows the suggested semantic types broadly include two categories of status namely
descriptors as distinguished from states. Descriptors are the relatively more stable attributes of an Object or
Actor (e.g. the origin of an Object) and include optionally specified sub-fields whereas the states refer to the
relatively more transient and evolving conditions of Objects, workitems and/or actors and generally include
mandatory sub-field that are crucial for the direct and/or indirect command and control of the AXMEDIS
service-oriented environment through the AXMEDIS Workflow Manager. A set of candidate semantic types
are suggested together with their expected logical home for representation. This is the subject of ongoing
discussion with colleagues including those responsible for the design of the AXMEDIS Object Schema and
AXdb and has been found to be consistent with, and complementary to, their own independent findings.
Thus the list below represents a set of candidate semantic types and their assignment to control-inference-
supportive repositories as appropriate (i.e. AXinfo, AXdb, PMSdb (FUPF) or AXWFDB as the case may
be).

This is another attempt to seek the views of all concerned who are thus being re-invited to comment in
writing with respect to each state/descriptor listed below and clearly articulate and justify their views. As the
list below is presented as a discussion list, colleagues are encouraged to add and/or delete entries in the list
accompanied by a line or two in justification. In this way we can hopefully rapidly conclude this matter.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

48

3.3 Establishing Metadata/Descriptor AXinfo, AXWFDB, AXdb & PMSdb Data
Schema Complementarity

This category is to make available key information about Object’s origin, genre/purpose, history, version
number, views and rights. In the list below, the first field i.e. period/purpose/genre/version_type can be
used as a viewpoint selector of metadata partitions (i.e. a metadata filter for indexing/viewing/
visualisation/processing) for processing/querying only those AXMEDIS Objects or metadata partitions
relevant to the current focus of the client’s work.
States and Descriptors Semantic Types Candidates and Partitioning

Examples to consider include:

period/purpose/genre/version_type

Status type: descriptors
Example values: 1960s, impressionist, post-modern, medieval, 2002 etc
Assigned storage spaces: AXinfo, AXdb

rights

Status type: state
Example values: (un)protected, available, full, partial, exclusions/exclusives, suspended, withdrawn
(bar_zones, X-bar, Y-bar), discarded etc
Assigned storage spaces: PMSdb (FUPF)

authorisation

Status type: state:
Example values: signed-off/sealed-status for Objects/sets-of- Objects/bundles etc
Assigned storage spaces: AXWFDB

view-type
Status type: descriptor
Example values: 3D-formats, new_view/usage/action/Object-instance- (e.g. may be created, added, awaited,
requested etc)
Assigned storage spaces: AXinfo, AXdb

version_number & date (for Objects/sets-of-Objects/bundles)
Status type: state
Example values: “AXOID-6.3”, 05-02-202, etc
Assigned storage spaces: AXdb, AXinfo

processing_history
Other fields: e.g edit_status, formatting_status etc.
Example values: distributed, loaded, moved, published, queried, sought, found, batched (start-time, end-
time), 0, 1, 15.38
Assigned storage spaces: AXWFDB modifications/edits/formatting/rendering etc performed on the Object,
etc
Assigned storage spaces: AXWFDB

origin
Status type: descriptor
Example values: creator/owner, place, partner-no, project-no, session_ID, etc

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

49

Assigned storage spaces: AXCS, AXdb

3.3.1 Tracking/ Messaging and Control Semantics To be Represented

locked, and similar sub-fields
Other sub-fields: e.g. committed, started, interrupted, ended, suspended, resumed, completed etc
Status type: state
Example vlue: 0, 1
Assigned storage spaces: AXinfo, AXdb, AXWFDB (this would require some form of sync with AXWFDB)

metadata_status
Status type:state
Example values: e.g. metadata missing/incomplete, metadata-viewed/updated, audited, assured
Assigned storage spaces:AXinfo, AXdb

drm_status
Status type:state
Example values: e.g. discarded, added, needed, ok
Assigned storage spaces:AXdb

Licence
Status type:state
Example values: e.g. valid, expired, violated, in-compliance, limited, unlimited, perpetual, temporary,
ended/suspended/restricted, not-available, not-ready, requested, ordered by, awarded/ credited-
added/deducted)
Assigned storage spaces:PMS-AXCS area database, here referred to as PMS-db (FUPF)

Licence are recorded and dealt with through the PMS-db; AXWFM is to generate action-logs that are needed
to be made available also to the AXMEDIS Certifier Supervisor (AXCS) which has to process licenses
usage auditing-control over on/offline AXWF client sessions with variable granted rights and rights
consumptions.

queue-position
Status type:state
Example values: 0, 1, 2, n, 65, 43, awaited-by-process_ID/session_ID
Assigned storage spaces: AXdb or other (e.g. PnP scheduler-db). This is to serve the scheduler in the
AXMEDIS Programmes & Publications Engine for control of publications stack by-pass/over-rides as may
be required).

stuck-at, or similar sub-fields
Other sub-fields: e.g. pending, waiting
Status type:state
Example values: at-process-point-z, waiting-for-process-n,
Assigned storage spaces: AXWFDB from the workflow action log. Axdb or other (PnP Scheduler-db). This
is to serve control decisions by workflow and/or the scheduler in the AXMEDIS Programmes & Publications
Engine e.g. for control of publications stack by-passes/over-rides as may be required).

urgency Other Sub-fields/alternatives:CPA-(non)-critical,
Other Sub-fields/alternatives:CPA-(non)-critical,
Status type:State

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

50

Example values:0:1, CPA-slack-(non)-criticality(n minutes/hrs/days/weeks)
Assigned storage spaces: AXWDB, possibly also AXdb or PnP scheduler-db

Please Note: there can rightly be semantic asymmetries in the way this state is interpreted and deployed for
and within different AXMEDIS sub-sytems where relevant.

progress
Status type:state
Example values: earliest-started, latest-finished, pending-Y, early, late, ready, not-ready
Assigned storage spaces: AXWFDB and/or AXdb

Tracking information re work-in-progress on any Objects and their locked status etc (logs) shall be stored
inside the Object so that this can be readily made available to all system actors who may at any time require
to access such information.

3.3.2 Representing Projected Work-To-be-done on an (AXMEDIS)Object

This need not be included inside the Object as it could more efficiently and context-specifically be supplied
on-demand using the available information maintained by the AXWFM on the workflow-
instances/workitems concerned. This can be implemented as some sort of a "reminder field”, that is a
descriptive field (string) that the user gets when accessing the Object. This is to remind users about what
must be done and it is for the workflow to update this field when terminating an activity.

3.3.3 Examples of Integrative Database Inference Types to be made possible

From the above it is concluded that the states that may be stored, or also stored, in the AXWFDB as a logical
space for them broadly include three categories of status types all of which could be subsumed as sub-fields
under history; namely: history progress and sign-off status types as follows:

i. processing_history
ii. progress (locked ,stuck-at, urgency, queue-position)
iii. authorisation_status

All other states of relevance to various AXMEDIS components shall be stored either with the object (i.e. in
metadata Axinfo) or in AXdb or PMS-db. Sync functions should be provided to ensure global states
integrity for those states that are instantiated, stored and mostly used in inferencing within one AXMEDIS
sub-space but may occasionally be needed for local control within another sub-space (e.g. schedular

Examples of integrative inference types commonly expected by the Workflow Participants (including
relevant AXMEDIS components) can be as follows:

Inferences about, for example:
price, rights_tariff
rights_last_updated/renewed/awarded/added/reduced/restrictions/
distribution_zones/ (exclusives/exclusions)
To be inferred from: PMSdb

Inferences about, for example:
trailer_Object
To be inferred from: AXinfo, AXdb (if mapped)

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

51

Inferences or query support about a client’s on/of line consumption of some granted right(s), for example:

rights_usage, taken-n/viewed-n, /rights-in-credit_per_client_ID
To be inferred from: PMS-db communicating with AXCS

Inferences about, for example:
applicable-rights-jurisdiction(-origin) for given AXOID
Example values: internal/external/foreign-copyrighted, native, worldwide, X-law-only, Y-law-excluded
To be inferred from: AXinfo, PMSdb

3.4 Choice of Workflow Database Technology

The WorkFlow Manager for the Demonstrators will based upon either Openflow or BizTalk. For Openflow
the Workflow Manager will be based upon Zope technology and can use different choices of Database
technologies including:

Oracle
IBM DB2
Microsoft SQLServer
Sybase
SAP DB
PostgresSQL
MySQL
Interbase
Gadfly

In congruence with the AXMEDIS Database Module, PostgresSQL Database is recommended to be
deployed for the Workflow Database.

3.5 The semantic elements to be stored in the Workflow Database (AXWFDB)

For Openflow as a candidate workflow for integration with AXMEDIS, these are as follows:

Openflow
Process
Activity
Transition
Instance
Workitem
Employee
Role
History

Where in the context of Openflow deployed as an AXWF, the field History from the above list could include
the following sub-fields:

History (processing_history, progress, locked, stuck-at, urgency, queue-position authorisation_status)

Thus as far as the design of the AXWFDB is concerned, the Standard OpenFlow Data Model will be adapted
so that it can integrate efficiently with AXMEDIS. The primary adaptation will be to associate to every

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

52

OpenFlow Process Instance the related AXMEDIS AXOID and to associate such additional history sub-
fields from the above list as may be required. However as most WFMSs maintain an AcxtionLog which is
normally associated with Workitem within the workflow Database, we can safely conclude that the
associating an AXMEDIS Object_ID (AXOID) with the Workflow Instance will prove an adequate
adaptation in most cases as follows:

NPD

PK NPD_ID

FK1 Process_ID
FK2 Instance_ID

Start_Date
Duration
Active

Process

PK Process_ID

Process_Name
FK2 Start_Activity
FK3 End_Activity
FK1 Transitions

Process_Type
Owner

Duration
CPA Slack

Transition

PK Transition_ID

Transition_Name
FK1 Transition_From

FK2 Transition_To
Pre_Condition
Post_Condition

Instance

PK Instance_ID

Current_State
FK1 Work_Items

Workitem

PK Workitem_ID

Activity_log
FK2 Current_Activity

Actor_ID
Tool_ID

FK1 Associated_Work_Item
AXOID

Activity

PK Activity_ID

Activity_Name
Type

Duration
Action

Location
Actor_Type
Tool_Type

CPA

AXMEDIS Workflow Database (AXWFDB)

Contains
>>

Contains
V
V

1

0 … n

1 0 … n

Contains
V
V

1

1 … n

Contains
>>

1

1
…
n

To
V
V

From
V
V

1

1

1

1

<< Refers
to

Lists >>1
1 … n

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

53

3.5.1 Workflow-Embedded / Triggered Object Retrieval and Discovery Service Spaces

It is important for the AXMEDIS Modules providing object services to the Workflow Management to
accommodate the various modalities that could be expected in terms of delivery of object search and
discovery services to client-session owners who may or may not be online and/or directly involved in
submitting Requests and in receiving the Responses/Results from such service providers. Some requests
can be pre-scripted/planned as automated i.e. embedded workflow actions (batch process) to be submitted
and pre-fetched as services provided to particular client-sessions per particular workflow instances etc.
Other Requests may not have been planned as embedded workflow actions but may have in any case been
triggered as a contingent request during a session or at-session-closure.

Thus in principle one or more of the following modalities may be in operation and distinguishable re Search
Requests from the viewpoint of the roots of and the routes to Request Submission and/or Discovery and
Delivery of Results. It must be emphasised that from the standpoint of workflow integration, the prevailing
consideration here will be any implications of the above modalities on the content of the Exchange Data to
be passed when Requesting Search and Discovery of various types of unknowns i.e. new and/or yet-to-be
discovered objects.

A Search Request for an Object could involve the following possible features:

• Asynchronously Proxy-Requested and/or Asynchronously-Proxy-Responded, Received and Stored by

AXWFM in its Database (ASYN Requests)

This type of request and (pre)fetch processing may be explicitly planned as an automated single/batch
request on behalf of one or more workspace-instances (workflow client-sessions).

• Synchronous Request-Response Reception by the workspace client/session-owner and Service Provider–

both online.

This type of Request is submitted and its Result Received by the workflow or workers whilst the session
being thus served is online and live (SYN Requests).

It must be noted that in principle, in the case of Sync Requests, as the plug-in is a stateless machine, the
same request may be made several times. As an example; the workflow client may issue a request, the plug-
in receives it and forwards the request to an engine, the engine answers back to the plug-in which may crash
in these circumstances. So the notification is never received by the workflow which owing to a time-out
trigger resends the request.

• Known Knowns (KK-Requests)
Requesting a known object whose AXOID is precisely, unmistakeably and uniquely known to both the
requester and service provider.

• Known Semi-Unknowns (KSU-Requests)
Requesting a known object whose AXOID is uncertain or partially unknown at least as far as the requester is
concerned

• Known Unknowns (KU-Requests)
Requesting a known object whose AXOID is completely unknown at least as far as the requester is
concerned

• Unknown Unknowns (UU-Requests)

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

54

Requesting any objects hitherto unknowable by the requester (and possibly also the service provider) which
may satisfy some requester-stipulated interesting-ness criteria.

The UU-Request could be further specified to be at any one of two levels:

• UU-Request-Level-1 Object Discovery Requests: Request for Chance Discoveries in any Pools

This is the type of request which submits an interesting-ness or other evaluation function parameters with a
request for an object fishing exercise (exploration) from unspecified (don’t care), pools or domains of
exploration.

• UU-Request-Level-2 Object Discovery Requests: Request for Discovering Chances:

i.e. identifying the Serendipity Index of Query Forms likely to be fruitful for Specific Pools/Events
encountered (and/or opportunistically acted upon) during the search path travelled.

This is the type of request that may or may not be expecting any specific digital asset(s) as a found object(s)
in response. The UU-Request-Level-2 Object Discovery Request will essentially be requesting the identity
of any Pools/Repositories and associated Query_ID which resulted in the return of certain objects with a
particular property or level of interesting-ness. Thus this will return Pool_IDs, AXRQIDs with associated
ranking/probability of finding certain category of objects satisfying certain interesting-ness or other
evaluation function (optionally it might be expected to return a sample of the respective objects).

Found Object Delivery Routes

Pre-fetching: This a scenario comprising of specific Object Getting Acts (OGA), Object Reporting Acts
(ORA) and Object Fetching Acts (OFA) as planned and enacted automatically within a workflow-instance to
serve forthcoming workspaces that are either about to be triggered into starting or will be next in the queue to
start.

Fetching: This is a scenario comprising of specific Object Getting Acts (OGA) and Object Fetching Acts
(OFA) as processed responsively at the live request of workflow-instance(-owner) that is presently online.

3.5.2 Unknown Objects Sought & Found Exchange Messaging Contexts

It is important to note the types of data that need to be exchanged between the Object Requester and
AXMEDIS Object Service Provider Components under the various possible contexts that can arise; all of the
above types may, within limits, be expected to be accommodated.

Our focus at this stage is on the knowledge analysis of the relevant possible spaces, syntax and semantics to
be logically incorporated in the Transaction Exchange data as necessary and sufficient for traceability, audit
and cross-linking of various contexts (e.g. linking any search request(s) to any related response(s) as well as
to groups of inter-related requests and/or responses and their clients and respondents).

It is clear that for the first type of search request above, i.e. the request for known knowns, KK-Search
Request, the fetch can be simply accommodated by either a Check-in (AXWF) or Add_new_component-
AXOM functionality. For all other types of Search Request as outlined above, at the very least a
pseudo/temporary/dummy/placeholder object_ID (to be referred to as Sought_object_ID) must be included
in the Request string to allow the binding of the eventually fetched object, if any, to the request that
originated it as well as to provide the basis for various other necessary self/cross-referencing needed for
tracking/audit etc. This is developed later in this document in the section dealing with the rationalisation of
the logical design for the Neutral Exchange Transaction Data Format developed for the AXWF-AXMEDIS
integration.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

55

3.6 Generic Scenarios for the Workflow Interaction with AXMEDIS Components

Scenario 1: - Starting a New Instance of an NPD i.e. New NPD Set-up (A Managerial Task)

There are times when a user may wish to cause a new workflow process to be set up by “development and
configuration technicians” to support new kinds of NPD (New Product Development) with new business
process logics. However this scenario relates to occasions when through the Workflow UI, project managers
may wish to start a new NPD instance of an already defined workflow process (e.g. the process for
producing a new media content, which has been previously defined and configured).

A project manager can thus subsequently assign work activities to individual users or let the assignments be
made automatically by the workflow engine, based on pre-defined rules and roles.

The following scenario describes the process of defining a new NPD within the workflow sub-system. At
the end of this scenario, the project manager can expect a fully configured workspace that can be
interrogated by users at various levels to give information about all the necessary tasks to be performed,
people responsible for performing those tasks, the tools needed to do the tasks, and the location where each
task is to be performed, etc, the scenario proceeds as follows:

1) The user (Manager) is already authenticated and logged into the system.

Scenario 1: Starting a New Instance of an NPD i.e. New NPD Set-up (Managerial Task)

End User
(Manager)

1
2

6

11

3
WFDB

55

4

77

88cc

99

1100

AXWFM

AX Editor WF Plug In

AXOM + Plug In
Manager WF QS UI

AXOID

AX WF
Editor/Viewer

AAXX WWFF UUII

AXMEDIS Editor

AXOM Commands &
Reporting

12
88aa

1133

88bb

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

56

2, 3, 4) He invokes the “create new NPD workspace” function by clicking on this button to define the
product and the NPD for its development. A pop-up dialogue box appears to allow him to enter the basic
details of the NPD (e.g. name, type, etc) and to select pre-defined templates.

5, 6) The workflow manager (AXWFM) communicates with the AXMEDIS Object Manager (AXOM)
through the AXMEDIS editor workflow plug-in, to generate a Process ID which is to be assigned to the new
NPD.

7) The workflow editor/viewer is then launched to enable the user to define the workflow for the new NPD.

10) The workflow editor launches a blank page (or a page containing the structure of the selected template)
for defining the workflow components.

13) NPD set-up phase: The user can now select and add components to define the new project. These
components can be tasks, people, project, products, objects, places, links, etc. This functionality of the
workflow editor is similar to a drawing utility provided by the Microsoft Word editor, which allows the user
to add shapes and assign properties to them. However, for the workflow editor it is necessary that all the
added components must be connected to at least one other component to form a semantic integration of all
the components, which when executed in the defined order produces the required product. Whenever any
component is added to the NPD the corresponding properties dialogue box appears for the added component.
The user can (re)set the required properties in this dialogue box so as to control the behaviour of the
components.

For example the user can add a task to the current NPD workspace and may designate its type as a
“Formatting Task”. The user then can add a person to the current workspace and assign his role to be, say,
the “Technical Editor” responsible for the Formatting Task. He can then link this person to the “Formatting
Task”. The user can then add a tool to the current workspace and assign its role as a “Formatting Tool” and
then link this tool to the “Formatting Task”. The workflow will interpret these links as “The AXMEDIS
Object(ID---) to be formatted with the specific Formatting Tool by the named Technical Editor” thus
assigned this task.

It is also possible for the User to define all the tasks and people working on the project first without creating
the links. As mentioned before the workflow system can automatically distribute the work to the people,
partners, places, etc based on the saved profiles (roles) of the available participating resources and objects.

There are typically two approaches to defining workflow processes: using a specific User Interface or
describing the process via a meta-language (e.g. XPDL); workflow solutions tend to adopt one or the other of
the two approaches).

The command and Reporting is shown in this diagram explicitly as the component that is connected to the
editor/viewer to notify termination of the editing and viewing task. In practice, the Command and Reporting
module can be viewed as an integral component of AXMEDIS Editor.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

57

Scenario 2: - Executing Any Task in the Workflow (End-Worker’s Task)

This scenario describes the process of executing any work Task within the workflow environment. At the
end of this scenario, the user can expect the status of the AXMEDIS Object(s) concerned to be updated and
the work Task marked as completed thus triggering new sets of tasks as appropriate. This scenario proceeds
as follows:

1) The user (Worker) is already authenticated and logged into the system and the workflow system is up and
running. We can therefore assume that the client’s (i.e. session-owner’s) credentials_ID has been made
available to be authenticated for sign-on to initiate the required exchanges with the AXMEDIS tools/engines
as service providers and thus the information for authentication and billing purposes has been provided.

2, 3, 4) The user invokes the list-work function by clicking on the button list-work supplying a
workflow_Instance_ID which effectively represents a given NPD, then selecting a work-item to get the
choice of actions to be performed on the work-item for the NPD (or, identically, the workflow-instance) for
which he is assigned to perform tasks.

7, 8, 9, 10, 11, 12, 13) For any selected workitem, from any given workflow-instance, the Workflow UI
displays to the user a choice of available actions and descriptions/suggestions related to the selected work-
item (i.e. viewed dynamically these are potential workspace instantiations). These can include actions such
as:

Edit: The user may wish to invoke the AXMEDIS Editor by clicking on Edit and, say, invoke Edit DRM to
Edit the DRM of a selected object; this will launch the AXMEDIS DRM Editor.

5, 6) Search: The user may wish to search for all objects involved in a particular NPD, by invoking the
Search function of the Workflow UI. The user clicks on Search and then supplies the

End User

AX QS UI

1

2

16

3

4
WFDB

5

nnContent

Axmedis Rule Editors

AXWFM

Protected
Object

9

AXOM

Scenario 2: - Executing Any Task in the Workflow (End-Worker’s Task)

8a

77 AX Editor
Plug-in

Manager

Rule Editor/Viewer
Commands &

Reporting
AXQS

AXMEDIS ****
Viewer/Editor

Commands &
Reporting

66

1111 1122aa

1133

1144

AAXXWWFFUUII

1100
AX Editor

WF Plug In

1155

WF Rule Editor/Viewer
Plug-in

1122bb
1122cc

1122dd

8b

8c

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

58

workflow_Instance_ID. The Workflow Manager passes this query via the Workflow Query Interface
through to the Query Support Web Services Interface which submits it to the AXMEDIS Query Support
User Interface. This sets up an interaction with the AXMEDIS Object Database to search for all objects
involved in the specified process or fulfilling certain criteria.

Show: The user can request the workflow system to show more information on any selected components
(AXMEDIS object(s), tool(s), etc) as may be included in the work-list.

Terminate Activity: Users can invoke this functionality to signal to the workflow system their wish to have
an activity terminated. Accordingly the workflow system will proceed to the next step in the workflow
process instance (It is important to note that this functionality enables an over-ride control action on the part
of the human operator if required).

Based on the selected Action the workflow system launches the required tool using the appropriate Interface
(e.g. Web-services) or plug-ins associated with that tool. If the tool is in the exclusive access area of the
user, the “Check-in” and “Check-out” interfaces will be invoked.

The workflow system assigns a time-stamp to such an Action as the start_time, which is later referred to
while tracking the history of the component.

If required the workflow system will also generate new versions of the AXMEDIS Object. Upon the
completion of the Task the workflow system will again assign a time-stamp to this Task as the end time.

At the end of the Action, the workflow system will update the status of the AXMEDIS Object, which may
trigger various other tasks (e.g. DRM editing, invoking AXEPTool, etc).

In all the following scenario diagrams as presented in this section, the Command and Reporting Module
wherever applicable has been shown explicitly as the AXMEDIS component that mediates as a gateway
linking the AXWFM to the relevant service provider for NOTIFICATIONS i.e. to notify of the termination
of the Requested tasks. In practice, the Command and Reporting Module can be viewed as an integral
component of the AXMEDIS Editor.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

59

Scenario 3: Invoking the AXEPTool (Publish)

This scenario describes the interaction between the workflow and the AXEPTool to share any AXMEDIS
Object over the P2P network. There are two possible interaction scenarios between the workflow and the
AXEPTool. On the one side, the interaction can be for uploading (Publishing) of some AXMEDIS
Object(s), while on the other side the interaction can be for downloading (Loading) of an AXMEDIS Object.
The Loading operation may involve a Negotiation Phase to procure an appropriate licence. Such Negotiation
is controlled by a subsystem of AXMEDIS workflow called Negotiation Workflow. In this section we deal
with the AXEPTool Publication Scenario.

It is assumed that the publications tasks are normally carried out asynchronously and autonomously, without
the intervention of the user. Moreover, the workflow instance contains the Task for uploading of the
AXMEDIS Object on the sender’s side and downloading of the AXMEDIS Object on the receiver’s side.
The Scenario Proceeds as follows:

1) The workflow system is up and running.

2, 3, 4) We can also assume that the client’s (i.e. session-owner’s) credentials_ID has been made available
to be authenticated for sign-on to initiate the required exchanges information for authentication and billing
purposes.

5, 6, 7, 8) The workflow system passes the so-called Active Publication Request via the workflow plug-in to
the AXEPTool Command and Reporting module to trigger the AXEPTool Active Publications Rule
Selection Module which enables the selection and submission of appropriate objects for publication. The
publication engine uses the thus activated publication request together with a AXRID to control the
publication of the right object(s) from the Active List.

Scenario 3: Invoking the AXEPTool (Publish)

WFDB 4a

4b
5

AXWFM

Active Publication Rules
Selected

3

1 2

AXEPTool

AXEPTool Active
Publication Rules Selection

Selected Objects
Published

66

77 AAXXEEPPTTooooll PPuubblliiccaattiioonn EEnnggiinnee

AAXXWWFFUUII

WF Engine
Plug In

77

88

99

1100

AXEPTool Engine
Commands & Reporting

1111

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

60

If the AXEPTool is not up and running, it is launched by the workflow system using the appropriate
interfaces.

9) The AXEPTool Publication engine then moves the relevant AXMEDIS Object(s) to the “AXEPTool Out
AXMEDIS Database Area” for publication on the P2P network under the control of the specified AXRID.

10, 11) Upon completion of the activity, the AXEPTool Publication engine informs the AXWFM via the
AXEPTool Command and Reporting Module about the completion of the process, so it can proceed with the
next step in the workflow-instance flow.

Scenario 4: Invoking the AXEPTool (Load)

This scenario describes the interaction between the workflow and the AXEPTool to share any AXMEDIS
Object over the P2P network. There are two possible interaction scenarios between the workflow and the
AXEPTool. On the one hand, the interaction can be for uploading (Publishing) of some AXMEDIS
Object(s), while on the other hand the interaction can be for downloading (Loading) of the AXMEDIS
Object. The Loading operation may involve a Negotiation Phase to procure an appropriate licence. Such
Negotiation is controlled by a subsystem of AXMEDIS workflow called Negotiation Workflow. In this
section we deal with a Loading operation not requiring the invocation of the Negotiation workflow for
Licence Procurement. The scenario proceeds as follows:

1) It is assumed that the user is interacting with the Workflow Management System.
Thus the user (Worker) is already authenticated and logged into the system and the workflow system is up
and running.

Scenario 4: Invoking the AXEPTool (Load)

WFDB 4a

4b
5

AXWFM

Active Loading Rules
Selected

3

1 2

AXEPTool

AXEPTool Active Loading
Rules Selection Selected Objects

Loaded

66

AAXXEEPPTTooooll LLooaaddiinngg EEnnggiinnee

AAXXWWFFUUII

WF Engine
Plug In

77

88

99

1111

1100

AXEPTool Engine
Commands & Reporting

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

61

2, 3, 4) We can also assume that the client’s (i.e. session-owner’s) credentials_ID has been made available to
be authenticated for sign-on to initiate the required exchanges information for authentication and billing
purposes.

5, 6, 7, 8) If any Task requires downloading of an AXMEDIS Object from the P2P network, the workflow
system passes this request via the workflow plug-in to the AXEPTool Command and Reporting module to
trigger the AXEPTool Active Loading Rule Selection Module which enables the selection and downloading
of appropriate objects. The Loading engine uses the thus activated loading request together with a AXRID
to control the downloading of the right object(s) from the Active List.

9) As soon as the required object is available on the P2P network, the Loading Tool Engine of AXEPTool
downloads this AXMEDIS Object and moves it to the “AXEPTool In AXMEDIS Database Area”.

10, 11) When the AXEPTool Loading engine has completed the transfer, it informs the workflow system via
the AXEPTool Command and Reporting module and the AXWFM then moves this component to the
appropriate location and proceeds to enable further tasks that could be performed once the object has become
available.

Scenario 5: Invoking the AXEPTool (Load Upon Completion of Negotiation)

This scenario describes the interaction between the workflow and the AXEPTool for downloading (Loading)
of an AXMEDIS Object when such Loading requires Negotiation as controlled by a subsystem of

SScceennaarriioo 55:: AAXXEEPPTTooooll NNeeggoottiiaattee--LLooaadd

WFDB 4a

4b
8

AXWFM

Active Loading Rules
Selected

3,7

1 2

AXEPTool

AXEPTool Active Loading
Rules Selection

Selected Objects
Loaded

99

AAXXEEPPTTooooll LLooaaddiinngg EEnnggiinnee

AAXXWWFFUUII

WF Engine
Plug In

1100

1111

1122

1144 LLooaadd rriigghhttss--ggrraanntteedd oobbjjeecctt

NNeeggoottiiaattiioonn
WWoorrkkffllooww 5

6

1133

AXEPTool Engine
Commands & Reporting

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

62

AXMEDIS workflow called Negotiation Workflow. In this section we deal with a Loading operation
requiring the invocation of the Negotiation workflow for Licence Procurement. The Scenario proceeds as
follows:

1) It is assumed that the user is in direct interaction with the Workflow.

We can also assume that the client’s (i.e. user/session-owner’s) credentials_ID has been made available to be
authenticated for sign-on to initiate the required exchange information for authentication and billing
purposes.

2, 3, 4) Thus the user (Worker) is already authenticated and logged onto the system and the workflow system
is up and running. It is assumed that the user is in interaction with the Workflow System and that the AXWF
contains the AXMEDIS Object Licence Procurement Negotiation Workflow.

Suppose there is a Task that requires the downloading of an AXMEDIS Object from the P2P network, with
the added complication that the user is required to enter into and complete a Negotiation Phase regarding the
Licence Procurement of a particular AXMEDIS Object.

5, 6, 7) The workflow system passes the relevant AXOID through to the AXMEDIS Query Support User
Interface to set up an interaction with the AXMEDIS Object Manager (AXOM). The relevant Object
Licensing particulars that thus become available are then passed to the Licence Procurement Negotiation
Workflow to trigger the start of the Negotiation Phase.

8, 9, 10, 11, 12) Once the Negotiation Phase is completed the AXOID is passed to the AXEPTool Loading
Engine as usual, using the WF Plug-in, through the AXEPTool Command and Reporting module which
enables a link to the AXEPTool Active Loading Rule Selection list. Once the selection of the relevant
rule(s) for the download of the object is completed, then, as soon as the required Object becomes available
on the P2P network, the Loading Tool Engine of AXEPTool downloads this AXMEDIS Object and moves it
to the “AXEPTool In the AXMEDIS Database Area”.

13, 14) When the AXEPTool Loading engine has completed the transfer, it informs the workflow system via
the AXEPTool Command and Reporting module and the AXWFM then moves this component to the
appropriate location and proceeds to enable further tasks that could be performed once the object download
has been completed.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

63

Scenario 6: Sending out Notifications to People

This scenario describes the process of sending out Notifications initiated by the workflow system or by the
people within the workflow environment. At the end of this scenario, the user can expect that notifications
are generated and sent to appropriate target(s). The scenario proceeds as follows:

1) The user (Worker) is already authenticated and logged into the system and the workflow system is up and
running. We can thus also assume that the client’s (i.e. session-owner’s) credentials_ID has been made
available to be authenticated for sign-on to initiate the required exchanges information for authentication and
billing purposes.

2, 3) Upon completion of any Task, the workflow system will generate appropriate Notifications, e.g. if any
Task is waiting for the DRM to be cleared, the workflow system will notify this Task by raising the
appropriate signal whenever the required DRMs are cleared.

4) The workflow system can also send out notifications to the users through appropriate tools like e-mailing
systems, pop-up messages, etc. e.g. if any actor is waiting for an AXMEDIS object to be downloaded by the
AXEPTool, then upon completion of this the Workflow system is notified by the respective Command and
Reporting module and it in turn can deliver a pop-up message on the relevant client screen or other
designated terminal.

Notifications can also be sent out in the form of e-mails to the user, e.g. if the user has been assigned a new
Task, an email will be sent to him regarding this Task and his personal work-list is updated accordingly.

End User
Email System

3a

2, 4c

1, 3b

4a

AXWFM

4b

Scenario 6: Sending out Notifications to People

AAXXWWFFUUII

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

64

Scenario 7: Global View and Tracking of any Component in the Workflow

This scenario describes the process of generating a global view of any NPD and the tracking of any
component within the selected NPD. At the end of this scenario, the user can expect to have the up-to-date
progress status of the AXMEDIS Objects within the selected NPD.

1) The user (Manager/Worker with appropriate rights) is already authenticated and logged into the system
and the workflow system is up and running. Therefore we can assume that the client’s (i.e. session-owner’s)
credentials_ID has been made available to be authenticated for sign-on to initiate the required exchanges
information for authentication and billing purposes.

2) The user selects a particular NPD (or identically a workflow_Instance_ID) and clicks on the Global View
icon.

3, 9, 10) The Workflow system identifies all the components for the selected NPD and launches a set of
queries to retrieve information for all of such components from the AXOM through the AXMEDIS Query
Support Interface.

4, 5, 6, 7, 8) The workflow systems can then launch an Interactive GUI (Workflow viewer) to show the
overall status of the NPD workflow along with its Critical Path Tasks (CPA), based on the results received
for the above queries.

11) Through the interactive GUI, the user can select any individual component and can demand more
information on it. This component can be any object, task, person, etc.

End User

AX QSUI

1
2

10

3a

3b

WFDB

4

AXWFM

Scenario 7: Global View and Tracking of any Component in the Workflow

AAXX WWFF EEddiittoorr
PPlluugg--iinn

88

5

AAXXWWFFUUII

WF QS
InterfaceAX WF

Editor/Viewer

99

77

66

AXMEDIS Editor

AXOM +
Plug-in

Manager

Commands
& Reporting

11

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

65

Accordingly the workflow system can launch a responsive query to retrieve detailed information regarding
the component(s) selected by the user.

The Command and Reporting is shown in the scenario diagram explicitly as the component that is connected
to the editor/viewer to notify termination of the editing and viewing task. In practice, the Command and
Reporting module can be viewed as an integral component of AXMEDIS Editor.

Scenario 8: Invoking the Composition and Formatting Engine

This scenario describes the interaction between the workflow and the Composition and Formatting Engine to
compose/format any AXMEDIS Object according to selected composition/formatting rules (Rule-ID).

It is assumed that the composition and/or formatting task(s) can be carried out autonomously, without the
intervention of the user but it can be done on an ad hoc basis synchronously at the user’s instant request. In
any event we can also assume that the client’s (i.e. project-owner’s) credentials_ID has been made available
to be authenticated for sign-on to initiate the required exchanges information for authentication and billing
purposes.

1) The workflow system is up and running.

3, 4, 5, 6, 7, 8) The workflow system effects the request to the Composition/Formatting engine via the
Workflow Plug-in linking through the Command and Reporting Module through to the Composition and
Formatting Active Rules module. In this way the workflow system passes to the Composition and
Formatting engine an Activate compose/format request together with a composition/Formatting AXRID and
AXOID to control the correct composition/formatting of the right object(s) from the Active List.

SScceennaarriioo 88:: IInnvvookkiinngg tthhee CCoommppoossiittiioonn//FFoorrmmaattttiinngg EEnnggiinnee

WFDB 4a

4b
5

AXWFM

Active
Composition/Formating
Rule selected

3

1 2

Active
Composition/Formating

Rules Composition/For
mating
done

66

Composition/Formatting Engine

AAXXWWFFUUII

WF Engine
Plug In

77

88

99

1100

Composition/Formating
Engine Commands &

Reporting

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

66

The Composition/Formatting Engine then composes/formats the relevant AXMEDIS Object(s) as required
per specified (or default) composition/formatting rules

9, 10) Upon completion of the composition/formatting, the AXWFM is informed by the Command and
Reporting Module and the metadata of the relevant Object is also updated accordingly.

3.7 AXMEDIS WorkFLow Area UML Decomposition

The AXMEDIS WorkFLow Area includes:

• WorkFLow Management User Interface and Tool
• WorkFlow Engine
• WorkFlow DataBase
• WF AXOM Request Adapter
• WF AXOM Input Queue Adapter
• WF Engine Request Adapter
• WF Engine Input Queue Adapter
• WF Rule Editor Request Adapter
• WF Rule Editor Input Queue Adapter
• WF DB Request Adapter
• WF DB Input Queue Adapter
• AXOM WorkFlow Gateway
• E ngine WorkFlow Gateway
• Rule Editors WorkFlow Gateway
• DB WorkFlow Gateway

The required 4-Channel Workflow Integration Architecture to fulfil the above requirements will be specified
in the following UML diagrams illustrating:

0. The AXMEDIS Workflow Manager Integration Global View
1. Workflow Editors Interfaces
2. Workflow Engines Interfaces
3. Workflow Rule Editors/Viewers Interfaces
4. Workflow Query Support Interfaces

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

67

AXMEDIS WorkFlow Manager

3.8 WorkFlow and AXMEDIS Integration Architecture
Here we outline the key patterns of deployment in scenarios for the integration of any AXMEDIS-adopted
workflow management system (AXWF) with the AXMEDIS Framework; as follows:

• The AXWF is used for streamlining the publishing and distribution process activities that can be
supported by the AXMEDIS Framework

• The AXWF should be capable of launching the execution of:

o AXMEDIS Object Editor/Viewer via the AXOM WorkFlow Gateway
o AXMEDIS Object Manager via the AXOM WorkFlow Gateway
o AXMEDIS DRM Editor/Viewer via the AXOM WorkFlow Gateway
o AXMEDIS External Editor/Viewer Activation Manager via the AXOM WorkFlow Gateway
o AXMEDIS Hierarchy Editor/Viewer via the AXOM WorkFlow Gateway
o AXMEDIS Metadata Editor/Viewer via the AXOM WorkFlow Gateway
o AXMEDIS Visual Editor/Viewer via the AXOM WorkFlow Gateway
o AXMEDIS Behaviour Editor/Viewer via the AXOM WorkFlow Gateway
o AXMEDIS Compositional/Formatting Engine via the Engine WorkFlow Gateway
o AXMEDIS Collector Internal Engine via the Engine WorkFlow Gateway
o AXMEDIS Program and Publication Engine via the Engine WorkFlow Gateway
o AXEPTool Loading Tool Engine via the Engine WorkFlow Gateway
o AXEPTool Publication Tool Engine via the Engine WorkFlow Gateway
o The Protection Tool Engine via the AXMEDISEngine WorkFlow Gateway
o AXMEDIS Loader/Saver via the AXMEDIS DB WorkFlow Gateway
o AXMEDIS Query Support via the DB WorkFlow Gateway
o AXMEDIS Compositional/Formatting Rule Editor via the Rule Editor WorkFlow Gateway
o AXMEDIS Program and Publication User Interface via the Rule Editor WorkFlow Gateway

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

68

o AXEPTool Publication/Loading Rule/Selection Editor via the Rule Editor WorkFlow Gateway
o AXMEDIS Protection User Interface and Rule Editor via the Rule Editor WorkFlow Gateway

• Accordingly the AXWFM Workflow Manager will be capable of interacting with the AXMEDIS
Object Manager via the AXOM WorkFlow Gateway

• It is possible that some publishing and distribution companies will not be able to adopt the fully

integrated AXMEDIS framework, as:

o They may wish to keep to their established client applications thus using editing/viewing tools
other than the AXMEDIS-native ones.

o There may be another group of companies who will actually be using the same editing/viewing

tools as those for which AXMEDIS Plug-ins are provided; however for technical reasons they
may still be unable to use the respective AXMEDIS plug-ins, due to difficulties of distributing
plug-ins, incompatibilities of AXMEDIS plug-ins with other PC tools, security reasons,
heterogeneity of Client configurations, etc)

• For the above type of companies given that their staff will routinely need to have access to
AXMEDIS Objects within their own exclusive application areas to work on such object in the
normal course of processing them for publication/distribution, the provision of a simple AXMEDIS
Object check-in/check-out interface should provide a means of access to the AXMEDIS Object
Manager’s services. These check-in/check-out functions will be operated via the integration with the
AXMEDIS Object Loader/Saver.

• Within such partial integration of the AXMEDIS Framework as operated by the above companies,

the users shall have to take responsibility for manually fetching i.e. downloading the respective
AXMEDIS Objects onto their own PC hard disk; manually invoking the appropriate Editors/Viewers
as well as informing the workflow when a particular activity is terminated and of the work carried
out on the respective object. This is to ensure Object Metadata update and that workflow processes
progress consistently and coherently.

• It is expected that every AXMEDIS tool updates the AXMEDIS Object tracking information, while

performing its actions. However, when the check-in/check-out interface is used, it is up to the
Workflow Object Manager to update such information. Unfortunately the Workflow cannot know
exactly what action the user performed between the Check-in and Check-out stage. Accordingly we
can provide a field to be filled by users to describe the work that was done. This is to support the
users in ensuring that they will remember to give full information about such the work carried out on
the respective objects.

The following schematic depicts the Integration Architecture of WorkFlow OpenFlow Engine with the other
AXMEDIS components:

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

69

Axmedis WorkFlow Integration Architecture (OpenFlow)

WorkFLow Engine

WF AXOM
Request
Adapter

WF AXOM
Input Queue

Adapter

WF Engine
Request
Adapter

WF Engine
Input Queue

Adapter

WF Rule Editor
Request
Adapter

WF Rule Editor
Input Queue

Adapter

WF DB
Request
Adapter

WF DB
Input Queue

Adapter

AXOM
WorkFlow Gateway

Engine
WorkFlow Gateway

Rule Editor
WorkFlow Gateway

DB
WorkFlow Gateway

AXOM Command
And Reporting

• Axmedis Object Manager
• DRM Editor/Viewer
• External Editor/Viewer
Activation Manager
• Hierarchy Editor/Viewer
• Metadata Editor/Viewer
• Axmedis Object
Editor/Viewer
• Visual Editor/Viewer
• Behaviour Editor/Viewer

Engine Command
And Reporting

• Compositional/
Formatting
• Protection Tool
• Program and
Publication
• Collector Internal
• Loading Tool
• Publication Tool
• Active Selection

User Command
And Reporting

• Protection Tool U.I. and Rule
Editor
• Program and Publication U.I.
• Publication/Loading
Rule/Selection Editor
• Compositional/formatting
Rule Editor

Query Support
WebService Interface

Axmedis Object
Loader/Saver

Internal Library Calls

http GET / xmlrpc

Web Services

There are four channels for communicating between WF Engine and the AXMEDIS tools/editors/viewers
comprising specific Request and Response Chains as follows:

1. The WorkFLow Editor Channel, enckompassing:

The Request Chain:

• WF AXOM Request Adapter
• AXOM WorkFlow Gateway
• AXOM_WebService_Listener
• AXOM Command and Reporting

The Response Chain:

• AXOM Command and Reporting
• AXOM_WebService_Listener
• AXOM WorkFlow gateway
• AXOM Input Queue Adapter

2. The WorkFlow Engine Channel encompassing:

The Request Chain:

• WF Engine Request Adapter

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

70

• Engine WorkFlow Gateway
• Engine Command and Reporting

The Response Chain:

• Engine Command and Reporting
• Engine WorkFlow Gateway
• WF Engine Input Queue Adapter

3. The WorkFlow Rule Editor Channel encompassing:

The Request Chain:

• WF Rule Editor Request Adapter
• Rule Editor GAteway
• User Command and Reporting

The Response Chain:

• User Command and Reporting
• Rule Editor GAteway
• WF Rule Editor Input Queue Adapter

4. The WorkFlow Query and DataBase Channel encompassing:

The Request Chain:

• WF DB Request Adapter
• DB WorkFlow Gatreway
• AXMEDIS Object Loader/Saver and Query Support WebService Interface

The Response Chain:

• AXMEDIS Object Loader/Saver and Query Support WebService Interface
• DB WorkFlow Gatreway
• WF DB Input Queue Adapter

The WorkFlow Engine communicates with the WF Adapters via WorkFlow engine specific libraries and
communication methods.

The WF Request Adapters communicates towards Gateways via WorkFlow available communuication
methods and protocols.

The Gateways communicates towards WF Input Queue Adapters via WorkFlow available communuication
methods and protocols.

The Gateways communicates with AXMEDIS modules via WebServices. This interface is standard for
AXMEDIS, so will be the same when using any WorkFlow Engine technology. In other terms, for each
WorkFlow Engine technology, new WF Adapters and Gateways have to be developed, while the interface to
the AXMEDIS modules remains invariant.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

71

.

In the first step of AXMEDIS, the OpenFlow technology will be used for the WorkFlow Manager. The
integration methods described in the following Sections are then applied to OpenFlow technology.

Later a commercial technology will be used (namely Microsoft BizTalk). Replacing OpenFlow with
Microsoft BizTalk will mean developing a new set of WF Plug-ins and WF Query and DataBase Interface.
These further modules will have the same interface with the Plug-in Manager and Query Support
WebService Interface / AXMEDIS Object Loader/Saver, while their interface with the WorkFlow Adapters
will be different.

The WorkFlow Engine communicates with the WF Adapters via library calls internal to the Zope
Application Server. This interface will be replaced by the Microsoft BizTalk WebServices adapter internal
interface when using BizTalk as the adopted AXMEDIS workflow system.

The WF Request Adapters communicates with Gateways via GET calls in http protocol.

The Gateways communicates towards WF Input Queue Adapters via XMLRPC calls, in http protocol.

The Gateways communicates with AXMEDIS modules via WebServices and SOAP. This interface will
remain equally applicable when using Microsoft BizTalk.

When Microsoft Biztalk will be used, the following integration architecture will be applied:

Axmedis WorkFlow Integration Architecture (MS BizTalk)

WorkFLow Engine

WF AXOM
Request
Adapter

WF AXOM
Input Queue

Adapter

WF Engine
Request
Adapter

WF Engine
Input Queue

Adapter

WF Rule Editor
Request
Adapter

WF Rule Editor
Input Queue

Adapter

WF DB
Request
Adapter

WF DB
Input Queue

Adapter

AXOM Command
And Reporting

• Axmedis Object Manager
• DRM Editor/Viewer
• External Editor/Viewer
Activation Manager
• Hierarchy Editor/Viewer
• Metadata Editor/Viewer
• Axmedis Object
Editor/Viewer
• Visual Editor/Viewer
• Behaviour Editor/Viewer

Engine Command
And Reporting

• Compositional/
Formatting
• Protection Tool
• Program and
Publication
• Collector Internal
• Loading Tool
• Publication Tool
• Active Selection

User Command
And Reporting

• Protection Tool U.I. and Rule
Editor
• Program and Publication U.I.
• Publication/Loading
Rule/Selection Editor
• Compositional/formatting
Rule Editor

Query Support
WebService Interface

Axmedis Object
Loader/Saver

Internal Library Calls

Web Services

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

72

As we can see, the Gateways becomes null modules in this integration architectures, as the Request and Input
Queue Adapters are capable of natively communicate with the AXMEDIS modules via WebServices.

3.9 WorkFlow Technologies

Two distinct workflow technologies are to be deployed for the AXMEDIS Integration Demonstrators for
Phase I and Phase II of the project, respectively as follows:

1. an open-source WFMS, namely OpenFlow
2. a proprietary commercial WFMS, namely Microsoft BizTalk

The rationale for the choice of the above as the adopted AXMEDIS WFMSs (i.e. AXWFs), appears in sub-
sections 4.1.1 and 4.2.1 respectively.

The present document is to specify the foundational design architecture applicable generically for the
integration of the AXMEDIS Framework with most of the WFMSs likely to find a significant presence in the
target user sectors; including both Openflow and BizTalk. Further, the present document is also to elaborate
the full design specification for the Phase I AXMEDIS Demonstrator implementation of an AXWF-
AXMEDIS integration which is to be with Openflow. This will thus allow the full elaboration of the design
specification for the second AXMEDIS Demonstrator, with BizTalk, as planned for the Phase II of the
projects, to benefit from the planned continuous requirements refinement and validation to be conducted in
Phase I of the project.

3.10 WorkFlow Engine
Sub-sections 4.1.2 through to 4.1.4 provide the description of the Phase I AXWF which is the Openflow.

Module Profile
WorkFlow Engine

Executable or Library(Support) Executable OpenFlow Package, based upon Zope Application Server
Single Thread or Multi-thread Multi-thread
Language of Development User interface: Zope DTML (a superset of html)

Application logic: Python or DTML
Responsible Name
Responsible Partner
Status (proposed/approved)
Platforms supported Microsoft Windows, Linux

Interfaces with other tools Name of the communicating

tools
Communication model and format
(protected or not, etc.)

WorkFlow Data Base Internal adapter to various DB
technologies

WorkFlow User Interface Via Zope Web Server
WF Adapters Internal libraries
File Formats Used Shared with File format name or reference to a

section

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

73

User Interface Development model, language,
etc.

Library used for the development,
platform, etc.

Zope Web-based U.I. DTML, a superset of html Idem

Used Libraries Name of the library and version Licence status: GPL. LGPL. PEK,

proprietary, authorized or not
OpenFlow OpenFlow 1.1 GPL 2.0
Zope by Zope Corporation Zope 2.7.3 ZPL 2.0 (Zope Public Licence

2.0), open source, GPL
compatible

Python by Stichting
Mathematisch Centrum,
Amsterdam, The Netherlands.

Python 2.3 Free Open Source by Stichting
Mathematisch Centrum,
Amsterdam, The Netherlands.

Xmlrpclib by Secret Labs AB
and by Fredrik Lundh

Xmlrpclib Free Open source by Secret Labs
AB and by Fredrik Lundh

C expat Library by James Clark C expat Mozilla Public Licence Version
1.1

3.11 Workflow User Interfaces and Tools (IRC, HP, XIM)

Module Profile
WorkFlow User Interface

Executable or Library(Support) Executable OpenFlow User Interface based upon Zope User Interface
Single Thread or Multithread Multithread
Language of Development User interface: Zope DTML (a superset of html)

Application logic: Python or DTML
Responsible Name
Responsible Partner
Status (proposed/approved)
Platforms supported Microsoft Windows, Linux

Interfaces with other tools: Name of the communicating tools Communication model and format
(protected or not, etc.)

WorkFlow Engine Via Zope Web Server

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language, etc. Library used for the development,

platform, etc.
Zope Web-based U.I. DTML, a superset of html Idem

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

74

Used Libraries Name of the library and version Licence status: GPL. LGPL. PEK,

proprietary, authorized or not
OpenFlow OpenFlow 1.1 GPL 2.0
Zope by Zope Corporation Zope 2.7.3 ZPL 2.0 (Zope Public Licence 2.0),

open source, GPL compatible
Python by Stichting
Mathematisch Centrum,
Amsterdam, The Netherlands.

Python 2.3 Free Open Source by Stichting
Mathematisch Centrum, Amsterdam,
The Netherlands.

Xmlrpclib by Secret Labs AB
and by Fredrik Lundh

Xmlrpclib Free Open source by Secret Labs AB
and by Fredrik Lundh

C expat Library by James Clark C expat Mozilla Public Licence Version 1.1

3.11.1 Typical Transactions between AXWF and AXMEDIS in Delivering the UseCases

All the possible Workflow engines in the Open Source arena that are suitable for AXMEDIS offer a Web
application based User Interface.

The User Interface is then executed via a normal browser, while the User Interface logics reside on the
Application Server of the WorkFlow Engine.

The WorkFlow Manager will be a customisation of one of the suitable Open-Source Workflow Management
Systems. Some functions will be added, if not already present (e.g. searching engine).

The Workflow User Interface is included in the customisation to serve the integration of the selected
WorkFlow product with the AXMEDIS Framework. The Use Interface will use the WorkFlow Manager
class methods via the selected Workflow product internal interface.

The Workflow Manager supports the User Interface with the following class methods, once the user has been
identified as required (see requirements document and earlier sections relating to session AAA):

A) Search is a generic use case that can search for anything at any time both synchronously (during user

interaction online; i.e. whilst the client workspace-instance is online and running, or alternatively whilst it
is in-pause/offline (asynchronous search). The search can be blind/exploratory or more specific as in a
special case that can be inherited to search for eligible components to be worked on; as follows:

• Search in the AXWF Database for (sub)processes that have to be worked by the user; this is based on

specific search criteria

• Retrieve from AXWF DB, the AXMEDIS Components associated with (sub)processes

• Invoke the AXMEDIS Object Manager (or AXMEDIS DB Manager) to search for the components
based on search criteria (to be used by the search engine deployed by the AXMEDIS Object Manager)

B) Create a New Product Development, which typically entails creating new AXMEDIS Object instance

and a new workflow process instance; as follows:

• Create a new process instance in the AXWF DB

• Invoke the AXMEDIS Object Manager to create new AXMEDIS Object

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

75

• Link the process instance to the AXMEDIS Object instance

C) Discard an NPD, which implies the termination of the process instance:

• Cancel the process instance from the AXWF DB

• Invoke the AXMEDIS Object Manager to remove the associated AXMEDIS Object

D) Add a Component to a specified NPD; this can imply the creation of a new sub-process instance:

• Invoke the AXMEDIS Object Manager to create a new component in the AXMEDIS Object instance

• If the process flow requires it, create a sub-process instance in the AXWF DB

• Link the sub-process instance to the AXMEDIS Object component

E) Remove a Component from a specified NPD; this can imply the termination of a sub-process instance:

• Invoke the AXMEDIS Object Manager to delete the component

• If the process flow requires it, also cancel the associated sub-process instance

F) Start an Activity in the process flow instance (work_item) selected by the user (for example start editing a

component):

• The user selects from the work_items list and the choice of activity to start

• The WF manager automatically performs the selected actions in the process flow:

• Launching compositional/ formatting/ loading tool /publication tool /protection tool/ Program and

publications engine; or launching the local PC editor tool (see below for details)

G) Group is responsible for bundling components, people, processes, partners, projects, teams, packets,

digital assets products, etc into one entity which may be further referred to.

H) Show the Component in which the user has to work:

• Invokes the local PC viewing tool for showing the component associated with a work-item in the
work-item list (see below for details)

I) Track Component: shows the history of what has so far been performed on the component

• Invokes the AXMEDIS Object Manager (or the AXMEDIS DB Manager) for retrieving the history of
an AXMEDIS component associated with a work-item in the work-items list

J) Track CPA identifies the Critical Path Activities (CPA) and produces all the information regarding those

activities e.g. people involved, components being worked on, processes needing attention, possibly
implicitly or explicitly also tracks CPA-slack-critical objects/processes, etc.

K) Time-stamp Generate: it is an internal AXWFM Object Manager function, not visible to the user,

typically invoked by the Check-in/Check-out function

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

76

L) The AXWFM Object Manager invokes the AXMEDIS Object Manager (or AXMEDIS DB Manager) to
update the tracking information

M) Generate Version: again a function internal to the AXWFM Object Manager; can be explicitly executed

by the user or automatically generated by the AXWF process

• The WF Object Manager invokes the AXMEDIS Object Manager (or AXMEDIS DB Manager) for
updating the Object/component revision

N) List Work: lists in a hierarchical view the work-items in which the user can or has to perform activities

• The WF Object Manager retrieves from the AXWF DB the list of the work-items in which the user or
team is involved

O) Select a workitem is responsible for selecting a workitem from the work-list

P) Complete a Task sends the WorkFlow engine the trigger that causes it to have the respective user activity

recorded as completed and then to go to the next activity in the process-instance flow

Q) Distribute Work: AXWF function used for assigning activities to users

• The AXWF Object Manager invokes the AXWF DB for changing the process-instance information
related to users

R) Change State/Phase: again a function internal to AXWF Object Manager; can be explicitly executed by

the user or automatically generated by the AXWF process

• The AXWF Object Manager invokes the AXMEDIS Object Manager (or AXMEDIS DB Manager) to
update the Object State/phase; phase change typically occurs as a result of developmental changes as
reflected in the workflow-instance/NPD-instance

S) Global Viewer: shows details about the NPD

• Invokes the local PC viewing tool for showing the AXMEDIS Object associated to a work-item in the
work-item list (see below for details)

T) Notification: used to send notifications to other users in the project

• This may or may not invoke an external Notification engine

U) Check-in: used to lock an AXMEDIS component, and copy it to a user exclusive access area, ready for

download:

• Invoke the AXMEDIS Object Manager for locking the Object/component

• Copy the Object component in a Server area of exclusive access to the user, so that the user can

download it to his PC disk

• Invoke the AXMEDIS Object Manager for updating tracking information

V) Check-out: Applicable only to previously checked-in Objects. After having uploaded the modified

AXMEDIS component, re-loads it onto the AXMEDIS Object Manager and updates tracking data

• Copy to the AXMEDIS Object Manager the selected Object component from the Server area of
exclusive access of the user concerned

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

77

• Invoke the AXMEDIS Object Manager for unlocking the Object/component

• Invoke the AXMEDIS Object Manager for updating tracking information

W) Management functions for:

• Starting/stopping Workflows

• Viewing WorkFlow exceptions log

• Viewing Users’ Work-lists

• Viewing/Modifying/Deleting Process Instances

• Viewing/Modifying/Adding/Deleting Process definitions

• Viewing Process histories

• Viewing/Adding/Modifying/Deleting Users and permissions

• Viewing Adding/Modifying/Deleting Roles

3.11.2 WorkFlow User Interface Mock-ups (OpenFlow)

Description for the User Interface is reported in Part B Section 2.8 Workflow Editor and
Viewer.

4 WorkFlow Request Adapters (OpenFlow)

There will be a WorkFlow Request Adapter for each communication channel with the other AXMEDIS
tools:

1. WF AXOM Request Adatper for integrating the AXMEDIS Object Manager and all AXOM Editors

(WorkFlow Editor Channel)
2. WF Rule Editor Request Adapter for integrating all AXMEDIS Rule Editors (WorkFlow Rule Editor

Channel)
3. WF Engine Request Adapter for integrating all AXMEDIS Engines (WorkFlow Engine Channel)
4. WF DB Request Adapter for integrating the AXMEDIS DataBase and the Query Support functions

(WorkFlow Query and DataBase Channel)

The Request Adapters are the communication channels used by the WorkFlow Engine for issuing the request
to the above mentioned AXMEDIS components. This will ensure that when a task inside an activity has to
execute some AXMEDIS component, the proper Adapter will be called for invoking the correct method
through the Plug-ins.

Module Profile
WorkFlow Request Adapters

Executable or Library(Support) Library
Single Thread or Multithread Multithread

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

78

Language of Development Python or DTML
Responsible Name
Responsible Partner
Status (proposed/approved)
Platforms supported Microsoft Windows, Linux

Interfaces with other tools: Name of the communicating tools Communication model and format
(protected or not, etc.)

WorkFlow Engine Internal library calls
Plug-ins GET calls in http
WF Query and DB Interface GET calls in http
File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language, etc. Library used for the development,

platform, etc.

Used Libraries Name of the library and version Licence status: GPL. LGPL. PEK,

proprietary, authorized or not
OpenFlow OpenFlow 1.1 GPL 2.0
Zope by Zope Corporation Zope 2.7.3 ZPL 2.0 (Zope Public Licence 2.0),

open source, GPL compatible
Python by Stichting
Mathematisch Centrum,
Amsterdam, The Netherlands.

Python 2.3 Free Open Source by Stichting
Mathematisch Centrum, Amsterdam,
The Netherlands.

Xmlrpclib by Secret Labs AB
and by Fredrik Lundh

Xmlrpclib Free Open source by Secret Labs AB
and by Fredrik Lundh

C expat Library by James Clark C expat Mozilla Public Licence Version 1.1

4.1 WorkFlow Input Queue Adapters (OpenFlow)

There will be a WorkFlow Inut Queue Adapter for each communication channel with the other AXMEDIS
tools:

5. WF AXOM Input Queue Adatper for integrating the AXMEDIS Object Manager and all AXOM
Editors (WorkFlow Editor Channel)

6. WF Rule Editor Input Queue Adapter for integrating all AXMEDIS Rule Editors (WorkFlow Rule
Editor Channel)

7. WF Engine Input Queue Adapter for integrating all AXMEDIS Engines (WorkFlow Engine
Channel)

8. WF DB Input Queue Adapter for integrating the AXMEDIS DataBase and the Query Support
functions (WorkFlow Query and DataBase Channel)

The Input Queue Adapters are the communication channels used by the WorkFlow Engine for receiving the
responses of previously issued requests from the above mentioned AXMEDIS components: that is when a

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

79

response is received, the awaiting pending activity will be resumed by the WorkFlow Engine and the
response properly checked in order to continue with following activities in the process flow instance.

Module Profile
WorkFlow Input Queue Adapters

Executable or Library(Support) Library
Single Thread or Multithread Multithread
Language of Development Python or DTML
Responsible Name
Responsible Partner
Status (proposed/approved)
Platforms supported Microsoft Windows, Linux

Interfaces with other tools: Name of the communicating tools Communication model and format
(protected or not, etc.)

WorkFlow Engine Internal librariy calls
Plug-ins Xmlrpc calls in http
WF Query and DB Interface Xmlrpc calls in http

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language, etc. Library used for the development,

platform, etc.

Used Libraries Name of the library and version Licence status: GPL. LGPL. PEK,

proprietary, authorized or not
OpenFlow OpenFlow 1.1 GPL 2.0
Zope by Zope Corporation Zope 2.7.3 ZPL 2.0 (Zope Public Licence 2.0),

open source, GPL compatible
Python by Stichting
Mathematisch Centrum,
Amsterdam, The Netherlands.

Python 2.3 Free Open Source by Stichting
Mathematisch Centrum, Amsterdam,
The Netherlands.

Xmlrpclib by Secret Labs AB
and by Fredrik Lundh

Xmlrpclib Free Open source by Secret Labs AB
and by Fredrik Lundh

C expat Library by James Clark C expat Mozilla Public Licence Version 1.1

4.2 WorkFlow Gateways (OpenFlow)
There are four Gatways:

• AXOM WorkFlow Gateway (for the WorkFlow Editor Channel)
• Rule Editor WorkFlow Gateway (for the WorkFlow Rule Editor Channel)
• Engine WorkFlow Gateway (for the WorkFlow Engine Channel)

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

80

• DB WorkFlow Gateay (for Query and DataBase Channel)

The following UML schema describes the AXOM WorkFlow Gateway:

AXMEDIS Workflow
Manager::WF AXOM Request

Adapter

AXMEDIS Workflow Manager::WF
AXOM Input Queue Adapter

WorkFlow AXOM Request Gateway
WorkFlow AXOM Response Gateway

AXOM Command and Reporting

 The following UML schema describes the Rule Editor WorkFlow Gateway:

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

81

WorkFlow Rule Editor Request Gateway

WorkFlow Rule Editor Response Gateway

User Command and Reporting

AXMEDIS Workflow Manager::WF Rule Editor Request
Adapter

AXMEDIS Workflow Manager::WF Rule Editor
Input Queue Adapter

The following UML schema describes the Engine WorkFlow Gateway:

WorkFlow Engine Request Gateway

WorkFlow Engine Response Gateway

Engine Command and Reporting

AXMEDIS Workflow Manager::WF Engine Input
Queue Adapter

AXMEDIS Workflow Manager::WF Engine
Request Adapter

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

82

The following UML schema describes the DB WorkFlow Gateway:

All the four Gateways share the same architecture as outlined below:

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

83

OpenFlow WorkFlow Plug-in Architecture

WF Request Adapter WF Input Queue Adapter

WF Request
Gateway(ASP)

Microsoft IIS

http (GET)

AXOM C&R / User C&R / Engine C&R
Q.S. WebServices i/f / Object Loader/Mover

WebServices

WF Response Gateway

WebServices

Xmlrpc (http)

OpenFlow WorkFlow Engine

As previously described, the WF Request Adapter sends the requests via an http GET call. This http GET
call is received by a Web Server running Mictosoft IIS and directed to an ASP process called WF Request
Gateway. This ASP process decodes the GET requests and formats a WebService request towards the proper
AXMEDIS module.

When an AXMEDIS tool/engine wants to send back responses to the WorkFlow (i.e. Notifications), it calls a
WebServices in the WF Response Gateway. The WF Response Gateway encodes the response in an
XMLRPC call directed to the WF Input Queue Adapter.

Module Profile
WF Request Gateway

Executable or Library(Support) ASP Process
Single Thread or Multithread Multithread
Language of Development C++
Responsible Name
Responsible Partner
Status (proposed/approved)
Platforms supported Microsoft Windows

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)
WF Request Adapters GET calls in http

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

84

AXMEDIS modules WebServices

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

None

Used Libraries Name of the library and version Licence status: GPL. LGPL. PEK,

proprietary, authorized or not
Microsoft ASP TBD Microsoft .license terms

Module Profile
WF Response Gateway

Executable or Library(Support) Executable process
Single Thread or Multithread Multithread
Language of Development C++
Responsible Name
Responsible Partner
Status (proposed/approved)
Platforms supported Microsoft Windows

Interfaces with other tools: Name of the communicating tools Communication model and format

(protected or not, etc.)
WF Input Queue Adapters Xmlrpc calls
AXMEDIS modules WebServices

File Formats Used Shared with File format name or reference to a

section

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

None

Used Libraries Name of the library and version Licence status: GPL. LGPL. PEK,

proprietary, authorized or not
Microsoft .net TBD Microsoft .license terms
Xmlrpclib by Secret Labs AB
and by Fredrik Lundh

XMLRPClib Free Open source by Secret Labs
AB and by Fredrik Lundh

C expat Library by James Clark C expat Mozilla Public License Version 1.1

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

85

4.3 WorkFlow Gateways (Microsoft BizTalk)

When using Microsoft Biztalk, the architecture of the Gateways will be as shown below:

MS BizTalk WorkFlow Plug-in Architecture

WF Request Adapter WF Input Queue Adapter

AXOM C&R / User C&R / Engine C&R
Q.S. WebServices i/f / Object Loader/Mover

WebServices

BizTalk WorkFlow Engine

The Gateways will be really void, as they are no more needed, because MS BizTalk is able to natively
communicate through WebServices.

5 AXMEDIS Workflow Interface Specifications

5.1 The AXMEDIS Editor WorkFlow Channel

In the following Paragraph we will specify the interface between the WorkFlow and the AXMEDIS Object
Manager and the various AXMEDIS Editor/Viewer:

o AXMEDIS Object Editor/Viewer
o AXMEDIS DRM Editor/Viewer
o AXMEDIS External Editor/Viewer

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

86

o AXMEDIS Hierarchy Editor/Viewer
o AXMEDIS Metadata Editor/Viewer
o AXMEDIS Visual Editor/Viewer
o AXMEDIS Behaviour Editor/Viewer

5.1.1 The Interface between the WF Editor Request Gateway and the AXOM Command and
Reporting

The AXMEDIS Workflow Manager will communicate to AXOM’s Command and Reporting through WF
Editor Request Adapter. The WF Request Adapter sends the requests via an http GET call. This http GET
call is received by a Web Server running Microsoft IIS and directed to an ASP process called WF Request
Gateway. This ASP process decodes the GET requests and formats a WebService request towards the proper
AXMEDIS module, AXMEDIS Editor in this case. As AXOM, along with Command and Reporting, is a
static library, a listener service is required to listen to incoming Request from Workflow and invoke
AXMEDIS Editor accordingly. We call this listener service as AXOM_WebServices_Listener which will be
resident on client’s machine. AXOM WebServices Listener is a multithreading process written in C++ which
exposes methods through WebServices, listens to them and forwards the requests to the AXOM Command
and Reporting module which is a C++ library. So the interface between AXOM WebServices Listener and
AXOM Command and Reporting are C++ library calls.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

87

As the AXOM and Commands and Reporting are a set of libraries, we define a new function
Workflow_Applic_Launcher within the AXOM_WebService_Listener Module to launch the Editor. Upon
receipt of a request to launch the AXMEDIS Editor, the Workflow_Applic_Launcher will launch the editor
using a system call. The completion of the activity will be given directly by the Editor to the workflow
manager. It is probable that the Workflow_Applic_Launcher will be realised as independent process capable
of receiving commands form the Workflow manager and lanching the specific Applications if they are not
currently under execution on that computer.

As described before, the AXMEDIS Editor WorkFlow channel passes through the WF Editor Request
Gateway where the AXOM_WebService_Listener will expose the following methods, via WebServices:

• Edit_Object, for launching the AXMEDIS Object Editor and all its Plug-ins used for editing and
viewing AXMEDIS Objects, Object Behaviours, DRMs, Hierarchies and Metadata

• Add_Object to request the AXMEDIS Object Manager to have a new object created
• Compose_Object for creating a subobject inside an AXMEDIS Object
• Delete_Object to request the AXMEDIS Object Manager to have a specific object deleted
• Modify_Object to request the AXMEDIS Object Manager to have certain object attributes modified
• View_Object_Attribute to request the AXMEDIS Object Manager to allow the viewing of the object

attributes

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

88

• Add_History_Info to request the AXMEDIS Object Manager to have a history information added to
an object AXINFO

• View_History_Info to request the AXMEDIS Object Manager to retrieve history information of a
given object AXINFO

The method invocation is performed using a WebService request where the following parameters are sent (to
AXOM Command and Reporting) and received back (in WebService result) from the AXOM Command and
Reporting via AXOM_Web_Service_Listener:

• Edit_Object
o INPUT: AXOID, User_Credentials, AXRQID, Editing_type, Execution_Parameters,

EditorListenerService
o OUTPUT: Operation_Result (OK, EXCEPTION)
Editing_type specifies the type of Editor function or Plug-in to invoke (E.g. Metadata, DRM,
Behaviour, etc)
Execution_parameters is a string containing the execution string for the Editor
EditorListernerService is the Uri used by the WF Response Gateway for receiving the following
Notification about the termination of the Editor

• Add_Object
o INPUT: List of attributes_value (atrributeID, attributevalue), User_Credentials, AXRQID
o OUTPUT: Operation_Result (AXOID, EXCEPTION)
List of attributes_value is a list of duplets attribute_ID:attribute_value specifying the initial
attribute values for the Object: see AXOM for list of possible attributes
AXOID is the ID of the newly created Axmedi Object

• Compose_Object
o INPUT: AXOID, User_Credentials, AXRQID, Component_specifications
o OUTPUT: Operation_Result (OK, EXCEPTION)
Component_specifications contains XML specifications for the new created component

• Delete_Object

o INPUT: AXOID, User_Credentials, AXRQID
o OUTPUT: Operation_Result (OK, EXCEPTION)

• Modify_Object
o INPUT: AXOID, User_Credentials, list of attributes_value(attributeID:attributevalue),,

AXRQID
o OUTPUT: Operation_Result (OK, EXCEPTION)
List of attributes_value is a list of duplets attribute_ID:attribute_value specifying the attributes to
modify and their new value: see AXOM for list of possible attributes

• View_Object_Attribute
o INPUT: AXOID, User_Credentials, list of attributes(attributeID)
o OUTPUT: Operation_Result (list of attributes_value(attributeID:attributevalue),

EXCEPTION)
List_of_attribute is a list of attribute_ID, specifying the list of attribute values to be retrieved.
List of attributes_value is a list of duplets attribute_ID:attribute_value specifying the attributes
with their current value.

• Add_History_Info

o INPUT: AXOID, User_Credentials, log_info, AXRQID

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

89

o OUTPUT: Operation_Result (OK, EXCEPTION)
Log_info: contains log information to add: see AXINFO for specification.

• View_History_Info

o INPUT: AXOID, User_Credentials
o OUTPUT: Operation_Result (List of log_info, EXCEPTION)

Listo_of_log_info is a list of log_info: see AXINFO for specification.

User_Credentials contain information for:

• User Identification
• User Session Identification

AXOID is the identification of the AXMEDIS Object to be viewed/edited, etc

AXRQID uniquely identifies the update/create/delete request made to the AXOM Command and Reporting.
This is needed in order to:

• Identify the subsequent Notification from the AXOM Command and Reporting to the WF Response
Gateway via AXOM_WebService_Listener

• Not to have to duplicate the same request as previously put to the AXOM Command and Reporting

Module. We assume that, if the AXOM Command and Reporting receives a request with the same
AXRQID as a previous one it will send back the same Notification

The AXRQID “encapsulates” the WorkFlow Manager generated parameters (openflow_ID, process_ID,
activity_ID, instance_ID, workitem_ID).

The WSDL specification for the edit_Object method invocation is:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Editor"
targetNamespace="http://www.AXMEDIS.org/editor.wsdl"
xmlns:tns="http://www.AXMEDIS.org/editor.wsdl"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ax="urn:ax"
xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:MIME="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:DIME="http://schemas.xmlsoap.org/ws/2002/04/dime/wsdl/"
xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<schema targetNamespace="urn:ax"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

90

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ax="urn:ax"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <complextype name="attribute">
<sequence>
 <element name="attributeid" type="xsd:string" minOccurs="1" maxOccurs="1"/>
 <element name="attributevalue" type="xsd:string" minOccurs="1"
maxOccurs="1"/>
 </sequence>
 </complextype>
 <complextype name="attributelist">
 <sequence>
 <element name="attribute" type="attribute" minOccurs="1" maxOccurs="20"/>
 </sequence>
 </complextype>
<complexType name="attribute_request_list">
 <sequence>
 <element name="attributeid" type="xsd:string" minOccurs="1" maxOccurs="20" />
 </sequence>
</complexType>
<complexType name="HistoryInfo">
 <sequence>
 <element name="HistoryLog" type="xsd:string" minOccurs="1"
maxOccurs="100"/>
 </sequence>
 </complexType>
<complexType name="edit_Object-result">
 <sequence>
 <element name="result" type="xsd:boolean" minOccurs="1" maxOccurs="1"/>
 <element name="errormsg" type="xsd:string" minOccurs="0" maxOccurs="1" nillable="true"/>
 <element name="errorcode" type="xsd:int" minOccurs="1" maxOccurs="1"/>
 </sequence>
 </complexType>
 <!-- operation request element -->
 <element name="AXOID" type="xsd:string"/>
 <!-- operation request element -->
 <element name="User_Credeintials" type="xsd:string"/>
 <!-- operation request element -->
 <element name="execution_Parameters" type="xsd:string"/>
 <!-- operation request element -->
 <element name="editing_type" type="xsd:string"/>
 <!-- operation response element -->
 <element name="return" type="ax:edit_Object-result"/>
 <!-- operation request element -->

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

91

 <element name="EditorListenerService" type="xsd:anyURI"/>
 <!-- operation request element -->
 <element name="AXRQID" type="xsd:string"/>
 <!-- operation response element -->
 <element name="result" type="xsd:boolean"/>
 <element name="attributelist" type="attributelist"/>
 <element name="attribute_request_list" type="attribute_request_list" />
 <element name="HistoryInfo" type="HistoryInfo"/>
</schema>

</types>

<message name="edit_ObjectRequest">
<part name="AXOID" element="ax:AXOID"/>
<part name="User_Credentials" element="ax:User_Credentials"/>
<part name="execution_Parameters" element="ax:execution_Parameters"/>
<part name="editing_type" element="ax:editing_type"/>
<part name="AXRQID" element="ax:AXRQID"/>
<part name="EditorListenerService" element="ax:EditorListenerService"/>
</message>

<message name="geteditObjectResult">
<part name="return" element="ax:return"/>
</message>

<message name="Add_ObjectRequest">
<part name="User_Credentials" element="ax:User_Credentials"/>
<part name="AXRQID" element="ax:AXRQID"/>
<part name="attributeList" element="ax:attributeList" />
</message>

<message name="getAddObjectResult">
<part name="return" element="ax:return"/>
 <part name="AXOID" element="ax:AXOID"/>
</message>

<message name="Compose_ObjectRequest">
<part name="AXOID" element="ax:AXOID"/>
<part name="User_Credentials" element="ax:User_Credentials"/>
<part name="AXRQID" element="ax:AXRQID"/>
<part name="attributeList" element="ax:attributeList" />
</message>

<message name="getComposeObjectResult">
<part name="return" element="ax:return"/>
</message>

<message name="Delete_ObjectRequest">
<part name="AXOID" element="ax:AXOID"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

92

<part name="User_Credentials" element="ax:User_Credentials"/>
<part name="AXRQID" element="ax:AXRQID"/>
</message>

<message name="getDeleteObjectResult">
<part name="return" element="ax:return"/>
</message>

<message name="Modify_ObjectRequest">
 <part name="AXOID" element="ax:AXOID"/>
<part name="User_Credentials" element="ax:User_Credentials"/>
<part name="AXRQID" element="ax:AXRQID"/>
<part name="attributeList" element="ax:attributeList" />
</message>

<message name="getModifyObjectResult">
<part name="return" element="ax:return"/>
</message>

<message name="View_Object_AttributeRequest">
 <part name="AXOID" element="ax:AXOID"/>
<part name="User_Credentials" element="ax:User_Credentials"/>
<part name="AXRQID" element="ax:AXRQID"/>
<part name="attribute_Request_List" element="ax:attribute_Request_List" />
</message>

<message name="getViewObjectAttributeResult">
<part name="return" element="ax:return"/>
<part name="attributeList" element="ax:attributeList" />
</message>

<message name="Add_History_InfoRequest">
 <part name="AXOID" element="ax:AXOID"/>
<part name="User_Credentials" element="ax:User_Credentials"/>
<part name="AXRQID" element="ax:AXRQID"/>
<part name="HistoryInfo" element="ax:HistoryInfo" />
</message>

<message name="getAddHistoryInfoResult">
<part name="return" element="ax:return"/>
</message>

<message name="View_History_InfoRequest">
 <part name="AXOID" element="ax:AXOID"/>
<part name="User_Credentials" element="ax:User_Credentials"/>
<part name="AXRQID" element="ax:AXRQID"/>
</message>

<message name="getViewHistoryInfoResult">

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

93

<part name="return" element="ax:return"/>
<part name="HistoryInfo" element="ax:HistoryInfo" />
</message>

<portType name="EditorPortType">
<operation name="edit_Object">
 <documentation>Service definition of function ax:edit_Object</documentation>
 <input message="tns:edit_ObjectRequest"/>
 <output message="tns:getEditObjectResult"/>
</operation>
<operation name="Add_Object">
 <documentation>Service definition of function ax:Add_Object</documentation>
 <input message="tns:Add_ObjectRequest"/>
 <output message="tns:getAddObjectResult"/>
</operation>
<operation name="Compose_Object">
 <documentation>Service definition of function ax:Compose_Object</documentation>
 <input message="tns:Compose_ObjectRequest"/>
 <output message="tns:getComposeObjectResult"/>
</operation>
<operation name="Delete_Object">
 <documentation>Service definition of function ax:Delete_Object</documentation>
 <input message="tns:Delete_ObjectRequest"/>
 <output message="tns:getDeleteObjectResult"/>
</operation>
<operation name="Modify_Object">
 <documentation>Service definition of function ax:Modify_Object</documentation>
 <input message="tns:Modify_ObjectRequest"/>
 <output message="tns:getModifyObjectResult"/>
</operation>
<operation name="View_Object_Attribute">
 <documentation>Service definition of function ax:View_Object_attribute</documentation>
 <input message="tns:View_Object_attributeRequest"/>
 <output message="tns:getviewobjectattributeResult"/>
</operation>
<operation name="Add_History_Info">
 <documentation>Service definition of function ax:Add_History_Info</documentation>
 <input message="tns:Add_History_InfoRequest"/>
 <output message="tns:getAddHistoryInfoResult"/>
</operation>
<operation name="View_History_Info">
 <documentation>Service definition of function ax:View_History_Info</documentation>
 <input message="tns:View_History_InfoRequest"/>
 <output message="tns:getViewHistoryInfoResult"/>
</operation>

</portType>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

94

<binding name="Editor" type="tns:EditorPortType">
<SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="edit_Object">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </input>
 <output>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </output>
</operation>
<operation name="Add_Object">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </input>
 <output>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </output>
</operation>
<operation name="Compose_Object">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </input>
 <output>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </output>
</operation>
<operation name="Delete_Object">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </input>
 <output>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </output>
</operation>
<operation name="Modify_Object">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </input>
 <output>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </output>
</operation>
<operation name="View_Object_Attribute">
 <SOAP:operation style="rpc" soapAction=""/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

95

 <input>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </input>
 <output>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </output>
</operation>
<operation name="Add_History_Info">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </input>
 <output>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </output>
</operation>
<operation name="View_History_Info">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </input>
 <output>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </output>
</operation>

</binding>

<service name="Editor">
<documentation>gSOAP 2.7.0e generated service definition</documentation>
<port name="Editor" binding="tns:Editor">
 <SOAP:address location="http://www.AXMEDIS.org/Editor.cgi"/>
</port>
</service>

</definitions>

Operation_Result takes on different meaning/contents. Depending on the context of the invoked method, the
Operation_Result, if the result is satisfactory, it is to contain and/or confirm the following:

1. For View_Object_attribute it contains the retrieved attribute values

2. For View_History_Info it contains the retrieved tracking information

3. For Edit_Object it means that the Editor was successfully launched

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

96

4. For Add/Delete/Modify_Object and Add_History_Info it means that the modification is correctly
completed

In cases 3 above, a NOTIFICATION is needed in order to inform the WorkFlow engine of the completion
status of the committed operation.

The Notification is an asynchronous notification containing the original AXRQID and the Result. The
Notification is sent back through a WebService towards the WF Response Gateway, at the URI specified in
the EditorListenerService parameter.

5.1.2 Interface between the WF AXOM Request Adapter and the WF Editor Request
Gateway

The methods invoked and the parameters sent by WF AXOM Request Adapter to the WF Editor Request
Gateway are the same described in the preceeding Paragraph. There encoding, however, is different. The
request in in fact sent through an http GET call where the paramteres are invoked as follows:

GET/Control_Panel/Products/OpenFlow/AXWF/editor_name_request_editor?AXOID=”Object ID
string”&Credentials=”Credential string”&AXRQID=”Request ID
string”&execution_parameters=”execution parameter
string”&attribute_values=”attribute_name_1:attribute_value1,attribute_name2:attribute_value2:,etc
”&log_info=”log_info string” HTTP/1.1" 200 368
"http://15.156.120.195:8080/Control_Panel/Products/OpenFlow/leave/leave_startform"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705; .NET CLR 1.1.4322)"

Where editor_name is to be replaced by appropriate editor identifier “Object ID string” is a string
containing the AXOID, “Credential string” is a string containing the credentials and “Request ID
string” is a string containing the Request ID.

The response to the invoked method has the same contents listed in the preceeding Paragraph and is sent via
an http GET response. The response is XML coded, following the schema:

<xs:element name="Editor_Response">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true" minOccurs="0"/>
 <xs:element name="errorcode" type="xs:int"/>
 <xs:element name="AXOID" type="xs:string" minOccurs="0"/>
 <xs:element name="historylog" type="xs:string" minOccurs="0"
maxOccurs="100"/>
 <xs:element name="attributes" minOccurs="0" maxOccurs="20">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="attributeid" type="xs:string"/>
 <xs:element name="attributevalue" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

97

 </xs:complexType>
</xs:element>

5.1.3 The Interface between the WF AXOM Input Queue Adapter and the WF Editor
Response Gateway

This is interface is used for returning back Notification to WorkFlow Engine, related to previously issued
requests.

The Notification is used, as mentioned, to return to the WorkFlow the results of the requested operation in a
XMLRPC call. Specifically, it will contain:

• Edit_Object

o NOTIFICATION: AXRQID, Completion_Result (OK, EXCEPTION)

Where AXRQID is the AXRQID in the original request from the WorkFlow and Completion_result can be
either positive (OK or returned parameters) or negative (EXCEPTION is an error code returned for
diagnostic purposes and useful for troubleshooting).

The NOTIFICATION is sent via an XMLRPC call whose method name is “EditorNotification” and whose
parameter section is XML encoded as specified by the following schema:

<xs:element name="Editor_Notification">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true" minOccurs="0"/>
 <xs:element name="errorcode" type="xs:int"/>
 <xs:element name="AXRQID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

On receiving the Notification, the WF Response Adapter will give the following XML response, if
successfully received:
<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><string>OK</string></value>
 </param>
 </params>
 </methodResponse>

Otherwise, if the Notification cannot be received:
<?xml version="1.0"?>
<methodResponse>
 <fault>
 <value>
 <struct>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

98

 <member>
 <name>faultCode</name>
 <value><int>-errorcode</int></value>
 </member>
 <member>
 <name>faultString</name>
 <value><string>”Error string”.</string></value>
 </member>
 </struct>
 </value>
 </fault>
 </methodResponse>

5.1.4 The Interface between the AXOM Command and Reporting and the WF Editor
Response Gateway

As desdcribed before, the AXOM Command and Reporting will send its notifications to the WorkFlow
Engine via AXOM_WebService_Listener which will call a WebServices exposed by the WF Editor
Response Gateway .

The URI of the WebService is indicated in the previous request made by the WF Request Gateway in the
EditorListenerService parameter.

The Notification shall also contain the original Request ID issued in the request (AXRQID).

The following WSDL defines the Editor Notification WebService:

<?xml version="1.0" encoding="UTF-8"?>
<WSDL:definitions xmlns:tns="http://www.AXMEDIS.org/editor.wsdl" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ax="urn:ax"
xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:MIME="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:DIME="http://schemas.xmlsoap.org/ws/2002/04/dime/wsdl/"
xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/" xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://www.AXMEDIS.org/editor.wsdl" name="Editor">
 <WSDL:types>
 <schema targetNamespace="urn:ax" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ax="urn:ax"
xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="unqualified"
attributeFormDefault="unqualified">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <complexType name="Editor-result">
 <sequence>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

99

 <element name="result" type="xsd:boolean" minOccurs="1"
maxOccurs="1"/>
 <element name="errormsg" type="xsd:string" minOccurs="0"
maxOccurs="1" nillable="true"/>
 <element name="errorcode" type="xsd:int" minOccurs="1"
maxOccurs="1"/>
 </sequence>
 </complexType>
 <!-- operation response element -->
 <element name="return" type="ax:Editor-result"/>
 <!-- operation request element -->
 <element name="AXRQID" type="xsd:string"/>
 <!-- operation response element -->
 <element name="result" type="xsd:boolean"/>
 </schema>
 </WSDL:types>
 <message name="Editor_Notification">
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="return" element="ax:return"/>
 </message>
 <message name="getNotificationResult">
 <part name="return" element="ax:return"/>
 </message>
 <portType name="EditorNotificationPortType">
 <operation name="Editor_Notification">
 <documentation>Service definition of function
ax:Editor_Notification</documentation>
 <input message="tns:Editor_Notification"/>
 <output message="tns:getNotificationResult"/>
 </operation>
 </portType>
 <binding name="EditorNotification" type="tns:EditorNotificationPortType">
 <SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="Editor_Notification">
 <SOAP:operation style="rpc"/>
 <input>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </input>
 <output>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </output>
 </operation>
 </binding>
 <service name="EditorNotification">
 <documentation>gSOAP 2.7.0e generated service definition</documentation>
 <port name="EditorNotification" binding="tns:EditorNotification">
 <SOAP:address
location="http://www.AXMEDIS.org/EditorNotification.cgi"/>
 </port>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

100

 </service>
</WSDL:definitions>

5.2 The WorkFlow Engine Channel

In the following Paragraph we shall specify the interface between the WorkFlow and the AXMEDIS
Engines:

• AXMEDIS Compositional/Formatting Engine
• AXMEDIS Program and Publication Engine
• AXEPTool Loading Tool Engine
• AXEPTool Publication Tool Engine
• The Protection Tool Engine

5.2.1 The Interface between the WF Engine Request Gateway and the Engine Command
and Reporting

As described before, the AXMEDIS Engine WorkFlow channel passes through the WF Engine Request
Gateway where the Engine Command and Reporting will expose the following methods, via WebServices:

• Install_and_activate for installing a XML rule in the scheduler and activate it. This method is valid
for the Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for
the Protection Engine.

• Run_rule for immediately run a rule already loaded inside the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Activate_rule for activating a rule already loaded inside the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• deactivate_rule for disabling a not-running rule. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Suspend_rule for suspending a rule for a specified time interval. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Pause_rule, for suspending a rule until it will be restarted. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Kill_rule for stopping the execution of a rule. This method is valid for the Compositional/Formatting
engine, for the AxepTool Loading and Publication Engine and for the Protection Engine.

• Remove_rule for removing a rule from the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Resume_rule for resuming a paused rule. This method is valid for the Compositional/Formatting
engine, for the AxepTool Loading and Publication Engine and for the Protection Engine.

• Get_rule_status for getting the status of a rule inside the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

101

• Get_rule_logs for getting history log of a rule. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Get_list_of_rules for getting the list of the rules of a certain user inside the scheduler. This method is
valid for the Compositional/Formatting engine, for the AxepTool Loading and Publication Engine
and for the Protection Engine.

• Get_rule for getting the XML definition of a rule inside the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Status_request_to_PnP for getting the status of a Program of the Program and Publication Engine
• Suspend_PnP_Program for suspending a Program of the Program and Publication Engine
• Abort_PnP_Program for aborting a Program of the Program and Publication Engine
• Resume_PnP_Program for resuming a suspended Program of the Program and Publication Engine
• Activate_PnP_Program for acrivating a Program of the Program and Publication Engine
• WorFlow_Notification is used to return back to the requesting engine (basically PnP) the status

about the requested execution of a WorFlow process

The method invocation is performed via a WebService request where the following parameters are sent (to
Engine Command and Reporting) and received back (in WebService result) from the Engine Command and
Reporting:

• install_and_activate:

o INPUT: User_Credentials, AXRQID, XML_rule_schema, EngineListenerService
o OUTPUT: Operation_Result (OK, EXCEPTION)
XML_Rule_schema specifies the XML schema of the rule to install in the scheduler

• run_rule:

o INPUT: User_Credentials, AXRQID, RuleID, rule_type, EnginelistenerService
o OUTPUT: Operation_Result (OK, EXCEPTION)

• Activate_rule:

o INPUT: User_Credentials, AXRQID, RuleID, rule_type, EnginelistenerService
o OUTPUT: Operation_Result (OK, EXCEPTION)

• deactivate_rule:

o INPUT: User_Credentials, AXRQID, RuleID, rule_type
o OUTPUT: Operation_Result (OK, EXCEPTION)

• Suspend_rule:

o INPUT: User_Credentials, AXRQID, RuleID, rule_type, Max_time
o OUTPUT: Operation_Result (OK, EXCEPTION)
Max_time specifies the maximum amount of time for the rule to remain suspended

• Pause_rule:

o INPUT: User_Credentials, AXRQID, RuleID, rule_type
o OUTPUT: Operation_Result (OK, EXCEPTION)

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

102

• Kill_rule:

o INPUT: User_Credentials, AXRQID, RuleID, rule_type
o OUTPUT: Operation_Result (OK, EXCEPTION)

• Remove_rule:

o INPUT: User_Credentials, AXRQID, RuleID, rule_type
o OUTPUT: Operation_Result (OK, EXCEPTION)

• Resume_rule:

o INPUT: User_Credentials, AXRQID, RuleID, rule_type, EnginelistenerService
o OUTPUT: Operation_Result (OK, EXCEPTION)

• Get_rule_status:

o INPUT: User_Credentials, AXRQID, RuleID, rule_type
o OUTPUT: Operation_Result (STATUS, EXCEPTION)
STATUS is the current status of the rule in the scheduler

• Get_rule_logs:

o INPUT: User_Credentials, AXRQID, RuleID, rule_type
o OUTPUT: Operation_Result (List of log_info, EXCEPTION)
List of log_info is the list containint the lof of the rule

• Get_list_of_rules:

o INPUT: User_Credentials, AXRQID, rule_type
o OUTPUT: Operation_Result (List of RuleID, EXCEPTION)

• Get_rule:

o INPUT: User_Credentials, AXRQID, RuleID, rule_type
o OUTPUT: Operation_Result (XML_Rule_schema, EXCEPTION)
XML_Rule_schema specifies the XML schema of the rule in the scheduler

• Status_request_to_PnP:

o INPUT: User_Credentials, AXRQID, ProgramID
o OUTPUT: Operation_Result (STATUS, EXCEPTION)
ProgramID is the unique identifier of the program.
STATUS is the status of the Program

• Suspend_PnP_Program:
o INPUT: User_Credentials, AXRQID, ProgramID
o OUTPUT: Operation_Result (OK, EXCEPTION)
ProgramID is the unique identifier of the program.

• abort_PnP_Program:

o INPUT: User_Credentials, AXRQID, ProgramID
o OUTPUT: Operation_Result (OK, EXCEPTION)

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

103

ProgramID is the unique identifier of the program.

• resume_PnP_Program:

o INPUT: User_Credentials, AXRQID, ProgramID, EnginelistenerService
o OUTPUT: Operation_Result (OK, EXCEPTION)
ProgramID is the unique identifier of the program.

• activate_PnP_Program:

o INPUT: User_Credentials, AXRQID, ProgramID, EnginelistenerService
o OUTPUT: Operation_Result (OK, EXCEPTION)
ProgramID is the unique identifier of the program.

• WorkFlow_Notification:

o INPUT: AXRQID, STATUS
o OUTPUT: Operation_Result (OK, EXCEPTION)
Where, in this case, AXRQID is the original RequestID sent from the engine to the WorkFlow ans
STATUS is the completion status of the requested process.

User_Credentials contain information for:

• User Identification
• User Session Identification

AXRQID uniquely identifies the previous request sent to the engine through the WF Rule Editor Channel.
RuleID specifies the unique identification of the rule to be managed.
Rule_type specifies the type of rule, i.e. the Engine that will run it.
EnginelistenerService is the URI to be used by the engine to return back the status of the evolution of the
rule in the WebService to the WF Response Gateway.

The WSDL specification for the method invocations is:

<?xml version="1.0" encoding="UTF-8"?>
<WSDL:definitions xmlns:tns="http://www.AXMEDIS.org/engine.wsdl" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ax="urn:ax" xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:MIME="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:DIME="http://schemas.xmlsoap.org/ws/2002/04/dime/wsdl/" xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/" targetNamespace="http://www.AXMEDIS.org/engine.wsdl"
name="Engine">
 <WSDL:types>
 <xsi:schema xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ax="urn:ax"
xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="urn:ax" elementFormDefault="unqualified"
attributeFormDefault="unqualified">
 <xsi:import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <xsi:complexType name="rule_list">
 <xsi:sequence>
 <xsi:element name="ruleid" type="xsd:string" maxOccurs="20"/>
 </xsi:sequence>
 </xsi:complexType>
 <xsi:complexType name="rulehistory">
 <xsi:sequence>
 <xsi:element name="ruleLog" type="xsd:string" maxOccurs="100"/>
 </xsi:sequence>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

104

 </xsi:complexType>
 <xsi:complexType name="engine-result">
 <xsi:sequence>
 <xsi:element name="result" type="xsd:boolean"/>
 <xsi:element name="errormsg" type="xsd:string" nillable="true"
minOccurs="0"/>
 <xsi:element name="errorcode" type="xsd:int"/>
 </xsi:sequence>
 </xsi:complexType>
 <!-- operation request element -->
 <xsi:element name="User_Credentials" type="xsd:string"/>
 <!-- operation request element -->
 <xsi:element name="rule_type" type="xsd:string"/>
 <!-- operation response element -->
 <xsi:element name="return" type="ax:engine-result"/>
 <!-- operation request element -->
 <xsi:element name="EngineListenerService" type="xsd:anyURI"/>
 <!-- operation request element -->
 <xsi:element name="AXRQID" type="xsd:string"/>
 <!-- operation response element -->
 <xsi:element name="result" type="xsd:boolean"/>
 <xsi:element name="rulehistory" type="ax:rulehistory"/>
 <xsi:element name="xml_rule_schema" type="xsd:string"/>
 <xsi:element name="ruleid" type="xsd:string"/>
 <xsi:element name="programid" type="xsd:string"/>
 <xsi:element name="suspend_time" type="xsd:int"/>
 <xsi:element name="status" type="xsd:string"/>
 <xsi:element name="rule_list" type="ax:rule_list"/>
 </xsi:schema>
 </WSDL:types>
 <message name="install_and_activateRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="xml_rule_schema" element="ax:xml_rule_schema"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="EngineListenerService" element="ax:EngineListenerService"/>
 </message>
 <message name="getinstallandactivateResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="run_ruleRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="ruleid" element="ax:ruleid"/>
 <part name="rule_type" element="ax:rule_type"/>
 <part name="EngineListenerService" element="ax:EngineListenerService"/>
 </message>
 <message name="getrunruleResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="activate_ruleRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="ruleid" element="ax:ruleid"/>
 <part name="rule_type" element="ax:rule_type"/>
 <part name="EngineListenerService" element="ax:EngineListenerService"/>
 </message>
 <message name="getactivateruleResult">
 <part name="return" element="ax:return"/>
 </message>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

105

 <message name="deactivate_ruleRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="ruleid" element="ax:ruleid"/>
 <part name="rule_type" element="ax:rule_type"/>
 </message>
 <message name="getdeactivateruleResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="suspend_ruleRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="ruleid" element="ax:ruleid"/>
 <part name="rule_type" element="ax:rule_type"/>
 <part name="suspent_time" element="ax:suspend_time"/>
 </message>
 <message name="getsuspendruleResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="pause_ruleRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="ruleid" element="ax:ruleid"/>
 <part name="rule_type" element="ax:rule_type"/>
 </message>
 <message name="getpauseruleResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="kill_ruleRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="ruleid" element="ax:ruleid"/>
 <part name="rule_type" element="ax:rule_type"/>
 </message>
 <message name="getkillruleResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="remove_ruleRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="ruleid" element="ax:ruleid"/>
 <part name="rule_type" element="ax:rule_type"/>
 </message>
 <message name="getremoveruleResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="resume_ruleRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="ruleid" element="ax:ruleid"/>
 <part name="rule_type" element="ax:rule_type"/>
 <part name="EngineListenerService" element="ax:EngineListenerService"/>
 </message>
 <message name="getresumeruleResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="get_rule_statusRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

106

 <part name="ruleid" element="ax:ruleid"/>
 <part name="rule_type" element="ax:rule_type"/>
 </message>
 <message name="getgetrulestatusResult">
 <part name="return" element="ax:return"/>
 <part name="status" element="ax:status"/>
 </message>
 <message name="get_rule_logsRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="ruleid" element="ax:ruleid"/>
 <part name="rule_type" element="ax:rule_type"/>
 </message>
 <message name="getgetrulelogsResult">
 <part name="return" element="ax:return"/>
 <part name="rulehistory" element="ax:rulehistory"/>
 </message>
 <message name="get_list_of_rulesRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="rule_type" element="ax:rule_type"/>
 </message>
 <message name="getgetlistofrulesResult">
 <part name="return" element="ax:return"/>
 <part name="rule_list" element="ax:rule_list"/>
 </message>
 <message name="get_ruleRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="ruleid" element="ax:ruleid"/>
 <part name="rule_type" element="ax:rule_type"/>
 </message>
 <message name="getgetruleResult">
 <part name="return" element="ax:return"/>
 <part name="xml_rule_schema" element="ax:xml_rule_schema"/>
 </message>
 <message name="status_request_to_PnPRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="programid" element="ax:programid"/>
 </message>
 <message name="getstatusrequesttoPnPResult">
 <part name="return" element="ax:return"/>
 <part name="status" element="ax:status"/>
 </message>
 <message name="suspend_PnP_programRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="programid" element="ax:programid"/>
 </message>
 <message name="getsuspendPnPprogramResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="abort_PnP_programRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="programid" element="ax:programid"/>
 </message>
 <message name="getabortPnPprogramResult">

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

107

 <part name="return" element="ax:return"/>
 </message>
 <message name="resume_PnP_programRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="programid" element="ax:programid"/>
 </message>
 <message name="getresumePnPprogramResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="activate_PnP_programRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="ruleid" element="ax:ruleid"/>
 <part name="EngineListenerService" element="ax:EngineListenerService"/>
 </message>
 <message name="getactivatePnPprogramResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="workflow_NotificationRequest">
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="status" element="ax:status"/>
 </message>
 <message name="getworkflownotificationResult">
 <part name="return" element="ax:return"/>
 </message>
 <portType name="EnginePortType">
 <operation name="install_and_activate">
 <documentation>Service definition of function ax:install_and_activate</documentation>
 <input message="tns:install_and_activateRequest"/>
 <output message="tns:getinstallandactivateResult"/>
 </operation>
 <operation name="run_rule">
 <documentation>Service definition of function ax:run_rule</documentation>
 <input message="tns:run_ruleRequest"/>
 <output message="tns:getrunruleResult"/>
 </operation>
 <operation name="activate_rule">
 <documentation>Service definition of function ax:activate_rule</documentation>
 <input message="tns:activate_ruleRequest"/>
 <output message="tns:getactivateruleResult"/>
 </operation>
 <operation name="deactivate_rule">
 <documentation>Service definition of function ax:deactivate_rule</documentation>
 <input message="tns:deactivate_ruleRequest"/>
 <output message="tns:getdeactivateruleResult"/>
 </operation>
 <operation name="suspend_rule">
 <documentation>Service definition of function ax:suspend_rule</documentation>
 <input message="tns:suspend_ruleRequest"/>
 <output message="tns:getsuspendruleResult"/>
 </operation>
 <operation name="pause_rule">
 <documentation>Service definition of function ax:pause_rule</documentation>
 <input message="tns:pause_ruleRequest"/>
 <output message="tns:getpauseruleResult"/>
 </operation>
 <operation name="kill_rule">
 <documentation>Service definition of function ax:kill_rule</documentation>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

108

 <input message="tns:kill_ruleRequest"/>
 <output message="tns:getkillruleResult"/>
 </operation>
 <operation name="remove_rule">
 <documentation>Service definition of function ax:remove_rule</documentation>
 <input message="tns:remove_ruleRequest"/>
 <output message="tns:getremoveruleResult"/>
 </operation>
 <operation name="resume_rule">
 <documentation>Service definition of function ax:resume_rule</documentation>
 <input message="tns:resume_ruleRequest"/>
 <output message="tns:getresumeruleResult"/>
 </operation>
 <operation name="get_rule_status">
 <documentation>Service definition of function ax:get_rule_status</documentation>
 <input message="tns:get_rule_statusRequest"/>
 <output message="tns:getgetrulestatusResult"/>
 </operation>
 <operation name="get_rule_logs">
 <documentation>Service definition of function ax:get_rule_logs</documentation>
 <input message="tns:get_rule_logsRequest"/>
 <output message="tns:getgetrulelogsResult"/>
 </operation>
 <operation name="get_list_of_rules">
 <documentation>Service definition of function ax:get_list_of_rules</documentation>
 <input message="tns:get_list_of_rulesRequest"/>
 <output message="tns:getgetlistofrulesResult"/>
 </operation>
 <operation name="get_rule">
 <documentation>Service definition of function ax:get_rule</documentation>
 <input message="tns:get_ruleRequest"/>
 <output message="tns:getgetruleResult"/>
 </operation>
 <operation name="status_request_to_PnP">
 <documentation>Service definition of function ax:status_request_to_PnP</documentation>
 <input message="tns:status_request_to_PnPRequest"/>
 <output message="tns:getstatusrequesttoPnPResult"/>
 </operation>
 <operation name="suspend_PnP_program">
 <documentation>Service definition of function ax:suspend_PnP_program</documentation>
 <input message="tns:suspend_PnP_programRequest"/>
 <output message="tns:getsuspendPnPprogramResult"/>
 </operation>
 <operation name="abort_PnP_program">
 <documentation>Service definition of function ax:abort_PnP_program</documentation>
 <input message="tns:abort_PnP_programRequest"/>
 <output message="tns:getabortPnPprogramResult"/>
 </operation>
 <operation name="resume_PnP_program">
 <documentation>Service definition of function ax:resume_PnP_program</documentation>
 <input message="tns:resume_PnP_programRequest"/>
 <output message="tns:getresumePnPprogramResult"/>
 </operation>
 <operation name="activate_PnP_program">
 <documentation>Service definition of function ax:activate_PnP_program</documentation>
 <input message="tns:activate_PnP_programRequest"/>
 <output message="tns:getactivatePnPprogramResult"/>
 </operation>
 <operation name="workflow_notification">

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

109

 <documentation>Service definition of function ax:workflow_notification</documentation>
 <input message="tns:workflow_NotificationRequest"/>
 <output message="tns:getworkflownotificationResult"/>
 </operation>
 </portType>
 <WSDL:binding name="Engine" type="tns:EnginePortType">
 <SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <WSDL:operation name="install_and_activate">
 <SOAP:operation soapAction="urn:#install_and_activate"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="run_rule">
 <SOAP:operation soapAction="urn:#run_rule"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="activate_rule">
 <SOAP:operation soapAction="urn:#activate_rule"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="deactivate_rule">
 <SOAP:operation soapAction="urn:#deactivate_rule"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="suspend_rule">
 <SOAP:operation soapAction="urn:#suspend_rule"/>
 <input>
 <SOAP:body use="literal"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

110

 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="pause_rule">
 <SOAP:operation soapAction="urn:#pause_rule"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="kill_rule">
 <SOAP:operation soapAction="urn:#kill_rule"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="remove_rule">
 <SOAP:operation soapAction="urn:#remove_rule"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="resume_rule">
 <SOAP:operation soapAction="urn:#resume_rule"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="get_rule_status">
 <SOAP:operation soapAction="urn:#get_rule_status"/>
 <input>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

111

 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="get_rule_logs">
 <SOAP:operation soapAction="urn:#get_rule_logs"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="get_list_of_rules">
 <SOAP:operation soapAction="urn:#get_list_of_rules"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="get_rule">
 <SOAP:operation soapAction="urn:#get_rule"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="status_request_to_PnP">
 <SOAP:operation soapAction="urn:#status_request_to_PnP"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="suspend_PnP_program">
 <SOAP:operation soapAction="urn:#suspend_PnP_program"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

112

 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="abort_PnP_program">
 <SOAP:operation soapAction="urn:#abort_PnP_program"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="resume_PnP_program">
 <SOAP:operation soapAction="urn:#resume_PnP_program"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="activate_PnP_program">
 <SOAP:operation soapAction="urn:#activate_PnP_program"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="workflow_notification">
 <SOAP:operation soapAction="urn:#workflow_notification"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 </WSDL:binding>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

113

 <service name="Engine">
 <documentation>gSOAP 2.7.0e generated service definition</documentation>
 <port name="Engine" binding="tns:Engine">
 <SOAP:address location="http://www.AXMEDIS.org/Engine.cgi"/>
 </port>
 </service>
</WSDL:definitions>

Operation_result a Boolean “true” if the request is OK, or a Boolean “false” if the request gets an error: in
the latter case a error code and an error message is returned as well.

The Notifications about the Rule evolution are asynchronous notification containing the original AXRQID
and the Status. The Notification is sent back through a WebService towards the WF Response Gateway, at
the URI specified in the EnginelistenerService parameter.

5.2.2 Interface between the WF Engine Request Adapter and the WF Engine Request
Gateway

The methods invoked and the parameters invoked by WF Engine Request Adapter to the WF Engine Request
Gateway are the same described in the preceeding Paragraph. Their encoding, however, is different. The
request in in fact sent through an http GET call where the paramteres are invoked as follows:

As an example to understand the response, consider the compositional/formatting engine response
to a request.

GET/Control_Panel/Products/OpenFlow/AXWF/comp_format_request_status?Credentials=”Crede
ntial string”&AXRQID=”Request ID string” HTTP/1.1" 200 368
"http://15.156.120.195:8080/Control_Panel/Products/OpenFlow/leave/leave_startform"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705; .NET CLR 1.1.4322)"

Where “Credential string” is a string containing the credentials and “Request ID string” is a string
containing the Request ID.

The response to the invoked method has the same contents listed in the preceeding Paragraph and is sent via
an http GET response. The response is XML coded, following the schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Engine_Response">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true" minOccurs="0"/>
 <xs:element name="errorcode" type="xs:int"/>
 <xs:element name="ruleid" type="xs:string" minOccurs="0" maxOccurs="20"/>
 <xs:element name="status" type="xs:string" minOccurs="0"/>
 <xs:element name="xml_rule_schema" type="xs:string" minOccurs="0"/>
 <xs:element name="rulelog" type="xs:string" minOccurs="0" maxOccurs="100"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

114

5.2.3 The Interface between the WF Engine Input Queue Adapter and the WF Engine
Response Gateway

The WF Engine Response Gateway gets, through WebServices:

• Notifications about the status of the requested RuleID and ProgramID
• Requests for executing a WorFlow process

The Notification is used to return to the WorkFlow the status of the evolution of the rules requested to the
AXMEDIS Engine via the WF Rule Editor Channel. Specifically, it will contain:

From the Compositional / Formatting, AxepTool Loading and Publication and Protection:
o NOTIFICATION Input: AXRQID, rule_type, Completion_Result (STATUS, EXCEPTION)

STATUS = Status of the Request identified by AXRQID
Rule_type = type of rule identifying the Engine

From the Program and Publication Engine:

o NOTIFICATION Input: AXRQID, Completion_Result (STATUS, EXCEPTION)

STATUS = Status of the Request identified by AXRQID

Where AXRQID is the AXRQID in the original request from the WorkFlow and Completion_result can be
either positive (OK or result) or negative (EXCEPTION is an error code returned for diagnostic purposes and
useful for troubleshooting).

The NOTIFICATION is sent via an XMLRPC call whose method name is “EngineNotification” and whose
parameter section is XML encoded as specified by the following schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Engine_Notification">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true"
minOccurs="0"/>
 <xs:element name="errorcode" type="xs:int"/>
 <xs:element name="AXRQID" type="xs:string"/>
 <xs:element name="status" type="xs:string"/>
 <xs:element name="rule_type" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

On receiving the Notification, the WF Response Adapter will give the following XML response, if
successfully received:
<?xml version="1.0"?>
<methodResponse>
 <params>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

115

 <param>
 <value><string>OK</string></value>
 </param>
 </params>
 </methodResponse>

Otherwise, if the Notification cannot be received:
<?xml version="1.0"?>
<methodResponse>
 <fault>
 <value>
 <struct>
 <member>
 <name>faultCode</name>
 <value><int>-errorcode</int></value>
 </member>
 <member>
 <name>faultString</name>
 <value><string>”Error string”.</string></value>
 </member>
 </struct>
 </value>
 </fault>
 </methodResponse>

Where AXRQID is a string containing the the original request sent to the Engine.

Result is a positive integer when the request was successfully completed, or negative integer
otherwise.

Status is the Status of the Request.
The request for executing a WorFlow process is sent with the following parameters:

WORFLOW_PROCESS_REQUEST Input: ProcessID, AXRQID, EnginelistenerService

ProcessID is the identification of the process definition that has to be instantiated, AXRQID is the Request
identification which will be later used to send back notification to the requesting entity,
EnginelistenerService is the URI to be used to send back such notifications.

The WORFLOW_PROCESS_REQUEST is sent via an XMLRPC call whose XML encoding is specified:
The WORFLOW_PROCESS_REQUEST is sent via an XMLRPC call whose method name is
“WorkFlow_Process_Request” and whose parameter section is XML encoded as specified by the following
schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

116

 <xs:element name="WorkFlow_Process_Request">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AXRQID" type="xs:string"/>
 <xs:element name="processid" type="xs:string"/>
 <xs:element name="EngineListenerService" type="xs:anyURI"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

On receiving the Request, the WF Response Adapter will give the following XML response, if successfully
received:
<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><string>OK</string></value>
 </param>
 </params>
 </methodResponse>
Otherwise, if the Notification cannot be received:
<?xml version="1.0"?>
<methodResponse>
 <fault>
 <value>
 <struct>
 <member>
 <name>faultCode</name>
 <value><int>-errorcode</int></value>
 </member>
 <member>
 <name>faultString</name>
 <value><string>”Error string”.</string></value>
 </member>
 </struct>
 </value>
 </fault>
 </methodResponse>

5.2.4 The Interface between the Engine Command and Reporting and the WF Engine
Response Gateway

As desdcribed before, the Engine Command and Reporting will send its notifications to the WorkFlow
Engine by calling a WebServices exposed by the WF Engine Response Gateway.

The URI of the WebService is indicated in the previous request made by the WF Request Gateway in the
EngineListenerService parameter.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

117

The Notification shall also contain the original Request ID issued in the request (AXRQID).

The following WSDL defines the Engine Notification WebService:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Engine"
targetNamespace="http://www.AXMEDIS.org/engine.wsdl"
xmlns:tns="http://www.AXMEDIS.org/engine.wsdl"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ax="urn:ax"
xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:MIME="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:DIME="http://schemas.xmlsoap.org/ws/2002/04/dime/wsdl/"
xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<schema targetNamespace="urn:ax"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ax="urn:ax"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
<complexType name="Engine-result">
 <sequence>
 <element name="result" type="xsd:boolean" minOccurs="1" maxOccurs="1"/>
 <element name="errormsg" type="xsd:string" minOccurs="0" maxOccurs="1" nillable="true"/>
 <element name="errorcode" type="xsd:int" minOccurs="1" maxOccurs="1"/>
 </sequence>
 </complexType>
 <!-- operation response element -->
 <element name="return" type="ax:Engine-result"/>
 <!-- operation request element -->
 <element name="AXRQID" type="xsd:string"/>
 <!-- operation response element -->
 <element name="result" type="xsd:boolean"/>
 <element name="status" type="xsd:string"/>
 <element name="rule_type" type="xsd:string"/>
 <element name="processid" type="xsd:string"/>
 <element name="EngineListenerService" type="xsd:anyURI"/>
</schema>

</types>

<message name="Engine_Notification">
<part name="AXRQID" element="ax:AXRQID"/>
<part name="status" element="ax:status"/>
<part name="return" element="ax:return"/>
<part name="rule_type" element="ax:rule_type"/>
</message>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

118

<message name="getNotificationResult">
<part name="return" element="ax:return"/>
</message>

<message name="WorFlow_ProcessRequest">
<part name="AXRQID" element="ax:AXRQID"/>
<part name="return" element="ax:return"/>
<part name="processid" element="ax:processid"/>
<part name="EngineListenerService" element="ax:EngineListenerService"/>
</message>

<message name="geteworkflowprocessResult">
<part name="return" element="ax:return"/>
</message>

<portType name="EdnginNotificationPortType">
<operation name="Engine_Notification">
 <documentation>Service definition of function ax:Engne_Notification</documentation>
 <input message="tns:Engine_Notification"/>
 <output message="tns:getNotificationResult"/>
</operation>
<operation name="WorkFlow_Process">
 <documentation>Service definition of function ax:WorkFlow_Process</documentation>
 <input message="tns:WorkFlow_ProcessRequest"/>
 <output message="tns:getworkflowprocessResult"/>
</operation>

</portType>

<binding name="EngineNotification" type="tns:EngineNotificationPortType">
<SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="Engine_Notification">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </input>
 <output>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </output>
</operation>
<operation name="WorkFlow_Process">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </input>
 <output>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </output>
</operation>

</binding>

<service name="EngineNotification">
<documentation>gSOAP 2.7.0e generated service definition</documentation>
<port name="EditorNotification" binding="tns:EngineNotification">
 <SOAP:address location="http://www.AXMEDIS.org/EngineNotification.cgi"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

119

</port>
</service>

</definitions>

5.3 The WorkFlow Rule Editor Channel
In the following Paragraph we will specify the interface between the WorkFlow and the AXMEDIS Rule
Editors:

o AXMEDIS Compositional/Formatting Rule Editor
o AXMEDIS Program and Publication User Interface
o AXEPTool Publication/Loading Rule Editor
o AXMEDIS Protection User Interface and Rule Editor

5.3.1 The Interface between the WF Rule Editor Request Gateway and the User Command
and Reporting

As described before, the AXMEDIS Rule Editor WorkFlow channel passes through the WF Rule Editor
Request Gateway where the User Command and Reporting will expose the following methods, via
WebServices:

• Edit_Composition_Formatting_Rule for launching the Composition/Formatting Rule Editor
• Program_Publication_User_Interface for launching the Program/Publication User Interface
• Activate_Program_Publication for requesting the activation of a Program
• List_of_Programs for requesting the list of current programs in PnP
• Edit_AXEPTool_Rule for launching the AXEPTool Rule Editor
• Edit_Protection_Rule for launching the Protection Rule Editor

The method invocation is performed via a WebService request where the following parameters are sent (to
User Command and Reporting) and received back (in WebService result) from the User Command and
Reporting:

• Edit_Composition_Formatting_Rule:

o INPUT: AXRQID, User_Credentials, XML_Rule_header, UserListenerService
o OUTPUT: Operation_Result (OK, EXCEPTION)
XML_Rule_header is an XML header containing an uncomplete rule to edit
UserListenerService is the URI to send back notification when the editor is terminated

• Program_Publication_User_Interface:

o INPUT: User_Credentials, AXRQID, UserListenerService, ProgramName
o OUTPUT: Operation_Result (OK, EXCEPTION)
UserListenerService is the URI to send back notification when the editor is terminated
ProgramName is the name of the Program to edit

• Activate_Program_Publication:

o INPUT: User_Credentials, AXRQID, ProgramID, UserListenerService
o OUTPUT: Operation_Result (OK, EXCEPTION)
ProgramID is the indentification of the Program to activate

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

120

UserListenerService is the URI to send back notifications about the status of the evolution of the
activated program

• List_of_Programs:

o INPUT: User_Credentials, AXRQID
o OUTPUT: Operation_Result (List of ProgramName, EXCEPTION)
List of ProgramName is the current list of the programs

• Edit_AXEPTool_Rule:

o INPUT: AXRID, User_Credentials, AXRQID, UserListenerService, RuleName
o OUTPUT: Operation_Result (OK, EXCEPTION)
UserListenerService is the URI to send back notification when the editor is terminated
RuleName is the name of the Rule to edit

• Edit_Protection_Rule:

o INPUT: AXRID, User_Credentials, AXRQID, UserListenerService, RuleName
o OUTPUT: Operation_Result (OK, EXCEPTION)
UserListenerService is the URI to send back notification when the editor is terminated
RuleName is the name of the Rule to edit

User_Credentials contain information for:

• User Identification
• User Session Identification

AXRQID uniquely identifies the update/create/delete request made to the User Command and Reporting.
This is needed in order to:

• Identify the subsequent Notification from the Engine or User Command and Reporting to the
WorkFlow Rule Editor Response Gateway. \

• Not to have to duplicate the same request as previously put to the User Command and Reporting

Module. We assume that, if the User Command and Reporting receives a request with the same
AXRQID as a previous one it will send back the same Notification

The AXRQID “encapsulates” the WorkFlow Manager generated parameters (openflow_ID, process_ID,
activity_ID, instance_ID, AXWID).

The WSDL specification for the method invocations is:

<?xml version="1.0" encoding="UTF-8"?>
<WSDL:definitions xmlns:tns="http://www.AXMEDIS.org/Rule_Editor.wsdl" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ax="urn:ax" xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:MIME="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:DIME="http://schemas.xmlsoap.org/ws/2002/04/dime/wsdl/" xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

121

xmlns="http://schemas.xmlsoap.org/wsdl/" targetNamespace="http://www.AXMEDIS.org/Rule_Editor.wsdl"
name="Rule_Editor">
 <WSDL:types>
 <xsi:schema xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ax="urn:ax"
xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="urn:ax" elementFormDefault="unqualified"
attributeFormDefault="unqualified">
 <xsi:import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <xsi:complexType name="program_list">
 <xsi:sequence>
 <xsi:element name="programid" type="xsd:string" maxOccurs="20"/>
 </xsi:sequence>
 </xsi:complexType>
 <xsi:complexType name="rule_editor-result">
 <xsi:sequence>
 <xsi:element name="result" type="xsd:boolean"/>
 <xsi:element name="errormsg" type="xsd:string" nillable="true"
minOccurs="0"/>
 <xsi:element name="errorcode" type="xsd:int"/>
 </xsi:sequence>
 </xsi:complexType>
 <!-- operation request element -->
 <xsi:element name="User_Credentials" type="xsd:string"/>
 <!-- operation response element -->
 <xsi:element name="return" type="ax:rule_editor-result"/>
 <!-- operation request element -->
 <xsi:element name="RuleListenerService" type="xsd:anyURI"/>
 <!-- operation request element -->
 <xsi:element name="AXRQID" type="xsd:string"/>
 <!-- operation response element -->
 <xsi:element name="result" type="xsd:boolean"/>
 <xsi:element name="xml_rule_schema" type="xsd:string"/>
 <xsi:element name="ruleid" type="xsd:string"/>
 <xsi:element name="programid" type="xsd:string"/>
 <xsi:element name="status" type="xsd:string"/>
 <xsi:element name="program_list" type="ax:program_list"/>
 <xsi:element name="program_name" type="xsd:string"/>
 <xsi:element name="rule_name" type="xsd:string"/>
 </xsi:schema>
 </WSDL:types>
 <message name="edit_composition_formatting_rule">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="xml_rule_schema" element="ax:xml_rule_schema"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="RuleListenerService" element="ax:RuleListenerService"/>
 </message>
 <message name="geteditcompositionformattingruleResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="program_publication_user_interface">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="program_name" element="ax:program_name"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="RuleListenerService" element="ax:RuleListenerService"/>
 </message>
 <message name="getprogrampublicationuserinterfaceResult">
 <part name="return" element="ax:return"/>
 </message>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

122

 <message name="activate_Program_PublicationRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="programid" element="ax:programid"/>
 <part name="RuleListenerService" element="ax:RuleListenerService"/>
 </message>
 <message name="getactivateprogrampublicationResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="get_list_of_programsRequest">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 </message>
 <message name="getgetlistofprogramsResult">
 <part name="return" element="ax:return"/>
 <part name="program_list" element="ax:program_list"/>
 </message>
 <message name="edit_axeptool_rule">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="rule_name" element="ax:rule_name"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="RuleListenerService" element="ax:RuleListenerService"/>
 </message>
 <message name="geteditaxeptoolruleResult">
 <part name="return" element="ax:return"/>
 </message>
 <message name="edit_protection_rule">
 <part name="User_Credentials" element="ax:User_Credentials"/>
 <part name="rule_name" element="ax:rule_name"/>
 <part name="AXRQID" element="ax:AXRQID"/>
 <part name="RuleListenerService" element="ax:RuleListenerService"/>
 </message>
 <message name="geteditprotectionruleResult">
 <part name="return" element="ax:return"/>
 </message>
 <portType name="Rule_EditorPortType">
 <operation name="edit_composition_formatting_rule">
 <documentation>Service definition of function
ax:edit_composition_formatting_rule</documentation>
 <input message="tns:edit_composition_formatting_rule"/>
 <output message="tns:geteditcompositionformattingruleResult"/>
 </operation>
 <operation name="Program_Publication_User_Interface">
 <documentation>Service definition of function
ax:Program_Publication_User_Interface</documentation>
 <input message="tns:program_publication_user_interface"/>
 <output message="tns:getprogrampublicationuserinterfaceResult"/>
 </operation>
 <operation name="activate_program_publication">
 <documentation>Service definition of function
ax:activate_program_publication</documentation>
 <input message="tns:activate_Program_PublicationRequest"/>
 <output message="tns:getactivateprogrampublicationResult"/>
 </operation>
 <operation name="get_list_of_programs">
 <documentation>Service definition of function ax:get_list_of_programs</documentation>
 <input message="tns:get_list_of_programsRequest"/>
 <output message="tns:getgetlistofprogramsResult"/>
 </operation>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

123

 <operation name="edit_axeptool_rule">
 <documentation>Service definition of function ax:edit_axeptool_rule</documentation>
 <input message="tns:edit_axeptool_rule"/>
 <output message="tns:geteditaxeptoolruleResult"/>
 </operation>
 <operation name="edit_protection_rule">
 <documentation>Service definition of function ax:edit_protection_rule</documentation>
 <input message="tns:edit_protection_rule"/>
 <output message="tns:geteditprotectionruleResult"/>
 </operation>
 </portType>
 <binding name="Rule_Editor" type="tns:Rule_EditorPortType">
 <SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <WSDL:operation name="edit_composition_formatting_rule">
 <SOAP:operation soapAction="urn:#edit_composition_formatting_rule"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="Program_Publication_User_Interface">
 <SOAP:operation soapAction="urn:#Program_Publication_User_Interface"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="activate_program_publication">
 <SOAP:operation soapAction="urn:#activate_program_publication"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="get_list_of_programs">
 <SOAP:operation soapAction="urn:#get_list_of_programs"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

124

 </output>
 </WSDL:operation>
 <WSDL:operation name="edit_axeptool_rule">
 <SOAP:operation soapAction="urn:#edit_axeptool_rule"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 <WSDL:operation name="edit_protection_rule">
 <SOAP:operation soapAction="urn:#edit_protection_rule"/>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <input>
 <SOAP:body use="literal"/>
 </input>
 <output>
 <SOAP:body use="literal"/>
 </output>
 </WSDL:operation>
 </binding>
 <service name="Rule_Editor">
 <documentation>gSOAP 2.7.0e generated service definition</documentation>
 <port name="Rule_Editor" binding="tns:Rule_Editor">
 <SOAP:address location="http://www.AXMEDIS.org/Rule_Editor.cgi"/>
 </port>
 </service>
</WSDL:definitions>

Operation_result a Boolean “true” if the request is OK, or a Boolean “false” if the request gets an error: in
the latter case a error code and an error message is returned as well.

The Notifications about the Rule evolution are asynchronous notification containing the original AXRQID
and the Status. The Notification is sent back through a WebService towards the WF Response Gateway, at
the URI specified in the UserlistenerService parameter.

5.3.2 Interface between the WF Rule Editor Request Adapter and the WF Rule Editor
Request Gateway

The methods invoked and the parameters invoked by WF Rule Editor Request Adapter to the WF Rule
Editor Request Gateway are the same described in the preceding Paragraph. Thier encoding, however, is
different. The request is in fact sent through an http GET call where the parameters are invoked as follows:

GET/Control_Panel/Products/OpenFlow/AXWF/rule_editor_name_request_status?AXRID=”Rule
ID string”&Credentials=”Credential string”&AXRQID=”Request ID string” HTTP/1.1" 200 368
"http://15.156.120.195:8080/Control_Panel/Products/OpenFlow/leave/leave_startform"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705; .NET CLR 1.1.4322)"

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

125

Where rule_ditor_name is to be replaced by appropriate editor identifier “Rule ID string” is a
string containing the AXRID, “Credential string” is a string containing the credentials and “Request
ID string” is a string containing the Request ID.

The response to the invoked method has the same contents listed in the preceeding Paragraph and is sent via
an http GET response. The response is XML coded, following the schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Rule_editor_Response">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true"
minOccurs="0"/>
 <xs:element name="errorcode" type="xs:int"/>
 <xs:element name="programid" type="xs:string" minOccurs="0"
maxOccurs="20"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

5.3.3 The Interface between the WF Rule Editor Input Queue Adapter and the WF Rule
Editor Response Gateway

The WF Engine Response Gateway gets, through WebServices Notifications about the termination of the
requested editor session.

Specifically, Notification it will contain:

• Edit_Composition_Formatting_Rule

o NOTIFICATION: AXRQID, Completion_Result (OK, EXCEPTION)

• Edit_AXEPTool_Rule

o NOTIFICATION: AXRQID, Completion_Result (OK, EXCEPTION)

• Edit_Protection_Rule

o NOTIFICATION: AXRQID, Completion_Result (OK, EXCEPTION)

• Program_Publication_User_Interface:
o NOTIFICATION: AXRQID, Completion_Result (OK, EXCEPTION)

Where AXRQID is the AXRQID in the original request from the WorkFlow and Completion_result can be
either positive (OK)or negative (EXCEPTION is an error code returned for diagnostic purposes and useful
for troubleshooting).

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

126

The NOTIFICATION is sent via an XMLRPC call whose method name is “RuleEditorNotification” and
whose parameter section is XML encoded as specified by the following schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Rule_editor_Notification">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true"
minOccurs="0"/>
 <xs:element name="errorcode" type="xs:int"/>
 <xs:element name="AXRQID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

On receiving the Notification, the WF Response Adapter will give the following XML response, if
successfully received:
<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><string>OK</string></value>
 </param>
 </params>
 </methodResponse>

Otherwise, if the Notification cannot be received:
<?xml version="1.0"?>
<methodResponse>
 <fault>
 <value>
 <struct>
 <member>
 <name>faultCode</name>
 <value><int>-errorcode</int></value>
 </member>
 <member>
 <name>faultString</name>
 <value><string>”Error string”.</string></value>
 </member>
 </struct>
 </value>
 </fault>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

127

 </methodResponse>

Where Rule_Editor_Name is the appropriate Rule Editor Identifier and AXRQID is a string
containing the the original request sent to the Engine.

Result is a positive integer when the request was successfully completed, or negative integer
otherwise.

Status is a string containing the newly created Object_ID if result is positive, otherwise a string
containing the returned error.

5.3.4 The Interface between the User Command and Reporting and the WF Rule Editor
Response Gateway

As desdcribed before, the User Command and Reporting will send its notifications to the WorkFlow Engine
by calling a WebServices exposed by the WF Rule Editor Response Gateway.

The URI of the WebService is indicated in the previous request made by the WF Request Gateway in the
UserListenerService parameter.

The Notification shall also contain the original Request ID issued in the request (AXRQID).

The following WSDL defines the User Notification WebService:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Rule_Editor"
targetNamespace="http://www.AXMEDIS.org/Rule_Editor.wsdl"
xmlns:tns="http://www.AXMEDIS.org/Rule_Editor.wsdl"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ax="urn:ax"
xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:MIME="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:DIME="http://schemas.xmlsoap.org/ws/2002/04/dime/wsdl/"
xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<schema targetNamespace="urn:ax"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ax="urn:ax"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

128

 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
<complexType name="RuleEditor-result">
 <sequence>
 <element name="result" type="xsd:boolean" minOccurs="1" maxOccurs="1"/>
 <element name="errormsg" type="xsd:string" minOccurs="0" maxOccurs="1" nillable="true"/>
 <element name="errorcode" type="xsd:int" minOccurs="1" maxOccurs="1"/>
 </sequence>
 </complexType>
 <!-- operation response element -->
 <element name="return" type="ax:RuleEditor-result"/>
 <!-- operation request element -->
 <element name="AXRQID" type="xsd:string"/>
 <!-- operation response element -->
 <element name="result" type="xsd:boolean"/>
</schema>

</types>

<message name="Rule_Editor_Notification">
<part name="AXRQID" element="ax:AXRQID"/>
<part name="return" element="ax:return"/>
</message>

<message name="geteNotificationResult">
<part name="return" element="ax:return"/>
</message>

<portType name="RuleEditorNotificationPortType">
<operation name="Rule_Editor_Notification">
 <documentation>Service definition of function ax:Rule_Editor_Notification</documentation>
 <input message="tns:Rule_Editor_Notification"/>
 <output message="tns:getNotificationResult"/>
</operation>

</portType>

<binding name="RuleEditorNotification" type="tns:RuleEditorNotificationPortType">
<SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="Rule_Editor_Notification">
 <SOAP:operation style="rpc" soapAction=""/>
 <input>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </input>
 <output>
 <SOAP:body use="literal" namespace="urn:ax"/>
 </output>
</operation>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

129

</binding>

<service name="RuleEditorNotification">
<documentation>gSOAP 2.7.0e generated service definition</documentation>
<port name="RuleEditorNotification" binding="tns:RuleEditorNotification">
 <SOAP:address location="http://www.AXMEDIS.org/RuleEditorNotification.cgi"/>
</port>
</service>

</definitions>

5.4 The WorkFlow Query and DataBase Channel

In the following Paragraph we will specify the interface between the WorkFlow and the AXMEDIS Object
Loader/Saver and the Query Support WebService Interface.

5.4.1 The Interface between the WF DB Request Gateway and the Loader/Saver and Query
Support WebService Interface

As described before, the AXMEDIS DB WorkFlow channel passes through the WF DB Request Gateway
where the Loader/Saver and the Query Support WebServices Interface modules will expose the following
methods, via WebServices:

• Edit_Query for launching the Query Support User Interface
• Delete_selection for removing a selection from selection DB
• Load_selection for getting a selection from selection DB
• Save_selection for storing a selection in selection DB
• List_user_selection for listing the current selections in DB associated to the user
• List_entitled_selections for listing the current selections in DB that the user is entitled to execute
• Activate_selection_sync for activating a selection and waiting its completion
• Activate_selection_async for activating a selection and getting completion notification later

• Check_out_sync for checking-out an Object (MPEG-21 file) from AXMEDIS DB and waiting the

completion of the operation
• Check_out_async for checking-out an Object (MPEG-21 file) from AXMEDIS DB and getting

completion notification later
• commit_sync for checking-in an Object (MPEG-21 file) to AXMEDIS DB
• commit_async for checking-in an Object (MPEG-21 file) to AXMEDIS DB and getting completion

notification later

The method invocation is encoded in an http GET request that contains both the method and the INPUT
parameters. The related GET response will encode the OUTPUT parameters:

• Edit_Query:

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

130

o INPUT:, Selection_ID,User_Credentials, AXRQID, commitListenerID
o OUTPUT: Operation_Result (OK, EXCEPTION)

Selection_ID is the unique identifier of the Selection Rule to be edited
commitListenerID is the URI where to send back Notification about the termination of the Editor.

• Activate_Selection_sync:

o INPUT: Selection_ID, User_Credentials, AXRQID
o OUTPUT: Operation_Result (list of AXOID, EXCEPTION)

Selection_ID is the unique identifier of the Selection Rule to be activated
List of AXOID is the list of the selected AXMEDIS Objects

• Activate_Selection_async:

o INPUT: Selection_ID, User_Credentials, AXRQID, commitListenerID
o OUTPUT: Operation_Result (OK, EXCEPTION)

Selection_ID is the unique identifier of the Selection Rule to be activated
commitListenerID is the URI where to send back Notification about the evolution of the selection

• Delete_Selection:

o INPUT: Selection_ID, User_Credentials, AXRQID
o OUTPUT: Operation_Result (OK, EXCEPTION)

Selection_ID is the unique identifier of the Selection Rule to be deleted

• Load_Selection:

o INPUT: Selection_ID, User_Credentials, AXRQID
o OUTPUT: Operation_Result (XML_Selection, EXCEPTION)

Selection_ID is the unique identifier of the Selection Rule to be loaded.
XML_selection is the XML definition of the retrieved selection

• Save_Selection:

o INPUT: Selection_ID, User_Credentials, AXRQID, XML_Selection
o OUTPUT: Operation_Result (SelectionID, EXCEPTION)

Selection_ID is the unique identifier of the Selection Rule saved in DB
XML_selection is the XML definition of the saved selection

• List_user_Selection:

o INPUT: User_Credentials, AXRQID
o OUTPUT: Operation_Result (List of SelectionID, EXCEPTION)

List of Selection_ID is the list of the selections of the User in DB

• List_entitled_Selection:

o INPUT: User_Credentials, AXRQID
o OUTPUT: Operation_Result (List of SelectionID, EXCEPTION)

List of Selection_ID is the list of the selections in DB that the user is entitled to execute

• Check_out_sync:

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

131

o INPUT: AXOID, version, User_Credentials, AXRQID, downloadURI
o OUTPUT: Operation_Result (OK, EXCEPTION)

DownloadURI is the pathname where the extracted MPEG-21 file will be put
Version is the version of the AXOID to retrieve

• Check_out_async:

o INPUT: AXOID, version, User_Credentials, AXRQID, downloadURI,
CommitListenerService

o OUTPUT: Operation_Result (OK, EXCEPTION)
DownloadURI is the pathname where the extracted MPEG-21 file will be put
Version is the version of the AXOID to retrieve
CommitListernerService is the URI where to call the WebService for notifying the completion of the
operation

• commit_sync:

o INPUT: AXOID, User_Credentials, AXRQID, downloadURI,
o OUTPUT: Operation_Result (version, EXCEPTION)

Path is the pathname where to get the MPEG-21 file to be put into the DB
downloadURI is the pathname where to get the MPEG-21 file
version is the version of the loaded object

• commit_async:

o INPUT: AXOID, User_Credentials, AXRQID, downloadURI, CommitListenerService
o OUTPUT: Operation_Result (OK, EXCEPTION)

Path is the pathname where to get the MPEG-21 file to be put into the DB
downloadURI is the pathname where to get the MPEG-21 file
CommitListernerService is the URI where to call the WebService for notifying the completion of the
operation

User_Credentials contain information for:

• User Identification
• User Session Identification

AXRQID uniquely identifies the update/create/delete made request made. This is needed in order to:

• Identify the subsequent Notification to the WF Response Gateway
• Not to have to duplicate the same. We assume that, if the AXMEDIS Object Loader/Saver or Query

Support WebService Interface receives a request with the same AXRQID as a previous one it will
send back the same Notification

The AXRQID “encapsulates” the WorkFlow Manager generated parameters (openflow_ID, process_ID,
activity_ID, instance_ID, AXWID).

commitListenerID is the URI where to send back Notification about the evolution of the Request.

The INPUT and OUTPUT parameters are the same specified in the previous paragraph, with the following
encoding:

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

132

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:ax="urn:ax"
xmlns:xsi='xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"'
xmlns:tns="http://www.AXMEDIS.org/engine.wsdl" xmlns:ns=""
targetNamespace="http://www.AXMEDIS.org/engine.wsdl">
 <types>
 <xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema">
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="return" type="xs:string"/>
 <xs:element name="Selection_ID" type="xs:string"/>
 <xs:element name="User_Credentials" type="xs:string"/>
 <xs:element name="AXRQID" type="xs:string"/>
 <xs:element name="CommitListenerID" type="xs:anyURI"/>
 <xs:complexType name="ListofAXIOD">
 <xs:sequence>
 <xs:element name="AXOID" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="XMLSelection"/>
 <xs:complexType name="ListofSelectionID">
 <xs:sequence>
 <xs:element ref="Selection_ID"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="AXOID" type="xs:string"/>
 <xs:element name="Version" type="xs:string"/>
 <xs:element name="DownloadURI" type="xs:anyURI"/>
 </xs:schema>
 </types>
 <message name="messageName"/>
 <message name="Edit_Query_Request">
 <part name="Selection_ID" element="ns:Selection_ID"/>
 <part name="User_Credentials" element="ns:User_Credentials"/>
 <part name="AXRQID" element="ns:AXRQID"/>
 <part name="CommitListernerID" element="ns:CommitListenerID"/>
 </message>
 <message name="Load_Selection_Request">
 <part name="Selection_ID" element="ns:Selection_ID"/>
 <part name="User_Credentials" element="ns:User_Credentials"/>
 <part name="AXRQID" element="ns:AXRQID"/>
 </message>
 <message name="Save_Selection_Request">
 <part name="Selection_ID" element="ns:Selection_ID"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

133

 <part name="User_Credentials" element="ns:Selection_ID"/>
 <part name="AXRQID" element="ns:AXRQID"/>
 <part name="XMLSelection" type="ns:XMLSelection"/>
 </message>
 <message name="List_User_Selection_Request">
 <part name="User_Credentials" element="ns:Selection_ID"/>
 <part name="AXRQID" element="ns:AXRQID"/>
 </message>
 <message name="List_Entitled_Selection_Request">
 <part name="User_Credentials" element="ns:Selection_ID"/>
 <part name="AXRQID" element="ns:AXRQID"/>
 </message>
 <message name="Activate_Selection_Sync_Request">
 <part name="Selection_ID" element="ns:Selection_ID"/>
 <part name="User_Credentials" element="ns:User_Credentials"/>
 <part name="AXRQID" element="ns:AXRQID"/>
 </message>
 <message name="Activate_Selection_ASync_Request">
 <part name="Selection_ID" element="ns:Selection_ID"/>
 <part name="User_Credentials" element="ns:Selection_ID"/>
 <part name="AXRQID" element="ns:AXRQID"/>
 <part name="CommitListenerID" element="ns:CommitListenerID"/>
 </message>
 <message name="Check_Out_Sync_Request">
 <part name="AXOID" element="ns:AXOID"/>
 <part name="Version" element="ns:Version"/>
 <part name="User_Credentials" element="ns:Selection_ID"/>
 <part name="AXRQID" element="ns:AXRQID"/>
 <part name="DownloadURI" element="ns:DownloadURI"/>
 </message>
 <message name="Check_Out_Async_Request">
 <part name="AXOID" element="ns:AXOID"/>
 <part name="Version" element="ns:Version"/>
 <part name="User_Credentials" element="ns:Selection_ID"/>
 <part name="AXRQID" element="ns:AXRQID"/>
 <part name="DownloadURI" element="ns:DownloadURI"/>
 <part name="CommitListenerID" element="ns:CommitListenerID"/>
 </message>
 <message name="Commit_Sync_Request">
 <part name="AXOID" element="ns:AXOID"/>
 <part name="User_Credentials" element="ns:Selection_ID"/>
 <part name="AXRQID" element="ns:AXRQID"/>
 <part name="DownloadURI" element="ns:DownloadURI"/>
 </message>
 <message name="Commit_Async_Request">
 <part name="AXOID" element="ns:AXOID"/>
 <part name="User_Credentials" element="ns:Selection_ID"/>
 <part name="AXRQID" element="ns:AXRQID"/>
 <part name="DownloadURI" element="ns:DownloadURI"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

134

 <part name="CommitListenerID" element="ns:CommitListenerID"/>
 </message>
 <message name="Delete_Selection_Request">
 <part name="Selection_ID" element="ns:Selection_ID"/>
 <part name="User_Credentials" element="ns:User_Credentials"/>
 <part name="AXRQID" element="ns:AXRQID"/>
 </message>
 <message name="Edit_Query_Result">
 <part name="Result" element="ns:result"/>
 </message>
 <message name="Load_Selection_Result">
 <part name="Result" type="ns:XMLSelection"/>
 </message>
 <message name="Activate_Selection_Sync">
 <part name="Result" type="ns:ListofAXIOD"/>
 </message>
 <message name="Activate_Selection_Async_Result">
 <part name="Result" element="ns:result"/>
 </message>
 <message name="Delete_Selection_Result">
 <part name="Result" element="ns:result"/>
 </message>
 <message name="Save_Selection_Result">
 <part name="Result" element="ns:Selection_ID"/>
 </message>
 <message name="List_User_Selection_Result">
 <part name="Result" type="ns:ListofSelectionID"/>
 </message>
 <message name="List_Entitled_Selection_Result">
 <part name="Result" type="ns:ListofSelectionID"/>
 </message>
 <message name="Check_Out_Sync_Result">
 <part name="Result" element="ns:result"/>
 </message>
 <message name="Check_Out_Async_Result">
 <part name="Result" element="ns:result"/>
 </message>
 <message name="Commit_Sync_Result">
 <part name="Result" element="ns:Version"/>
 </message>
 <message name="Commit_Aync_Result">
 <part name="Result" element="ns:result"/>
 </message>
 <portType name="DatabasePortType">
 <operation name="Edit_Query">
 <input message="tns:Edit_Query_Request"/>
 <output message="tns:Edit_Query_Result"/>
 </operation>
 <operation name="Load_Selection">

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

135

 <input message="tns:Load_Selection_Request"/>
 <output message="tns:Load_Selection_Result"/>
 </operation>
 <operation name="Save_Selection">
 <input message="tns:Save_Selection_Request"/>
 <output message="tns:Save_Selection_Result"/>
 </operation>
 <operation name="List_User_Selection">
 <input message="tns:List_User_Selection_Request"/>
 <output message="tns:List_User_Selection_Result"/>
 </operation>
 <operation name="List_Entitled_Selection">
 <input message="tns:List_Entitled_Selection_Request"/>
 <output message="tns:List_Entitled_Selection_Result"/>
 </operation>
 <operation name="Activate_Selection_Sync">
 <input message="tns:Activate_Selection_Sync_Request"/>
 <output message="tns:Activate_Selection_Sync"/>
 </operation>
 <operation name="Activate_Selection_Async">
 <input message="tns:Activate_Selection_ASync_Request"/>
 <output message="tns:Activate_Selection_Async_Result"/>
 </operation>
 <operation name="Check_Out_Sync">
 <input message="tns:Check_Out_Sync_Request"/>
 <output message="tns:Check_Out_Sync_Result"/>
 </operation>
 <operation name="Check_Out_Async">
 <input message="tns:Check_Out_Async_Request"/>
 <output message="tns:Check_Out_Async_Result"/>
 </operation>
 <operation name="Commit_Sync">
 <input message="tns:Commit_Sync_Request"/>
 <output message="tns:Commit_Sync_Result"/>
 </operation>
 <operation name="Commit_Async">
 <input message="tns:Commit_Async_Request"/>
 <output message="tns:Commit_Aync_Result"/>
 </operation>
 <operation name="Delete_Selection">
 <input message="tns:Delete_Selection_Request"/>
 <output message="tns:Delete_Selection_Result"/>
 </operation>
 </portType>
 <binding name="Database" type="tns:DatabasePortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="Edit_Query">
 <soap:operation soapAction="urn:#Edit_Query" style="rpc"/>
 <input>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

136

 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="Load_Selection">
 <soap:operation soapAction="urn:#Load_Selection" style="rpc"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="Save_Selection">
 <soap:operation soapAction="urn:#Save_Selection" style="rpc"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="List_User_Selection">
 <soap:operation soapAction="urn:#List_User_Selection" style="rpc"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="List_Entitled_Selection">
 <soap:operation soapAction="urn:#List_Entitled_Selection" style="rpc"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="Activate_Selection_Sync">
 <soap:operation soapAction="urn:#Activate_Selection_Sync" style="rpc"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

137

 </output>
 </operation>
 <operation name="Activate_Selection_Async">
 <soap:operation soapAction="urn:#Activate_Selection_Async" style="rpc"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="Check_Out_Sync">
 <soap:operation soapAction="urn:#Check_Out_Sync" style="rpc"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="Check_Out_Async">
 <soap:operation soapAction="urn:#Check_Out_Async" style="rpc"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="Commit_Sync">
 <soap:operation soapAction="urn:#Commit_Sync" style="rpc"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="Commit_Async">
 <soap:operation soapAction="urn:#Commit_Async" style="rpc"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="Delete_Selection">
 <soap:operation soapAction="urn:#Delete_Selection"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

138

 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="Database">
 <port name="Database" binding="tns:Database">
 <soap:address location="http://www.AXMEDIS.org/Database.cgi"/>
 </port>
 </service>
</definitions>

5.4.2 Interface between the WF DB Request Adapter and the WF DB Request Gateway

The methods invoked and the parameters invoked by WF DB Request Adapter to the WF DB Request
Gateway are the same described in the preceeding Paragraph. Their encoding, however, is different. The
request in in fact sent through an http GET call where the paramteres are invoked as follows:

As an example to understand the response, consider the compositional/formatting engine response
to a request.

GET/Control_Panel/Products/OpenFlow/AXWF/WFDB_request_status?Selection_ID=”Selection
ID string”&Credentials=”Credential string”&AXRQID=”Request ID string”&Path=”path string”
HTTP/1.1" 200 368
"http://15.156.120.195:8080/Control_Panel/Products/OpenFlow/leave/leave_startform"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705; .NET CLR 1.1.4322)"
Where WFDB is the workflow database, “Selection ID string” is a string containing the AXOID,
“Credential string” is a string containing the credentials and “Request ID string” is a string
containing the Request ID and “path string” contains the designated pathname to get the MPEG-21
file.

The response is XML coded, following the schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Database_Response">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true" minOccurs="0"/>
 <xs:element name="errorcode" type="xs:int"/>
 <xs:element name="AXOID" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="XML_Selection" minOccurs="0">
 <xs:complexType>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

139

 <xs:simpleContent>
 <xs:extension base="xs:string"/>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Selection_ID" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="Version" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

5.4.3 The Interface between the WF DB Input Queue Adapter and the WF DB Response
Gateway

The Notification is used, as mentioned, to return to the WorkFlow the results of the requested operation.
Specifically, it will contain:

• Edit_Query for notifying the termination of the editor:

o NOTIFICATION: AXRQID, Completion_Result (OK, EXCEPTION)

• Activate_Selection_async for notifying the completion of the search:

o NOTIFICATION: AXRQID, Completion Result (list of selected objects, EXCEPTION)
List_of_selected_objects is the list of AXOIDs selected in the Query

• Check_out_async:

o NOTIFICATION: AXRQID, Completion_Result (OK, EXCEPTION)

• commit_async

o NOTIFICATION: AXRQID, Completion_Result (version, EXCEPTION)
Version is the version of the loaded object

Where the AXRQID is the AXRQID in the original request from the WorkFlow and Completion_result it
can be either positive (OK or returned parameters) or negative (EXCEPTION is an error code returned for
diagnostic purposes and useful for troubleshooting).

The NOTIFICATION is sent via an XMLRPC call whose XML encoding is specified:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Database_Notification">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true"
minOccurs="0"/>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

140

 <xs:element name="errorcode" type="xs:int"/>
 <xs:element name="AXRQID" type="xs:string"/>
 <xs:element name="AXOID" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="Version" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Where WFDB is the workflow database and AXRQID is a string containing the the original request
sent to the Engine.

Result is a positive integer when the request was successfully completed, or negative integer
otherwise.

Status is a string containing the newly created AXOID if result is positive, otherwise a string
containing the returned error.

5.4.4 WebServices exposed by the WF DB Response Gateway to the AXMEDIS Object
Loader/Mover and Query Support WebService Interface

As desdcribed before, the Loader/Saver and the Query Support WebService Interface will send its
notifications to the WorkFlow Engine by calling a WebServices exposed by the WF DB Response Gateway.

The URI of the WebService is indicated in the previous request made by the WF Request Gateway in the
commitListenerService parameter.

The Notification shall also contain the original Request ID issued in the request (AXRQID).

The following WSDL defines the User Notification WebService:

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:y="http://new.webservice.namespace" xmlns:ns="urn:ax"
targetNamespace="http://new.webservice.namespace">
 <types>
 <xsi:schema xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:ax="urn:ax"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:DIME="http://schemas.xmlsoap.org/ws/2002/04/dime/wsdl/"

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

141

xmlns:MIME="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://www.AXMEDIS.org/editor.wsdl" targetNamespace="urn:ax"
elementFormDefault="unqualified" attributeFormDefault="unqualified">
 <xsi:import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <xsi:complexType name="Database-result">
 <xsi:sequence>
 <xsi:element name="result" type="xsd:boolean"/>
 <xsi:element name="errormsg" type="xsd:string"
nillable="true" minOccurs="0"/>
 <xsi:element name="errorcode" type="xsd:int"/>
 </xsi:sequence>
 </xsi:complexType>
 <!-- operation response element -->
 <xsi:element name="return" type="ax:Database-result"/>
 <!-- operation request element -->
 <xsi:element name="AXRQID" type="xsd:string"/>
 <!-- operation response element -->
 <xsi:element name="result" type="xsd:boolean"/>
 <xsi:element name="AXOID" type="xsd:string"/>
 <xsi:element name="Version" type="xsd:string"/>
 </xsi:schema>
 </types>
 <message name="DB_Notification">
 <part name="AXRQID" element="ns:AXRQID"/>
 <part name="Results" element="ns:result"/>
 <part name="AXOID" element="ns:AXOID"/>
 <part name="Version" element="ns:Version"/>
 </message>
 <message name="getNotificaitonResult">
 <part name="parameter" element="ns:result"/>
 </message>
 <portType name="DBNotificationPortType">
 <operation name="DB_Notification">
 <input message="y:DB_Notification"/>
 <output message="y:getNotificaitonResult"/>
 </operation>
 </portType>
 <binding name="DB_Notification" type="y:DBNotificationPortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="DB_Notification">
 <soap:operation soapAction="urn:#DB_Notification"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

142

 </operation>
 </binding>
 <service name="DB_Notification">
 <port name="DB_Notification" binding="y:DB_Notification">
 <soap:address location="http://www.AXMEDIS.org/DBNotification.cgi"/>
 </port>
 </service>
</definitions>

6 AXMEDIS Integration with Available Workflow Environments

6.1 AXMEDIS integration and usage with the Open-Source AXWF: Openflow

The objective of this area of work was to identify open-source or proprietary Workflow Management
Systems (WFMS) that are both dominant in the industrial sectors of interest (digital media production and
distribution) and technologically suitable as candidates for having Plug-ins developed for them to support the
AXMEDIS Integration Demonstrators. Accordingly an extensive state-of-the-art review of WFMSs was
performed as documented in the AXMEDIS Requirements Document. It was concluded that Openflow as an
open-source WFMS and BizTalk as a proprietary WFMS were the most suitable as will be justified later in
this Section (4.1.1, 4.2.1).

All the open-source products feature:

• A Web Application based User Interface
• An API which can be easily used for developing the interfaces to the various AXMEDIS

components

6.1.1 The Rationale for Choice of Openflow as an AXWF

1. Openflow has been chosen over other workflow engines due to its maturity and the availability of a
simple and effective API interface. Furthermore it is not based on Java.

2. Regarding the other workflow engines that had been analysed, Jbpm the nearest contender is limited

in terms of its development tools and this would impact negatively on the development cost (it is
also Java based); Enhydra Shark, ObjectWeb Bonita and Open WFE are Java based engines and
there is a negative bias towards Java based platforms from some of the leading consortium members.

Openflow – This is a workflow engine developed by Icube and released as free software under a GNU GPL
licence. It is based on an object-oriented structure and has a powerful exception handling system along with
dynamic redesign support. These features make OpenFlow much more flexible than any other existing
workflow engines. OpenFlow supports most of the open standards (XML/XML-RPC) including also the
web standards. It has got a simple access to most of the relational DBMSs and thus it facilitates the
integration of heterogeneous systems.

Through an integrated role assignment system, OpenFlow can assign tasks and activities to single users or
workgroups and also to automatic applications. At every moment OpenFlow can trace the complete history
of a certain situation e.g. participants involved, activities and actions executed and invoked. It is possible to
carry out performance and efficiency analysis and verify the correct implementation of the adopted model.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

143

OpenFlow is activity-based, web-based, WFMC inspired, built and integrated with the application server
Zope. OpenFlow is capable of running on most operating systems including Linux, Windows 9x, NT/2000,
XP, MacOs.

OpenFlow is written in Python, which is an interpreted, interactive, object-oriented programming language.
It is often compared to Tcl, Perl, Scheme or Java. Python combines remarkable power with very clear
syntax. It has modules, classes, exceptions, very high level dynamic data types, and dynamic typing. There
are interfaces to many system calls and libraries, as well as to various windowing systems (X11, Motif, Tk,
Mac, MFC). New built-in modules for OpenFlow can be easily developed in C or C++.

OpenFlow is strongly web-oriented and offers complete support for developing and executing workflows via
a browser. The interaction with OpenFlow uses simple HTTP requests as in, for example, process modelling,
assignment of users to activities, definition of the interaction with the applications. Every user receives his
task which interacts with appropriate applications through the network.

In the next two sections the interface between Openflow and the AXMEDIS tools and Engines is described.
The analysis has been divided into two sections: a first section relating to the communication coming from
Openflow to the AXMEDIS tools and a second section relating to the communication coming from the
AXMEDIS tools to the AXWF.

6.1.2 AXMEDIS Tools Interacting with Openflow

Applications external to Openflow such as AXMEDIS components can use the XML-RPC protocol to call
the methods of an OpenFlow object.

6.1.2.1 XML-RPC Protocol Description

The XML-RPC protocol is a set of implementations that allow software running on disparate operating
systems and in different environments to make procedure calls over the Internet.

XML-RPC consists of Remote Procedure Calls that will use HTTP for the transport and XML for the
encoding. It is designed to be as simple as possible, while allowing complex data structures to be transmitted,
processed and returned.

An XML-RPC message is made of an HTTP-POST request. The body of the request is in XML. A
procedure executes on the server and the value it returns is also formatted in XML. Procedure parameters
can be scalars, numbers, strings, dates, etc.; and can also be complex record and list structures.

For further information, on the implementations page
(http://www.XMLRPC.com/directory/1568/implementations) there is a list of the accomplishments of the XML-
RPC community, a set of compatible XML-RPC implementations that span all operating systems,
programming languages, dynamic and static environments, open-source and commercial, for Perl, Python,
Java, Frontier, C/C++, Lisp, PHP, Microsoft .NET, Rebol, Real Basic, Tcl, Delphi, WebObjects and Zope.
The figure below illustrates the XML-RPC usage.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

144

The main methods provided by the Openflow via XML-RPC are listed below:

1 addInstance(process_ID, customer, comments, title, activation=0, RESPONSE=None):

• CREATES an instance.
• Returns the instance_ID.

2 startInstance(instance_ID, subflow_depth=0, REQUEST=None):

• Creates a workitem for the activity "Begin", so Begin is assigned to someone.
• This method is called automatically if the user gives "activation=1" to addInstance method.

3 activateWorkitem(instance_ID, workitem_ID, actor=None, REQUEST=None):

• Activates the workitem (workitem_ID) of the instance (instance_ID).
• When an application starts to run a job, it must activate the workitem with this method.
• The value of workitem_ID is generated and given by Openflow to the application.

4 completeWorkitem(instance_ID, workitem_ID, REQUEST=None):

• Signals to the Openflow that the task has been done.
• If the activity is set as "Auto-Finish",
• then Openflow will move to the next set of activities calling forwardWorkitem(),
• assigning them (or running them if they are automatic).

5 forwardWorkitem(instance_ID, workitem_ID, path=None, REQUEST=None)

• After having completed the current task with completeWorkitem(),
• If the activity is not "Auto-Finish", you have to explicitly "move" to the following activities.
• Calling forwardWorkitem() will assign (or run if they are automatic) the following activities.

There is no need to call forwardWorkitem (it is called by completeWorkitem) when the
activity is a subflow, or when the "Auto-Finish" flag is set.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

145

• It is possible to explicitly indicate the path to follow (i.e. to indicate what are the following
activities to move to?), by inserting in the path parameter a list of the IDs of the transitions
to follow.

• It is possible to accommodate externally-signalled arbitrary termination of any processes i.e.
situations when an explicit signal is needed to ascertain that an action is terminated. This is
useful in an embedded environment or in the context of a lot of non-automated manual work
including supervisor over-rides.

6 getInstance(instance_ID, REQUEST=None):

• Returns the Instance object.
• This method is useful to perform specific actions over the Instance object, for example to

store data in it with: getInstance(instance_ID), manage_addProperty("issue_subject",
issue_subject, "string")

7 deleteInstance(inst_IDs=None, RESPONSE=None):

• REMOVES an instance.

6.1.3 Openflow as the AXWF Interfacing with the AXMEDIS Components

Calls from external applications (AXMEDIS tools and engines) to Openflow are made via http protocol,
using the classical GET method (parameters given in the URL).

Five parameters are always passed to the application: openflow_ID, process_ID, activity_ID, instance_ID
and workitem_ID.

For additional parameters, the format is a python-like dictionary: comma-separated key-values pairs
expressed as key:value, all wrapped in braces.

Example 1: if it is intended to pass "int_one" parameter with value 1 (int) and "str_one" parameter with value
"one" (string), one should write: {"int_one": 1, "str_one": "one"}.

It is possible to pass items belonging to instance, activity, process and Openflow, like properties, python
scripts results or other.

Example 2: {"int_one": instance.int_one, "str_one": process.id, "b": activity.id, c }

6.1.4 Openflow Structures and Terminology

In this section a description of the objects that compose OpenFlow and an overview of the Openflow
terminology is provided.

The following picture shows the relations among all the classes in OpenFlow:

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

146

OpenFlow Class Diagram

OpenFlow comprises a number of Zope objects; as follows:

• Openflow
• Process
• Activity
• Transition
• Instance
• Employee

An outline description of the above objects, as deployed within the Openflow architecture, is as follows:

OpenFlow

OpenFlow is the container of processes (static description) and their instances (dynamic description). It is
subclassed from a normal Zope folder but its contents are managed through three separate views.

Within a workflow it is possible to get the following views:

• The Contents view allows the user to see all the normal Zope objects put in Openflow. It is not
possible to see any Process or Instance since they can be seen from their respective views.

• The Processes view allows the user to see all the processes created within the Workflow. It is

possible also to add new processes to the Workflow.

• The Instances view allows the user to see all the process instances created within the Workflow. It is
possible also to add new instances to the Workflow.

• The Properties, Security, Undo, Ownership and Find views are just like those in normal Zope folder

views.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

147

• The Worklist view allows a user to view the to-do list upon logging in. The list of workitems
waiting for work to be done on them is ordered firstly by process and secondly by activity.

Process

This may be renamed "process definition" in the future. A process holds the map that describes the flow of
work. The process map is made of activities and transitions. The instances you create on the map will begin
the flow in the configured begin activity. Instances can be moved forward from activity to activity, going
through transitions, until they reach the End activity.

This is sub-classed from a normal Zope folder but it can only contain Activity and Transition. Within a
Process it is possible to get the following views:

• The Contents view enables the user to see all the normal Zope objects included in the Process.

• The Map view enables the user to see all the activity and Transition items created within the Process.

It is possible here also to add new Activity and Transition items to the Process.

• The Properties, Security, Undo, Ownership and Find views are just like a normal Zope folder's
views.

Activity

Activities represent any kind of action an employee might wish to perform on an Instance. The action might
require attaching a file to the Instance, or may need to set a new field, or change an existing one or simply
route the Instance onto a particular path. Activities are the places where any of these actions are resolved by
employees.

It is sub-classed from a normal Zope simpleitem contained in a process and has no views. In selecting an
activity it is possible to edit its configuration.

Transition

A transition connects two Activities: a From and a To activity. It represents a link starting from the From and
ending in the To activity. Linking the activities in the process allows a process map to be drawn.

Each transition is associated with a condition that will be tested each time an Instance has to choose which
path to follow. The only transition whose condition is evaluated as true will be the transition chosen for the
forwarding of the Instance concerned.

The transition is implemented as a Zope simpleitem contained in a process and has no views. In selecting a
transition it is possible to edit its condition.

Instance

This is a process Instance. A process Instance is created when a user decides to carry out a task, and this
requires a start using a process defined in Openflow. The process is a class and each time a user wishes to
"do what is defined in this process", this means he/she wishes to create an INSTANCE of the process. In
previous versions of Openflow, instances were named "tokens".

So from this point of view, an Instance represents the dynamic part of a process. While the process definition
contains the map of the workflow, the Instance stores the usage, the history, the state of this process. The
Instance will collect and handle workitems (see Section 5 Glossary) to be passed from activity to activity in
the process.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

148

Each Instance can have more than one workitem depending on the number of split actions encountered in the
process flow. This means that an Instance is actually a collection of all of the Instance "pieces" (workitems)
that arise from the decomposition of the same original process Instance.

Each Instance keeps track of its history through a graph. Each node of the graph represents an activity the
Instance has gone through (normal graph nodes) or an activity the Instance is now pending on (a graph leaf
node). Tracking the Instance history can be very useful for the operation of Instance monitoring.

Instance is a subclass of a normal Zope folder: it can have a lot of information associated with it (files,
attributes, and so on) in the form of contained objects. Within the Instance it is possible to get the following
views:

• The History view shows the event graph related to the Instance. Each node describes a workitem and
its event log.

• The Contents, Properties, Security, Undo, Ownership and Find views are just as in a normal Zope

folder's views.

From an implementationally expedient standpoint Openflow defines a workitem object as representing an
activity which is being performed. An Activity object defines the activity, while the workitem object
represents the activity which is being performed within/upon an object belonging to the domain of the
process. So in Openflow a workitem can be seen as an "instance" of the activity. This arises from the way
Openflow needs to store Instances comprising co-occurring state changes involving all the entities that are
participating in a given process Instance. This Instance is implemented as a whole dynamic system whose
change history is stored in nodes in a graph and is thus re-call-able via a pointer to it (this is essentially the
way workspace-instances can be saved and restored efficiently and this process/Instance sub-classing of
“workitem object” which was defined in Section 2.1.1 as an Object class leaves the generic definition given
in Section 2.1 as still valid and consistent with the workitem being sub-classed logically with an Object -
specifically an object undergoing an activity. In any case for any WFMSs that could be considered as a
potential AXWF, irrespective of the way they might sub-class workitems or any other session-specific data,
as far as the AXMEDIS platform is concerned all that is required of the WFMSs is that they make available
some form of client-session-owner_ID traceable to the user responsible for charges accrued for each session
arising from services/granted_rights provided to them by the AXMEDIS Service Providing Components.
How any such WFMSs represent their native client-session-owner_ID data for tracking, control and billing
traceability purposes is a matter internal to the WFMSs themselves as long as they can ensure traceability of
all AXMEDIS Service Consumers for billing.

Employee

An employee is a Zope user who is responsible for performing the application of one or more activities. By
accessing a particular workflow-instance’s “to-do-list”, the employee is presented with the list of instances
pending on activities for which he is responsible in the context of that particular workflow instance.

6.2 AXMEDIS Integration and Usage with the Proprietary AXWF: BizTalk

The Workflow and Interfaces development team within AXMEDIS have examined the various constraints as
well as the pros and cons of operation and integration potential of several available proprietary WFMSs as
candidates for integration within the AXMEDIS Platform at this stage.

Accordingly we have concluded that Microsoft’s BizTalk, as a proprietary WFMS, represents the best choice
for a variety of reasons as outlined in the following section.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

149

6.2.1 The Rationale for the Choice of BizTalk as an AXWF

1) Today there are tens of WFMSs available on the market. Some are "standalone" products which had
been intended to serve just as workflow engines, others originate from Document Management
Systems (e.g. FileNet), yet others come from "application integration suites", or are rooted in the
CRM/Trouble Ticketing type of Enterprise Applications (e.g. PeopleSoft, Siebel, ARS/Remedy).

2) As commercial WFMS type products have come from so many different stables, they tend to exhibit

different features and advantages/disadvantages relative to a particular targeted context of
application such as AXMEDIS.

3) As AXMEDIS is basically an integration framework and not a Document Management or CRM or

other kind of specialised application, it is envisaged that the most suitable candidates for integration
with AXMEDIS at this stage are to be drawn from the Enterprise Application Integration arena.

4) The following is a list of major commercial integration products:

- Microsoft .NET (and then BizTalk)
- IBM WebSphere
- BEA WebLogic Integration
- Oracle Application Server
- Tibco InConcert

5) It is expected that the following features are to be given priority in the selection of candidate

WFMSs to be considered for adoption as the AXMEDIS Workflow Systems integrated with the
AXMEDIS Framework:

- widely adopted
- not too focused on any single sector or context of enterprise applications
- capable of being easily integrated with the AXMEDIS framework

6) Following the extensive process of Multi-Sector Requirements Knowledge Elicitation and Analysis

as undertaken in the initial stages of the AXMEDIS project together with the state-of-the-art review
of all the major WFMSs it was concluded that:

• there is no dominant WFMSs currently deployed in the multi-media Production/Distribution

sector
• MS NET BizTalk offered the greatest scope for this AXMEDIS integration.

6.2.2 Outline Description of the BizTalk

Microsoft states:

In today's global economy, companies need to integrate applications, systems, and technologies from a
variety of sources. To facilitate integration Microsoft delivers best-of-breed integration technology through
BizTalk Server 2004 and expands the offering with industry accelerators and adapters directly and through
partners.

BizTalk Server 2004, a Windows Server System product, helps customers efficiently and effectively
integrate systems, employees, and trading partners faster than ever before. BizTalk Server can interact with
already deployed back-end and legacy systems to automate transactions between business partners, and to
automate day-to-day business workflow.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

150

The BizTalk Server 2004 engine provides expanded capabilities and services, such as:

• A new way to specify business rules

• Better ways to manage and monitor applications

• Support for single sign-on

• New services for information workers, including:

o A group of Business Activity Services (BAS) that enable business users to manage their business

partners and processes

o Support for business process provisioning and configuration

o Services that information workers can use to set up and manage interactions with trading partners

o Business Activity Monitoring (BAM) features for analysing running business processes

o Support for ad-hoc and semi-structured workflow through Human Workflow Services (HWS), which

enables you to create business processes that people can interact with through client applications

such as Microsoft Windows® SharePointA, ATM Services, Microsoft Office InfoPathA‚ A™, and

Microsoft Office

Unlike its COM-based predecessors, BizTalk Server 2004 is built completely around the Microsoft .NET
Framework and Microsoft Visual Studio® .NET. It also has native support for communicating by using
Web services, along with the ability to import and export business processes described in Business Process
Execution Language (BPEL).

BizTalk Server 2004 can be implemented in the organisation in a variety of ways. When BizTalk Server is
used for application integration, the following scenarios are most important:

• Connecting applications within a single organisation, commonly referred to as Enterprise Application

Integration (EAI)

• Connecting applications in different organisations, commonly referred to as business-to-business (B2B)

Integration

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

151

6.2.3 Overview of BizTalk Architecture

The following figure shows the main components of BizTalk Server 2004. BizTalk Server consists of
receive and send adapters, receive and send pipelines, orchestrations, the BizTalk Server message box, and
the business rules engine.

Connecting trading partners and integrating systems is no longer the end goal of the enterprise integration.
Companies require highly automated business process management functionality, with the flexibility to
incorporate a human touch at appropriate stages throughout the workflow, as provided by BizTalk Server
2004 orchestration services. Additionally, with the BizTalk Server 2004 rules engine, companies can
implement flexible business rules and make them visible to the information worker.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

152

Accelerators are used to support a broad spectrum of business scenarios and industries, from high tech to
healthcare. Accelerators for BizTalk Server add new functionality and complement Microsoft Windows
Server System™ integrated server software, vastly reducing the time, effort, and costs associated with
solution development, deployment, and management. BizTalk Server accelerators include a powerful
combination of product enhancements, simple-to-use tools, documentation, and samples that are developed
in concert to ensure they work well together. This translates into rapid deployments, a lower overall cost of
ownership, and improved efficiency.

6.3 Open-Source Licensing of AXMEDIS-Developed Workflow Integration Software

In principle if one modifies open-source code for any purpose, then one has to release the thus modified
open-source code back into the open-source community. For what concerns the Workflow Plug-ins software
to be developed for AXMEDIS Integration, we foresee the need to use the open-source XMLRPClib, but in
doing so the XMLRPClib will be left un-modified, This will obviate the need for the Plug-in code developed
by AXMEDIS in this way to be made available to the open-source community.

For what concerns OpenFlow, it will probably be necessary to make some modifications to the OpenFlow
data model, including accommodating specific AXMEDIS data (e.g. AXMEDIS AXOID). As the
Openflow data model thus modified is part of the open-source code, in principle it has to be released back
into the open-source community.

This means that the adaptation of the OpenFlow Data model to allow AXMEDIS Integration will become
publicly available. However, the processes (activities, transitions and so on) implemented in the OpenFlow
are not included in the open-source code, so they do not need to be made available to as open-source.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

153

7 Glossary of Terms and Abbreviations (Part G)

7.1 Glossary of Terms used with Workflow Management Systems Integration
Term Meaning
Object AXMEDIS (MPEG21) object
Object_ID (AXOID) A unique identifier for reference to a particular AXMEDIS object
New Product
Development (NPD)

Any project or new workflow instance set up to add value by way of creating
afresh, and/or modifying existing, digital assets; usually referred to as NPD

Workflow (WF) A workflow consists of process logic and routing rules. The process logic
defines the sequence of tasks and the routing rules that must be followed, as
well as deadlines plus business rules implemented by the workflow engine.

Workflow Management
System (WFMS)

A software application that stores process definitions and runs jobs based on
those process definitions via its workflow engine component. The workflow
engine is the runtime execution module.

Instance (IN) A particular realisation of an Activity in the context of a particular workitem,
workflow-instance or workspace-instance.

Instance_ID (INID) A unique Identifier for reference to a particular Instance.
Workitem Represents the actual work to be done on an object by a participant for an

activity in a process instance.
Workitem_Object A version/derivative of an AXMEDIS Object or newly created and currently

still being worked-on/modified in the course of an NPD within a process
instance or workspace-instance. This is before the resulting new object can
exit development and be possibly registerable as a new AXMEDIS Object.

Workitem_ID (AXWID) A unique identifier for reference to a particular workitem Object
Workitem_Instance A reference to a particular version or genre of a workitem amongst several

derived from the a single workitem that are undergoing various activities
within the same workflow instance

Workitem_Instance_ID A unique identifier for reference to a particular workitem-instance
Workflow_Instance A particular set of coordinated processes set up and encoded to model an

activity network required to deliver the objectives of any project or NPD
according to the business rules and resources as applicable to that NPD in a
given business environment.

Workflow_Instance_ID A unique identifier for reference to a particular workflow-instance
Workspace This is a normal practice template or an abstract reference to a set of

participating entities typically required to be involved in the execution of a
particular activity per rules and resources available to a particular
business/sector/community of practice.

Workspace_Instance Or equivalently a workitem (as in Openflow) is referred to as a dynamic data
structure recording and indexing the set of participants (actors, tools, objects,
resources) and their states involved in any given workflow instance/process
flow instance/workitem. Typically this is a node in a graph oriented data
structure acting as a pointer to such entities and states.

Workspace_Instance_ID A unique identifier for reference to a particular workspace instance.
Process definition A graphical process definition, or process map, represents the process logic

elements of a workflow and their relationships.
Process_Instance A process instance, commonly called a job, is a running instance of a process

definition.
Process_Instance_ID A unique identifier for reference to a particular process instance.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

154

7.1 Glossary of Terms used with Workflow Management Systems Integration

(continued)

Term Meaning
Processflow This is a part of the workflow that represents a set of coordinated activities

encoded to map a subspace of the activity network consistently according to
the available rules and resources of the particular NPD. In this way a
workflow can be equivalent or a superset of a processflow.

Processflow_Instance This is a particular realisation of a processflow that actually belongs to a
workflow instance i.e. a particularised version of the workflow subspace as
instantiated in the context of a given work item/workspace instance.

Processflow_Instance_ID A unique identifier for reference to a particular processflow instance.
Session A session is any event marked by a finite period with at least a start time

whereby some user or proxy undertakes the execution of an activity or a set of
activities in the context of a given workitem.

Session_ID A unique identifier for reference to a particular a session.
User_Credentials_ID An identifier that includes at least the user’s identity and their current session

identity often in the context of single sign on and or session traceability
facilitation.

AXRQID A composite parameter as a subtype of WF-Exchange_ID that can be passed
between the AXWF and relevant AXMEDIS components to help identify a
particular WF-Exchange_ID.

Response_ID A composite parameter as a subtype of WF-Exchange_ID that can be passed
from any relevant AXMEDIS components to help identify a particular WF-
Exchange_ID as a response to a particular AXRQID.

Exchange_Instance A particular exchange messaging act or communication between any relevant
AXMEDIS components and AXWF within a workflow-instance.

Exchange_Instance_ID A unique identifier that encompasses all required Exchange data parameters
and messaging as required for a single communication to or from any relevant
AXMEDIS components and the AXWF.

Bridge An abstract container of all the transactions required between the AXWF and
relevant AXMEDIS components during the lifecycle of each
workitem/processflow-instance/workflow-instance/session.

Bridge_Instance This is a specific bridge belonging to a real session/workflow
instance/processflow-instance such that the bridge instance includes all the
exchanges i.e. WF-Exchange_IDs that occurred between the particular
workspace instance owner and the relevant AXMEDIS components.

Bridge_Instance_ID This is a unique identifier for reference to a particular bridge-instance.
Adopted AXMEDIS
Workflow System
(AXWF)

 Third party workflow management systems to be adopted for integration with
the AXMEDIS Framework and referred to as AXWF.

Process Definition Tool A software tool used to create and change process definitions. The tool may
be a component of business process management software, a stand-alone
application, or a component of a workflow management system. Process
definition tools that provide the ability to re-use stored workflow elements,
and even entire subprocesses, make workflow application developers more
productive since they avoid reinventing the wheel when building workflows
and integrating them with other applications.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

155

7.1 Glossary of Terms used with Workflow Management Systems Integration
(continued)

Term Meaning
Participant One of the following types: a resource set, a specific resource, an

organisational unit, a role (a function of a human within an organisation), a
human, or a system (an automatic agent). Answers the question "Who?" in a
business process.

Activity A task that forms one logical step in a process definition. Can be automated or
manual. Automation refers to the ability to define scripts and triggers during
process operation. Specific activities in the process definition can run as
unattended tasks, and automation can enforce business rules in manual, or
human-driven, tasks. A common type of automated activity is deadline
handling, which can automatically send a reminder message or trigger an
escalation procedure if a workitem fails to be completed by a prescribed
deadline.

Activity Owner An activity owner is the participant that has the authority to declare an activity
complete, thus forwarding the work to the next activity in the process.

Job Owner A job owner is a participant that has overall control of the execution of one
process instance

7.2 Table of Acronyms Relevant to Workflow Management Systems Integration

Term/Acronym Meaning

WFMS Any Workflow Management System
AXWFM AXMEDIS Workflow Manager.
AXWF-DXF AXMEDIS Workflow Data Exchange Format
QSWSI AXMEDIS Query Support Web Services Interface
XPDL:

XML Process Definition Language (XPDL) of the Workflow Management
Coalition (WfMC)

WF-XML Wf-XML and Workflow Reference Model from the Workflow Management
Coalition (WfMC): Wf-XML is an XML-based encoding of workflow
interoperability messages. The Workflow Reference Model is a description
of the underlying workflow system architecture. Wf-XML has no binding to
SOAP and WSDL at this time.

WSFL IBM Web Services Flow Language: Specifies two types of Web services
composition 1) an executable business process known as a flowModel, and
2) a business collaboration known as a globalModel. Compatible with SOAP,
UDDI, and WSDL.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

156

Table of Acronyms Relevant to Workflow Management Systems Integration
(continued)

Term/Acronym Meaning
XLANG Microsoft's XLANG: Business modeling language for BizTalk, which is a

component of .NET that enables EAI. BizTalk Orchestration is the workflow
engine and BizTalk Orchestration Designer is the visual business process
modelling tool based on XLANG.

BPEL4WS Business Process Execution Language for Web Services is the cooperative
merging of WSFL and XLANG for Web services orchestration, workflow,
and composition. It has not yet been submitted to an IT standards
organisation.

ebXML BPSS The eBusiness Transition Working Group carries forward the definition of
workflow conversation and orchestration in the Business Process
Specification Schema (BPSS) layer of ebXML, which defines many
protocols and layers for XML-based e-business.

WSCI Sun/BEA/Intalio/SAP consortium's Web Services Choreography Interface "is
an XML-based interface description language that describes the flow of
messages exchanged by a Web Service participating in choreographed
interactions with other services."

WSCL W3C's Web Services Conversation Language: A submission by Hewlett-
Packard to the W3C, it allows defining the abstract interfaces of Web
services (that is, the business level conversations or public processes
supported by a Web service), the XML documents being exchanged, and the
sequencing of those documents.

PIPs RosettaNet's Partner Interface Process: defines business processes between
trading partners via specialized system-to-system XML-based dialogs. Many
PIPs have been defined for various partner scenarios.

JDF CIP4's Job Definition Format is an upcoming workflow industry standard for
the Graphics Arts industry designed to simplify information exchange among
different applications and systems.

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

157

8 References to WFMS, Openflow, Zope, Python etc and Downloads

8.1 Openflow Workflow Management System

• http://www.openflow.it/EN/Documentation/EN/Documentation

• http://www.openflow.it/EN/index_html

8.2 AXMEDIS Technical Watch Area Workflow Folder

• http://www.AXMEDIS.org/attivita/documenti/download.php?area_id=4&attivita_id=8&l_s=struttur
a&gruppo=75&order_by=data&asc_desc=desc

8.2.1 Downloads

• Downloads from made available in the above folder:
• Openflow (introduction, Examples);
• Zope (Reference, Package, Code, Developer, PostgreSQL);
• Python (source code, Library, Python for Windows);
• XMLRPC C++ Library

As follows:

1. openflow.1.2.0.tgz
2. zope-2.7.3-0-win32.exe
3. xmirpclib-1.0.1.zip
4. xmirpc++0.7.zip
5. leave.zexp
6. zopebook-2_6.pdf
7. psycopgda-1.0.0.tgz
8. introduzione_a_openflow_doc[1].doc
9. devguide-2_4.pdf
10. python-2.3.4.exe
11. zope-2.7.3-0.gz
12. python-2.3.4.tar
13. html-2.3.4.zip

8.3 Workflow Management Coalition(WfMC)

• http://www.wfmc.org/standards/model.htm

• http://www.wfmc.org/standards/wfxml_demo.htm

• http://www.wfmc.org/standards/XPDL.htm

• http://www.wfmc.org/information/awards.htm

• http://www.wfmc.org/standards/conformance.htm

DE3.1.2G – Framework and Tools Specification (Workflow)

AXMEDIS Project
CONFIDENTIAL

158

8.4 Workflow and Re-engineering International Association (waria)

• http://www.waria.com/

• http://www.waria.com/books/study-volume3.htm

8.5 XPDL

 XML Process Definition Language (XPDL) of the Workflow Management Coalition (WfMC)

http://www.wfmc.org/standards/docs.htm#Interface%201%20-%20Process%20Definition%20Interchange

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

