
DE4.3.1 – Content Composition and Formatting

AXMEDIS project

1

AXMEDIS

Automating Production of Cross Media Content
for Multi-channel Distribution

www.AXMEDIS.org

DE4.3.1
Content Composition and Formatting

Version: 1.14
Date: 15/11/2005
Responsible: DSI (Ivan Bruno) (revised and approved by DSI)
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: Report and Prototype
Visible to User Groups: Yes
Visible to Affiliated: Yes
Visible to Public: Yes
Deliverable Number: DE4.3.1
Contractual Date of Delivery: M13 (end of September 2005)
Actual Date of Delivery: 15/11/2005
Work-Package contributing to the Deliverable: WP4.3
Task contributing to the Deliverable: WP4.2
Nature of the Deliverable: Report and Prototype
Author(s): DSI, IRC, XIM, HP
Abstract:
The report deals with problems related to the Automatic Content Production and more in general with
content processing, therefore the current status of the Content Processing prototype and tools are reported.
The report is structured in sections dealing with different aspects of content production: Automatic Content
Processing Area based on rules and a distributed system, using JavaScript language for rules and definition
of AXMEDIS Data Types for JavaScript Engine, Adaptation Tools and Algorithms for content processing,
formatting, etc… Finally the state of the art in the field of automatic formatting and adaptation was
investigated to introduce the AXMEDIS formatting tools: a templates-based system with functionalities for
automatic layout selection and optimization .
Keyword List:
Content production, Javascript, Adaptation tools, formatting, composition, transcoding

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

2

Table of Contents

1 EXECUTIVE SUMMARY AND REPORT SCOPE .. 7
2 INTRODUCTION... 8

2.1.1 Specification of T4.3.1/2 Composition and Formatting algorithms and tools (DSI) 8
2.1.2 Specification of T4.3.3 Workflow Support (IRC) .. 12

3 AXMEDIS ARCHITECTURE FOR CONTENT PROCESSING (DSI) ... 22
4 AXMEDIS RULE DEFINITION AND MODEL .. 24

IN THIS SECTION THE STATUS OF WORK PERFORMED IN DEFININING THE MODEL OF AXCP RULE IS REPORTED. THIS
REPORT SHOWS THE MAIN CONCEPTS, FORMALIZATION AND IMPLEMENTATION OF THE MODEL. 24
4.1 TECHNICAL DETAILS ... 24
4.2 AXCP RULE XML FORMALISATION ... 24

4.2.1 AXCP Rule Model... 38
4.3 AXRULE LOADER AND SAVER MODULES (DSI) .. 40

4.3.1 AxRuleVisitor Class .. 41
4.3.2 AxRuleLoader Class .. 41
4.3.3 AxRuleSaver Class .. 41

5 AXMEDIS RULE EDITOR (DSI) .. 43
5.1 TECHNICAL DETAILS ... 43
5.2 DESCRIPTION AXMEDIS RULE EDITOR (WORK DONE) .. 43

6 AXMEDIS RULE SCHEDULER (DSI) ... 47
6.1 TECHNICAL DETAILS ... 47
6.2 DESCRIPTION OF RULE SCHEDULER (WORK DONE) ... 47

6.2.1 Rule Scheduler Gui .. 48
6.2.2 Core Scheduler... 50
6.2.3 Grid Interface and architecture .. 51

7 AXMEDIS RULE EXECUTOR (DSI) ... 52
7.1 TECHNICAL DETAILS ... 52
7.2 DESCRIPTION OF RULE EXECUTOR (WORK DONE) ... 52

7.2.1 Rule ExecutorManager .. 52
7.2.2 Script Executor/JSEngine .. 53
7.2.3 Profile of the Rule Executor (Peer) ... 54

7.3 AXMEDIS GRID ARCHITECTURE.. 58
7.3.1 Structure of messages exchanged between Scheduler and Remote Executor .. 59

8 JSAXCLASSES STATUS (DSI PLUS ALL) ... 61
8.1 JS_AXOM: AXMEDIS DATA MODEL JS WRAPPING (DSI) .. 61
8.2 JS_CRAWLER: CRAWLER JS WRAPPING (FOCUSEEK SUBCONTRACT, DSI) .. 62
8.3 JS_SELECTION AND QUERY AND DATA BASE ACCESS (DSI, EXITECH, CRS4) .. 63
8.4 JS_FUNCTION: INTEGRATION WITH EXTERNAL RESOURCES AND LIBRARIES (DSI)...................................... 63
8.5 JS_DUBLIN CORE (UNIVLEEDS) ... 63
8.6 JS_FORMATTING (DSI) .. 63

8.6.1 JS_Template (DSI)... 63
8.6.2 JS_Style (DSI).. 64
8.6.3 JS_Format (DSI) .. 64

9 CONTENT COMPOSITION, EXAMPLES (DSI) ... 65
9.1 COMPOSITION PROCESS, EXAMPLE .. 65

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

3

9.2 CONTENT PROCESSING, EXAMPLE... 66
10 CONTENT COMPOSITION AND FORMATTING (DSI) .. 67

10.1 STATE OF THE ART ... 67
10.2 SYSTEM OUTLINE... 68
10.3 FORMATTING PROCESS .. 69
10.4 SYSTEM ARCHITECTURE OVERVIEW.. 70
10.5 FORMATTING ENGINE ARCHITECTURE... 73
10.6 TEMPLATE LANGUAGE... 75
10.7 STYLE-SHEET LANGUAGE .. 78
10.8 DOCUMENT OPTIMIZATION.. 78
10.9 OPTIMIZATION ALGORITHM... 79
10.10 FORMAT EXAMPLE... 80

11 CONTENT FORMATTING TOOLS (DSI) .. 88
11.1 TECHNICAL DETAILS ... 88
11.2 TEMPLATE EDITOR .. 88
11.3 AUTOMATIC TEMPLATE SELECTOR... 90
11.4 STYLE-SHEET EDITOR.. 90
11.5 AUTOMATIC STYLE-SHEET SELECTOR .. 91
11.6 STYLE-SHEET OPTIMIZER .. 92
11.7 STYLE-SHEET PROCESSOR ... 92
11.8 TEMPLATE AND DOCUMENT VIEWER.. 92

12 TRANSCODING AND ADAPTATION (FHGIGD) .. 93
13 TRANSCODING AUDIO (EPFL).. 95

13.1 TECHNICAL DETAILS ... 95
13.2 AUDIO: STATE OF THE ART .. 95
13.3 AUDIO: THE PROBLEMS ... 95
13.4 AUDIO: WORK PERFORMED... 96

14 TRANSCODING VIDEO (FHGIGD) .. 99
14.1 TECHNICAL DETAILS ... 99
14.2 VIDEO: STATE OF THE ART .. 99
14.3 VIDEO: THE PROBLEMS.. 99
14.4 VIDEO: WORK PERFORMED ... 100
14.5 REFERENCES .. 102

15 TRANSCODING DOCUMENTS AND TEXT (DIPITA) ... 103
15.1 TECHNICAL DETAILS ... 103
15.2 DOCUMENTS AND TEXT: STATE OF THE ART ... 104
15.3 DOCUMENTS AND TEXT: THE PROBLEMS .. 105
15.4 DOCUMENTS AND TEXT: WORK PERFORMED .. 105

16 TRANSCODING IMAGES (DSI, IRC) ... 107
16.1 TECHNICAL DETAILS ... 107
16.2 IMAGES : STATE OF THE ART ... 107

17 TRANSCODING MULTIMEDIA (EPFL)... 112
17.1 TECHNICAL DETAILS ... 112
17.2 MULTIMEDIA: STATE OF THE ART ... 112

18 TRANSCODING/ADAPTATION PAR AND LICENSES (FUPF).. 116
18.1 PAR AND LICENSES: STATE OF THE ART... 116

18.1.1 MPEG-21 Rights Expression Language (REL) .. 116
18.1.2 ODRL... 120
18.1.3 OMA DRM Rights Expression Language... 121
18.1.4 PAR and Licenses: The problems ... 122

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

4

18.1.5 PAR and Licenses: Work performed... 122
18.1.5.1 OMA-based MPEG-21 REL DTD ..122
18.1.5.2 Interoperability between MPEG-21 REL and OMA DRM REL v2.0..123

19 TRANSCODING METADATA (UNIVLEEDS) .. 127
19.1 TECHNICAL DETAILS ... 127
19.2 METADATA: STATE OF THE ART .. 127
19.3 METADATA: THE PROBLEMS ... 128
19.4 METADATA: WORK PERFORMED ... 128

19.4.1 AxMetadata Class .. 128
19.4.2 AxmetadataElement Class ... 128
19.4.3 AxMetadataAttribute Class ... 128
19.4.4 AxMetadataSAXImplementation Class .. 128

20 WORKFLOW MANAGEMENT AND DATABASE (IRC) .. 130
20.1 TECHNICAL DETAILS ... 130
20.2 WRITING AND DESCRIBING WORKFLOW, HARMONISING AXMEDIS TOOLS .. 131

21 WORKFLOW INTEGRATION OF TOOLS (IRC) .. 141
21.1 TECHNICAL DETAILS ... 141
21.2 INTEGRATION SUPPORT WITH CONTENT PROCESSING TOOLS (AXCP PROCESSING TOOLS: ENGINE AND
SCHEDULER) ... 143
21.3 INTEGRATION SUPPORT WITH EDITORS (AXCP RULE EDITOR AND AXMEDIS EDITOR) 145

2.2 Interface between the WF AXOM Request Adapter and the WF Editor Request Gateway 146
21.4 INTEGRATION SUPPORT WITH AXEPTOOLS ... 147
21.5 INTEGRATION SUPPORT WITH QUERY SUPPORT.. 150
21.6 INTEGRATION SUPPORT WITH AXMEDIS P&P EDITOR... 153

22 BIBLIOGRAPHY... 154
23 OTHER REFERENCE .. 155

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

5

AXMEDIS Copyright Notice
The following terms (including future possible amendments) set out the rights and obligations licensee will be requested
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by
any other means.

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT.

1. DEFINITIONS

i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the
document have been accepted.

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a
Document.

iii. "Licensor" is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in
terms of companies and/or associations, see www.axmedis.org

iv. "Document" means the information contained in any electronic file, which has been published by the
Licensor’s as AXMEDIS official document and listed in the web site mentioned above or available by any
other means.

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.

2. LICENCE

1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to
present terms and conditions (the Licence) for the parts that are own and proprietary property the of
AXMEDIS consortium or its members.

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and
conditions.

3. TERM AND TERMINATION

1. Granted Licence shall commence on Acceptance Date.
2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions

of this Licence.
3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of

termination.
4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the

accessed Copyright.
5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or

obligations, shall survive termination of this Licence and shall continue in full force and effect.
6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it

as stated in the document itself will remain in force for a period of 5 years after license issue date or the
period stated in the document whichever is the longer.

4. USE

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:
i. remove this Copyright Notice on a Document or any of its reproduction in any form in which those

may be achieved;
ii. change or remove the title of a Document;
iii. use all or any part of a Document as part of a specification or standard not emanating from the

Licensor without the prior written consent of the Licensor; or
iv. do or permit others to do any act or omission in relation to a Document which is contrary to the

rights and obligations as stated in the present license and agreed with the Licensor

5. COPYRIGHT NOTICES

1. All Works shall bear a clear notice asserting the Licensor’s Copyright. The notice shall use the wording
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.

6. WARRANTY

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

6

2. For the avoidance of doubt the licensee should be aware that although the Copyright in the
documents is given under warranty this warranty does not extend to the content of any document
which may contain references or specifications or technologies that are covered by patents (also
of third parties) or that refer to other standards. AXMEDIS is not responsible and does not
guarantee that the information contained in the document is fully proprietary of AXMEDIS
consortium and/or partners.

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of
action which the Licensor may have, at all times keep the Licensor fully and effectively
indemnified against all and any liability (which liability shall include, without limitation, all
losses, costs, claims, expenses, demands, actions, damages, legal and other professional fees and
expenses on a full indemnity basis) which the Licensor may suffer or incur as a result of, or by
reason of, any breach or non-fulfilment of any of his obligations in respect of this Licence.

7. INFRINGEMENT

1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the
Copyright which comes to licensee notice and shall, at the Licensor’s request and expense, do all such
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.

8. GOVERNING LAW AND JURISDICTION

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.
2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.

Please note that:

• You can become affiliated with AXMEDIS. This will give you the access to a huge amount of
knowledge, information and source code related to the AXMEDIS Framework. If you are interested
please contact P. Nesi at nesi@dsi.unifi.it. Once affiliated with AXMEDIS you will have the
possibility of using the AXMEDIS specification and technology for your business.

• You can contribute to the improvement of AXMEDIS documents and specification by sending the
contribution to P. Nesi at nesi@dsi.unifi.it

• You can attend AXMEDIS meetings that are open to public, for additional information see
WWW.axmedis.org or contact P. Nesi at nesi@dsi.unifi.it

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

7

1 Executive Summary and Report Scope

This report is focussed on describing the AXMEDIS Content Production Area (AXCP) prototype, tools,
work done and analysis of the state of the art regarding formatting and media transcoding tools. This
document is structured in sections dealing with:

• AXMEDIS Content Processing Area (under responsibility of DSI): this section describes the current
status and the work done in the development of tools in AXMEDIS Content Processing Area. This
area copes with the problem of automatic content production, adaptation and protection of
AXMEDIS object and their publication on a P2P environment (AXEPTool). The actual prototype is
based on rules that include a procedural description using the Javascript language (script) and
schedule information that describe the rule firing inside the AXMEDIS Rule Engine. Such engine is
based on a Javascript engine derived from SpiderMonkey by Mozilla. To cope with the amount of
needed resources (computational, time, etc…) during the content processing activity, an early
version of a distributed environment was defined and based on GRID computing. Therefore the Rule
Engine was decomposed in two main component: the AXMEDIS Rule Scheduler and AXMEDIS
Rule Executor. The AXMEDIS Content Processing Area results are further illustrated by means of
UML diagrams, tables, GUI definitions and snapshots, description of a Grid communication protocol
and the XML schema for rules.

• JS Classes for the JavaScript Engine: the composition and formatting process by means javascript
required the extension of the object data type inside the javascript language. The set of classes and
functions that currently extend the capabilities of the Spidermonkey Javascript engine are described.

• Content Composition and Formatting: this section performs a state of the art analysis to identify
limits and problems of pre-existent tools for automatic adaptation and formatting; then, architecture
and status of AXMEDIS tools are reported. The actual prototype is based on SMIL for document
structure description and XSLT for layout definition; techniques for layout optimization are
sketched. UML diagrams and screenshots illustrate architecture and functionalities of these tools.

• Adaptation and Transcoding Tools: in this part the work done and analysis on external tools and
libraries for content processing, content format transcoding, content formatting and adaptation
(digital audio, video, animation, multimedia, metadata, etc…) are discussed. Part of them was used
to implement and customise the set of functions and algorithms to call inside the automatic content
processing area.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

8

2 Introduction

The problems related to automatic content production should be decomposed into composition and
formatting. In addition, these aspects have to be integrated with those related to content production
workflow. Content workflow monitoring and management is considered in WP4.4, which deals with the P2P
model behind AXEPTool.

2.1.1 Specification of T4.3.1/2 Composition and Formatting algorithms and tools (DSI)

Major partners involved

DSI with EPFL, ILABS, UNIVLEEDS, XIM, DIPITA

State of the art

Compositional and formatting tools belong to the set of digital content production tools. They have to help
content designer to:
• efficiently collect needed components, using advanced query options
• find/produce alternatives for those components that may present distribution problems (e.g. files too big,

IPR or usage clearance issues, etc.)
• structure components, highlighting the semantic relations among them
• bind content structure to some presentation styles
• format broadcast/broadband-quality content for delivery to a variety of channels, eventually requiring

repurposing or even re-authoring
• support different delivery channels according to various formatting styles and constrains reported in the

final user’s device profile

Automatic content production problems are decomposed in two separate phases: composition and formatting.
The Compositional and Formatting Engine will respectively perform such phases. Such engine can use
services provided by some tools involved in AXMEDIS object production.

Composition is the action of putting together content components to create a new digital item in an almost
automatic manner, based on a set of user-defined rules. The final result is a new composite AXMEDIS
Object. The compositional activity should allow composing different kinds of raw assets such as Text,
Images, Audio, Video (actual shot), Animations (synthetic), etc… coming from AXMEDIS database. The
composition may produce homogenous (where all digital resources are the same type) or heterogeneous
(different kinds of digital resources) composite AXMEDIS Objects.

A challenging part in the automation of composition will be the management of metadata as in such activity
the user will be highly relaying on objects metadata to identify, select and operate on digital assets. This is
already the habit in most editorial environments and tools. In more detail it is important to note that metadata
are used during the search phase, and are crucial in the classification and archival phase. Research
concerning automatic extraction of high level metadata, and related state of the art, is covered in T4.2.2 and
specified in the related section.

Formatting is the process of exploiting digital resources in a combined AXMEDIS Object to some
integrated visualization (editorial) format for distribution to the end user. A simple composite object
comprising several parts (e.g., an audio, a video and a document) may be formatted in different ways
according to various formatting styles (graphic layout, spatial constraints, file size, quality limitations,
content temporal scheduling, speech generation from text, synchronization between audio and images, etc.)

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

9

and adapted to produce a “final content” (Digital Item Adaptation) to be distributed via different channels to
users’ platforms such as i-TV, mobile, PC, etc…
Generally speaking, a formatted multimedia object can be seen as a unique object characterized mainly by:

• Spatial relationships – They are defined in the spatial domain and describe how visible resources are
organized in the visualization space (layout, margins, etc…)

• Time relationships – They are defined in the time domain and describe not only the basic
orchestration (i.e. when media items appear and disappear from the screen), but also which
synchronization relations need to be maintained (e.g. audio streams lip sync with a given video
stream) and how it is possible to control speed and other basic behaviors of animated content (in
time domain).

Other relevant aspects to be taken into account are the navigation structure and hierarchies inside the object.
For example in many multimedia objects there are at least two different sets of possible navigation paths that
allow the user to exploit the content. Usually there is a linear or sequential path and a hyper-textual one. This
basically allows defining some additional relationships to be added to the previously mentioned ones and that
may be present or not:

• Navigation and connection relationships – They are defined in the content structure domain and
provide information on the content components structuring and navigation path and relations. Such
relationship may be limited to object structure, but can also connect several different object or
content sources. In the latter case there is a direct connection with the Context and dependency
relationships.

• Context and dependency relationships – They are defined in the metadata structure domain and
provide information on the content context and dependencies relations.

This latter point may account for objects level of complexity and (in case of occurrence) imply some
limitation to the results achievable through automatic formatting.
All above-mentioned relationships and aspects (spatial, time, and hierarchical) will be analyzed in this task
and linked to the corresponding views developed in T4.1.3.

All the formatting activity shall be based on content features, generic user profile and needs, specific user
profile (in case of formatting on demand), formatting style, optimization parameters, end-user device profile,
interactivity level and paradigms, content type and features, metadata, categorization, business information
(price, localization, etc.), temporal evolution, DRM rules, delivery time, etc…
The formatting will have to take into account also the specific problems of the distribution channel:
• Content location and time to delivery (time for processing and eventually storing of content to be

manipulated).
• Business and transaction models, thus DRM of content
• Delivery model: streaming, download, off-line distribution, etc.
• Delivery format: MPEG-4, simple audio files, documents, video, etc.

For example a user working on a PDA or a mobile wants to play a video clip, which requires a broadband
network to be played; the formatting process has to adapt this video clip so to satisfy transmission constraint
and to provide to the user a service with an adequate quality.

As with the composition activity, AXMEDIS aims to automate the formatting activity as far as possible, by
allowing the user to define formatting rules (based on the above characteristics) which will then be applied to
multimedia objects to prepare them for the required distribution channels, business models, delivery formats,
etc.

For the analysis of the state of the art the following activities will be performed:

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

10

• Review of commercial and non commercial tools
• Analysis of the state of the art in adaptation algorithms for different media
• Monitoring and analysis of the standardization regarding DIA in MPEG-21
• Collecting the internal state of the art, what the partners are using for content composition and formatting
• Compilation of a list of references
• Identification of the main tools on the market, verification of their features and capabilities
• Preparation of a review document of the state of the art
• Identification of constraints imposed by the

o distribution channel
o final format for delivery
o client power and profile

Research and development plan in composition and formatting
The MPEG-21 and WEDELMUSIC models are compositional models in which any kind of content can be
integrated. In addition, in both models the DRM aspects and several relationships between the content
components included can be defined.

In AXMEDIS we intend to study the following aspects:
• definition of a language for content composition/formatting process description
• implementation of an engine for processing scripting for content composition/formatting
• language dedicated to the layout of the content format. This can be the style of the content format
• definition and implementation of the rule structures for AXMEDIS Composition and Formatting Rules

Editor
• definition of a set of rules for assisted speech to text synchronization
• definition and implementation of AXMEDIS Composition and Formatting Process Engine
• elicitation and analysis of the expertise and current manual processes used in the production workflow in

order to create tools based on artificial intelligence technologies
• connection of composition/formatting algorithms and tools to the engine and the editor, which will be:

• Based on technical metadata and licensing aspects (see above)
• For automatic definition of DRM rules (Possible Available Rights) based on profiles:

distribution, device, channel, user, player tool, etc.
• Produced by example, the user could imagine to provide an example of composition and the

tools could process the other files accordingly
• Based on artificial intelligence and actions on sets such as the merge and selections
• Coming from artificial intelligence: logic engine interpretation and execution of scripting for

automatic processing of composition and formatting
• connection of composition/formatting algorithms and tools with several available integration and

optimization technologies, such as:
• For graphic formatting tools to allocate in the visual and temporal domains different visual

sources, integrated with optimization issues
• For optimizations such as those used for solving knapsack problems in the spatial domain, and

scheduling optimization algorithms in temporal domain: DSI has a considerable skill on
optimizing processes of formatting on both these domains such as performed in SAMOPROS,
OPTAMS, WEDELMUSIC, projects and solutions, etc., by using taboo search, genetic
algorithms, knapsack and multi knapsack solutions, several scheduling solutions, MILLA
formatting language used in WEDELMUSIC tools, etc.

• For synchronization, DSI, DIPITA, EPFL and UNIVLEEDS have a considerable skill on these
aspects used in solutions for WEDELMUSIC, CARROUSO, etc. In this area, the research
partners will develop algorithms for the automatic synchronization of content as performed by
DSI for WEDELMUSIC and by EPFL for real-time MPEG-4 scenarios. Synchronization of
audio/video with other content: documents, text, voice, images, etc., considering temporal

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

11

evolution of content.
• For integration of accessible algorithms and solutions for the comparison with the innovative

algorithms that will be developed
• For integration of content formatting engine with commercial or open source tools via plug-ins
• For integration of adaptation and content processing algorithms for several media
• For integration of adaptation and content processing, including synchronization and editing
• For integration of the MPEG-4 real-time semi-automatic composition tool developed in

CARROUSO for MPEG-4 in a production tool, possibly adding (MPEG-7) metadata as from
T4.2.2

• For managing relations between textual information and acoustic signals in multimedia objects
at two levels (DIPITA): 1) assisted methods for reducing time-consuming alignment procedures;
2) strategies for error reduction in automatic alignment. The automatic detection of significant
cues in the speech signal is a key issue in synchronization tasks. Pause detection does not ensure
a sufficient threshold of information. The relation between various detectable cues that have
been demonstrated relevant during linguistic research will be exploited. More specifically the
interaction among turn alternation, music/voice transitions, and frequency analysis and intensity
changes will be tested in connection with the implementation of synchronization technologies.

• research activity on Content Composition and Formatting and integration into the several workflow
processes of content producers, aggregators and distributors

• adaptation of the content producer partners’ workflows to support AXMEDIS framework and integration
of the new tools into these workflows; this will include:

• creating initial composition and formatting rules for each content producer partner
• integrating AXMEDIS tools via plug-ins and interfaces with the producers’ existing production

tools and WFMS (where currently used)
• definition of the modality of testing in the form of a Test Plan: identification of the model for the

production/collection of test cases
• verification and production of several test cases derived from the defined Test Plan
• validation of the new environment for content composition/formatting by using content produced by

WP8. This will involve each content producer partner in:
• working through the Test Plan, running test cases
• identifying and documenting any missing rules, formatting language elements or critical

functionalities in the prototype AXMEDIS tools
• measuring comparative production costs with and without AXMEDIS tools. It may be possible

that content producer partners may not want to make public the production cost in EURO. It is
more likely that they will share measurements of effort and workload, learning cost and human
resources, productivity (efficiency, e.g. number of steps needed to complete a test scenario, and
effectiveness, that is the extent to which AXMEDIS tools provide the functionality needed to
perform a test scenario) and of performance, e.g. time to perform a test scenario

• logging benefits and other results not documented elsewhere

Research and development plan in adaptation
The following aspects and algorithms will be taken into account:
• Formalization of distribution channels, devices, tools, user profiles and the class hierarchy for their

loading and saving, and algorithms for their processing
• Formalization of adaptation algorithm profiles and the class hierarchy for their loading and saving, and

algorithms for their processing
• Definition and implementation of a common framework and library for the adaptation algorithms and its

usage from AXMEDIS Editor, Composition and Formatting Engine
• Definition and implementation of AXMEDIS Object Manager (AXOM) Content Processing interface for

external plug-ins in conjunction with AXOM
• Digital Item adaptation for several media:

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

12

o Documents and speech (DIPITA)
o Video (FHGIGD, XIM)
o Audio (EPFL, DSI, UNIVLEEDS)
o Images: (DSI, EPFL)
o Multimedia MPEG-4 (EPFL)
o Multimedia IE (DSI, UNIVLEEDS, XIM)
o PAR: Possible Available Rights (FUPF)
o Metadata and AXINFO adaptation (UNIVLEEDS)
o Etc.

• Integration of available algorithms and solutions for performance comparisons
• Definition of transcoding algorithms according to an extensible plug and play model standardized into

AXMEDIS tool and framework
• Definition of transcoding algorithms according to portability issues that may concern PDAs, mobile

devices, etc. (resolution, definition, illumination and number of supported colors, available memory
storage, available computational capabilities, easiness of usage of the device and its GUI)

• Multilingual support for production and verification of multilingual metadata
• Usage and integration of commercial and open source text translation algorithms and tools: leading

technology on translating text into several languages, and technology in vocal synthesis from text
• Collection and management of AXMEDIS Digital Item Adaptation Support
• Verification and production of several test cases

Planned schedule
• M9: Definition of rules structure and syntax for content composition and formatting
• M12: First results about content composition and formatting algorithms, rule based engine
• M12: First results about the formatting algorithms
• M13: A first collection and version of digital item adaptation algorithms, transcoding, reduction, etc.
• M16: First version of synchronization algorithms between audio and text, audio and notes, etc.
• M24: Intermediate version of engines for content formatting and composition
• M24: An intermediate version of the set of algorithms for composition, transcoding and formatting of

content. This will be used as trial version of their integration into the AXMEDIS framework
• M24: Final version of engines for content formatting and composition
• M36: The final version of the set of algorithms for composition, transcoding and formatting of content.

This will replace the set used for the AXMEDIS framework

2.1.2 Specification of T4.3.3 Workflow Support (IRC)

Major partners involved
IRC, with HP, XIM

Knowledge Engineering Pre-requisites
The design and specification of the Workflow Integration to be undertaken as the planned activity for the
forthcoming phase was based on three earlier preparatory stages of activity undertaken to accomplish a
systematic requirements analysis, state-of-the-art research review and knowledge engineering-led
transactions and states analysis. Thus in setting out the rationale for the proposed research work as part of
the planned activity we shall suffice to give only brief references to some of the above results as these were
fully reported in documents submitted earlier. Thus this section will focus on the salient aspects of the
requirements and specification of the plug-in interfaces between the two selected Workflow Management
Supports (WFMSs) to be integrated with the relevant AXMEDIS components. Accordingly the present
specification is based on the conclusions of three distinct planks of preparatory research carried out by the
workflow group (IRC, HP, XIM); outlined as follows:

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

13

A) Established the state-of-the-art from the standpoint of the relevant business semantics, workflow
knowledge and scenarios that are applicable to the three key sectors targeted for exploitation of AXMEDIS
Framework, namely e-book, e-media, e-music production and distribution workflows.

The required domain knowledge elicitation was supported by the design and distribution of a questionnaire
and a series of follow-on semi-structured interviews with selected practitioners from each of the above
sectors. The results were documented in the multi-sectorial Workflow Requirements Elicitation and Domain
Knowledge Analysis part of DE2.1.1a, User Requirements and use cases.

This led to

• a novel analysis of AXMEDIS Object lives and their LifeCycles
• the analysis of the metadata and descriptor states required for the workflow-triggered traversal of

reasoning over such LifeCycles hierarchy that takes place in the normal course of AXMEDIS Object
tracking and control

• and how this involved three distinct interaction spaces i.e. three workflow-centric inferencing
environments re Object states reasoning, tracking and control

It was then suggested that the above three possible sub-spaces of AXWFM-AXMEDIS interaction could
help clarify and streamline the design of AXWFM-AXMEDIS interfaces as well as direct the focus of any
metadata and database partitioning (i.e. AXWFM DB- AXdb complementarity) that could be efficiently
deployed using the canonical 10P-stamp situation assessment classes of Object metadata states; with its two
sub-fields namely purpose and period used for filtering the focus on metadata in a context-sensitive manner.
This was set out in the respective Workflow Sections of DE2.1.1a, User Requirements and use cases.

This work in turn led to suggestions re the design of the AXMEDIS Object Schema in terms of the specific
states and descriptors required to be included with the Object metadata (AXinfo) and/or in AXWFDB and/or
AXdb or in the PMSdb to allow reasoning over all aspects of Object history and full Object traceability and
tracking.

This foundational requirements engineering work led to the conceptualisation of the prototypical scenarios of
workflow usage and thus the derivation of the 23 Use Cases and associated Test Cases for workflow
interaction. This in turn supported the rationale for a four-Channel set of interfaces for a streamlined
integration of workflow and AXMEDIS.

B) Established the state-of-the-art of the available workflow technologies both as open-source and
proprietary products and performed comparative analysis of their compatibility for integration with
AXMEDIS framework. This has led to a rationalization of the choices re the adoption of the candidate
workflow systems for integration with AXMEDIS Framework. This was reported in the respective
Workflow Section of DE2.1.1a, User Requirements and Use cases.

C) Established the knowledge engineering and software development analysis base from the standpoint of
the need for specification of the sub-systemic workspace boundaries for states representation, and, the
technology and the protocols for the above integration leading to the specification and design of the
transaction Semantics, Syntax and Protocols for the interfaces required to achieve the various integration
scenarios as specified.

In what follows we will first outline the state-of-the-art functional requirements from all workflow
participants (Users, AXFWM, AXMEDIS components) as it has helped set the guidelines for the research
and development work to be performed in the next phase to achieve the Workflow Integration within
AXMEDIS Framework. Thereafter we will briefly refer to the rationale for the planned research in terms of
the choice of existing workflow systems to be adapted and interfaced to AXMEDIS Framework and the
knowledge engineering-led choices re the selected sub-systemic boundaries for the required 17 distinct

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

14

interface instances to be delivered within the following four-channel architecture for the workflow
integration:

i. AXWFM and AXMEDIS Workflow Editor,
ii. AXWFM and AXMEDIS Rule Editor/Viewers,

iii. AXWFM and AXMEDIS Engines
iv. AXWFM and AXMEDIS Query Support Interface

We shall conclude with an outline of the design specification and the technical environment of its
implementation as part of the future planned activities together with the associated schedule of milestones for
the deliverables

Established Requirements for the Integrated AXWFM-AXMEDIS

This is the outline of the requirements now established for AXWFM Integration as follows:

i. Operate within the key Operating Systems (OS); for example the Windows, Linux, Mac
ii. Interact with AXMEDIS Object Manager to access Objects and track/update their status (i.e. allow

workflow metadata visualisation, editing, automated updating and storage).
iii. Monitor the progress of assigned process activities and be capable of managing more than one

workflow process instance so as to provide workflow support for multi-agency co-design and co-
production of multimedia content based on open-source distributed products through LGPL, BSD or
similar licences.

iv. Provide time-and-status metadata updates that remain accessible to other Enterprise Project
Management Applications, such as SAP for example (OPTIONAL)

v. Provide a seamless service interface (API) to be used for developing the plug-ins for AXMEDIS-
native tools (e.g. tools for Content Production, Formatting, Packaging/Bundling and Distribution) for
the range of operating systems selected above, i.e. specifically to provide interfaces for the following
tools and engines as listed below:

a) Editor
b) Rule Editor/Viewers for various tools
c) Composition and Formatting Engine
d) Programme and Publications Engine
e) Protection Tool Engine
f) P2P Active Selection Engine
g) Collector Engine
h) Publication/Loading Rules/Selections Editor
i) Publication Tool Engine of AXEPTool
j) Loading Tool Engine of AXEPTool
k) Administrative Information Integrator
l) Administrative Information Manager
m) Accounting Manager and Reporting Tool
n) User Query Support

AXMEDIS is expected to deliver a number of innovations to the media production workflow:

• Support single and distributor customisable workflow for all channels - content should need to be
authored only once

• Support for peer-to-peer production workflow – collaborative production and integration of content
across remote ad hoc virtual organisations that may form and re-form on a project-by-project basis

• Support artificial intelligence-assisted workflow - repetitive tasks, in particular re-purposing for
multiple channels, is to be automated

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

15

• Enable integration into existing workflows - AXMEDIS is to provide a framework to support
workflow, rather than dictate a single, inflexible model. This will allow production houses to retain
their unique styles and original creative aspects of their current workflows

The interface will be developed to ensure maximum compatibility with the requirements of the various parts
of AXMEDIS Framework to deploy the workflow environment for example for automated content
composition and formatting, or content distribution through various channels such as B2C over P2P
networks.

The Workflow is to be tightly integrated with AXMEDIS Viewer/Editor tools, in order to be able to
automatically streamline editing/viewing activities inside publishing and distribution processes. With this
kind of integration, the Workflow automatically launches AXMEDIS Editors/Viewers on AXMEDIS
Objects.

The AXMEDIS Viewer/Editor tools can be executed outside the Workflow environment. This is to
accommodate those enterprises that wish to work with AXMEDIS Objects but without necessarily adopting
structured processes – this is to be supported through the provision of a simple AXMEDIS Object check-
in/check-out interface.

On the Client side, the AXWF User Interface will be the home interface for all users and actors involved in
the product development and distribution processes. Through the AXWF User Interface the actors logs-in
and see all the workitems in which they are individually committed and via accessing any workitems they
can perform the actions required through launching the appropriate tools. All actions performed by the
actors/users are logged by the AXWF in the AXMEDIS Object repository, as well as the new revisions and
status changes.

Through the AXWF User Interface it must be possible to create new or delete existing Objects or
Components which in turn will create or delete (sub) process instances. Once the actor/user has selected a
workitem to work with and an editing activity to be performed (e.g. editing, composing, formatting, etc an
Object/component), the AXWFM will lock the Object/component in the Object repository and will copy it to
a work area for exclusive access by the user where it will be processed by the proper tools
(authoring/formatting/rendering/composing/ packaging/bundling).

Accordingly the key patterns of deployment in scenarios for the integration of any AXMEDIS-adopted
workflow management system (AXWFM) with AXMEDIS Framework involve the AXWFM launching the
execution of various plug-ins as follows:

• AXMEDIS Object Editors/Viewers via the AXMEDIS Editor WorkFlow Plug-in
• AXMEDIS Compositional/Formatting Engine via the AXMEDIS WorkFlow Engine Plug-in
• AXMEDIS Collector Internal Engine via the AXMEDIS WorkFlow Engine Plug-in
• AXMEDIS Program and Publication Engine via the AXMEDIS WorkFlow Engine Plug-in
• AXEPTool Loading Tool Engine via the AXMEDIS WorkFlow Engine Plug-in
• AXEPTool Publication Tool Engine via the AXMEDIS WorkFlow Engine Plug-in
• AXMEDIS Loader/Mover via the AXMEDIS WorkFlow Query and Database Interface
• AXMEDIS Query Support via the AXMEDIS WorkFlow Query and Database Interface
• AXMEDIS Compositional/Formatting Rule Editor via the AXMEDIS WorkFlow Rule Editor Plug-in
• AXMEDIS Program and Publication Rule Editor via the AXMEDIS WorkFlow Rule Editor Plug-in
• AXEPTool Publication/Loading Rule Editor via the AXMEDIS WorkFlow Rule Editor Plug-in
• AXMEDIS Protection Rule Editor via the AXMEDIS WorkFlow Rule Editor Plug-in

Thus the AXWFM Workflow Manager will be capable of interacting with the AXMEDIS Object Manager
via the AXMEDIS Editor WorkFlow Plug-in

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

16

It is expected that every AXMEDIS tool will update the AXMEDIS Object tracking information, while
performing its actions. However, when the check-in / check-out interface is used, it is up to the Workflow
Object Manager to update such information. Unfortunately the Workflow cannot know exactly what action
the user performed between the Check-in and Check-out stage. Accordingly a field is to be provided for
users to describe the work that was done on the Object concerned; thus allowing status updates.

Specification of AXWF-AXMEDIS Interface Types

In summary four types of interfaces are expected to form the basis of AXWFM interactions within the
AXMEDIS framework. These types will depend on the characteristics of the different applications or tools
that the AXWFM must exchange information with.

These interfaces are outlined below:

a) AXWFM-AXMEDIS native tools interface: the AXMEDIS client tools form a crucial part of the
AXMEDIS framework and will therefore present a closely knit form of interaction. These native
tools which deal with aspects related to authoring, formatting, rendering, composing, packaging, and
bundling applications all perform specific actions on an AXMEDIS Object.

b) AXWFM-CMS interface: External CMSs must be allowed for as users must not be impeded in their

work. Interfaces to such systems are necessarily less well integrated relative to native AXMEDIS
tools. An essential part of this type of interface will be the check-in and check-out operations of an
AXMEDIS Object by an authorised actor. The former operation performs tasks related to
maintaining Object consistency by locking it in the repository and authorising its download
exclusively to such actor. The latter operation releases this lock once the upload of the manipulated
AXMEDIS Object has been successfully completed and status / revision entries have been inserted
in the AXWFM.

c) AXWFM-AXMEDIS Server Engines interface: The web services technology can be used to

integrate the AXWFM and server-based AXMEDIS applications such as the AXMEDIS Object
Manager, Program and Publications Engine, Protection Tool Engine, Publication Tool Engine of
AXEPTool among others. Using web services, the AXWFM can invoke the proper methods over
HTTP(s), enabling one to interface any server-side component, regardless of language or platform or
location and vice-versa.

d) AXWFM-Query support interface: this type of interface is a particular case of the AXWFM-

AXMEDIS server engine interface which is to be based on the web services technology. In this case
an authorised user may perform AXMEDIS-related queries through the AXWF user interface. The
user must be afforded the possibility of performing advanced searches on characteristics connected
to the AXMEDIS Objects by invoking external search engines and thus retrieving the information
being sought.

State of the art
This part gives an outline of the rationale for the choice of the two selected workflow systems (i.e. the open-
source workflow, Openflow, and the proprietary workflow system BizTalk). Later we shall describe the
framework for the design of the plug-in input/output structures to be realised such that they are compatible
with the protocols and method invocations of the adopted workflow systems.

The main WFMSs that have been examined are as follows:

i. Openflow

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

17

ii. JBoss jBpm
iii. ObjectWeb Bonita
iv. Enhydra Shark.
v. OpenWFE

Rationale for the Choice of Openflow

The Open-Source Workflow tool was to be selected on the basis of the following criteria:

• Best coverage of the functions needed by Axmedis
• Openness of the interfaces
• Usability considerations
• Robustness, based on project references

The Rationale for choice of BizTalk

a) Following the extensive process of Multi-Sector Requirements Knowledge Elicitation and Analysis
as undertaken in the initial stages of AXMEDIS project together with the state-of-the-art review of
all the major WFMSs it was concluded that:

b) there is no dominant WFMSs currently deployed in the multi-media Production/Distribution sector
c) MS NET BizTalk offered the greatest scope for this AXMEDIS integration.

Research and development plan

AXMEDIS technical annex sets out the following Objectives in the present context:

• Adaptation of the content producer partners’ workflows to support the AXMEDIS framework and
integration of the new tools into these workflows

• Definition of the expertise and current manual processes used in the production workflow in order to
create tools based on artificial intelligence technologies

• Research activity on Content Composition and Formatting and integration into the several workflow
processes of content producers, aggregators and distributors

• Consolidation of tools and workflow developments to be compliant with the overall AXMEDIS
framework

The research and development activity for the next period will mainly include the examination of the
specification of the plug-ins from the point of view of the integration technology required for the delivery of
a fully interoperable set of the plug-ins with the APIs available from Openflow.

This is to serve the integration with AXMEDIS native engines, tools and the Query Support Interface. This
implies the design of the plug-ins for full Connectivity, messaging Communication, Command and Control
(C4) as well as AXMEDIS Object transfers across the relevant interfaces in particular such that the workflow
will be able to provide seamless interaction with all the relevant AXMEDIS components involved in any of
the eight generic Workflow Scenarios that are already proposed and established by the workflow team.

For this we envisaged that the design specification of the required interfaces will involve the specification of:
• Programmes and Publications Engine
• AXEPTool Publishing Engine
• AXEPTool Loading Engine
• AXEPTool P2P Active Selection Engine
• AXEPTool Objects Monitoring Tool

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

18

• AXEPTool Publication & Loading Editor/Viewer
• Programme & Publications Rule Editor/Viewer
• Composition Engine
• Compositional Commands & Reporting
• Formatting Engine
• Collector Engine
• Protection Engine
• AXOM Editor Plug-in
• Compositional Rule Editor/Viewer
• Protection Tool
• Protection Tool Editor/Viewer
• User Interface

Research will be carried out for the design and development of the above interfaces between the AXMEDIS
Workflow (AXWFM) and the relevant core AXMEDIS components (tools/engine/Query Support) to
facilitate indexing, tracking, storing as well as optionally to support Authentication, Authorisation &
Auditing (AAA) with single sign-on and all-in single-billing.

Accordingly Research will be carried out to finalise the Exchange Format and Metadata states required. An
Exchange Format must satisfy the following specification criteria:

i. must be able to identify and index itself (Self-referentiality Criterion)
ii. must carry the user_credentials (including session_ID and any other data that may be required for

AAA of the originating client-session-owner), (AAA Criterion)
iii. must be able to bear an explicit link or implicit pointer to link it to other co-related session exchanges

to which it refers or which might refer to it (Co-referentiality Criterion)
iv. must be able to convey data sufficient for the goal of the exchange to be achievable such that each

transactor in turn need only process elements of data sufficient and necessary for it to achieve the
exchange sub-goals for which it is responsible within its own sub-system environment (Necessity and
Sufficiency Criterion)

Each Exchange is an Exchange-instance and has to be indexable as an Exchange_Instance_ID. Any
Exchange between the adopted AXMEDIS workflow system (AXWFM) and relevant AXMEDIS service
providing components (Editors, Engines, Tools, Query Support) can thus be uniquely distinguished by
means of an AXWF-Exchange-instance –ID or WF-Exchange_ID for short.

All these exchanges will be developed in order to be compatible to the selected workflow environments and
are a neutral exchange format for accessing any transaction between the AXWFM environment and any
relevant AXMEDIS component whilst imposing minimal metadata requirement on the AXMEDIS Object
Model. An efficient way of handling the transactions between the transactor (typically AXWFM) and other
tools will be developed along with history information of such transactions over the period of any sessions so
as to be able to provide the data structures to support a viewer-friendly re-call of all types of session
exchanges as well as the session costs, rights granted and used, DRM and billing.

The AXMEDIS Object metadata and the internal workflow engine lifecycle status data when fully integrated
have to provide all the information needed to enable the workflow management system to locate and track
the progress status of any involved entity anywhere in any (sub) workspaces to enable the user to enquire
about the lifecycles status of the three interacting types of entities (workflow, actors, Objects) involved in
any project.

WF-Exchange_ID Protocols and Methods

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

19

An Exchange_ID is to be defined as a logical neutral format. This means it is to specify what must logically,
minimally and necessarily be passed but it will rightly defines itself not in terms of some local dialect from
any particular WFMS currently in the market but in terms of generic knowledge engineering-led ontology
which is designed exactly to ensure efficient effective as well as complete, consistent, and coherent
messaging.

So as long as all the necessary data from WF-Exchange_ID, to be specified, are made available appropriately
to various contexts of transaction, i.e. to each transactor as required, so that:

a) Those systems that need specific Exchange data elements in order to pass the right data back and
forth can efficiently find, within the WF-Exchange_ID, the data for targeting, linking, binding and
tracking their Requests/Responses and any related Objects

b) Those systems that do not need to know/process certain elements of the Exchange data are not

forced to process those elements

Then the WF-Exchange_ID design will have satisfied the requirements.

In this way a generic model for AXWFM-AXMEDIS transactions is to be specified such that it can abstract
from the idiosyncrasies of design/processing modes within individual adopted workflow engines whilst
providing a vehicle for sufficient and necessary status data/parameters to be exchanged between any
AXWFM and the relevant AXMEDIS components through a single composite string structure (i.e. WF-
Exchange-ID) that is transparently and uniquely decodable and decomposable within the individual
participant sub-systems to provide all the necessary lifecycles information of interest locally as well as to be
able to index various sub-fields that need to be combined to provide multiple or particularised views.

The Neutral Exchange Messaging Format has to be specified for the plug-ins as the logical, necessary and
sufficient transaction protocol to remain both AXMEDIS-compliant as well as technologically realisable and
consistent with the capabilities of existing workflow systems given their available method invocations and
transaction protocols. Thus the reason for adoption of a neutral exchange messaging format is to provide a
uniform and generic transaction standard so as to allow portability of the interfaces to various workflow
systems and facilitate the development of new plug-ins.

Research will also be done for efficient tracking of digital assets within AXMEDIS framework. For this the
Object’s metadata information is considered to be that which allows relevant access to the status and tracking
information regarding the processing and progress of the work done on any Objects and the results of various
actors/tools/engines acting upon the Objects through the lifecycle of various projects. In general, the chief
requirements for tracking and control is focused situation assessment and the semantics types recommended
for the metadata and status descriptors are intended to provide the situation assessment on current state and
progress of any digital assets developed during any project.

This can be done by metadata partitioning and assigning a 10-P situation assessment criterion (as defined in
DE3.1.2G Framework and Tools Specifications. This 10-P status data type is meant to provide a sufficient
basis for tracking the status of AXMEDIS Objects through their development life cycles whilst allowing
purpose-specifically filtered metadata-view and reasoning to serve the current focus of the actors/user/tools
concerned.

The workflow rules will be defined based on the development process involved in the production and
distribution of multimedia artefacts, which have been studied with the cooperation of the AXMEDIS partners
involved in the respective fields (e.g. OD2, ILABS, XIM, AFI, ANSC, SERGER, etc)

Mapping the WF-Exchange_ID to WebServices XML Envelope or DCOM Call in .NET

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

20

The above data exchange requirements are protocol invariant but should be deliverable by for example the
XML-RPC protocol over HTTP as deployed by some workflow engines such as OpenFlow.

It must be noted therefore that the WF-Exchange-ID to be developed must contain the method invocation, as
well as INPUT/OUTPUT/NOTIFICATION parameters i.e. it is not just another parameter in the
INPUT/OUTPUT/NOTIFICATION class invocation. So the WF-Exchange-ID format (which is basically a
text string) should be compatible with any communication protocol as desired.

Where WebServices are deployed for AXWFM transactions with the AXMEDIS Service Provider
Components such as tools/engines/editors etc, the WF-Exchange-ID has to be encoded as an XML string and
accordingly its parameters (e.g. the invoked engine and method etc) will have to find an appropriate mapping
or expression in the WebService XML envelope. On the other hand if .Net remote method invocation
(DCOM), are to be used then some of the WF-Exchange_ID parameters have to be mapped (i.e.
appropriately expressed) in the DCOM call and the WF-Exchange-ID would be encoded as a C++ string.

Openflow as the AXWFM Interfacing with the AXMEDIS Components

All the possible Workflow engines in the Open-Source arena that are suitable for AXMEDIS offer a Web
application based User Interface.

The User Interface is then executed via a normal browser, while the User Interface logics reside on the
Application Server of the WorkFlow Engine.

The WorkFlow Manager will be a customisation of one of the adopted Workflow Management System with
some functions added, if not already present (e.g. search engine).

The Workflow User Interface will also require some customisation to serve the integration of the adopted
WFMS with the AXMEDIS Framework. The User Interface will use the WorkFlow Manager class methods
via the internal interface of the adopted WFMS.

Calls from external applications (AXMEDIS tools and engines) to Openflow are to be made via http
protocol, using the classical GET method (parameters given in the URL).

In the case of most potential AXWFs, including Openflow, five parameters tend to be always required to be
passed to an application e.g. to an AXMEDIS service provider: openflow_ID, process_ID, activity_ID,
instance_ID and workitem_ID.

The Interface Protocols Diagram below illustrates the protocols to be deployed for the range of AXWFM-
AXMEDIS plug-ins as listed above.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

21

Planned schedule
• M9: Analysis and requirements specification for the workflow support for content composition
• M11: Identification of suitable workflow engines and selection of the most suitable open-source

workflow environment to integrate into the AXMEDIS framework
• M13: Analysis and requirements specification of the interface to the selected workflow support for

the AXMEDIS content composition and the AXEPTool
• M16: First version of the workflow support interface for the AXMEDIS content composition and the

AXEPTool
• M24: Final revised specification of the workflow support interface for the AXMEDIS content

composition and the AXEPTool
• M28: Final version of the workflow support interface for the AXMEDIS content composition and

the AXEPTool
• M33: Updated final specification of the workflow support interface for the AXMEDIS content

composition and the AXEPTool
• M36: Updated final version of the workflow support interface for the AXMEDIS content

composition and the AXEPTool
--- this section is mandatory in all deliverables ---

---- DLL or WS
 -----WS, WSDL

Get() over
HTTP or
.Net-Oriented

---- Xmlrpc or .Net-oriented

DLL API
WS,WSDL

Workflow

WF User Interface
+DB

Plug-in
C++ stateless

Machine

Colour code used to indicate which
protocol is to be used in input /output for
which workflow (openflow or Biztalk
integration case) to be used in input
/output :
When integrating openflow ----
When integrating Biztalk ---------
In both cases ---------------------
For Query Support ----------------

Axmedis Service
Providers

Editors/Tools/Engines/
WS Query Support

Interface

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

22

3 AXMEDIS Architecture for Content Processing (DSI)

The AXMEDIS Content Processing Area is mainly realized as a distributed tool for processing content on
the basis of rules which are written as scripts. This solution allows considering such AXCP Rule Engine as a
tool to be used for content processing according to the content designer and publisher needs.
The Rules and the Engine allow the definition of algorithms for composition, formatting, adaptation,
transcoding, extraction of fingerprint and descriptors, protection, license manipulation, potential available
rights manipulation, resource manipulation, load and save from databases and file system, mathematics,
combinatorial, etc.
The AXCP Rules can be written by referring to a large set of common data types derived from AXMEDIS
Framework, MPEG21, and general resource definition such as: images, documents, video, licenses, etc. It is
a sort of engine the allow to script middleware algorithms for content processing.
Thus the AXCS Engine and Rule are a versatile and customizable way to produce and manage digital content
respecting legal aspects, DRM, ownership, user and publishers requirements.
In this terms, a rule:

• describes what resources are involved in the processing (i.e. extracting digital resources from the
AXMEDIS database by means of queries built on metadata and licensing information or from a
composite AXMEDIS object);

• works on contenent by using distribution channel properties, user device features, user profile, etc…
• generates the final output using a specific integration format (MPEG-4, SMIL,…) or using DIP

capabilities provided by MPEG-21 objects
• describes how to combine different digital resources and create relationships in terms of:

o spatial relationships (for graphic layout, resource adaptation, …)
o time relationships (for synchronisation, transitions effect, fitting (shrinking or stretching,

cutting,)…);
• describes how to manage and combine DRM rules for the new formatted resource;
• describes operations or actions that have to be performed during the formatting process, for example:

o which formatting algorithms have to be used (synchronisation, image scaling, resolution
scaling, format conversion, etc…)

o which external functionalities (by dynamic call to services provided by external tools) have
to be used

o Fingerprint estimation and application for the new composite item
o Object ID assignment for the new composite item.

• describe how to protect resources

In addition, the AXCP area is capable to receive commands coming from the factory Workflow by means of
a web service interface. Despite of several mentioned advantages, delegating the processing activity to a
single AXCS Engine seems to be not the best solution since the amount of work in terms of elaboration time
and the dimension of data that the engine has to manage can be very high in most of the content factories in
which even millions of digital resources are managed per months. The main idea to solve this problem has
been to design the AXCS Engine as a distributed environment of rule executors based on a GRID
infrastructure. This solution maintains advantages of a unified solution and allows enhancing the
capabilities of the AXMEDIS Content Processing area by running rules in parallel and rationally using the
computational resources accessible in the content factory.

In the Figure, the relationships between the AXCP Rule Engine and the other parts of the AXMEDIS
environment consisting of the AXMEDIS Workflow Manager, the AXCP Rule Editor and the AXMEDIS
Database, are described. The figure shows also the main components and tools used by the AXCP Rule
Engine.
AXMEDIS Workflow Manager to allow the reception of commands from connected workflow tools of the
content factory and thus to control the AXCP Rule Engine and Editor activities.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

23

AXCP Rules Editor, which is front end tool to produce AXCP Rules for the user. It is supported by a
repository of rules and interacts with the AXCP Rule Engine when a rule has to be executed.
AXCP Rule Engine to put in execution AXCP Rules. As a result of the rule execution, it may generate new
AXMEDIS objects, licenses, etc. Such information may be stored in the AXMEDIS database to be further
delivered via distribution channels. The Engine is supported by the set of plug-ins, called AXMEDIS plug-
ins, that allows performing several functionalities and coping with:
1. Protection algorithms performing the protection of the AXMEDIS objects, license production and

processing, etc.
2. Fingerprint/Descriptor algorithms for estimation of fingerprints and descriptors of AXMEDIS objects

and contained digital resources.
3. Adaptation algorithms for content/resource adaptation, DRM and license adaptation, etc., that typically

needed for different distribution channels and format paradigms.
4. External tools for the interaction with commercial tools and libraries for exploiting their formatting and

processing functionalities.
5. Publication algorithms to perform metadata manipulation, gathering and mapping, publication of

AXMEDIS objects on external channels and in particular on the B2B distribution.
This report describes the development activity performed in the AXMEDIS Content Processing Area and fix
the current status of implemented features related to the following items:

• AXMEDIS Rule Model
• AXMEDIS AXCP Rule Editor
• AXMEDIS AXCP Rule Scheduler
• AXMEDIS AXCP Rule Executor
• Composition and Formatting tools, algorithms and formalizations
• Content Adaptation: Digital Resource Transcoding (audio, video, image, multimedia, etc….)

AXCP Rule
EDITOR

AXCP
Rule Engine

AXMEDIS
Workflow
Manager

Pub. on
AXEPTool

Ext. Tools
Adaptation Fingerprint Protection

Metadata mapping,
publish/unpublish

on AXEPTool

External Functions
(composition, formatting,

adaptation)

Content
Adaptation

Adaptation
of Metadata

Fingerprint Extraction,
Descriptor Extraction,

etc.

Adaptation of
DRM, PAR,

License, etc.

Encoding,
Compress,

Scrambling, etc. Governed Object
Generation

License
Generation,

Verification, etc

AXMEDIS
DATABASE

Gathering &
Crawling

Metadata Mapping
from CMS

Content Processing Flow Diagram and Relationships

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

24

4 AXMEDIS Rule Definition and Model

In this section the status of work performed in definining the model of AXCP Rule is reported. This report
shows the main concepts, formalization and implementation of the model.

4.1 Technical Details
reference to the AXFW location of the
demonstrator

https://cvs.axmedis.org/repos/Framework/source/rulemodel/

List of libraries used None
References to other components needed Selection
Problems not solved --

Configuration and execution context

The entire content production process is driven by rules called AXMEDIS Content Processing rules (AXCP
Rule). A rule was formalised as a function in the following way:

R = f(S1,S2,..,Sn,P1,…,Pm)
Where:

• Si – It defines a selection. A selection is a sequence of query to be sent to the Query Support for
AXMEDIS objects retrieval or references to digital resource embedded into an composite
AXEMDIS object;

• Pi – It is a parameter (basic type as integer, string, boolean, float);
• f is the identifier of rule (name of rule and AXRID);
• R is the resultant of rule application. It is a new AXMEDIS object, or a metadata manipulation, or

the protection, the adaptation of an AXMEDIS object, etc…

4.2 AXCP Rule XML formalisation
The following XML schema refers to the “Rule_Axmedis.xsd” file.

element Rule
diagram

children Header Schedule Definition

source <xs:element name="Rule">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Header">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Rule_Name" type="xs:string"/>
 <xs:element name="AXRID" type="xs:string"/>
 <xs:element name="Rule_Version" type="xs:string"/>
 <xs:element name="Rule_Type">

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

25

 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="AXCP"/>
 <xs:enumeration value="AXPnP"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Software_Name" type="xs:string"/>
 <xs:element name="Version_of_software" type="xs:string"/>
 <xs:element name="Date_of_production" type="xs:date"/>
 <xs:element name="Author" type="xs:string"/>
 <xs:element name="Affiliation" type="xs:string"/>
 <xs:element name="URL" type="xs:anyURI"/>
 <xs:element name="Comment" type="xs:string"/>
 <xs:element name="Last_Modifications" type="xs:date"/>
 <xs:element name="Terminal_ID" type="xs:string"/>
 <xs:element name="Cost" type="xs:string"/>
 <xs:element name="Work_Item_ID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Schedule">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Run">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Date" type="xs:date"/>
 <xs:element name="Time" type="xs:time"/>
 <xs:element name="Periodicity" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:integer">
 <xs:attribute name="Unit" type="periodunit"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Expiration_Date" type="xs:date" minOccurs="0"/>
 <xs:element name="Expiration_Time" type="xs:time" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Status">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Active"/>
 <xs:enumeration value="Inactive"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Definition">
 <xs:complexType>
 <xs:choice minOccurs="0">
 <xs:element name="AXCP_Rule">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Arguments">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="Parameter" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="Name" type="xs:string" use="required"/>
 <xs:attribute name="Type" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element ref="selection" minOccurs="0" maxOccurs="unbounded"/>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

26

 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="Rule_Body">
 <xs:complexType>
 <xs:choice>
 <xs:element name="JS_Script" type="xs:string"/>
 <xs:element name="Path" type="xs:anyURI" minOccurs="0"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="Dependencies" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Dependency" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Plug_In_name" type="xs:string"/>
 <xs:element name="Version" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="PnP_Rule"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

description A rule is constituted of three main sections:
• Header – General metadata about the AXCP rule
• Schedule – Temporal metadata that describes conditions for firing the AXCP rule
• Definition – The definition of the AXCP rule

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

27

element Rule/Header
diagram

children Rule_Name AXRID Rule_Version Rule_Type Software_Name Version_of_software Date_of_production Author

Affiliation URL Comment Last_Modifications Terminal_ID Cost Work_Item_ID

source <xs:element name="Header">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Rule_Name" type="xs:string"/>
 <xs:element name="AXRID" type="xs:string"/>
 <xs:element name="Rule_Version" type="xs:string"/>
 <xs:element name="Rule_Type">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="AXCP"/>
 <xs:enumeration value="AXPnP"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Software_Name" type="xs:string"/>
 <xs:element name="Version_of_software" type="xs:string"/>
 <xs:element name="Date_of_production" type="xs:date"/>
 <xs:element name="Author" type="xs:string"/>
 <xs:element name="Affiliation" type="xs:string"/>
 <xs:element name="URL" type="xs:anyURI"/>
 <xs:element name="Comment" type="xs:string"/>
 <xs:element name="Last_Modifications" type="xs:date"/>
 <xs:element name="Terminal_ID" type="xs:string"/>
 <xs:element name="Cost" type="xs:string"/>
 <xs:element name="Work_Item_ID" type="xs:string"/>
 </xs:sequence>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

28

 </xs:complexType>
</xs:element>

description This section contains metadata related to general information associated with a rule

element Rule/Header/Rule_Name
diagram

type xs:string

source <xs:element name="Rule_Name" type="xs:string"/>

description It defines the name of the rule, e.g. “Audio Collection”

element Rule/Header/AXRID
diagram

type xs:string

source <xs:element name="AXRID" type="xs:string"/>

description It defines the AXMEDIS Rule ID

element Rule/Header/Rule_Version
diagram

type xs:string

source <xs:element name="Rule_Version" type="xs:string"/>

description It defines the version of the rule, e.g. “1.0”

element Rule/Header/Rule_Type
diagram

type restriction of xs:string

facets enumeration AXCP
enumeration AXPnP

source <xs:element name="Rule_Type">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="AXCP"/>
 <xs:enumeration value="AXPnP"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

description It defines the type of rule, AXCP rules identifies all rules related to the Content Processing Area, whereas the AXPnP
rules are the rule of the P&P area

element Rule/Header/Software_Name
diagram

type xs:string

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

29

source <xs:element name="Software_Name" type="xs:string"/>

description It specifies the name of software used, e.g. “Axmedis Rule Editor”

element Rule/Header/Version_of_software
diagram

type xs:string

source <xs:element name="Version_of_software" type="xs:string"/>

description It defines the version of software used., e.g. “2.0”

element Rule/Header/Date_of_production
diagram

type xs:date

source <xs:element name="Date_of_production" type="xs:date"/>

description It defines when the rule has been created

Note This item now embeds the item Time_of_Production defined in the DE3-1-2C-AXFW_Spec-(content-production)-Part-C
document.

:

element Rule/Header/Author
diagram

type xs:string

source <xs:element name="Author" type="xs:string"/>

description It defines the name of author who has created the rule

element Rule/Header/Affiliation
diagram

type xs:string

source <xs:element name="Affiliation" type="xs:string"/>

description It defines the name of Affiliation

element Rule/Header/URL
diagram

type xs:anyURI

source <xs:element name="URL" type="xs:anyURI"/>

description It defines the Internet address/URL of the Affiliation

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

30

element Rule/Header/Comment
diagram

type xs:string

source <xs:element name="Comment" type="xs:string"/>

description It allows describing what the rule does

element Rule/Header/Last_Modifications
diagram

type xs:date

source <xs:element name="Last_Modifications" type="xs:date"/>

description It is used to report the last modified date

element Rule/Header/Terminal_ID
diagram

type xs:string

source <xs:element name="Terminal_ID" type="xs:string"/>

description The Id of the terminal used to write the rule.

element Rule/Header/Cost
diagram

type xs:string

source <xs:element name="Cost" type="xs:string"/>

description Estimation of Cost

element Rule/Header/Work_Item_ID
diagram

type xs:string

source <xs:element name="Work_Item_ID" type="xs:string"/>

description External reference, for instance the commitment

element Rule/Schedule
diagram

children Run Status

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

31

source <xs:element name="Schedule">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Run">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Date" type="xs:date"/>
 <xs:element name="Time" type="xs:time"/>
 <xs:element name="Periodicity" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:integer">
 <xs:attribute name="Unit" type="periodunit"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Expiration_Date" type="xs:date" minOccurs="0"/>
 <xs:element name="Expiration_Time" type="xs:time" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Status">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Active"/>
 <xs:enumeration value="Inactive"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

description This section contains the sequence of metadata for programming the activation of a rule

element Rule/Schedule/Run
diagram

children Date Time Periodicity Expiration_Date Expiration_Time

source <xs:element name="Run">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Date" type="xs:date"/>
 <xs:element name="Time" type="xs:time"/>
 <xs:element name="Periodicity" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:integer">
 <xs:attribute name="Unit" type="periodunit"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Expiration_Date" type="xs:date" minOccurs="0"/>
 <xs:element name="Expiration_Time" type="xs:time" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

32

</xs:element>

description It defines a subsection of metadata that describes information needed for scheduling the execution of the rule.

element Rule/Schedule/Run/Date
diagram

type xs:date

source <xs:element name="Date" type="xs:date"/>

description It defines when the rule has to be executed by the engine in terms of day, month and year.

element Rule/Schedule/Run/Time
diagram

type xs:time

source <xs:element name="Time" type="xs:time"/>

description It defines when the rule has to be executed by the engine in term of time clock.

element Rule/Schedule/Run/Periodicity
diagram

type extension of xs:integer

attributes Name Type Use Default Fixed Annotation
Unit periodunit

source <xs:element name="Periodicity" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:integer">
 <xs:attribute name="Unit" type="periodunit"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

description It defines if a rule has to be executed periodically, every “Unit” “periodunit” e.g. “2” “Week”

element Rule/Schedule/Run/Expiration_Date
diagram

type xs:date

source <xs:element name="Expiration_Date" type="xs:date" minOccurs="0"/>

description The date to stop the periodicity

element Rule/Schedule/Run/Expiration_Time
diagram

type xs:time

source <xs:element name="Expiration_Time" type="xs:time" minOccurs="0"/>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

33

description The time to stop the periodicity

element Rule/Schedule/Status
diagram

type restriction of xs:string

facets enumeration Active
enumeration Inactive

source <xs:element name="Status">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Active"/>
 <xs:enumeration value="Inactive"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

description It defines if a rule is:

• “active” and can be executed

• ”inactive”

element Rule/Definition
diagram

children AXCP_Rule PnP_Rule

source <xs:element name="Definition">
 <xs:complexType>
 <xs:choice minOccurs="0">
 <xs:element name="AXCP_Rule">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Arguments">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="Parameter" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="Name" type="xs:string" use="required"/>
 <xs:attribute name="Type" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element ref="selection" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="Rule_Body">
 <xs:complexType>
 <xs:choice>
 <xs:element name="JS_Script" type="xs:string"/>
 <xs:element name="Path" type="xs:anyURI" minOccurs="0"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="Dependencies" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Dependency" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

34

 <xs:sequence>
 <xs:element name="Plug_In_name" type="xs:string"/>
 <xs:element name="Version" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="PnP_Rule"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

description This section includes the section containing the procedural description of an AXCP or a PnP rule

element Rule/Definition/AXCP_Rule
diagram

children Arguments Rule_Body Dependencies

source <xs:element name="AXCP_Rule">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Arguments">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="Parameter" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="Name" type="xs:string" use="required"/>
 <xs:attribute name="Type" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element ref="selection" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="Rule_Body">
 <xs:complexType>
 <xs:choice>
 <xs:element name="JS_Script" type="xs:string"/>
 <xs:element name="Path" type="xs:anyURI" minOccurs="0"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="Dependencies" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Dependency" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Plug_In_name" type="xs:string"/>
 <xs:element name="Version" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

35

 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

description This section include the AXCP Rule section containing the procedural description of the rule

element Rule/Definition/AXCP_Rule/Arguments
diagram

children Parameter selection

source <xs:element name="Arguments">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="Parameter" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="Name" type="xs:string" use="required"/>
 <xs:attribute name="Type" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element ref="selection" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

description It includes the set of selections and parameters that rule has in input.

element Rule/Definition/AXCP_Rule/Arguments/Parameter
diagram

type extension of xs:string

attributes Name Type Use Default Fixed Annotation
Name xs:string required
Type xs:string required

source <xs:element name="Parameter" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="Name" type="xs:string" use="required"/>
 <xs:attribute name="Type" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

description It defines a parameter in input to the rule by providing the name, the type and the actual value

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

36

element Rule/Definition/AXCP_Rule/Rule_Body
diagram

children JS_Script Path

source <xs:element name="Rule_Body">
 <xs:complexType>
 <xs:choice>
 <xs:element name="JS_Script" type="xs:string"/>
 <xs:element name="Path" type="xs:anyURI" minOccurs="0"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

description The Rule Body section provides two possible ways to refer the adopted script:

element Rule/Definition/AXCP_Rule/Rule_Body/JS_Script
diagram

type xs:string

source <xs:element name="JS_Script" type="xs:string"/>

description It is used to embed the whole script (JavaScript code) inside the XML rule format.

element Rule/Definition/AXCP_Rule/Rule_Body/Path
diagram

type xs:anyURI

source <xs:element name="Path" type="xs:anyURI" minOccurs="0"/>

description It is used to specify a reference to a “.js” file that contains the source script code of the current rule (JavaScript code).

element Rule/Definition/AXCP_Rule/Dependencies
diagram

children Dependency

source <xs:element name="Dependencies" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Dependency" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Plug_In_name" type="xs:string"/>
 <xs:element name="Version" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

description It contains a list of possible dependencies

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

37

Note This item replaces the Precondition item defined in the schema reported in DE3-1-2C-AXFW_Spec-(content-production)-
Part-C document.

element Rule/Definition/AXCP_Rule/Dependencies/Dependency
diagram

children Plug_In_name Version

source <xs:element name="Dependency" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Plug_In_name" type="xs:string"/>
 <xs:element name="Version" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

description It contains information about the AXMEDIS Editor Plug In that could be required by the Rule Body. This mechanism is
similar to the import directive in JAVA language.

element Rule/Definition/AXCP_Rule/Dependencies/Dependency/Plug_In_name
diagram

type xs:string

source <xs:element name="Plug_In_name" type="xs:string"/>

description It provides the name of the AXMEDIS Editor Plug In used by the script. This information has to be matched with that
provided by the DLL from its profile.

element Rule/Definition/AXCP_Rule/Dependencies/Dependency/Version
diagram

type xs:string

source <xs:element name="Version" type="xs:string"/>

description Version of the Plug In. This information has to be matched with that provided by the DLL from its profile.

element Rule/Definition/PnP_Rule
diagram

source <xs:element name="PnP_Rule"/>

simpleType periodunit
type restriction of xs:string

used by attribute Rule/Schedule/Run/Periodicity/@Unit

facets enumeration Day
enumeration Month
enumeration Week
enumeration Year

source <xs:simpleType name="periodunit">

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

38

 <xs:restriction base="xs:string">
 <xs:enumeration value="Day"/>
 <xs:enumeration value="Month"/>
 <xs:enumeration value="Week"/>
 <xs:enumeration value="Year"/>
 </xs:restriction>
</xs:simpleType>

4.2.1 AXCP Rule Model
According to the XML schema, the object oriented model of the rule is described by the class diagram
reported in the Figure. Actually, the current status of the model is close to the final version. Implementation
was realised in C++ MSVC7 and supported by the XERCES 2.6.0 libraries.

AxDOMImplementation Class
The AxDOMImplementation class specialises the ErrorHandler interface class of the XERCES library ver.
2.6.0. by redefining the pure virtual methods:

• virtual void warning (const SAXParseException &exc)=0
Receive notification of a warning. http://xml.apache.org/xerces-c/apiDocs/classErrorHandler.html -
z819_0#z819_0

• virtual void error (const SAXParseException &exc)=0

Receive notification of a recoverable error. http://xml.apache.org/xerces-
c/apiDocs/classErrorHandler.html - z819_1#z819_1

• virtual void fatalError (const SAXParseException &exc)=0
Receive notification of a non-recoverable error. http://xml.apache.org/xerces-
c/apiDocs/classErrorHandler.html - z819_2#z819_2

• virtual void resetErrors ()=0

Reset the Error handler object on its reuse.

Such methods are called if the validation of the XML Rule file fails during the parsing. The
AxDOMImplementation class does not consider warnings and puts the fSawErrors attribute at true when an
error occurs. The getSawErrors() method returns the fSawErrors value and then allows evaluating the result
of validation.
The class provides a pointer to the DOM tree (DOMDoc) of the all XML rule and is fixed by the
buildDOMDoc() method. Such method was defined as virtual demanding its implementation to the AxRule
class. It is equipped with a XercesDOMParser (parser) for loading the whole rule and XercesDOMParser
(parser) for managing the XML string of a Selection in independent manner when saving the rule.

AxRuleHeader Class
The rule header class for storing the AxRule header information with access methods. It manages all
properties of the Header section according to the XML schema. It provides getter and setter methods to
access attributes.

AxRuleSchedule Class
The rule schedule class for storing the AxRule schedule information with access methods. It manages all
properties of the Schedule section according to the XML schema. It provides getter and setter methods to
access attributes.

AxRule Class
The AxRule is the main class for a rule. It specialises the AxDOMImplementation and redefines the
buildDOMDoc() method for building the DOM tree during the load and save phases. It encapsulates the

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

39

AxRuleHeader and the AxRuleSchedule class. In this way, the AxRule class is the common class for the
AXCP and AXPnP rules. Each of them has to define the Definition section according to Rule XML Schema
in order to specialise the AXRule.
The AxRule class provides the buildXMLString() to build a string reporting the XML code of the rule, the
load(), save() and saveAs() methods. The loading and savig methods instantiate an AxRuleVisitor object that
is passed as argument to the visit() method. The AxRuleVisitor object will be an AxRuleLoader when loading
and an AxRuleSaver when saving; in both case the polymorphic visit() method is called

AxCPRule Class
It specialises the AxRule class and inherits all methods. It adds methods and attributes to manage the
Definition section of the XML schema. AxRuleArgumentList and AxRuleDependencyList contain respectively
AxRuleArgument and AxRuleDependecy object, they model arguments and dependencies of the rule. The
class provides also direct access methods to the internal list (getter and setter, item counting, access and
removal). The javascript code is stored in the javaScript string attribute. Optionally, a file with the javascript
code could be referred by means the javaScriptPath string attribute (this alternative is not used at now).

AxRuleArgumentList
This class manages the list of arguments, It provides methods for accessing, reading, adding, removing a
AxRuleArgument object.

AxRuleArgument
The AxRuleArgument models a generic argument of rule. The argId attributes specifies if the argument is a
parameter (axID_PARAMETER) or a selection (axID_SELECTION). The class provides also the name
attribute.

AxRuleParameter
It specialises the AxRuleArgument by defining the type and the value of the parameter. The value attribute is
stored as string,whereas the type is associated with the enumerate values (axINTEGER =0, axREAL
,axSTRING, axXMLSTRING, axDATE, axTIME, axBOOLEAN, axURL, axNULL).

AxRuleSelection
It is a particular type of parameter. A selection is stored as a full XML string according to the Selection
schema. The AxRuleSelection class specialises the AxRuleParamter by adding a method (updateXML()) to
manage the change of the selection name directly on the XML string when calling the setName() method.

AxRuleDependencyList
This class manages the list of dependecies, It provides methods for accessing, reading, adding, removing a
AxRuleDependency object.

AxRuleDependency
This class manages the dependency of the javascript code to a specific Axmedis plugin. It provides getter
and setter methods to access dependencyName, pluginName and pluginVersion attributes.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

40

Rule Model Class Diagram

4.3 AXRule Loader and Saver Modules (DSI)
To manage the repository of rules it is necessary to load and save a rule in/from the system. The Rule Load
and Save functionalities was designed and implemented by means of the following classes:

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

41

AXRule Loader - It is the module for loading an XML representation of the rule in the AXCP Rule Editor
and AXCP Rule Engine. It works according to the XML rule specification and provides the following
functionalities:

• Load the XML file of the AXCP rule from disk and generates an AXCP memory representation
of rule (AxCPRule object)

AXRule Saver – It is the module for saving an XML representation of the rule on disk. It works according to
the XML rule specification. It provides the following functionalities:

• Save the XML representation of the rule by replacing the existing one
• Save as function for saving the XML representation of the rule with a name

Both modules was implemented by using an abstract class called AXRuleVisitor as reported in the UML
diagram. This solution allows building an AXRuleLoader and an AXRuleSaver class that manage different
types of rules by implementing different Visit methods (see the class diagram reported below). Both classes
are related to a DOM Document in order to perform the necessary read/write operations on an XML file. The
XML representation of a rule is stored in the DOMDocument class from which it is possible to build the
memory representation of the AXCP rule. The AXRule class provides a Load and Save method and a virtual
method Visit that have to be redefined in the AXCP Rule class. In this way, the Visit method of AXCP Rule
calls the Visit method of AXRuleLoader on the AXCP Rule object by using the this pointer.

Implementation was realised in C++ MSVC7 and supported by wxWidgets ver. 2.4.2 and XERCES 2.6.0
libraries.

4.3.1 AxRuleVisitor Class
This class defines an abstract class for a Visitor. This class allows building a Loader and a Saver that manage
different types of rules by implementing different Visit methods. The loader and saver visitor were
implemented as specialized class of AxRuleVisitor.

4.3.2 AxRuleLoader Class
This class is a specialisation of the AxRuleVisitor class and implements a visitor for loading both AxRule
and AxCPRule XML file. Since AxRule contains only Header and Schedule section, the visitor loader for
such rule will read only Header and Scheduler sections. The visitor loader for the AxCPRule will call the
visitor loader of the AxRule and then will read the Definition section. Methods of this class work
polimorphically.

4.3.3 AxRuleSaver Class
This class is a specialisation of the AxRuleVisitor class and implements a visitor for saving both AxRule
and AxCPRule XML file. Since AxRule contains only Header and Schedule section, the visitor saver for
such rule will write only Header and Scheduler sections. The visitor saver for the AxCPRule will call the

XML file format

lo
ad

in
g saving

DOMDocument

AXCP Rule

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

42

visitor saver of the AxRule and then will write the Definition section. Methods of this class work
polimorphically.

UML Class Diagram of the AxRuleLoader and AxRuleSaver modules

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

43

5 AXMEDIS Rule Editor (DSI)
The AXCP Rule Editor is the editor that allows writing AXCP Rule. The following sections report the
current status of the prototype under development and the list of functionalities that are available in the
current version of the prototype.

5.1 Technical Details
reference to the AXFW location of the
demonstrator

https://cvs.axmedis.org/repos/Framework/source/ruleeditor/

List of libraries used wxWidgets ver. 2.4.2 Mozilla, STC (wxStyleTextControl
classes embedding Scintilla Editor) and FL (wxWidgets
contribution) libraries.

References to other major components needed Rule Excutor, Rule Model, AXOM
Problems not solved • Integration of the AXMDIS Plugin manager

• Integration of communication support with the
Workflow Manager

Configuration and execution context
Programming language C++ MSVC7

5.2 Description AXMEDIS Rule Editor (Work Done)
The AXCP Rule Editor GUI is a MDI window that manages a rule document at time. The editor provides a
set of tools and views to help the user during the editing and building of rule, writing javascript code. It hosts
an instance of the rule executor in order to provide functionalities for debugging, testing and validating the
javascript code. The main architecture of GUI is reported in the following picture:

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

44

Main snapshot of theAxmedis Rule Editor GUI

Implemented features:

 Docking windows and toolbars
 Embedded the rule executor for running, compiling and debugging the rule (JavaScript code)
 Load & save of an AXCP rule
 Mozilla Browser based on wxMozilla contribution for browsing html help pages
 Dialogs/Tools for Edit Rule components

♣ Header dialog for editing of rule header attributes
♣ Schedule dialog for editing of schedule attributes
♣ Parameter dialog for editing of attributes of a rule parameter
♣ Dependency dialog for editing of attributes of a AXMEDIS PlugIn
♣ XML Selection Editor (XML viewer/editor for the XML representation of selections) and

JavaScript Editor based on Scintilla Editor for text/javascript code editing. It provides full
editing capabilities (copy, cut, paste, redo, undo, syntax highlighting, etc…), print preview,
page setup and print functionalities, syntax highlighting, brace highlighting, Folding/Hiding
of lines, Breakpoint insertion/removal, Visualisation of line numbers

Dependency dialog Parameter dialog

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

45

Header dialog Schedule dialog

Editing dialogs

 Workspace Area is a resizable docking panel and includes a notebook control where the rule view is
shown. Such view is a tree view. A dynamic popup menu is available for a quick access to functions
that allows the quick management of items (edit and view metadata, delete, Insert, Cancel, Move
up/Down, Rename, Open/Edit, …). Appropriate icons allows identifying intuitively components of
rule in view. In the following picture the actual structure of the Rule View area is depicted:

 Data interface to manage and synchronise tree items with rule items
 Drag and Drop of an XML AXCP Rule file
 Rule List: function for rule searching on the Rule Repository folder

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

46

 Debugging Rule functionalities: add/remove breakpoints, start debug, next breakpoint, step over,
stack calls monitoring, local variables visualization.

 Print output window for visualising internal errors when script runs and monitoring the debug

session

Missing Features that will be implemented:

 Integration of the AXMEDIS PlugIn manager and implementation of the Library view (Info View)
 Info View will be as an on-line book that will be used as help by the user. It will display the set of

functionalities provided by the Plugins installed and automatically detected by the editor. It will be
realised by using a Tree control that will permit to show and browse plugins module and the
functionalities that they provide according to their profile. The profile will be used to build on the fly
an html or txt documentation page. The user will be able to see the documentation associated with
the selected function by interacting with the corrisponding item of the tree. To this end a contextual
popup menu will be designed. The required documentation will be displayed in the Mozilla browser.

 Watching variables during debugging session
 Activation of Rule will send the current rule to the scheduler. A connection with the Rule Engine

will allow the installation of rule in the Scheduler.
 Checking rule will test the feasibility of the rule (like a compiler plus some tests on AXMEDIS

objects and estimation of some parameters such as the files complexity and required workload)
 Importing and Exporting external JS script file (*.js)
 Editing facilities for the script editor (intellisense, keywords suggestion, etc..)
 AXCP Rule Editor Configuration for managing gui properties and layout
 Command & reporting for communication with the AXMEDIS workflow

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

47

6 AXMEDIS Rule Scheduler (DSI)

As already discussed, the content processing activity (production, protection and publication on AXEPTool)
is based on a unified and shared solution. In these terms, the AXCP Rule Engine plays the role of:
• AXMEDIS Compositional/Formatting Engine
• AXEPTool Loading Tool Engine
• AXEPTool Publication Tool Engine
• AXEPTool P2P Active Selection Engine
• The Protection Tool Engine

By delegating the processing activity to a single rule engine seemed to be not the best solution since the
amount of work and the dimension of data that the engine have to manage is high. The main idea was to
design a distributed environment of engines for the AXMEDIS object processing based on GRID. This
solution will maintain advantages of a unified solution and allow enhancing the capabilities of the
AXMEDIS content processing area by running rules in parallel.
The AXCP Rule engine was divided in two main components:

• Rule Scheduler (Server Side) – It consists of the an internal Scheduler and Dispatcher. It performs
the operations of rule firing, rule executor discovering and management, rules dispatching,
communication with the AXMEDIS environment, etc….

• Rule Remote Executor (Client Side) – It is the executor of rules and consists of a script engine

based on JavaScript (JS) SpiderMonkey released by Mozilla. It runs the JavaScript code associated
with rule.

A Grid infrastructure was realised by means P2P technology to support the distributed environment. For
these reason both the Rule Scheduler and the Rule Executors has been equipped with a P2P communication
support.

In this section, the status of the AXCP Rule Scheduler prototype is reported.

6.1 Technical Details
reference to the AXFW location of the
demonstrator

https://cvs.axmedis.org/repos/Framework/source/rulescheduler/

List of libraries used wxWidgets library ver. 2.4.2, xerces 2.6.0
References to other major components
needed

AXMEDIS Rule Data Model for data rule memory
representation and load & save functions.

Problems not solved • …..
• …..

Configuration and execution context
Programming language : C++ MSVC7

6.2 Description of Rule Scheduler (Work Done)
The Rule Scheduler is a multithread application involved in the rules executors management. It plays the role
of controller in the distributed environment.
The AXCP Rule scheduler architecture is reported below and was divided into three main components:

• Scheduler Gui – the graphic user interface
• Core Scheduler – it is the internal set of modules that performs the scheduling activity

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

48

• Grid Interface – is the communication support based on P2P technology for communicating and
monitoring the work performed by each Rule Executor (Peer)

6.2.1 Rule Scheduler Gui
The Scheduler GUI is the main window that allows interacting with the Scheduler. Referring to the snapshot,
it is constituted of:

1. A menu bar
2. Two main areas where the list of rules and the list of remote executors are displayed.
3. A status bar where the current clock and the current date are displayed.

Menu bar – It provides the access to the following set of implemented functions:

1. Program
a. Add rule – Load a rule in the scheduler
b. Launch scheduler - Start the scheduler activity.
c. Stop scheduler - Stop the scheduler activity.
d. Restore - Backup Copy of the last jobs list.
e. Minimize - It reduces at icon on the taskbar.
f. Exit - Close the application.
g. Start Grid Peer functions – It starts the grid peer network communication support

2. Settings

GRID PEER INTERFACE

GRID PEER

DISPATCHER

INTERNAL SCHEDULER

SCHEDULER COMMAND
MANAGER

ENGINE COMMANDS
AND REPORTING

SCHEDULER GUI

Core
Schdeduler

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

49

a. Preferences - Open an editable dialog with the set of configuration parameters.
3. View

a. Refresh – Update the list of jobs and list of remote executors.
b. Arrange – Repainting modes of tables in the main frame

i. Top – It shows only the top table (Table of rules)
ii. Bottom – It shows only the bottom table (Table of executors)

iii. Vertical – It shows tables vertically
iv. Horizontal – It shows tables horizontally

c. Rule Properties… - Open a Rule Properties dialog.
d. Executor Profile…- Open an Executor Profile dialog.
e. Logs…- Open a dialog to show the list of log messages

4. Commands
a. Activate Rule - Put in the “ACTIVE” status the current selected inactive rule.
b. Deactivate Rule - Put in the “INACTIVE” status the current selected active rule.
c. Kill Rule - Kill the current execution of the current selected rule.
d. Pause Rule - Put in pause the execution the current selected rule.
e. Resume Rule - Resume the execution of the current selected rule.
f. Remove Rule – Remove the rule from the list of rules
g. Suspend Rule… - Open a dialog to edit the temporal interval for rule resuming and then

suspend the current selected rule.
5. ?

a. Help - Open the On Line help.
b. About - Open a dialog with credits.

Logs Dialog
This dialog allows viewing the logs of scheduler activity.

Properties Dialog
It is a tabbed dialog that allows editing settings parameters regarding the scheduler activity (Scheduler
settings) and the GRID support (GRID settings).

Scheduler settings – It consists of a set of configuration parameters contains settings about:

• Backup Time - Backup interval for logging the set of submitted rule and tracing operations. It is
expressed in minutes.

• Time Out - Time out on client activity. It is expressed in seconds.
• Time Resolution - Time Resolution of the scheduler. It is expressed in seconds.
• Refresh Time - Time Resolution for discovering new rule executors
• Rules Path - Rule Repository Path
• Log Path - Log Repository Path
• Profile Path - Executor Profile Repository Path
• Backup Path – The path where the scheduler periodically saves the current rules list.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

50

Grid settings – It provides a set of settings to setup the communication support. It allows to define the
number of ports to use when receiving file, messages, sending files, responding to the discovering request. It
allows also to define IPs of LANs to use when the scheduler performs the discovering of peers.

6.2.2 Core Scheduler
The core scheduler is the manager of active rules. It is a multithread module. It detects, fires, launches,
manages and monitors the execution of a rule. During its activity, the core scheduler:

1. preserves the scheduled work from interruption of service (crash of the application) giving the
possibility to restore the last status of activity

2. manages and update the list of rules to be scheduled and their status
3. manages and update the list of available rule executors
4. notifies to the AXMEDIS Workflow Manager messages due to:

• errors during the phase of rule association with an executor
• errors due to the launching phase
• errors during the rule execution on remote executor.
• errors due to the time out deadline missing (the executor did not respond to request)

The following list reports the actually implemented functionalities:

• Selecting from the internal scheduled rules the rule that matches conditions for the execution. This is
performed by:

o checking the execution time and date
o receiving an immediate run command from the AXMEDIS Workflow Manager

• Modifing and setting the time resolution for the control of rules execution
• Adding a new submitted rule in the list of jobs

o Loading the corresponding rule xml file from the repository directory
o Extracting the metadata for scheduling

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

51

o Generating and assigning a Job Id to the rule
• Removing a rule from the list of jobs
• Running a rule on demand
• Rescheduling a rule (by overriding the schedule information)
• Overriding rule arguments (by replacing the current arguments)
• Checking expiration conditions of a rule
• Providing the list of jobs/rules
• Updating firing conditions of a periodic rule
• Browsing the list of jobs/rules
• Modifing the status of rules
• Removing an executor from the list of executors
• Providing the list of executors
• Browsing the list of executors
• Saving periodically on disk a backup copy of the list of jobs
• Restoring the last status by loading the backup copy of the list of jobs
• Tracing all activity by means logs

6.2.3 Grid Interface and architecture
See section 7.2 of this DE

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

52

7 AXMEDIS Rule Executor (DSI)
The RuleExecutor is a console application embedding the GRID interface for network communication (peer)
and the Spidermonkey JavaScript Engine extended with AxJSClasses that wrap AXMEDIS components and
different Data Model. The following sections report the current status of the prototype under development
and the list of functionalities that are available in the current version.

7.1 Technical Details
reference to the AXFW location of the
demonstrator

https://cvs.axmedis.org/repos/Framework/source/ruleexecutor/

List of libraries used :, wxWidgets library ver. 2.4.2. (wxBase.lib), Java Script
Engine (Spidermonkey ver. 1.5 – JS32.dll).

References to other major components
needed

Rule Data Model, Rule Schdeduler, Grid Interface

Problems not solved • …..
• …..

Configuration and execution context
Programming language C++ MSVC7

7.2 Description of Rule Executor (Work Done)

The Rule executor consists of the following main components:
• Grid Peer Interface – the communication support with the AXCP rule scheduler
• Rule Executor Manager – the command interface to control the javascript engine
• Script Executor/JSEngine – The SpiderMonkey Javascript Engine (called JS Engine) extended

with a set of JSClasses for AXMEDIS contents processing.

At now, the rule executor provides the following functionalities:
 Discovering: it responds when the Rule scheduler performs the discovering of peers on the network
 Sending profile: it generates the capabilities profile of peer machine and sends it to the rule scheduler
 Rule Receiving: it performs the download of a AXCP Rule from the rule scheduler
 Sending Messages: it sends different types of messages such as notification and errors,
 Commands parser for remote control messages

7.2.1 Rule ExecutorManager
The Rule Executor Manager is the interface between the JSEngine and the Grid Peer Interface.The actual
protototype of the Rule Executor Manager provides functionalities for:

• Routing messages produced by internal components to the scheduler via the Grid Peer Interface
• Receiving control messages and commands from the Scheduler via the Grid Peer Interface
• Parsing and executing commands coming from the scheduler such as:

o Launching the execution of rule
o Killing the execution of rule
o Pausing the execution of rule
o Resuming the execution of rule
o Requesting profile
o Requesting status

• File Transferring to:
o send the profile of the Rule Executor
o receive the rule to be executed

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

53

• Sending messages and notification to the Scheduler via the Grid Peer Interface
• Creating the profile of the executor according to the XML schema
• Managing the status of the Executor
• Starting the execution of the rule calling the internal rule launcher

The role of the Rule Launcher is to start the execution of the script. The main steps that the Launcher
performs, are:

• Loading the rule XML file received by the Scheduler
• Extracting the script included in the Rule (all the information included in the Definition section of

the XML file)
• Instantiating the Script Executo/JSEngine
• Calling the Script Executor for executing the script

7.2.2 Script Executor/JSEngine
The Script Executor receives the script code and arguments (Selections and parameters), then, it performs the
necessary operations for:

• Invoking and initialising the JS Engine and variables.
• Sending the script to the JS Engine.
• Running and managing the communication with the JS Engine according to the capabilities and

functionalities provided by the JS Engine.
• Routing errors coming from the JS Engine to the Rule Executor Manager.
• Sending Messages coming from the script in execution to the Rule Executor Manager.
• Generating output

In the initialization phase, the JS Engine is initialised according to the guideline of Spidermonkey for
defineing the context, the runtime, the global variables, the definition of parameters of the rule.
The Engine Ouput for the JSEngine allows defining specialised display for output communication: GUI,
network communication, etc.. It provides the way to:

 print internal error generated by the engine when compiling a script and at runtime during the
execution/debugging

 print a message in the output interface
 visualize the line where the engine is stopped when a trap occurs
 clear the output display
 display the function name and the location (line of code) in the stack calls list
 reset the Stack call display
 reset the Local variables display
 print a variable in the Local variables display:
 print the properties of an object in the Local variables display

The Script Executor was developed to be used also in the AXCP Rule Editor in order to perform the
debugging of rule.

Debugging of rule: This modality was developed using the debug function API provided by JSDebug API
of SpiderMonkey and to be controlled by the AXCP Rule Editor. The Spidermokey APIs permit to :

- put traps in the code corresponding to breakpoints (interrupting the execution)
- reporting of local variables
- manage the stack of functions
- realise the interface for debug functions and controls for the AXCP Rule Editor.

Missing features that will be implemented:
Script Executor: Check Mode

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

54

This modality will be mainly used by AXCP Rule Editor when it will be necessary to check the feasibility of
a rule. In the check mode, the rule will be executed in order to:

• verify the correctness of the rule before to send it to the AXCP Rule Engine
• estimate some parameters related to the complexity of the rule. Such parameters will be identified

and defined during the project life. They will be used to define a complete profile of the rule in
terms of required computational resources.

7.2.3 Profile of the Rule Executor (Peer)
The definition of profile for a rule executor peer was formalised by means the XML Schema as reported in
this section. The profile describes the capability of the machine where the rule executor peer is running in
terms of hardware, software and axmedis plugin configuration.

element Profile
diagram

children Computer_Name IP_Address CPU Clock Location AXTID AXRTID OS OS_Version RAM_Size HD_Space

Transf_Rate WorkLoad Plug_In

source <xs:element name="Profile">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Computer_Name" type="xs:string"/>
 <xs:element name="IP_Address" type="xs:anyURI"/>
 <xs:element name="CPU" type="xs:string"/>
 <xs:element name="Clock" type="xs:float"/>
 <xs:element name="Location" type="xs:string"/>
 <xs:element name="AXTID" type="xs:string"/>
 <xs:element name="AXRTID" type="xs:string"/>
 <xs:element name="OS" type="xs:string"/>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

55

 <xs:element name="OS_Version" type="xs:string"/>
 <xs:element name="RAM_Size" type="xs:string"/>
 <xs:element name="HD_Space" type="xs:string"/>
 <xs:element name="Transf_Rate" type="xs:unsignedInt"/>
 <xs:element name="WorkLoad">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Percentage" type="xs:float"/>
 <xs:element name="Start_Time" type="xs:time"/>
 <xs:element name="End_Time" type="xs:time"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Plug_In" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:time"/>
 <xs:element name="Version" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element Profile/Computer_Name
diagram

type xs:string

source <xs:element name="Computer_Name" type="xs:string"/>

description Name of the computer hosting the rule executor

element Profile/IP_Address
diagram

type xs:anyURI

source <xs:element name="IP_Address" type="xs:anyURI"/>

description IP address

element Profile/CPU
diagram

type xs:string

source <xs:element name="CPU" type="xs:string"/>

description The type/family of CPU

element Profile/Clock
diagram

type xs:float

source <xs:element name="Clock" type="xs:float"/>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

56

description The clock of CPU

element Profile/Location
diagram

type xs:string

source <xs:element name="Location" type="xs:string"/>

description Where the computer is located

element Profile/AXTID
diagram

type xs:string

source <xs:element name="AXTID" type="xs:string"/>

description The ID of a specific instance related to the AXTID

element Profile/AXRTID
diagram

type xs:string

source <xs:element name="AXRTID" type="xs:string"/>

description The AXMEDIS Registered Tool Id associated with the Rule Executor application

element Profile/OS
diagram

type xs:string

source <xs:element name="OS" type="xs:string"/>

description The Operating System

element Profile/OS_Version
diagram

type xs:string

source <xs:element name="OS_Version" type="xs:string"/>

description The OS version

element Profile/RAM_Size
diagram

type xs:string

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

57

source <xs:element name="RAM_Size" type="xs:string"/>

description The amount of primary memory (RAM)

element Profile/HD_Space
diagram

type xs:string

source <xs:element name="HD_Space" type="xs:string"/>

description The amount of disk space available

element Profile/Transf_Rate
diagram

type xs:unsignedInt

source <xs:element name="Transf_Rate" type="xs:unsignedInt"/>

description The network capability for transferring a file from the AXMEDIS Database to the rule executor machine.

element Profile/WorkLoad
diagram

children Percentage Start_Time End_Time

source <xs:element name="WorkLoad">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Percentage" type="xs:float"/>
 <xs:element name="Start_Time" type="xs:time"/>
 <xs:element name="End_Time" type="xs:time"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

description The percentage of availability during the time period

element Profile/WorkLoad/Percentage
diagram

type xs:float

source <xs:element name="Percentage" type="xs:float"/>

description Availability to work expressed in percentage

element Profile/WorkLoad/Start_Time
diagram

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

58

type xs:time

source <xs:element name="Start_Time" type="xs:time"/>

description Start time of declared workload percentage

element Profile/WorkLoad/End_Time
diagram

type xs:time

source <xs:element name="End_Time" type="xs:time"/>

description End time of declared workload percentage

element Profile/Plug_In
diagram

children Name Version

source <xs:element name="Plug_In" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:time"/>
 <xs:element name="Version" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

description Axmedis Plugin description mounted in the system

element Profile/Plug_In/Name
diagram

type xs:time

source <xs:element name="Name" type="xs:time"/>

description Name of plugin

element Profile/Plug_In/Version
diagram

type xs:string

source <xs:element name="Version" type="xs:string"/>

description Version of plugin

7.3 AXMEDIS Grid architecture
Both the Rule Scheduler and the Rule Remote Executor are based on a GRID infrastructure. This
infrastructure is realized by means a P2P technology based on TCP/UDP protocol.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

59

Each node of the P2P network is called GRID Peer and provides the communication and the file transfer
support to components of the distributed system. A GRID Peer provides four different and independent
components:
• Peer Explorer – to provide functionalities for discovering the presence of other peers based on UPD

broadcast messages.
• Peer Communicator – to provide communication functionalities and support for data exchanging with

available peers.
• Peer File Transfer – to provide functionalities and support for file transfer among selected peers.
• Peer Event Consumer – to provide functionalities and support for handling events of communication,

file transfer and discovering.

+sendMsg()
+sendFile()
+sendCmd()
+discovery()
+runExplorer()
+runCommunicator()
+runFileRequest()
+OnReceiveMsg()
+OnFileTransferRequest()

AxGridInterface

+OnReceiveMsg()
+OnFileTransferRequest()

AxPeerEventConsumer
AxPeerCommunicator

1

1

AxPeerExplorer

1

1

AxFileRequestAxPeerList

1

1

1

1

7.3.1 Structure of messages exchanged between Scheduler and Remote Executor
Messages exchanged between the Scheduler and the Remote Executor are different types and grouped in two
set of messages: (i) from Scheduler to Rule Executor and (ii) from Rule Executor to Scheduler.

Messages from Scheduler to Rule Executor:

1. Command – the message is a specific command
Messages from Rule Executor to Scheduler:

2. Notification – the message is a notification
3. Error – the message reports an error
4. Response – the message is a response to a request or a command

The main idea was to have a common message structure that allows covering all these types. In addition, to
guarantee a fast delivery on the network, messages are light. To this end, they are based on a formatted text
and structured according to the following EBNF formalisation:

<message> := <Sender ID>’#’<Type_Msg>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

60

<Sender ID> := <string>
<Type_Msg> := <CMD_MSG> | <REQ_MSG> | <NOTIFY_MSG> | <ERR_MSG> | <RESP_MSG>

<CMD_MSG> := ‘COMMAND#’<ID_MSG>’#’<command>
<command> := RUN | KILL | PAUSE | RESUME | GET <request> | SET <attribute> <value>
<request> := PROFILE | STATUS | ID
<attribute> := ID | …
 <value> := <string>

<NOTIFY_MSG> := ‘NOTIFICATION#’<what notified>
<what notified> := ‘END PROCESS’ | <msg>
<msg> := ‘MSG’ <string>

<ERR_MSG> := ‘ERROR#’<error from>’#’<error description>
<error from> := ‘RULE’ | ‘EXECUTOR’
<error description> := <error code> | <string>

<RESP_MSG> := ‘RESPONSE#’<to msg>’#’<response argument>
<response argument> := <status> | <executor ID> | ‘CMD OK’
<to msg> = <ID MSG>

<ID MSG> = <timestamp>

Where:
<timestamp>: it indicates the generation time of a message and allows indexing a message. It is used as
reference to link a response message to command messages and to monitor the activity of the rule executor.

<Sender ID>: it indicates the identifier of the sender. By default, the ID of the Scheduler is ‘0’, whereas for
all rule executors will be the Executor ID

<error code>: it reports the code of the error

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

61

8 JSAXClasses Status (DSI plus ALL)

The composition and formatting process by means javascript required the extension of the object data type
inside the javascript language. For this reason the following set of JSClasses was defined:

• JS_AXOM
• JS_FUNCTIONS FROM AXOM_CONTENT_PROCESSING
• JS_AXINFO
• JS_DUBLIN_CORE
• JS_SELECTION
• JS_RESOURCE
• JS_CRAWLERDB ACCESS (DSI WITH SUBCONTRACT) (see DE4.2.1)
• JS_FORMATTING (Style and Optimisation)
• JS_PROTECTION (FHGIGD, see DE4.5.1)
• JS_DRM (FHGIGD, see DE4.5.1)
• JS_PUBLISHER (CRS4, see DE4.4.1)
• JS_DOWNLOADER (CRS4, see DE4.4.1)
• JS_LOADER (INCLUDING METADATA MAPPER) (CRS4, see DE4.4.1)
• JS_FUNCTIONS
• JS_TRANSCODING (IRC, see DE4.7.1)
• JS_CLIENT_PROFILE (IRC, see DE4.7.1)

Some of them are at protototype level, the other will be implemented during the life of the project since most
of these depend from AXMEDIS components and modules.

8.1 JS_AXOM: AXMEDIS Data Model JS wrapping (DSI)
In this section the current status of Axmedis Data Model wrapping for the Javascript and the current class
diagram are reported.

 UML Class Diagram of JSAxClasses for the AXMEDIS Data Model in Javascript

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

62

JSAxBaseObject Class – This class is the base class for JSAxObject, JSAxInfo and JSAxResource classes. It
allows linking them to the current instance of the Axmedis Object Manager (theAxom) and accessing to its
methods and commands. It allows also to associate a reference to theIndex (AxIndex) with the current
instance of a child class when it is inserted into the Axmedis Object Data Model. The isRoot attribute is set at
TRUE when the instance refers to the root object of the Axmedis Object Data Model.

JSAxObject Class – It is the mapping of an AXMEDIS OBJECT for JavaScript. According to the
specification of the AXMEDIS OBJECT MANAGER and Axmedis Data Model, it provides and wraps
methods to:

• Create an empty AXMEDIS object with own AXOM by instantiating a new Axmedis Object.
• Create and fill an AXMEDIS object with own AXOM by loading content from an URL.
• Add/Remove an Element/Object to the AXMEDIS object. The addition of an element returns the

new object reference inside the Axmedis Object.
• Get all Elements/Objects. It returns a Javascript array of Element/Objects.
• Add Resource, it adds a digital resource (audio, video, text, etc…) to a specific Element/Object. It

returns the new resource object reference inside the Axmedis Object.
• Remove a Resource (audio, video, text, etc…) by using the object Resource reference.
• Get Resources. It returns a Javascript array of Resource objects.
• Add an AXInfo, Dublin Core or generic metadata object. It returns the new metadata object

reference inside the Axmedis Object.
• Get the AXInfo, the Dublin Core metadata
• Remove any metadata object.

JSAxInfo Class – It maps and allows managing the metadata of the AXINFO in the JavaScript. This class
manages the access to individual elements and fields in AXINFO metadata, this class map all the
functionalities provided by AxInfo class exposing setter and getter methods for accessing to data. It allows to
manage:

• ObjectCreator information
• Owner information
• Distributor information
• Object Status information
• PromoOf information
• Workflow information
• Fingerprints information
• PAR information

JSAxResource Class – This class allows managing whatever digital resource type: Image, video, animation,
etc…They derive from classes that model the single resource in AXMEDIS object model. This class wraps
the AxResource class and provides functionalities exposing setter and getter methods to:

• access to the mime type
• access to the byte stream of the resource
• create a new resource and to embed a file or a reference inside a resource object

8.2 JS_Crawler: Crawler JS wrapping (Focuseek subcontract, DSI)
The JS_Crawler classes provide all the functionalities exposed by its SOAP interface to:

• get a Focuseek File Format (FFF) version of a document giving the document id
• get the original document by using the document id
• perform queries on the crawler DB
• update a FFF version of a document

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

63

• and other functionality for crawler management
Moreover a class to access in a structured way to specific portions of FFF documents was developed.

8.3 JS_Selection and query and data base access (DSI, EXITECH, CRS4)
This JS class allows managing the access to the AXEMDIS Database in order to resolve queries and retrieve
the list of AXOID related to the set of AXMEDIS Objects matching the query. It exposes methods for:

 Managing the XML description of a selection
 Making query and then actualize the selection
 Obtaining the array of AXOID as result of the query

8.4 JS_FUNCTION: Integration with external resources and libraries (DSI)
It is a set of functions that provides utilities for different purpose such as:

 Print message on out device (console, gui, network, etc…)
 MimeType manager
 Basic network communication functions for managing http, https, ftp and other network connection

and protocol.
 Disk and OS utilities

Other functions will be added during the life of the project according to emerging needs and requirements.

8.5 JS_DUBLIN Core (UNIVLEEDS)
JS_DUBLIN_CORE maps the metadata in the JavaScript. This class manages the access to individual
elements and fields in the Dublin Core metadata (Get and Set methods).

Creating an DC object

• JSCreateDC(AXOID)
 create an object of the Dublin Core

Composing and Editing a DC object for adaptation i.e. access to the DC Elements

• JSAddDCElement(“dc_element”, value)
 Add elements to the DC object

• JSDeleteDCElement(“dc_element”, ref_num=1)
 To delete a particular DC element. To delete all instances of

• JSSetDCElement
 Set the text field related to the specified element

• JSGetDCElement
 retrieve the text filed related to the specified element

Saving the new DC object

• JSUpdateDC()
 Update the object to the originator

8.6 JS_FORMATTING (DSI)
The JS Formatting functionalities and data types are accessible in JavaScript through JS_Template, JS_Style
and JS_Format classes. They will wrap the main classes of the C++ format engine (see paragraph 10.5 for
more details).

8.6.1 JS_Template (DSI)
JS_Template provides all functionalities regarding templates accessible through the C++ Format_Manager:

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

64

• templates filtering:
• templates selection:
• templates application.

For instance:
• filterTemplates(): returns a list of templates suitable for the given resources and preferences;
• filterCriteria(): returns the ordered list of best templates for the given resources and preferences;
• getResourcesCount(): returns the number of resources that may take place into a given template;
• getResourcesTypes(): returns the types of resources that may take place into a given template.

8.6.2 JS_Style (DSI)
JS_Style provides all functionalities regarding style-sheets exposed by the C++ Format_Manager:

• style-sheets selection;
• style-sheets application.

For instance:
• filterStyles(): returns the ordered list of best style-sheets for the given template and preferences;
• getParams(): returns the list of parameters defined in a given style-sheet.

8.6.3 JS_Format (DSI)
JS_Format provides all functionalities exposed by the C++ Format_Manager to optimize style-sheets and
produce the final SMIL description of the document. For instance:

• setResources(): creates the descriptors for resources contained within the given AXMEDIS object;
• setCriteria(): sets criteria used by the template selection logic;
• optimizeStyle(): gets sub-optimal values for parameters defined in the given style-sheet;
• createSMIL(): processes the given template and style-sheet to produce a SMIL document.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

65

9 Content Composition, examples (DSI)
The Compositional Process aims to discover and specify the relationships (semantic, logical or spatial)
between the resources returned from the Selection Process, and to create new digital items (AXMEDIS
objects) that include the resources and their metadata and relationships.
Different types of relationships are possible:

• spatial: resources belong to the same area of the layout (e.g.: header or footer elements);

• logical: resources are linked together (e.g.: the image associated with a menu item and the resourced
related to the linked item);

• semantic: resources are connected by their “meaning” within the presentation (e.g.: a painting and its
description).

Relationships could be defined through the hierarchical structure of the AXMEDIS object (which may
include other AXMEDIS objects), or specified within metadata.
Relationships may be obtained from the author (who could define them explicitly) or from the Selection
Process. In the latter case, the queries executed on the database could be used to get informations about the
relationships between the resources that were returned.

In this section two examples of script for content processing are reported.

9.1 Composition process, example
In the following an example of composition script. A new object is created by adding an image resource and
defining some metadata.

 var obj = new AxmedisObject();

 var info = new AxInfo();
 resource = new AxResource();
 var obj_metadata = obj.getMetadata();

 // definition of a resource, the resourcePath variable defines where the resource is located
 resource.mimetype="image/gif";
 resource.ref=resourcePath;
 resource.contentID="gif";
 // mCon is the reference to the resource embedded in the Axmedis object “obj”
 mCon = obj.addContent(resource);

 // Adding an empty AxInfo inside the Axmedis Object
 var mInfo = obj.addMetadata(info);

 mInfo.isProtected = true;
 mInfo.setOwnerID("abcdefghi", "Ivan");
 mInfo.ownerNationality = "Italy";

 //Setting the Date of Creation
 var e = new Date();
 mInfo.objectCreationDate = e.getDate()+"."+(e.getMonth()+1)+"."+ e.getFullYear();

 obj.save("c:\\axobj.xml");

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

66

9.2 Content Processing, example
In this portion of javascript code the conversion/adaptation of digital resources for mobile is reported.

 // Loading Axmedis Object via URI
 var b = new AxmedisObject(URI);
//Retrieving the array of Resources inside the object
 var resource = b.getResource();

var obj = new AxmedisObject();

// For each resource the following lines perfom the coversion for the mobile specified in the “profile”
// parameter and put the newResource in the empty Axmedis object “obj”
for(res in resource)
{
 newResource = AdaptForMobile(resource[res], mobileProfile)
 mCon = obj.addContent(newResource);
 // mCon is the reference to the resource embedded in the Axmedis object “obj”
}

[…..]

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

67

10 Content Composition and Formatting (DSI)

10.1 State of the art
As the number of the devices which can exploit the potentialities of multimedia is more and more
increasing, a great variety of approaches for the description and the adaptation of the multimedia
presentations has been proposed in the last years.

Some of them are based on the graph grammars: the graph structure is governed by rules that guide the
automatic adaptation of the presentation to satisfy input and output constraints. Furthermore, the graph gives
the author a visual representation of the components in the presentation and their logical positioning.
Relational Grammars [Wei94] and others grammatical specifications has been proposed to describe the
structure of multimedia presentations; the graphs that express the document structure may also be
represented graphically and managed with visual tools [Zha05]. Reserved Graph Grammars (RGG) have
been used for the transformation of XML documents that define multimedia structures [Zha02]. Between the
main lacks of these approaches we remember the absence of the time dimension.

Several document models have been developed specifically to describe multimedia formats. The SGML-
based HyTime language has been associated with DSSSL (Document Style Semantics and Specification
Language, a transformation language for SGML) to produce adaptable presentations [Rut98]. ZYX [Bol01]
is a sophisticated model created to provide a great support for reuse and adaptation: it supports both static
and dynamic adaptation, and introduces the concept of “augmentation”, a semi-automatic selection of
alternative contents which performs a “cross-media adaptation” [Bol99]. Madeus [Jou98] is a constraint-
based authoring environment with temporal and spatial specifications: the timing of elements is calculated
from the constraints specified among them, rather than as absolute position on the timeline. Madeus,
unfortunately, doesn't offer any support for adaptation than constraints specification.

LimSee2

The models above have been used in the implementation of different framework for multimedia authoring.
MM4U [Bol03], starting from the ZYX model, propose a generic framework for creating personalized

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

68

multimedia presentations, staying independent from the underlying data model and the adopted
compositional algorithm. With the same objective of realizing a generic system for the automatic cross-
platform adaptation, Cuypers [Van01] exploits the semantic description of the document offered by the
Rethorical Structures. LimSee and LimSee2 [Roi03] are SMIL editors that rely on the Madeus model and
offer a multi-view solution to render the structure of the SMIL document at different levels during the
authoring process; the timeline is the main tool for synchronization in LimSee2, and supports both direct and
constraint-based temporal scheduling.

Recently, SMIL [W3C05] – an XML-based language for declarative definition of multimedia presentations –
is considered the most significant standard in this field. The strength of SMIL relies on two main features: a
strong definition of the temporal relations between the elements of the multimedia presentation [Har99], and
an automatic user-level adaptation of the content [Bul98].

SMIL has become very popular for the description of structured presentations, and many extensions for its
model have been proposed: for instance, a finer granularity in the references to the media and a more generic
expression of duration properties may enrich the language [Thu02].
Moreover, the capabilities of adaptation offered by SMIL may be enhanced from the association with XML
transformation languages: among them, the XSL has often been preferred. The use of XSL style-sheets may
transfer a part of the adaptation work, normally requested to the SMIL clients, on the server-side [Pih03];
furthermore, a double transformation system has been proposed to adapt both the document source and its
style-sheet [Lem03]. A refined adaptivity may be obtained introducing additional constraints that have to be
solved after the style-sheet application [Bes01].

The MM4U web demonstrator

10.2 System outline
In our design, the formatting system is composed of two main logical blocks:

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

69

The main blocks of the formatting system

1. the Association Block receives as input the media obtained from the composition process (see Chapter 9)
and some context informations from the author (or from an user profile). Context informations provide
basic knowledge about the type of the presentation, its output format and the platform for which the
presentation is targeted. The output of this block is the indication of a template that matches the input and
describes the basic structure of the presentation.

To detect the “type” of the presentation and choose a template that matches it, it is very relevant for
this block to have a precise context definition. At least, the author should specify:
• the platform for which the presentation is targeted, i.e.: PC, PDA, SmartMobile, Mobile, iTV,

etc.;

• the output format, i.e.: MPEG2, MPEG4, AXMEDIS/MPEG21, SMIL, HTML, etc.;

• a general category for the presentation, i.e.: slide show, electronic book, kiosk, interactive music,
interactive video, training tutorial, etc.

The system will perform a mapping of context, selected media, and compositional properties, and it
will choose the template nearest to these criteria.

2. the Styling/Optimization Block select a style-sheet for the given template and adjusts its parameters to
cope with the context, managing the adaptation/transcoding of the media involved. The output of this
block is the formatted presentation.

The optimization process is a very critical and complex phase, that may involve many aspects.
Layout determination and media encoding are part of the optimization: to fit the context, the layout
specified in the template may be radically modified and the media may necessitate transcoding or
resampling; moreover, media have to be transformed (scaled, rotated, etc.) to fit the adapted layout.
The choice of the optimization algorithm is very important: the problem of finding the best
combination of a potentially large number of layout parameters is NP-complete, therefore the
computational time to determine an exact solution is not reasonable. A more practical approach is to
search approximate solutions, with methods such as Tabu Search or Genetic Algorithms. By the
way, these algorithms are still very time consuming, and they take advantage from a parallel
execution. For that reason the chosen algorithm has to be easily distributed on the AXMEDIS GRID.

The system is supposed to work in two modalities:
1. an interactive modality, which allows the author to choose or create templates and style-sheets and

control the results of the adaptation. This modality is based on the C++ AXMEDIS Formatting Engine;

2. an automatic modality, that manages the whole process following a set of rules and the specified context;
this modality uses the JavaScript modules that wrap the Formatting Engine.

10.3 Formatting process
In the interactive modality (described in the pseudo-sequence diagram below), the author of the document
(which is either the owner of the media, or the distributor of the document) starts the creation process with a
query to select some media. The query string and its results are used by the Association Block to associate
the document with an existing template. The Association Block can also interact with the user: the system

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

70

either requires a choice between different options (if several templates match the query results) or allows the
creation of a new template.
To correctly associate the input set with a suitable template, the query results have to be preliminary
submitted to the Compositional Process (see Chapter 9). During the Compositional Process, multimedia
resources are ordered or logically grouped, according to their semantic or spatial relationships. Such
relationships may also reflect the logic within the querying process. The Association Block uses these
relationships to map the input set onto the space of templates:

1. resources are logically organized in a tree structure, which reflects compositional relationships
between them;

2. tree properties are compared to those provided by templates stored in the Templates Database;
3. the closest template can be automatically selected, otherwise the list of closest templates will be

submitted to the user.
After that, the style-sheet selection is performed by the Styling/Optimization Block: in the automatic
modality one of the style-sheets created for the given template is selected following context indications;
otherwise, a list of style-sheets is proposed to the author, who can choose one of them or create a new one.
The final stage is the optimization: the parameters of the presentation are optimized following the context
specification, and all media are transcoded and transformed to fit the layout.

The formatting process

10.4 System architecture overview
The system architecture is depicted in the figure below.
The system is provided with automatic tools and an user interface. The automatic tools have to find the better
solution in terms of templates, style-sheets and optimization; the user interface allows the author either to
preview and evaluate the result (using an integrated viewer), or create new templates and style-sheets (using
the editors).

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

71

Architecture of the formatting system

The automatic tools are wrapped by the JavaScript modules of the AXMEDIS Content Processor. These are:
• JS_TEMPLATE, the interface to templates database and templates selection logic;

• JS_STYLE, the interface to style-sheets database and style-sheets selection logic;

• JS_FORMAT, the interface to adaptation logic and style-sheet processor.

The JS Modules

The Association Block is made of two tools:
1. an Automatic Templates Selector, which uses some criteria for assign the input to an existing

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

72

template;

2. a Templates Editor, which allows the author to choose between the existing templates (eventually
proposed by the automatic tool) or create a new one.

The Association Block

The Styling Block is made of two tools:
1. an Automatic Style-sheet Selector, which chooses the best style-sheet for given template and

context;

2. a Style-sheet Editor, which allows the author to choose between the existing style-sheets (eventually
proposed by the automatic tool) or create a new one.

The Styling Block

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

73

The Optimization Tool execute some algorithms to choose the best values for the parameters specified in the
style-sheet. The algorithms have to respect some constraints for the allowed values and some criteria
(functional or aesthetic) for choose between alternative solutions.

The Optimization Block

10.5 Formatting engine architecture
The architecture of the C++ formatting engine is depicted in the figure below:

format_manager

format_filter

style_filter template_filter criteria_filter

device_info user_info context_info

resources_list

resource_descriptor

templates_list

template_descriptor

1

*

styles_list

style_descriptor

1 *

1*

Templates

Styles

1

1

1

0..1

1

0..1

1

0..1

1

1..*

1

1

1

1

1
1

1

1

Formatting engine architecture

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

74

The Format_Manager drives the whole process: it collects information about resources (Resources_List),
preferences (User_Info, Device_Info and Context_Info), templates (Templates_List) and style-sheets
(Style_List), and makes them available to other components.
The Templates_Filter creates an unordered Templates_List of templates that suit to the given resources and
preferences; the Criteria_Filter creates a second (ordered) Templates_List that contains better templates.
The Styles_Filter creates the Styles_List that contains better style-sheets for the selected template.
The Format_Manager also performs optimization and processes template and style-sheet to get the final
SMIL description of the formatted document.
The sequence diagram for template selection is depicted below:

Template selection sequence

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

75

The sequence diagram for style-sheet selection follows the same logic.

Style-sheet selection sequence

10.6 Template language
The choice of template language is the first step in the system definition. Templates have to describe
correctly multimedia layout and synchronization (including user interaction), define media adaptation (if
needed), be adaptable at different user profiles, be suitable for use of style-sheets; thus the choice of the
description language is a delicate issue.
Many advanced systems for multimedia authoring (e.g.: MM4U [Bol03], GRiNS [Bul98], LimSee2 [Roi03])
use their own internal model to describe the structure of the document; this way they get the maximum
degree of expressivity and flexibility. On the other hand, standard languages (e.g.: SMIL, HyTime) may have
some lacks or limitations, but they allow using off-the-shelf software and they don’t require long definition
and verification activities. Last, the chosen language has to provide an easy way to convert the description
into required output formats (MPEG, HTML, SMIL, etc.).
Foremost standard languages for describing multimedia are:

• HyTime (ISO/IEC 10744) is an SGML-based standard that seeks to provide ways of addressing and
linking to any kind of information, anywhere in time and space. Very hard to learn, it has been
substantially replaced by SMIL;

• MPEG-4 (ISO/IEC 14496) provides a standardized representation of interactive multimedia content
in terms of media objects, hierarchically organized within a scene. The XMT (Extensible MPEG-4
Textual) format (and specifically the XMT-O) provides interoperability between MPEG-4 and
SMIL;

• MPEG-7 is a standard (ISO/IEC 15938) for describing the multimedia content data that supports
some degree of interpretation of the information meaning. It includes a Description Definition
Language (DDL) based on XML Schema language (XSD);

• SMIL (Synchronized Multimedia Integration Language) is an open XML-based language proposed
by the World Wide Web Consortium [W3C05]. SMIL allows to create a well structured document,
with the focus at final result and not at rendering mechanism. As stated by its name, SMIL is an
"integration language": media files (images, audio, video, animations, text) are only referenced, but
they stay independent from the SMIL file. SMIL has been designed to be used over Internet and may

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

76

be integrated with others W3C standards: XML, XSL, CSS, XHTML, SVG, etc.

SMIL project has been started by W3C in 1995; its first version (SMIL 1.0) has been released in
1998, the second (SMIL 2.0) in January 2005. Currently (August 2005) the last version is the
"Candidate Recommendation" for SMIL 2.1.
SMIL 2.0 is composed by 45 modules divided in 10 groups:
• timing (19 modules);

• time manipulations (1);

• animation (2);

• content control (4);

• layout (4);

• linking (3);

• media objects (7);

• metainformation (1);

• structure (1);

• transitions (3).

Modules are designed to be reusable as parts of other XML vocabularies, so vendors or other
standards initiatives may decide to implement only parts of SMIL. On the other hand, it is possible
enhance SMIL with proprietary extensions: for instance, Apple QuickTime provides extensions to
play automatically the presentation, to show a time slider, to allow full screen playback, to get
informations about the bandwidth a media object needs in order to play back in real time.

SMIL has some interesting features that make it our best choice as description language for multimedia
documents:
• human-readable format;

• "open" standard (in opposition to proprietary standards);

• designed for the web (in opposition to media-oriented MPEG);

• separation between spatial relationships (layout) and time relationships (synchronization);

• CSS support;

• independent multiple windows support (via the <topLayout> element);

• switching between different layout types and media formats depending on the client or the user
preferences (via the <switch> element);

• synchronization with absolute time, relative time or asynchronous events;

• support of complex transitions between media;

• metadata support;

• extensibility (proprietary extensions allow adding of specific attributes to SMIL presentations);

• interaction with the user.

For the reasons above, we decided to use SMIL language for definition of structure and synchronization.
Moreover, it is important to remark that a SMIL editor will be provided within the AXMEDIS framework:
this is a plus for the adoption of SMIL in the formatting system.
Templates will describe synchronization in detail, but layout properties may be very generic (i.e.: "auto" and
"indefinite" values will be used often); spatial relationships will be defined with precision in the style-sheets.
This way our template is "real SMIL" also if visual rendering may be inconsistent; more important, there’s
no formal difference between a template and a styled presentation: thus style-sheets may be applied
indifferently to templates and to already styled presentations, enhancing possibilities of reuse.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

77

To make more general the document description, we plan to define (with the “ax:” prefix for its namespace)
some extensions for the SMIL language used in templates. The most important is the <ax:repeat> element,
that aims to describe homogeneous groups of elements, without regard for their number: it is very useful
during Composition and Association. It could be used in the following simple way:
 <par>
 <ax:repeat xmlns:ax="http://www.axmedis.org/extensions">
 <ax:items element="text" type="text/plain" dur="2s">
 <ax:item src="axm1.txt" region="txt_region1"/>
 <ax:item src="axm2.txt" region="txt_region2"/>
 <ax:item src="axm3.txt" region="txt_region3"/>
 </ax:items>
 <ax:items element="img" type="image/jpeg" dur="indefinite">
 <ax:item src="gruppo1.jpg" region="img_region1"/>
 <ax:item src="gruppo2.jpg" region="img_region2"/>
 <ax:item src="gruppo3.jpg" region="img_region3"/>
 </ax:items>
 </ax:repeat>
 </par>
The new elements could be processed by the generic part of style-sheets; the XML produced for the above
example should be:
 <par>
 <text type="text/plain" src="media/axm1.txt" region="txt_region1" dur="2s"/>

 <text type="text/plain" src="axm2.txt" region="txt_region2" dur="2s"/>

 <text type="text/plain" src="axm3.txt" region="txt_region3" dur="2s"/>

 </par>

An use case for the <ax:repeat> extension

Ideally, every graphical SMIL editor could be used as Templates Editor. Anyway, it must be pointed that, in
the SMIL language, media may be synchronized using an absolute timing (the presentation time), a relative

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

78

ordering, or a set of constraints based on the temporal properties of other media; therefore, to manage such
temporal and behavioral properties, the editor has to be very refined. It would also be good if the editor could
check the syntax against an arbitrary DTD, to allow modifications and extensions to SMIL.

10.7 Style-sheet language
The main goal of style-sheets systems is separation between document content and its visual representation.
The most widely diffused style-sheets standards are CSS and XSL, both defined by the W3Consortium.
Cascading Style Sheets (CSS) is a simple mechanism for adding style to XML documents. A CSS engine
visits each node of the XML document node hierarchy and tries to match this node to a CSS rule. Therefore,
CSS cannot be used to modify the XML document structure and the rendered document is strictly dependent
on the XML document structure. Nevertheless CSS is human readable, very easy to learn, efficient.
XSL (eXtensible Stylesheet Language) is the more advanced style-sheet language for XML. It is made of
three parts:
1. XSL transformations (XSLT), used to transform XML documents;

2. XML Path Language (XPath), used by XSLT to refer to parts of an XML document;

3. XSL Formatting Objects (XSL FO), used to describe formatting semantics.

The main advantage of XSL over CSS is its capability of transform the XML structure. Price to pay is a more
difficult syntax and a less immediate readability. Furthermore, for its tree-shaped nature and its dependence
from the XML source, creating visual tools for XSL editing it's not a simple task: market offers several IDE
for XSL editing, but rarely they offer sufficient flexibility, since they are targeted to a particular type of
output (generally HTML).
Anyway, XSL is the more advanced, powerful and thus preferred language for styling XML (and so SMIL);
and CSS, eventually, may still be used in association with it.
In our system, the XSL processor receives as inputs an XSLT style-sheet and a template written in SMIL; its
output is a styled SMIL document. XSLT style-sheets may radically change the final aspect of the
presentation, and a style-sheet may be applied to an already styled document with no problem.
The XSLT style-sheet will be divided in two parts: a generic redefinition of the SMIL format structure (valid
for every style-sheet) and a style-sheet specific layout description. This way, style-sheet creation will be
simpler.
The Style-sheets Editor will be a visual XSLT editor: it operates on the entities included in the template,
managing their spatial properties and their temporal parameters.

10.8 Document optimization
A single multimedia document (described by its template) has to be formatted in different ways and its
components have to be adapted to different users that access the document over different channels.
Complexity degree introduced by the number of different channels, users platforms and users preferences,
may be very high. Therefore, the automatic formatting system has to offer an easy but powerful way to
manage this complexity.
We plan to provide these functionalities at three levels:
1. at template selection level: only templates that match with context (and input) have to be selected. For

this reason each template should include a list of output options and context informations. Context
informations will be stored in the Templates Database. For output options, could be used the SMIL
<switch> statement: a single SMIL template may adapt its structure to cope with several targets. In this
way we can change layout and synchronization and even disable some features to get the best results on
each client. The <switch> statement may also drive the input adaptation: depending on the targeted
channel, the template chooses the right format for the input media. The style-sheet will process only the
appropriate <switch> cases and it will remove the whole <switch> statement.

The <switch> statement, defined in the SMIL 2.0 Basic Content Control Module, expresses that a set of
document parts are alternatives, and the first one fulfilling certain conditions should be chosen. One or

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

79

more test attributes may appear on media object references or timing structure elements; the system test
attributes are:
• systemBitrate: allows a choice based on the user connection to the network;

• systemCaptions: specifies a redundant text equivalent of the audio portion of the presentation;

• systemLanguage: allows a choice based on the languages indicated by user preferences;

• systemRequired: provides an extension mechanism for new elements or attributes;

• systemScreenDepth: specifies the depth of the screen color palette in bits;

• systemScreenSize: specifies if the playback engine is capable of displaying a presentation of the given
size;

• systemAudioDesc: specifies whether or not closed audio descriptions should be rendered;

• systemCPU: specifies the CPU on which a user agent may be running;

• systemComponent: identifies the components of the playback system (e.g.: user agent
component/feature, number of audio channels, codec, HW MPEG decoder, etc.);

• systemOperatingSystem: specifies the operating system on which a user agent may be running;

• systemOverdubOrSubtitle: specifies whether subtitles or overdub is rendered;

2. at style-sheet selection level: several style-sheets may be provided for each template, to get the maximum
flexibility. In the Style-sheets Database every style-sheet has a descriptor that specifies output and context
informations. Moreover, every style-sheet may be parameterized, and the value of its parameters will be
chosen according an optimization algorithm. Finally, templates may be applied in cascade: the application
of a style-sheet to a previously adapted document is very useful in terms of adaptability and reuse;

3. at user level (eventually): if the output is in SMIL format, style-sheets may provide an additional
<switch> statement that the SMIL player will process at runtime to fit specific user preferences.

The system we have designed allows to manage these different levels of adaptation:
• SMIL templates permit to specify, within the <switch> statement, alternatives for layout and media to

enclose;

• the generic part of the XSL style-sheet process the <switch> statements, selecting only the appropriate
<switch> cases;

• the specific part of the XSL style-sheet allows the fine-grained specification of parameters, whose values
will be chosen by the optimization algorithm. Such parameters can also define values of attributes that
fulfill the conditions of the <switch> statement: in doing so, editing the generic part of the style-sheet
will not be necessary at all.

10.9 Optimization algorithm
The optimization of the style-sheet is the process that aims to get the best looking layout for the document,
according certain criteria and the range for values of parameters. The number of parameters is potentially
very high, and their values may have a large range: this makes the optimization a critical step in the
automated creation of the document.
The optimization problem may be defined as follows. Many parameters allow to tune the style-sheet, and
each of them may assume a given range of values; every combination of parameters generates a possible
layout that has to be evaluated according some general criteria, based on aesthetic or functional
considerations. For example: a cost functional could evaluate results in terms of proportions, visibility and
use of the screen offered by the considered layout, adopting a different weight for each criteria.
The optimization algorithm should provide the optimal solution, that is the best layout for the document.
Actually, the complexity of the problem is very high (it may be considered almost equivalent to the
“knapsack problem”, which is NP-complete), thus should be used algorithms that search sub-optimal
solutions, as the Tabu Search.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

80

Tabu Search (TS) is an optimization iterative algorithm that explores some possible solutions of the problem
making repeated moves from a solution to another belonging to its “neighborhood”. The neighborhood of the
current solution is individuated by the group of solutions that can be reached with a single variation of the
parameters. The procedure stops when a fixed number of iterations have been performed.
The main characteristic of the TS is the concept of memory: a list of moves, called Tabu list, that cannot be
executed at the current iteration to move towards the next solution. The Tabu list includes moves performed
recently or that were performed frequently in the last iterations. The memory structure impedes to the
algorithm to remain trapped in local minimums, leading it to the space of solutions still unexplored,
permitting the performing of moves characterized by values of the cost functional major than the current
solution. The Tabu state of a move can be changed to an allowed state if the value of the cost functional
associated with it is the minimum between all determined until the current solution (standard criteria).
The Tabu Search, in a comparison with other techniques, is robust and rapid. Moreover, this methodology is
relatively simple to implement and its execution can be parallelized with the AXMEDIS GRID.

10.10 Format example
A simple SMIL template looks like this:
<smil>
 <head>
 <!-- metadata -->
 <meta name="title" content="Axmedis Formatting Test" />
 <meta name="author" content="P. V." />
 <meta name="copyright" content="nocopyright" />
 <!-- regions -->
 <layout type="text/smil-basic-layout">
 <root-layout
 width="auto" height="auto"
 title="Smil test"
 />
 <region id="text_region"
 width="auto" height="auto"
 top="auto" left="auto"
 />
 <region id="axm_img_region"
 width="auto" height="auto"
 top="auto" left="auto"
 />
 <region id="eu_img_region"
 width="auto" height="auto"
 top="auto" left="auto"
 />
 </layout>
 </head>
 <body>
 <!-- layout -->
 <par>
 <switch>
 <text id="text1_it"
 systemLanguage="it"
 src="media/axm_it.txt"
 type="text/plain"
 region="text_region"
 />
 <text id="text1_en"
 systemLanguage="en"
 src="media/axm_en.txt"
 type="text/plain"
 region="text_region"
 />
 </switch>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

81

 <img id="axm_img"
 src="media/logo_axm.png"
 type="image/png"
 dur="indefinite"
 region="axm_img_region"
 />
 <img id="eu_img"
 src="media/flag.png"
 type="image/png"
 dur="indefinite"
 region="eu_img_region"
 />
 </par>
 </body>
</smil>
The layout section describes all the regions that will be displayed in the “root-layout” window; the body
section associates a media file to each region. The <switch> element in the body section is the most
interesting thing in this simple template: two different text files are associated to the same region and the
system is supposed to choose the right one on the basis of the systemLanguage attribute.
A SMIL player (AmbulantPlayer) shows the template in this way:

A SMIL template

The document is correctly opened by the player, since it is correct SMIL, but its structure it’s not consistent
and its aspect it’s really poor (two images are overlapped and both overlap the text).
A basic style-sheet is the following:
<?xml version="1.0" encoding="ISO-8859-1"?>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

82

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- parameters -->
 <xsl:param name="screenWidth"/>
 <xsl:param name="screenHeight"/>
 <xsl:param name="backGround"/>
 <xsl:param name="foreGround"/>
 <xsl:param name="menuWidth"/>
 <xsl:param name="textWidth"/>

 <!-- SMIL structure -->
 <xsl:include href="smilstruct.xsl" />

 <!-- attributes for root-layout -->
 <xsl:template match="root-layout">
 <root-layout
 width="{$screenWidth}" height="{$screenHeight}"
 backgroundColor="{$foreGround}"
 title="Smil+XSL test"
 />
 </xsl:template>

 <!-- attributes for regions -->
 <xsl:template match="region">
 <xsl:choose>
 <xsl:when test="@id='axm_img_region'">
 <region
 id="{@id}"
 backgroundColor="{$backGround}"
 fit="hidden"
 regPoint="center"
 regAlign="center"
 width="110" height="70"
 top="{$screenHeight * 0.05}"
 left="0"
 z-index="1"
 />
 </xsl:when>
 <xsl:when test="@id='eu_img_region'">
 <region
 id="{@id}"
 backgroundColor="{$backGround}"
 fit="hidden"
 regPoint="center"
 regAlign="center"
 width="100" height="70"
 bottom="{$screenHeight * 0.05}"
 left="0"
 z-index="1"
 />
 </xsl:when>
 <xsl:when test="@id='text_region'">
 <region
 id="{@id}"
 backgroundColor="{$backGround}"
 fit="scroll"
 width="{$textWidth}"
 left="{$menuWidth}"
 height="{$screenHeight * 0.9}"
 top="{$screenHeight * 0.05}"

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

83

 z-index="2"
 />
 </xsl:when>
 <xsl:otherwise>
 <!-- include the region as is -->
 <xsl:copy-of select="."/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

</xsl:stylesheet>
The style-sheet starts with the declaration of the parameters: their values will be determined by the
optimization algorithm. The main part of the style-sheet is for region attributes: their values are redefined to
customize the presentation; most of them are based on the parameters. The style-sheet include an external
section (smilstruct.xsl):
<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- build the basic SMIL structure -->
 <xsl:template match="smil">
 <smil>
 <head>
 <xsl:apply-templates select="head"/>
 </head>
 <body>
 <xsl:apply-templates select="body"/>
 </body>
 </smil>
 </xsl:template>

 <!-- apply templates for head -->
 <xsl:template match="head">
 <xsl:apply-templates/>
 </xsl:template>

 <!-- apply templates for body -->
 <xsl:template match="body">
 <xsl:apply-templates/>
 </xsl:template>

 <!-- apply templates for layout -->
 <xsl:template match="layout">
 <layout type="text/smil-basic-layout">
 <xsl:apply-templates/>
 </layout>
 </xsl:template>

 <!-- apply templates for switch, using my preferences -->
 <xsl:template match="switch">
 <xsl:apply-templates select="*[@systemLanguage='en']|
 *[@systemScreenDepth='16']|
 *[@systemCaptions='on']|
 *[@systemOperatingSystem='linux']|
 *[@systemScreenSize='800x600']
 "/>
 </xsl:template>

 <!-- apply templates for par -->
 <xsl:template match="par">
 <par>
 <xsl:if test="@id">

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

84

 <xsl:attribute name="id">
 <xsl:value-of select="@id"/>
 </xsl:attribute>
 </xsl:if>
 <xsl:apply-templates/>
 </par>
 </xsl:template>

 <!-- apply templates for seq -->
 <xsl:template match="seq">
 <seq>
 <xsl:if test="@id">
 <xsl:attribute name="id">
 <xsl:value-of select="@id"/>
 </xsl:attribute>
 </xsl:if>
 <xsl:apply-templates/>
 </seq>
 </xsl:template>

 <!-- apply templates for excl -->
 <xsl:template match="excl">
 <seq>
 <xsl:if test="@id">
 <xsl:attribute name="id">
 <xsl:value-of select="@id"/>
 </xsl:attribute>
 </xsl:if>
 <xsl:apply-templates/>
 </seq>
 </xsl:template>

 <!-- media -->

 <!-- apply templates for img -->
 <xsl:template match="img">
 <img
 id="{@id}"
 src="{@src}"
 type="{@type}"
 region="{@region}"
 >
 <xsl:if test="@dur">
 <xsl:attribute name="dur">
 <xsl:value-of select="@dur"/>
 </xsl:attribute>
 </xsl:if>
 <xsl:apply-templates/>

 </xsl:template>

 <!-- apply templates for text -->
 <xsl:template match="text">
 <text
 id="{@id}"
 src="{@src}"
 type="{@type}"
 region="{@region}"
 />
 </xsl:template>

 <!-- apply templates for audio -->

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

85

 <xsl:template match="audio">
 <audio
 id="{@id}"
 src="{@src}"
 type="{@type}"
 >
 <xsl:if test="@dur">
 <xsl:attribute name="dur">
 <xsl:value-of select="@dur"/>
 </xsl:attribute>
 </xsl:if>
 </audio>
 </xsl:template>

 <!-- apply templates for area -->
 <xsl:template match="area">
 <area
 href="{@href}"
 />
 </xsl:template>

</xsl:stylesheet>
This section is standard for every style-sheet: its goal is simply recreating the basic structure of a SMIL
document, based on the elements that appear in the template. The most interesting part is the <switch>
processing: here we are default values for selecting options in the <switch> statement.
The result of the style-sheet application to the template, depending on values assigned to parameters, could
be the following:

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

86

A styled presentation

Other style-sheets may be applied at the document we have just produced, modifying its aspect; for instance:

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

87

Another style-sheet

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

88

11 Content Formatting Tools (DSI)
These tools allow manual or automatic formatting of multimedia presentations. The “presentation” is
intended here as the most generic type of multimedia content that may be diffused through a network, which
includes all kinds of single and composed media and the interactions among them and with the user. The
format of the presentation has to be automatically selected between the previously created models and has to
be adaptable to a wide range of platforms and user preferences.
The authoring of such a multimedia presentation is a complex process that requires the specification of
several types of information: the media items to use, their spatial layout, links, interactions, and temporal
relationships between them. Moreover, the increased number of platforms and network connections that are
used to obtain multimedia contents, requires an additional step for the final optimization.
Content Formatting Tools are at blueprint level.

11.1 Technical Details
reference to the AXFW location of the
demonstrator

A path in the CVS for example:
https://cvs.axmedis.org/repos/Framework/source/rulemodel/

List of libraries used Xalan-C++
Xerces-C++

References to other major components needed
Problems not solved • …..
Configuration and execution context
Programming language

11.2 Template Editor
The Template Editor allows to create the basic structure for a new type of document. In the Formatting
System, templates are written in SMIL: they have to define the spatial regions of the presentation, their
associations with the media, their temporal relationships and their interactions. Although the spatial
properties have not to be defined in the template, a good SMIL editor is required to accomplish the task of
defining timing and synchronization.
The Template Editor GUI allows the user to:

• create and edit (with mouse operations) rectangular regions on the screen;

• associate the rectangles with the <region> elements of the SMIL language;

• associate media file to the rectangular regions;

• access a context menu to set regions attributes (e.g.: identifier, position, dimensions, colors) that will
be immediately reflected in the drawing;

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

89

Example of attributes menu

• switch by one touch tabs among different views such as text view (XML text view), composite
media scene view (WYSIWYG), tree view (XML elements), single media view (video, audio,
images, etc.);

Example of tree view

• edit timing and synchronization properties with a timeline view.

Example of timeline view

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

90

• syntax coloring and automatic indentation in XML text view;

• code completion in XML text view.

Examples of SMIL editors with these capabilities are:
• LimSee2 (http://wam.inrialpes.fr/software/limsee2/) a free (for not commercial purposes) and open-

source Java application that features a powerful WYSIWYG graphical user interface designed to
ease the manipulation of time-based multimedia;

• GRiNS (http://www.oratrix.com/Products/G2E), a commercial product (with a free trial version) that
features a high level of control over presentation making, multiple exports, complete control for the
all SMIL 2.0 Content Control constructs.

We planned to use as Template Editor the SMIL Editor included within the AXMEDIS Framework, which
will provide such functionalities. Additionally, the editor should check the syntax against an arbitrary DTD,
to allow extensions to the SMIL language.

11.3 Automatic Template Selector
The Automatic Template Selector performs an input mapping, based on selected media and other
informations provided by the author.
The input media set, that varies for type and number of elements, may be considered as composed of subsets
to get more informations about content destination: these subsets should represent the "multimedia
primitives" (scenes, clips, slides, etc.). Such subsets may eventually derive from querying process or be
specified by the author and they are defined in the Compositional Process (see Chapter 9). The author also
specifies if interactions with the user are needed or not, and other general preferences.

11.4 Style-sheet Editor
The Style-sheet Editor allows to create and modify the XSL style-sheets for the templates. XSLT is a
powerful general-purpose transformation language and purely visual editors can not fully exploit its
expressivity. Thus the Style-sheet Editor has to offer both visual and text tools.
Text tools provide:

• syntax coloring and automatic indentation;

• code completion;

Example of code completion and syntax highlighting

• available functions listing and their prototypes.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

91

Example of functions listing

Visual tools provide:
• a source tree view for the input XML (SMIL) document, featuring the canonized (simplified and

symbolic) representation of the tree;

Example of symbolic XML tree view

Example of canonized XML tree view

• an xsl:template view;

• association between xsl:template and source tree elements with mouse operations;

• result preview.

A good examples of XSL editor is the Stylus Studio’s suite (http://www.stylusstudio.com/xslt.html), that
offers an XSLT Editor, an XSLT Mapper and WYSIWYG XSLT Designer.
Text tools may be almost the same used in the Template Editor. Probably, visual tools have to be created
specifically for the Style-sheet Editor.

11.5 Automatic Style-sheet Selector
The Automatic Style-sheet Selector search for style-sheets that may be applied to the given template. Data
needed to associate a style-sheet to a template are stored in the style-sheet database, thus the Automatic
Style-sheet Selector has to perform a simple query.
If query returns many style-sheets, the Automatic Style-sheet Selector chooses the best one on the basis of
the preferences specified by the author.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

92

11.6 Style-sheet Optimizer
The Style-sheet Optimizer is based on iterative algorithms: they have to determine (sub-) optimal values for
the parameters defined in the style-sheet. For instance, an XSL style-sheet may define parameters for
dimensions and colours:
 <!-- parameters -->
 <xsl:param name="screenWidth"/>
 <xsl:param name="screenHeight"/>
 <xsl:param name="backGround"/>
 <xsl:param name="foreGround"/>
 <xsl:param name="menuWidth"/>
 <xsl:param name="textWidth"/>

Each parameter may assume a range of values; every combination of parameters generates a possible layout
that has to be evaluated according a cost functional. For example, we could take into account criteria as the
white space minimization or the overlapping minimization, adopting a different weight for each criteria.
Tabu Search and Genetic Algorithms are best candidates to be adopted in the Style-sheet Optimizer.

11.7 Style-sheet Processor
The Style-sheet Processor applies the style-sheets onto the templates, transforming SMIL documents into
other SMIL documents.
Many XSLT processors are freely available: we plan to use the Xalan-C++ from The Apache Software
Foundation (http://xml.apache.org/xalan-c/index.html). It is a robust implementation of the W3C
Recommendations for XSL Transformations (XSLT) and the XML Path Language (XPath). The input may
appear in the form of a file or URL, a stream, or a DOM; Xalan-C++ performs the transformations specified
in the XSL style-sheet and produces a file, a stream, or a DOM as specified by the transformation. Along
with a complete API for performing transformations in C++ applications, Xalan-C++ provides a command
line utility for prototyping convenience. Furthermore, Xalan-C++ allows to call custom C++ functions from
a style-sheet. Xalan-C++ is available under the terms of The Apache Software License.

11.8 Template and Document Viewer
The Template and Document Viewer has to show:

• the SMIL document that integrates media files and template;

• the SMIL document created by an XSLT processor that applies the style-sheet onto the template;

• other multimedia document formats that are admitted for the distribution (i.e.: MPEG4).

These tasks can be accomplished by the viewer included within the AXMEDIS Framework: the Internal
SMIL Player and the Internal MPEG4 Player for multimedia formats, the Document Viewer for HTML, the
other players for single media formats (the Internal Audio Player for MP3 and WAV, the Internal Image
Viewer for JPG and PNG, the Internal Video Player for AVI and MPG, etc.). For more informations about
internal players and viewers, see DE3.1.2 part B.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

93

12 Transcoding and Adaptation (FHGIGD)
Nowadays the users demand is developing into one direction: users want to access any multimedia content
over any network type with any device from anywhere at anytime. This requirement is considered by the
Universal Multimedia Access (UMA, cf. [1], [2] and [3]). As described in [1], “UMA is a key framework for
multimedia content delivery service using metadata.”

In [1] the adaptation between provider and consumers are identified as a major problem: for the end users,
the quality of service as well as user experience has to be maximized. The task of the adaptation engine is to
“bridge the gap between media format and terminal, network, user and provider characteristics” [1]. The
central role of the adaptation engine in the UMA framework is shown in the next figure.

Central role of the Adaptation Engine within UMA (source: [1]).

As shown in the next figure, the adaptation engine according to UMA adapts content depending on the input
content and the available description of the service providers, of the consumers and of the content.

Content adaptation framework in UMA systems. (source [1])

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

94

Examples for the different parameters for content adaptation are:

Content Service Provider Usage Environment
Media formats, Bitrate
Spatial resolution
Temporal resolution
Number of Colors
Limitations, rights

Quality of Service
Available Bandwidth
Error rate
Constraints
Delay

Access Network (Bandwidth)
Display resolution / color
Memory / CPU / Decoders
User preference
Access location, time

According to [1], the adaptation engine can have different functionalities:

• Transformation engine
• Variation selection engine
• Content selection engine
• Content and variation selection engine

This approach is considered within AXMEDIS as seen in the previous sections. MPEG-21 Part 7 Digital
Item Adaptation (DIA), tools in MPEG-7 Part 5 Multimedia Description Scheme (MDS) are relevant for
adaptation. These standards address a major part of the multimedia content adaptation process. Details of the
AXMEDIS architecture are described in chapter 3 (“AXMEDIS Architecture for Content Processing”).

In this section, the focus is on transcoding and adaptation, which is the “transformation engine” according to
the UMA terminology.

General issues which are relevant for the transcoding and adaptation of content include (see [1]):

• Adaptation system architecture: adaptation on server-side vs. adaptation on client-side vs. proxy-
based adaptation.

• Storage location of usage environment descriptions: storage on server side, storage on client side,
storage on intermediate server

• Privacy of personal data, of personal communication, of the person and of personal behaviour.

[1] E, K. & T, E. New Frontiers in Universal Multimedia Access EPFL, 2004
[2] Sanjuan, D.M.; Steiger, O. & Ebrahimi, T. Design and Implementation of a Universal Multimedia Access
Environment 2002
[3] Steiger, O.; Sanjuán, D.M. & Ebrahimi, T. MPEG-based personalized content delivery. 2003, 45-48

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

95

13 Transcoding Audio (EPFL)

13.1 Technical Details
reference to the AXFW location of the
demonstrator

List of libraries used
References to other major components needed
Problems not solved • …..

• …..
Configuration and execution context
Programming language

13.2 Audio: State of the art
Content is generally created in a single format and can thus only be consumed by a limited set of users.
Content adaptation provides mechanisms that allow formats to be interchanged such that the content may be
delivered in other formats than that in which it was originally created. For example, it is common practice for
radio stations to adapt the audio signal to be transmitted according to the channel characteristics.

With the explosion in availability of digital audio content and the advent of audio transmission over the
Internet, adaptation, and particularly techniques that maximize quality output given a set of constraints, has
gained a new dimension. Multimedia applications are increasingly used in mobile networks as well as in
cable and fixed networks. Small devices with low performance have to be supported, as well as home
entertainment equipment with high quality and multi channel audio.
To allow for transparent audio distribution, an adaptation tool needs to be able to perform the following three
transformations:

1. Format and codec conversion
2. Sampling rate conversion
3. Channel mix-down

These transformations, though they may alter the quality of the signal, do not aim at modifying the content
explicitly. On the contrary, digital audio effects aim at transforming the audio signal more radically.
Transformations such as equalization or reverberation are widely used by music producers but also by music
listeners since many hi-fis propose such settings. More complex effects such as time-stretching are used to
synchronise easily a soundtrack or dialogues with a movie. Fading effects are used when one needs to
shorten a sound excerpts (to build a small sample clip from a complete song for example).

13.3 Audio: The problems

The main problems encountered concern the integration of libraries coming from different sources so that
special care has to be taken to allow producing a multi-platform tool for transcoding. Other libraries will be
integrated to allow manipulating more file formats (libfaac and libfaad to use AAC files and libvorbis and
libogg to use ogg files),

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

96

13.4 Audio: Work performed

The FFMPEG library and the LIBSNDFILE library have been integrated in a single command line
application to allow for multi-platform transcoding between most compressed and uncompressed audio
formats. Sampling rate conversion and channel mixing is also supported as well as the selection of some
specific codec for changing the resolution of audio samples (from 16 to 8 bits for example). The audio
adaptation tool has been successfully compiled on Mac Os X and Win32 (MinGW) and should compile as
well on Linux.

We describe here the command line interface to the audio adaptation tool so that all of its functionalities can
be presented.

The generic syntax is:

 AudioAdaptation [input file] [options] [output file]

By default, the conversion is done as losslessly as possible by using the same parameters for the output as the
one of the input (i.e. if the input as a sampling rate of 44100 Hz and 2 channels, the output by default will
have the same settings). File formats for both input and expected output are detected according to the
extension of the files. The following table lists the recognized file extensions and the corresponding file
formats.

Supported Extension Correponding format

.aif Apple/SGI AIFF
.wav Microsoft WAV
.au Sun/Next AU
.snd Sun/Next AU
.svx Amiga IFF/SVX8/SV16 IFF
.paf Ensoniq PARIS PAF
.fap Ensoniq PARIS PAF
.nist NIST Sphere WAV
.ircam Berkeley/IRCAM/CARL SF
.sf Berkeley/IRCAM/CARL SF
.voc Creative Labs VOC
.w64 SoundFoundry WAVE 64 W64
.raw Header-less RAW
.mat4 GNU Octave 2.0 / Matlab 4.2 MAT4
.mat5 GNU Octave 2.1 / Matlab 5.0 MAT5
.mat GNU Octave 2.0 / Matlab 4.2 MAT4
.pvf Portable Voice Format PVF
.sds Midi Sample Dump Standard SDS
.xi FastTracker 2 XI
.ac3 Raw AC3
.asf Advanced Systems Format
.mp2 MPEG audio layer 2
.mp3 MPEG audio layer 3
.alaw PCM A law format
.mulaw PCM Mu law format
.s16be PCM signed 16 bit big endian format
.s16le PCM signed 16 bit little endian format

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

97

.s8 PCM signed 8 bit format

.u16be PCM unsigned 16 bit big endian format

.u16le PCM unsigned 16 bit little endian format

.u8 PCM unsigned 8 bit format

.ra Audio Real Media format

.wma Windows Media Audio format

The following options are supported:

‘-c’ : set the number of audio channels of the output (default: number of channels of input)
‘-r’ : set the sampling rate of the output (default: sampling rate of the input)
‘-b ` : set the bit rate of the output (default: 64 kb/s)
‘-codec` : set the encoding codec
‘-y’ : overwrite input file (if input and output file have the same name and extension)
‘-st’: start time position in the input file (in seconds)
‘-d’ : duration to read from the input file (in seconds)

The supported codecs are listed in the table below. Notice however that some codecs may not be useable
with some specific format.

Codecs Decoding Encoding
wmav1 Yes No
wmav2 Yes No
mace3 Yes No
mace6 Yes No
vmdaudio Yes No
real_144 Yes No
real_288 Yes No
roq_dpcm Yes No
interplay_dpcm Yes No
xan_dpcm Yes No
sol_dpcm Yes No
Flac Yes No
shorten Yes No
alac Yes No
ws_snd1 Yes No
vorbis Yes No
ac3 No Yes
mp2 Yes Yes
mp3 Yes Yes
mp3adu Yes No
mp3on4 Yes No
sonic Yes Yes
sonicls No Yes
float_s32 Yes Yes
pcm_s32 Yes Yes
pcm_s24 Yes Yes
pcm_s16le Yes Yes
pcm_s16be Yes Yes
pcm_u16le Yes Yes
pcm_u16be Yes Yes

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

98

pcm_s8 Yes Yes
pcm_u8 Yes Yes
pcm_alaw Yes Yes
pcm_mulaw Yes Yes
adpcm_ima_qt Yes Yes
adpcm_ima_wav Yes Yes
adpcm_ima_dk3 Yes Yes
adpcm_ima_dk4 Yes Yes
adpcm_ima_ws Yes Yes
adpcm_ima_smjpeg Yes Yes
adpcm_ms Yes Yes
adpcm_4xm Yes Yes
adpcm_xa Yes Yes
adpcm_adx Yes Yes
adpcm_ea Yes Yes
adpcm_ct Yes Yes
adpcm_swf Yes Yes
g726 Yes Yes
gsm610 Yes Yes
dwvw12 Yes Yes
dwvw16 Yes Yes
dwvw24 Yes Yes

Here are a few examples of typical command line:

• Convert a WAV file into a AIFF file with 1 channel and a sampling rate of 22050 Hz:

 AudioAdaptation example_in.wav –c 1 –r 22050 example_out.aif

• Transform the WAV file example.wav into a mono file with overwriting:

 AudioAdaptation example.wav –y –c 1 example.wav

• Convert a WAV file into an MP3 file with 128kb/s bit rate:

 AudioAdaptation example.wav –b 128 –codec mp3 example.mp3

• Convert a WAV file into a WAV file with same encoding parameters but with duration 30 seconds
starting 90 seconds after the beginning of the original file:

 AudioAdaptation example.wav –d 30 –st 90 example.wav

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

99

14 Transcoding Video (FHGIGD)

14.1 Technical Details
reference to the AXFW location of the
demonstrator

A path in the CVS for example:
https://cvs.axmedis.org/repos/Framework/source/rulemodel/

List of libraries used
References to other major components needed
Problems not solved • …..

• …..
Configuration and execution context
Programming language

14.2 Video: State of the art

Chang et al. [Chang05] identified active research areas of video adaptation. These include:

• Semantic event-based adaptation: Semantic events in the video are the basis for this kind of
adaptation. Depending on the video content and the target audience and the usage of the video
content the adaptation varies. For example, in a soccer game only the key (scoring) scenes might be
extracted in a video. The basic required semantic information can also be extracted from other
source than from the video, e.g. from the corresponding audio [Chang01, Zhang02, Zhong01].

• Structural-Level Adaptation is a simpler approach than semantic event-based adaptation, which is
based on the structure of video. An example is the extraction of key-frames that summarize the video
content best [Irani98].

• Transcoding is on a signal level. For example, spatial resolution, precision or temporal properties
(e.g. frame rate) are adapted according to the possibilities of the transmission channel and the
receiving device [Vetro03].

• Rapid Fast-Forward can be compared with the fast-forward feature of a VCR player. The content is
temporally “condensed” [Smith95, Smith97, Lou04].

14.3 Video: The problems

Different open issues have been identified in the literature, e.g. in [Vetro05] and [Chang05]. Among these
open issues are:

• Permissible and secure adaptation: The two aspects which are comprised here are the permission for
specific adaptations and the secure adaptation of encrypted objects.

• Adaptation in Constrained and Streaming Environment: For some devices or scenarios limited
hardware capabilities have to be considered. This influences the adaptation, e.g. the conversion of
adaptation parameters or the adapted content.

• Transport, Negotiation and Exchange of Descriptors: The adaptation parameters have to be
transported, negotiated or exchanged. This has to be handled in a standardized manner.

• Semantic Clues for Adaptation: Semantic information of the content that should be adapted can
improve the result of the adaptation.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

100

• Modality Conversion: Sometimes a modality conversion (e.g. from a video format to a image
sequence) might be better suited. E.g. for certain devices/transmission channel there might be strong
hardware limitations.

• Maximum User Experience: The previous aspects address technical issues. The ultimate criteria,
however, is the user experience. This user experience has to be maximised.

These general aspects are also relevant for video adaptation. In addition to the previously described active
research areas, which can also be considered as open issues, in [Chang05] specific open issues for video
adaptation are also described:

• Definition of utility measure and user preferences: There is a general lack of a definition of adequate
measures or methods for estimating the quality or the user’s satisfaction of the video content
(“utility”).

• Resolving ambiguities in specifying adaptation operation: A verbal description of an adaptation
operation is often ambiguous.

• Relations among adaptation, utility, and resource. The relationship between adaptation, utility, and
resource is often complex (high dimensional space). The representation of this high dimensional
space strongly depends on the application.

• Optimal solutions in large spaces are required to address the previously described problem of high-
dimensional spaces. From a mathematical point of view, this is a constraint optimization problem.

• Design end-to-end integrated systems

14.4 Video: Work performed

The work performed focused on the (integration of) transcoding algorithms. To show AXMEDIS’
capabilities in terms of content adaptation as well as extensibility the FFMPEG library has been selected for
the implementation/integration of the firstly available video adaptation functionality.

The via command line version of FFMPEG available video options are:

-b bitrate set video bitrate (in kbit/s)
-r rate set frame rate (Hz value, fraction or abbreviation)
-s size set frame size (WxH or abbreviation)
-aspect aspect set aspect ratio (4:3, 16:9 or 1.3333, 1.7777)
-croptop size set top crop band size (in pixels)
-cropbottom size set bottom crop band size (in pixels)
-cropleft size set left crop band size (in pixels)
-cropright size set right crop band size (in pixels)
-vn disable video
-bt tolerance set video bitrate tolerance (in kbit/s)
-maxrate bitrate set max video bitrate tolerance (in kbit/s)
-minrate bitrate set min video bitrate tolerance (in kbit/s)
-bufsize size set ratecontrol buffere size (in kByte)
-vcodec codec force video codec ('copy' to copy stream)
-sameq use same video quality as source (implies VBR)
-pass n select the pass number (1 or 2)
-passlogfile file select two pass log file name

Besides the basic functionality so called “advanced options” are available:

-pix_fmt format set pixel format
-g gop_size set the group of picture size

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

101

-intra use only intra frames
-qscale q use fixed video quantiser scale (VBR)
-qmin q min video quantiser scale (VBR)
-qmax q max video quantiser scale (VBR)
-mbqmin q min macroblock quantiser scale (VBR)
-mbqmax q max macroblock quantiser scale (VBR)
-qdiff q max difference between the quantiser scale (VBR)
-qblur blur video quantiser scale blur (VBR)
-qcomp compression video quantiser scale compression (VBR)
-rc_init_cplx complexity initial complexity for 1-pass encoding
-b_qfactor factor qp factor between p and b frames
-i_qfactor factor qp factor between p and i frames
-b_qoffset offset qp offset between p and b frames
-i_qoffset offset qp offset between p and i frames
-rc_eq equation set rate control equation
-rc_override override rate control override for specific intervals
-me method set motion estimation method
-dct_algo algo set dct algo
-idct_algo algo set idct algo
-er n set error resilience
-ec bit_mask set error concealment
-bf frames use 'frames' B frames
-mbd mode macroblock decision
-mbcmp cmp function macroblock compare function
-ildctcmp cmp function ildct compare function
-subcmp cmp function subpel compare function
-cmp cmp function fullpel compare function
-4mv use four motion vector by macroblock (MPEG4)
-obmc use overlapped block motion compensation (h263+)
-part use data partitioning (MPEG4)
-bug param workaround not auto detected encoder bugs
-strict strictness how strictly to follow the standarts
-deinterlace deinterlace pictures
-ildct force interlaced dct support in encoder (MPEG2/MPEG4)
-ilme force interlacied me support in encoder MPEG2
-psnr calculate PSNR of compressed frames
-vstats dump video coding statistics to file
-vhook module insert video processing module
-aic enable Advanced intra coding (h263+)
-aiv enable Alternative inter vlc (h263+)
-umv enable Unlimited Motion Vector (h263+)
-alt enable alternate scantable (mpeg2)
-trell enable trellis quantization
-scan_offset enable SVCD Scan Offset placeholder
-intra_matrix matrix specify intra matrix coeffs
-inter_matrix matrix specify inter matrix coeffs
-top top=1/bottom=0/auto=-1 field first
-nr noise reduction

The functionality available within FFMPEG addresses two categories of video adaptation:

• Considering the (fixed) needs of the content creator or service providers: The content can be adapted
according to the requirements of the content creator or service providers. The simplest case is the

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

102

adaptation of the spatial resolution as supported by FFMPEG to a fixed resolution without changing
the aspect ratio.

• Dynamic content creation: FFMPEG also allows changing the aspect ratio of the video content.

Thus, a basic functionality required to dynamically adapt content according to the receiving device is
available.

14.5 References

[Chang01] Chang, S.; Zhong, D. & Kumar, R. Real-Time Content-Based Adaptive Streaming of Sports
 Videos IEEE Computer Society, 2001, 139
[Chang05] Shih-Fu Chang Vetro, A. Video adaptation: concepts, technologies, and open issues 2005,
 93, 148 – 158
[Irani98] Irani, M. & Anandan, P. Video indexing based on mosaic representation 1998
[Lou04] Luo, H. & Fan, J. Concept-oriented video skimming via semantic video classification ACM
 Press, 2004, 760-761
[Smith95] Smith, M. & Kanade, T. Video Skimming for Quick Browsing based on Audio and Image
 Characterization Computer Science Department, Carnegie Mellon University, 1995
[Smith97] Smith, M.A. Video Skimming and Characterization through the Combination of Image and
 Language Understanding Techniques IEEE Computer Society, 1997, 775
[Zhang02] Zhang, D. & Chang, S. Event detection in baseball video using superimposed caption
 recognition ACM Press, 2002, 315-318
 [Zhong01] Zhong, D.; Kumar, R. & Chang, S. Real-time personalized sports video filtering and
 summarization ACM Press, 2001, 623-625
[Vetro03] Vetro, A.; Haga, T.; Sumi, K. & Sun, H. Object-based coding for long-term archive of
 surveillance video 2003, 2
[Vetro05] Vetro, A. & Timmer, C., Digital Item Adaptation: Overview of Standardization and
 Research Activities IEEE Transaction On Multimedia, 2005, 7, 418-426

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

103

15 Transcoding Documents and text (DIPITA)
The prototype for textual format conversion tool has to gather and integrate the different standard libraries
for the conversion of the required formats. According to the AXMEDIS FW specifications (DE 3.1.2d), the
formats treated within the conversion procedures are: plain text (TXT), Rich Text Format (RTF), Hyper Text
Mark-up Language (HMTL), portable document Format (PDF), Post Script (PS).
Textual conversion is needed for:
- format adaptation tasks;
- perform keyword extraction on different format input files (see Humphreys 2002);
- perform content fingerprint estimation (independently from the specific format of input file);
- guessing of the language of a document.

The demonstrator
The demonstrator is a simple command line interface program, that takes four parameters as input: the name
of the file to be transcoded, the name of the file to be created, the formats of the file to be transcoded and of
the file to be created. The demonstrator shows how two of the libraries (XPDF and HTMLDOC) that will be
exploited (listed in section 16.4) are used.
Two transcoding are allowed in the demonstrator: pdf to txt (using XPDF’s pdftotext.exe executable) and
html to txt (using HTMLDOC’s htmldoc.exe and XPDF’s pdftotext.exe executables).

Below the snapshot of the execution of the pdf to txt transcoding:

The next snapshot shows the execution of the html to txt transcoding:

15.1 Technical Details
reference to the AXFW location of
the demonstrator

https://cvs.axmedis.org/repos/Framework/source/adaptation/document/

List of libraries used XPDF, HTMLDOC, DOCFRAC, GNU Ghostscript
References to other major
components needed

Problems not solved • Input format guessing (so far, input format is an input parameter).
• Not all possible conversion are covered.

Configuration and execution
context

To exexute the program the following dll, exe files and directories
must be in the same directory as the program one:
doxlib.dll
libeay32.dll
ssleay32.dll
pdftotext.exe
htmldoc.exe
data/

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

104

doc/
fonts/
(all under Framework\lib\adaptation\document directory in the
repository)

The directory in which the program is runned must have write
privileges.

Programming language C++

15.2 Documents and text: State of the art

Since textual conversion is a useful task for a lot of text processing applications, there has been developed a
huge variety of conversion libraries and software in order to get a plain text file from the most common
formats (see Anjewierden, 2003). As a matter of fact, the conversion of RTF and HTML formats into plain
text is a task that is completely satisfied by the modern technologies, and it represents a quite trivial issue.
More problems emerge from the conversion procedures starting from PDR or PS format (see the next
paragraphs for further details). Format adaptation is needed to pre-process document in order to deal with the
main procedures of the AXMEDIS linguistic interface (keyword extraction and language guessing) and of
the content protection and fingerprint. In the following section (7.1.3) there are presented the libraries to be
exploited.

Particular issue: conversion from PDF/PS document to plain text format
Most of the textual files associated to multimedia content production and documentation are in PDF format,
because of it is a platform-independent format, and because of the PDF files are relatively small in file size,
allowing space saving on servers and repositories.
In different environment dealing with text pre-processing for information extraction issues, PDF format is
used for storage and start point of the further conversion procedures. It is the case of CERN’s solution for the
automatic extraction of references from High Energy Physics documents and papers (to the aim of make
them easy to access to physics researchers). The extraction procedure involve the whole repository of up to
170,000 electronic documents (available via the CERN Document Server; see Claivaz et al. 2001). For this
task, PDF was deliberately chosen as a format from which extract the plain text document, due to its stability
over other file formats such as PostScript or MSWord.
In Robinson (2001) there is a comparison study of these different tools with their advantages and drawbacks
(pdftotext, ps2ascii.ps, pdftohtml, pdftohtml(.bin), pstotext, prescript). A lot of conversion tools were tested
to find the most suitable one.
The primary flaw discovered was that none of the tools were able to convert PostScript documents that were
produced by MSWord. Due to the increasing number of PostScript files submitted to the document archives
and repositories that were actually produced from MSWord files, this is a major problem, as it means that
none of these could be converted to text. This means that it is really necessary to perform the conversion
from a PDF document, as it seems to be more stable. Tests were conducted for the conversion of PDF
documents to text that were produced from PostScripts that were in turn produced from MSWord files.
Problems were not encountered with these PDF file conversions.
Therefore, the best strategy for conversion of PS format into plain text seems to be a two stage conversion:
- first, convert the PS to PDF;
- second, covert the PDF obtained to a plain text.
As a result from the comparison among pds2txt converters, the pdftotext tool from Foolabs (within XPDF
tool-suite) was stated as the more reliable among the others (Robinson 2001).

First prototype to be posted in the AXMEDIS CVS repository within M12

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

105

15.3 Documents and text: The problems

Libraries to be exploited: general public license.
Because some of the used libraries are licensed under GPL, the conversion tool (pool of document
converters) will be developed under GPL too. So the conversion tool will be accessed by the plug-in as a
separated executable program, not as a library. The communication mechanism between the plug-in and the
converter has to be defined.

Different output of format conversions
It is necessary to specify the particular features of the txt output files, depending on the different tasks in
which textual format conversion are involved. The output textual files have to deal with:

1. Content fingerprint adaptation (within WP 4.2.2)
The main requirement to be satisfied by a fingerprint extractor is the independence from the file format. To
solve this problem, the file of the original document is converted to a plain text file. As totally reliable
format-conversion procedures are not available, to obtain the most similar fingerprint values from different
format files it is needed, for example, to reduce the text file to a more stable one, by removing white space
and punctuation, removing unusual characters (which can be easily mismatched by the converters),
converting all letters to lower case, replacing variable names (in script files) by one string.

2. Language guessing adaptation (within WP 4.2.2)
Language guessing rely on statistics of character n-grams, extracted from documents of the languages to be
treated. For this purpose, sequences of spaces and alphabetic character have to be exactly the same, even
after document format conversion. Adaptation strategies such as the ones adopted in the fingerprint
adaptation of text (which point to erase the uncertain converted characters) are unsuitable for this task.

3. Keyword extraction adaptation (within WP 4.2.2)
The most important unit for this task is not the text character (as in the previous ones), but the word. The
conversion of text format for keyword extraction purposes has to respect exactly the word combinations in
the context within they occurs. For this task, it is important to have a certain degree of reliability even in the
treatment of punctuation.

15.4 Documents and text: Work performed

The following conversion libraries are the ones that will be used for text document conversion (see
AXMEDIS FW Specifications in DE 3.1.2d), as they obtain (according to the literature) the best
performances compared to the other similar ones:

1. DOCFRAC (http://docfrac.sourceforge.net/), that allows conversions from RTF to HTML, from RTF to
TXT, from HTML to RTF, from HTML to TXT, from TXT to RTF and from TXT to HTML.
The exploitation of the DOCFRAC features library will be particularly useful for converting active web
pages, converting many documents at a time and converting output from Microsoft's Internet Explorer RTF
control to HTML.
The supported platforms are Windows, Linux (command line) and programming kit (ActiveX and DLL).
DocFrac is free. It is released under the LGPL.

2. GNU Ghostscript (http://www.cs.wisc.edu/~ghost/)
Ghostscript is the name of a set of software that contains an interpreter for the PostScript (TM) language and
the Adobe Portable Document Format, and a set of C procedures (the Ghostscript library) that implement the
graphics and filtering (data compression / decompression / conversion) capabilities that appear as primitive
operations in the PostScript language and in PDF. Versions entitled "GNU Ghostscript" are distributed with
the GNU General Public License.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

106

3. XPDF (http://www.foolabs.com/xpdf/)
Xpdf is an open source viewer for Portable Document Format (PDF) files. The Xpdf project also includes a
PDF text extractor, PDF-to-PostScript converter, and various other utilities.
Xpdf runs under the X Window System on UNIX, VMS, and OS/2. The non-X components (pdftops,
pdftotext, etc.) also run on Win32 systems and should run on pretty much any system with a decent C++
compiler.
Xpdf is designed to be small and efficient. It can use Type 1, TrueType, or standard X fonts.
Xpdf is licensed under the GNU General Public License (GPL), version 2.

4. HTMLDOC (http://www.easysw.com/htmldoc/)
HTMLDOC converts HTML source files into indexed HTML, PostScript, or Portable Document Format
(PDF) files that can be viewed online or printed.
The program is free software and is distributed under GPL.

The adaptation tool will recognize the format of the input file, to call the right conversion library and obtain
the plain text file as output.
To test the first results of the adaptation tool, it has been created a test corpus for content adaptation. It
contains several documents, each one in different textual format, and precisely:

a) Digital music report 2005 (a state of the art on digital music; formats: pdf, txt)
b) European constitution (the EU constitution in Italian, formats: pdf, rtf, txt)
c) Hibernate documentation (documentation on an object/relational mapping tool for Java environments;
formats: pdf, html, txt)
d) Html specification (specification from the w3c on html formatting; formats: pdf, ps, html, txt).

References

Anjewierden, A. (2003) Document Analysis Component Library. University of Amsterdam

Claivaz, J.B., Le Meur, J.-Y., Robinson, N. (2001). From Fulltext Documents to Structured Citations.
CERN-ETT-2001-003. Geneva. CERN.

Heintze, N. (1996), Scalable document fingerprinting. In 1996 USENIX Workshop on Electronic Commerce.

Humphreys, J.-B. K. (2002) PhraseRate: An HTML Keyphrase Extractor. University of California

Robinson., N. (2001). A Comparison of Utilities for Converting from PostScript or Portable Document
Format to Text. CERN-OPEN-2001-065. Geneva. CERN.

Websites

DOCFRAC (http://docfrac.sourceforge.net/),
GNU Ghostscript (http://www.cs.wisc.edu/~ghost/)
XPDF (http://www.foolabs.com/xpdf/)
HTMLDOC (http://www.easysw.com/htmldoc/)

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

107

16 Transcoding Images (DSI, IRC)

16.1 Technical Details
reference to the AXFW location of the
demonstrator

List of libraries used
References to other major components needed
Problems not solved • …..

• …..
Configuration and execution context
Programming language

16.2 Images : State of the art

Image adaptation tools provide functions which can be used for scaling, resolution improvements, text
drawing, and image decomposition etc. of an image file. In the case of Image Objects, the following libraries
can be used for implementing the functions described above.

a. ImageMagick Library

ImageMagick, version 6.2.3, is a free software suite designed to create, edit, and compose bitmap images. It
can read, convert and write images in a large variety of formats. Images can be cropped, colors can be
changed, various effects can be applied; images can be rotated and combined, and text, lines, polygons,
ellipses and Bezier curves can be added to images and stretched and rotated.

Here are just a few examples of what ImageMagick can do:

i. Convert an image from one format to another (e.g. PNG to JPEG)
ii. Resize, rotate, sharpen, colour reduce, or add special effects to an image

iii. Create a montage of image thumbnails
iv. Create a transparent image suitable for use on the Web
v. Turn a group of images into a GIF animation sequence

vi. Create a composite image by combining several images
vii. Draw shapes or text on an image

viii. Decorate an image with a border or frame
ix. Describe the format and characteristics of an image

A list of supported formats is given below. The documentation of the ImageMagick is available on
http://www.imagemagick.org/.

Tag Mode Description Notes
ART R PFS: 1st Publisher Format originally used on the Macintosh (MacPaint?) and later

used for PFS: 1st Publisher clip art.
AVIhttp://
www.jmc

R Microsoft Audio/Visual
Interleaved

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

108

gowan.co
m/avi.ht
ml
AVS RW AVS X image
BMPhttp:/
/msdn.mi
crosoft.co
m/library/
sdkdoc/g
di/bitmap
s_9c6r.ht
m

RW Microsoft Windows bitmap

CGM R Computer Graphics Metafile Requires ralcgm to render CGM files.
CIN RW Kodak Cineon Image Format Cineon Image Format is a subset of SMTPE DPX.
CMYK RW Raw cyan, magenta, yellow,

and black samples
Set -size and -depth to specify the image width, height, and
depth.

CMYKA RW Raw cyan, magenta, yellow,
black, and alpha samples

Set -size and -depth to specify the image width, height, and
depth.

CUR R Microsoft Cursor Icon
CUT R DR Halo
DCM R Digital Imaging and

Communications in Medicine
(DICOM) image

Used by the medical community for images like X-rays.

DCX RW ZSoft IBM PC multi-page
Paintbrush image

DIB RW Microsoft Windows Device
Independent Bitmap

DIB is a BMP file without the BMP header. Used to support
embedded images in compound formats like WMF.

DPX RW Digital Moving Picture
Exchange

EMF R Microsoft Enhanced Metafile
(32-bit)

Only available under Microsoft Windows.

EPDF RW Encapsulated Portable
Document Format

EPI RW Adobe Encapsulated PostScript
Interchange format

Requires Ghostscript to read.

EPS RW Adobe Encapsulated PostScript Requires Ghostscript to read.
EPS2 W Adobe Level II Encapsulated

PostScript
Requires Ghostscript to read.

EPS3 W Adobe Level III Encapsulated
PostScript

Requires Ghostscript to read.

EPSF RW Adobe Encapsulated PostScript Requires Ghostscript to read.
EPSI RW Adobe Encapsulated PostScript

Interchange format
Requires Ghostscript to read.

EPT RW Adobe Encapsulated PostScript
Interchange format with TIFF
preview

Requires Ghostscript to read.

FAX RW Group 3 TIFF See TIFF format. Note that FAX machines use non-square pixels
which are 1.5 times wider than they are tall but computer
displays use square pixels so FAX images may appear to be
narrow unless they are explicitly resized using a resize
specification of "150x100%".

FIG R FIG graphics format Requires TransFig.
FITS RW Flexible Image Transport

System

FPX RW FlashPix Format Requires FlashPix SDK.
GIF RW CompuServe Graphics 8-bit RGB PseudoColor with up to 256 palette entires. Specify

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

109

Interchange Format the format "GIF87" to write the older version 87a of the format.
GPLT R Gnuplot plot files Requires gnuplot3.5.tar.Z or later.
GRAY RW Raw gray samples Use -size and -depth to specify the image width, height,

and depth.
HPGL R HP-GL plotter language Requires hp2xx-3.2.0.tar.gz
HTML RW Hypertext Markup Language

with a client-side image map
Also known as "HTM". Requires html2ps to read.

ICO R Microsoft icon Also known as "ICON".
JBIG RW Joint Bi-level Image experts

Group file interchange format
Also known as "BIE" and "JBG". Requires jbigkit-1.0.tar.gz.

JNG RW Multiple-image Network
Graphics

JPEG in a PNG-style wrapper with transparency. Requires
libjpeg and libpng-1.0.2 or later, libpng-1.2.5 or later
recommended.

JP2 RW JPEG-2000 JP2 File Format
Syntax

Requires jasper-1.600.0.zip

JPC RW JPEG-2000 Code Stream
Syntax

Requires jasper-1.600.0.zip

JPEG RW Joint Photographic Experts
Group JFIF format

Requires jpegsrc.v6b.tar.gz

MAN R Unix reference manual pages Requires that GNU groff and Ghostcript are installed.
MAT R MATLAB image format
MIFF RW Magick image file format Open ImageMagick's own image format (with ASCII header)

which ensures that no image attributes understood by
ImageMagick are lost.

MONO RW Bi-level bitmap in least-
significant-byte first order

MNG RW Multiple-image Network
Graphics

A PNG-like Image Format Supporting Multiple Images,
Animation and Transparent JPEG. Requires libpng-1.0.2 or
later, libpng-1.2.5 or later recommended.

MPEG RW Motion Picture Experts Group
file interchange format (version
1)

Requires mpeg2vidcodec v12.tar.gz.

M2V RW Motion Picture Experts Group
file interchange format (version
2)

Requires mpeg2vidcodec v12.tar.gz.

MPC RW Magick Persistent Cache image
file format

The native "in-memory" ImageMagick uncompressed file
format. This file format is identical to that used by Open
ImageMagick to represent images in memory and is read in
"zero time" via memory mapping. The MPC format is not
portable and is not suitable as an archive format. It is suitable as
an intermediate format for high-performance image processing.
The MPC format requires two files to support one image. When
writing the MPC format, a file with extension ".mpc" is used to
store information about the image, while a file with extension
“.cache” stores the image pixels. The storage space required by a
MPC image (or an image in memory) may be calculated by the
equation (5*QuantumDepth*Rows*Columns)/8.

MSL RW Magick Scripting Language MSL is the XML-based scripting language supported by the
conjure utility.

MTV RW MTV Raytracing image format
MVG RW Magick Vector Graphics. The native ImageMagick vector metafile format. A text file

containing vector drawing commands accepted by convert's -
draw option.

OTB RW On-the-air Bitmap
P7 RW Xv's Visual Schnauzer

thumbnail format

PALM RW Palm pixmap
PBM RW Portable bitmap format (black

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

110

and white)
PCD RW Photo CD The maximum resolution written is 768x512 pixels since larger

images require huffman compression (which is not supported).
PCDS RW Photo CD Decode with the sRGB color tables.
PCL W HP Page Control Language For output to HP laser printers.
PCX RW ZSoft IBM PC Paintbrush file
PDB RW Palm Database ImageViewer

Format

PDF RW Portable Document Format Requires Ghostscript to read.
PFA R Postscript Type 1 font (ASCII) Opening as file returns a preview image.
PFB R Postscript Type 1 font (binary) Opening as file returns a preview image.
PGM RW Portable graymap format (gray

scale)

PICON RW Personal Icon
PICT RW Apple Macintosh

QuickDraw/PICT file

PIX R Alias/Wavefront RLE image
format

PNG RW Portable Network Graphics Requires libpng-1.0.2 or later, libpng-1.2.5 or later
recommended.

PNM RW Portable anymap PNM is a family of formats supporting portable bitmaps (PBM) ,
graymaps (PGM), and pixmaps (PPM). There is no file format
associated with pnm itself. If PNM is used as the output format
specifier, then ImageMagick automatically selects the most
appropriate format to represent the image. The default is to write
the binary version of the formats. Use +compress to write the
ASCII version of the formats.

PPM RW Portable pixmap format (color)
PS RW Adobe PostScript file Requires Ghostscript to read.
PS2 RW Adobe Level II PostScript file Requires Ghostscript to read.
PS3 RW Adobe Level III PostScript file Requires Ghostscript to read.
PSD RW Adobe Photoshop bitmap file
PTIF RW Pyramid encoded TIFF Multi-resolution TIFF containing successively smaller versions

of the image down to the size of an icon. The desired sub-image
size may be specified when reading via the -size option.

PWP R Seattle File Works multi-image
file

RAD R Radiance image file Requires that ra_ppm from the Radiance software package be
installed.

RGB RW Raw red, green, and blue
samples

Use -size and -depth to specify the image width, height,
and depth.

RGBA RW Raw red, green, blue, and alpha
samples

Use -size and -depth to specify the image width, height,
and depth.

RLA R Alias/Wavefront image file
RLE R Utah Run length encoded

image file

SCT R Scitex Continuous Tone Picture
SFW R Seattle File Works image
SGI RW Irix RGB image
SHTML W Hypertext Markup Language

client-side image map
Used to write HTML clickable image maps based on a the
output of montage or a format which supports tiled images such
as MIFF.

SUN RW SUN Rasterfile
SVG RW Scalable Vector Graphics Requires libxml2 and freetype-2. Note that SVG is a very

complex specification so support is still not complete.
TGA RW Truevision Targa image Also known as formats "ICB", "VDA", and "VST".
TIFF RW Tagged Image File Format Also known as "TIF". Requires tiff-v3.6.1.tar.gz or later. Note

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

111

that since Unisys claims a patent on the LZW algorithm
(expiring in the US as of June 2003) used by LZW-compressed
TIFF files, ImageMagick binary distributions do not include
support for the LZW algorithm so LZW TIFF files can not be
written. Although a patch is available for libtiff to enable
building with LZW support. Users should consult the Unisy
LZW web page before applying it.

TIM R PSX TIM file
TTF R TrueType font file Requires freetype 2. Opening as file returns a preview image.
TXT RW Raw text file
UIL W X-Motif UIL table
UYVY RW Interleaved YUV raw image Use -size command line option to specify width and height.
VICAR RW VICAR rasterfile format
VIFF RW Khoros Visualization Image

File Format

WBMP RW Wireless bitmap Support for uncompressed monochrome only.
WMF R Windows Metafile Requires libwmf. By default, renders WMF files using the

dimensions specified by the metafile header. Use the -density
option to adjust the output resolution, and thereby adjust the
ouput size. The default output resolution is 72DPI so "-density
144" results in an image twice as large as the default. Use -
background color to specify the WMF background color
(default white) or -texture filename to specify a background
texture image.

WPG R Word Perfect Graphics File
XBM RW X Windows system bitmap,

black and white only
Used by the X Windows System to store monochrome icons.

XCF R GIMP image
XPM RW X Windows system pixmap Also known as "PM". Used by the X Windows System to store

color icons.
XWD RW X Windows system window

dump
Used by the X Windows System to save/display screen dumps.

YCbCr RW Raw Y, Cb, and Cr samples Use -size and -depth to specify the image width, height,
and depth.

YCbCrA RW Raw Y, Cb, Cr, and alpha
samples

Use -size and -depth to specify the image width, height,
and depth.

YUV RW CCIR 601 4:1:1

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

112

17 Transcoding Multimedia (EPFL)

The goal of content adaptation tools is to adapt the original modality, resolution, and format of multimedia
content to potential terminal and network capabilities. A prerequisite for efficient adaptation of multimedia
information is a careful analysis of the properties of different media types. Video, audio, images and text
require different adaptation algorithms. Consequently, the AXMEDIS framework will provide a number of
algorithms to adapt these media types (see sections 13, 15, 16, 17).

17.1 Technical Details
reference to the AXFW location of the
demonstrator

A path in the CVS for example:
https://cvs.axmedis.org/repos/Framework/source/rulemodel/

List of libraries used
References to other major components needed
Problems not solved • …..

• …..
Configuration and execution context
Programming language

17.2 Multimedia: State of the art

The complex nature of multimedia makes the adaptation difficult to design and implement. Indeed, to allow
for the composition of the various media streams, most multimedia formats define some XML-like language
describing how the various media streams are associated so that tools dealing with such objects shall be able
to parse the corresponding textual descriptions. Moreover, objects we refer to as multimedia or rich media
may also be composed of synthetic audio (MIDI, MPEG-4 Structured Audio), 2D and 3D graphics, web
content, etc… We will now enumerate and describe a number of file formats considered as multimedia.

MPEG-4: The primary uses for the MPEG-4 standard are web (streaming media) and CD
distribution, conversational (videophone), and broadcast television. MPEG-4 absorbs many of the
features of MPEG-1 and MPEG-2 and other related standards, adding new features such as
(extended) VRML support for 3D rendering, object-oriented composite files (including audio, video
and VRML (Virtual Reality Modeling Language) objects), support for externally-specified Digital
Rights Management and various types of interactivity.

Most of the features included in MPEG-4 are left to individual developers to decide whether to
implement them. This means that there are probably no complete implementations of the entire
MPEG-4 set of standards. To deal with this, the standard includes the concept of "profiles" and
"levels", allowing a specific set of capabilities to be defined in a manner appropriate for a subset of
applications.

Scalable Vector Graphics (SVG): It is an XML markup language for describing two-dimensional
vector graphics, both static and animated. It is an open standard created by the World Wide Web
Consortium, which is also responsible for standards like HTML and XHTML.

SVG allows three types of graphic objects:

1. vector graphic shapes (e.g. paths consisting of straight lines and curves, and areas bounded by them)

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

113

2. raster graphics images / digital images
3. text

Graphical objects can be grouped, styled, transformed and composited into previously rendered
objects. Text can be in any XML namespace suitable to the application, which enhances
searchability and accessibility of the SVG graphics. The feature set includes nested transformations,
clipping paths, alpha masks, filter effects, template objects and extensibility.

SVG drawings can be dynamic and interactive. The Document Object Model (DOM) for SVG,
which includes the full XML DOM, allows straightforward and efficient vector graphics animation
via ECMAScript or SMIL. A rich set of event handlers such as onmouseover and onclick can be
assigned to any SVG graphical object. Because of its compatibility and leveraging of other Web
standards, features like scripting can be done on SVG elements and other XML elements from
different namespaces simultaneously within the same web page.

If storage space is an issue, SVG images are sometimes saved with gzip compression, in which case
they may be called "SVGZ files". Because XML contains a lot of redundant data, XML tends to
compress very well and these files can be much smaller.

SWF: it is the file format used by Macromedia Flash to describe movies built of mainly two
elements: vector based objects and images. The newest versions also allow audio, video and many
different possible forms of interaction with the end user. Once created, SWF files can be played by
the Macromedia Flash Player, working either as a browser plugin or as an standalone (executable)
player. Most of the times, SWF files can also be encapsulated with the player, creating a self-
running SWF movie called projector.

VRML: VRML is a text file format where, e.g., vertices and edges for a 3D polygon can be
specified along with the surface color, image-mapped textures, shininess, transparency, and so on.
URLs can be associated with graphical components so that a web browser might fetch a web-page
or a new VRML file from the Internet when the user clicks on the specific graphical component.
Animations, sounds, lighting, and other aspects of the virtual world can interact with the user or
may be triggered by external events such as timers. A special Script Node allows to add program
code (e.g., written in Java or JavaScript (ECMAScript)) to a VRML file.

VRML files are commonly called worlds and have the .wrl extension (for example island.wrl).
Although VRML worlds use a text format they may often be compressed using gzip so that they
transfer over the internet more quickly. Most 3D modeling programs can save objects and scenes in
VRML format.

X3D: X3D is the ISO standard for real time 3D graphics, the successor to Virtual Reality Modelling
Language. X3D features extensions to VRML (e.g. Humanoid Animation, Nurbs, GeoVRML etc.),
the ability to encode the scene using an XML syntax as well as the Open Inventor-like syntax of
VRML97, and enhanced application programmer interfaces (APIs).

SMIL: SMIL is an abbreviation for the Synchronized Multimedia Integration Language. It is a
W3C Recommendation for describing multimedia presentations using the Extensible Markup
Language (XML). It defines timing markup, layout markup, animations, visual transitions, and
media embedding, among other things.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

114

SMIL 1.0 became an official recommendation of the World Wide Web Consortium W3C in June
1998. SMIL 2.0 became an official recommendation in August 2001. A W3C working group is
currently working on SMIL 2.1, which will include a small number of extensions based on practical
experience gathered using SMIL in the Multimedia Messaging System on mobile phones.

A SMIL document is similar in structure to an HTML document in that they are typically divided
between a <head> section and a <body> section. The <head> section contains layout and metadata
information. The <body> section contains the timing information, and is generally comprised of
combinations of two main tags: parallel ("<par>") and sequential ("<seq>"). It refers to media
objects by URLs, allowing them to be shared between presentations and stored on different servers
for load balancing. The language can also associate different media objects with different
bandwidths.

SMIL enables people without programming or scripting backgrounds to author multimedia
presentations in a simple text editor. For example, a developer can write SMIL to display an image
after an audio track ends.

3GPP: The 3rd Generation Partnership Project (3GPP) is a collaboration agreement that was
established in December 1998. The collaboration agreement brings together a number of
telecommunications standards bodies which are known as “Organizational Partners”. The current
Organizational Partners are ARIB, CCSA, ETSI, ATIS, TTA, and TTC. 3GPP is the new
worldwide standard for sharing multimedia content between cell phones, PDAs and computers. It
features high quality at extremely low bitrates and is perfect for encoding speech.

As it was seen in AXMEDIS specification DE3-1-2C, there are only a few libraries available to manipulate
multimedia files. Among them is GPAC, a multimedia framework based on the MPEG-4 Systems standard
(ISO/IEC 14496-1) developed from scratch in ANSI C. As of version 0.4.0 GPAC is released under the
GNU Lesser General Public License. At the time of the specification of AXMEDIS (see DE3-1-2C), GPAC
was released under a GNU General Public Licensing scheme, which made it unsuitable for integration into
the AXMEDIS framework. Furthermore, the GPAC project was at that time in a frozen state and has been
restarted since June 2005, so that it is now one of the most advanced projects dedicated to advanced content.
Consequently, we propose to use the functionalities of the GPAC library to perform multimedia files
adaptation in the AXMEDIS framework. The following is summary of the functionalities provided by the
GPAC library.

GPAC aims at integrating the recent multimedia standards (SVG/SMIL, VRML, X3D, SWF, 3GPP(2) tools,
etc…) into a single framework. VRML97 and a good amount of the X3D standard have already been
integrated into GPAC, as well as some SVG support and experimental Macromedia Flash support. The
current GPAC release (0.4.0) already covers a very large part of the MPEG-4 standard, and has some good
support for 3GPP and VRML/X3D. It is currently running under Windows, Linux platforms and Windows
CE/PocketPC 2002 (2D rendering only, not tested on SmartPhones).

In terms of adaptation capabilities, the MP4Box developed with GPAC should be integrated in the context of
AXMEDIS. MP4Box aims at providing all tools needed to produce and distribute MPEG-4, 3GP and 3GP2
content in a single command-line application. Here are is a list of some of the functionalities offered by
MP4Box:

• File splitting by size or time, chunk extraction from file and file concatenation, including all
supported input files concatenation (e.g. cat a set of AVIs to a single 3GPP/MP4),

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

115

• MP4/3GP conversion from MP3, AVI, MPEG-PS, AAC, H263, H264, AMR, QCP, EVRC, SMV,
SUB, SRT, TTXT, TeXML…

• Media track extractions.
• MPEG-4 BIFS codec and scene conversion from and to MP4, BT and XMT-A formats.
• Conversion of simple Macromedia Flash (SWF) to MPEG-4 Systems (BT/XMT/MP4).
• Conversion to and from BT, XMT-A, WRL, X3D, X3DV formats (GZiped or not).

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

116

18 Transcoding/adaptation PAR and Licenses (FUPF)

DRM adaptation involves the adaptation of the related licenses, as derived AXMEDIS objects or digital
resources within the AXMEDIS objects can be seen as new creations with regard to original ones. Therefore,
new licenses must be created during the adaptation process, always respecting the terms and conditions fixed
in the original license or licenses for the adapted AXMEDIS objects or contents within these objects.

Nevertheless, DRM information (mainly licenses and PARs) inside the AXMEDIS project, that are related to
AXMEDIS Objects will be expressed in XML language by using MPEG-21 REL.

In order to adapt this information to different rights expression languages, also based in XML or to adapt a
license to be more compact in order to use it into portable devices (for instance, mobile phones or PDAs), we
will make use of existing libraries for manipulating XML documents.

The following sections describe the research work performed in the adaptation of PAR and Licenses.
Currently, we do not have a prototype that demonstrates the work described in this section, but isolated
modules that provide a brief part of the functionality. Nevertheless, the implementation of this prototype was
not planned for this period and it is expected that the corresponding prototype will be ready for the planned
date.

18.1 PAR and Licenses: State of the art
18.1.1 MPEG-21 Rights Expression Language (REL)
The different parties involved in the online distribution and consumption of multimedia resources need to
exchange information about the rights, terms, and conditions associated with each resource at each step in
the multimedia resource lifecycle. For example in distribution and super distribution business models, the
information related to the rights and the terms and conditions under which the rights may be exercised needs
to be communicated to each participant in the distribution chain.
In an end-to-end system, other considerations such as authenticity and integrity of Rights Expressions
become important. For example, any content provider or distributor who issues rights to use or distribute
resources must be identified and authorized. In addition, different participants may access a Rights
Expression, which requires mechanisms and semantics for validating the authenticity and integrity of the
Rights Expression. A common Rights Expression Language that can be shared among all participants in this
digital workflow is required.

Part 5 of the MPEG-21 standard specifies the syntax and semantics of a Rights Expression Language. MPEG
chose XrML [1] as the basis for the development of the MPEG-21 Rights expression language.
MPEG-21 Rights Expression Language (REL) [2] specifies the syntax and semantics of the language for
issuing rights for Users to act on Digital Items, their Components, Fragments, and Containers.
The most important concept in REL is the license that conceptually is a container of grants, each one of
which conveys to a principal the sanction to exercise a right against a resource. A license if formed by the
following elements:

- Title: this element provides a descriptive phrase about the License that is intended for human
consumption in user interfaces. Automated processors must not interpret semantically the contents of
such title elements.

- Inventory: this element is used for defining variables within a License. In the Inventory element of a
license can be defined LicensePart elements that in turn can have licensePartId attributes that can be
referenced from elsewhere in the license.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

117

Therefore, REL provides a syntactic mechanism for reducing redundancy and verbosity in Licenses
that can be used throughout a License.

- Grant or GrantGroup: The Grants and GrantGroups contained in a license are the means by which
authorization policies are conveyed in the REL architecture. Each Grant or GrantGroup that is an
immediate child of a license exists independently within that license, no collective semantic (having
to do with their particular ordering or otherwise) is intrinsically associated with the presence of two
or more of them within a certain license.

- Other information: Using the wildcard construct from XML Schema, a License provides an
extensibility hook within which license issuers may place additional content as they find appropriate
and convenient. This can be useful for conveying information that is peripherally related to, for
example, authentication and authorization, but is not part of the REL core infrastructure.
It should, however, be carefully understood that not all processors of REL licenses will understand
the semantics intended by any particular use of this extensibility hook. Processors of the license may
choose wholly at their own discretion to completely ignore any such content that might be present
therein.

Next figure shows the structure of a REL License.

License

Grant

Principal

Right

Resource

Condition

Title

Inventory

Issuer

OtherInfo

Figure REL License Structure

The most important concept within a license is the grant that conveys to a particular principal the sanction to
exercise some identified right against some identified resource, possibly subject to the need for some
condition to be first fulfilled. A Grant is an XML structure that is at the heart of the rights management and
authorization policy semantics that REL is designed to express.

A grant is formed by four elements, a Principal that represents the unique identification of an entity involved
in the granting or exercising of Rights. A Right that specifies an action or activity that a Principal may
perform on, or using, some associated target Resource. A Resource that represents the object against which
the Principal of a Grant has the Right to perform. The use of a digital resource in a Grant provides a means
by which a sequence of digital bits can be identified within the Grant. The Condition element represents
grammatical terms, conditions and obligations that a Principal must satisfy before it may take advantage of
an authorization conveyed to it in a Grant. The issuer element that may contain two pieces of information, a
set of issuer-specific details about the circumstances under which he issues the license, and an identification
of the issuer, possibly coupled with a digital signature for the license. The optional issuer-specific details are
found in the details element of the issuer. These details optionally include any of the following information
the specific date and time at which this issuer claims to have effected his issuance of the license and an

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

118

indication of the mechanism or mechanisms by which the Issuer of the license will, if he later Revokes it,
post notice of such revocation. When checking for revocation, REL processing systems may choose to use
any one of the identified mechanisms, that is, they are all considered equally authoritative as to the
revocation status of the issuance of the License.

The structure of a REL license is the one described if it is in clear text, but a REL license can contain only an
encryptedLicense element if the license is encrypted. The encryptedLicense element provides a mechanism
by which the contents of a License may be encrypted and so hidden from view from inappropriate parties.
This mechanism makes straightforward use of XML Encryption Syntax and Processing (XML Encryption).
Specifically, the XML content model of a License is a choice between a sequence containing the elements
previously described in this section and an encryptedLicense element that represents the encryption of the
contents of the License element.

The principals, rights, resources and conditions of the REL are organized in three main groups. The first one,
the Core specifies structural elements and types and how are they related. The standard extension and the
multimedia extension specifies standard or multimedia principals, rights, resources and conditions.

At the heart of REL is the REL Core Schema whose elements and types define the core structural and
validation semantics that comprises the essence of the specification. The REL Core Schema includes
different elements and types organised in four main groups:

- Principals: Within REL, instances of the type Principal represent the unique identification of an
entity involved in the granting or exercising of rights. They represent the subject that is permitted to
carry out the action involved in exercising the Right. The principal element and its type are
conceptually abstracts. Then, it does not indicate how a particular principal is actually identified and
authenticated. Rather, this is carried out in types that are derivations of Principal. Such derived types
may be defined in extensions to REL in order to provide, for example, a means by which Principals
who are authenticated using some proprietary logon mechanism may be granted certain Rights using
the REL License mechanism.
There are derivations that are important and central enough to be defined within the REL core itself:

- allPrincipals: Structurally, an AllPrincipals Principal is a simple container of Principals.
Semantically, an AllPrincipals represents the logical conjunct of the Principals represented by all of
its children.

- keyHolder: Instances of a KeyHolder Principal represent entities which are identified by their
possession of a certain cryptographic key. For example, using a KeyHolder, a Principal that uses
public-key cryptography may be conceptually identified as that Principal which possesses the private
key that corresponds to this-here public key.

- Rights: Within REL, instances of the type Right represent a verb that a Principal may be authorized
to carry out under the authority conveyed by some authorized Grant. Typically, a Right specifies an
action or activity that a Principal may perform on or using some associated target Resource. The
semantic specification of each different particular kind of Right should indicate which kinds of
Resource if any may be legally used in authorized Grants containing that Right.
The element right and its type are conceptually abstract. Therefore, the type Right itself does not
indicate any actual action or activity that may be carried out. Rather, such actions or activities are to
be defined in types that are derivations of Right. Such derived types will commonly be defined in
extensions to REL. However, the following rights are related to the domain of the REL core itself:

- issue: When an Issue element is used as the right in an authorized grant, it is required that resource
against which the right is applied in fact be a grant or grantGroup. The grant then conveys the
authorization for the principal to issue the resource.

At the instant a License is issued, the issue right must be held by the issuer of the License with
respect to all the grants and grantGroups directly authorized therein.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

119

- obtain: When an obtain element is used as the right in an authorized grant, the resource must be
present and be a grant or a grantGroup. The use of the obtain right can be conceptualized as an offer
or advertisement for the sale of the contained grant

- possessProperty: The possessProperty right represents the right for the associated principal to claim
ownership of a particular characteristic, which is listed as the resource associated with this Right.

- revoke: The authorized act of exercising the revoke right by a principal effects a retraction of a
dsig:Signature that was previously issued and thus accomplishes a withdrawal of any authorization
conveyed by that dsig:Signature.

- Resources: An instance of type resource represents the direct object against which the subject
principal of a grant has the right to perform some verb. The actual element resource and its type are
conceptually abstracts. That is, the type resource itself does not indicate any actual object against
which a Right may be carried out. Rather, such target objects are to be defined in types that are
derivations of Resource. Such derived types will commonly be defined in extensions to REL. The
relevant resources defined within the REL core:

- digitalResource: Use of a digitalResource resource in a grant provides a means by which an arbitrary
sequence of digital bits can be identified as being the target object of relevance within the grant.
Specifically, such bits are not required to be character strings that conform to the XML specification,
but may be arbitrary binary data. The means by which this is accomplished breaks down into several
cases. For example, the bits are to be physically present within the digitalResource or the bits are to
be physically located at some external location (e.g. in a Web site).

- propertyAbstract: An instance of type propertyAbstract represents some sort of property that can be
possessed by principals via possessProperty right.

- Conditions: Within REL, instances of the type Condition represent grammatical terms and conditions
that a Principal must satisfy before it may take advantage of an authorization conveyed to it in a
grant containing the condition instance. The semantic specification of each different particular kind
of condition must indicate the details of the terms, conditions, and obligations that use of the
Condition actually imposes. When these requirements are fulfilled, the Condition is said to be
satisfied.
The actual element condition and its type are conceptually abstracts. That is, the type Condition itself
does not indicate the imposition of any actual term or condition. Rather, such terms and conditions
are to be defined in types that are derivations of Condition. Such derived types will commonly be
defined in extensions to REL. The conditions defined within the REL core that we consider relevant
to detail:

- AllConditions: Structurally, an allConditions is a simple container of conditions.
Semantically, the allConditions represents a logical conjunct of the conditions represented
by all of its children.

- validityInterval: A ValidityInterval condition indicates a contiguous, unbroken interval of
time. The semantics of the condition expressed is that the interval of the exercise of a right to
which a validityInterval is applied must lie wholly within this interval. The delineation of the
interval is expressed by the presence, as children of the condition, of up to two specific fixed
time instants:

- notBefore element, of type xsd:dateTime, indicates the inclusive instant in time at which the
interval begins. If absent, the interval is considered to begin at an instant infinitely distant in
the past

- notAfter element, also of type xsd:dateTime, indicates the inclusive instant in time at which
the interval ends. If absent, the interval is considered to end at an instant infinitely distant in
the future.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

120

The Standard Extension schema defines terms to extend the usability of the Core Schema, some of them are:

- Right Extensions: Right Uri.

- Resource Extensions: Property Extensions and Revocable.

- Condition Extensions: Stateful Condition, State Reference Value Pattern, Exercise Limit Condition,
Transfer Control Condition, Seek Approval Condition, Track Report Condition, Track Query
Condition, Validity Interval Floating Condition, Validity Time Metered Condition, Validity Time
Periodic Condition, Fee Condition and Territory Condition.

- Payment Abstract and its Extensions: Payment Abstract, Rate, Payment Flat, Payment Metered,
Payment per Interval, Payment per Use, Best Price Under, Call for Price and Markup.

- Service Description: WSDL and UDDI

- Country, Region and Currency Qualified Names: Namespace URI Structure, Country Qualified
Names, Region Qualified Names and Currency Qualified Names.

- Matches XPath Function: Regular Expression Syntax and Flags.

The REL Multimedia Extension expands the Core Schema by specifying terms that relate to digital works.
Specifically describes rights, conditions and metadata for digital works, that includes:

- Rights: Modify, Enlarge, Reduce, Move, Adapt, Extract, Embed, Play, Print, Execute, Install,
Uninstall and Delete.

- Resources: Digital Item Resources.

- Conditions: Resource Attribute Conditions, Digital Item Conditions, Marking Conditions, Security
Conditions and Transactional Conditions.

- Resource Attribute Set Definitions: Complement, Intersection, Set and Union.

18.1.2 ODRL

The ODRL [3] is a proposed language for the DRM community for the standardisation of expressing rights
information over content. The ODRL is intended to provide flexible and interoperable mechanisms to
support transparent and innovative use of digital resources in publishing, distributing and consuming of
electronic publications, music, audio, movies, digital images, learning objects, computer software and other
creations in digital form.
Using ODRL it is possible to specify, for a digital resource (music work, content, service, or software
application), which is allowed to use that resource, the rights available to them and the terms, conditions or
restrictions necessary to exercise those rights on the resource. The ODRL function is to express rights
granted by some parties for specific resources and the conditions under which those rights apply.
ODRL is based on an extensible model for rights expressions, which involves three core entities and their
relationships: Party (identifies an entity such as the person, organisation, or device to whom rights are
granted), Right (includes permissions, which can then contain constraints, requirements, and conditions) and
Asset (includes any physical or digital content).

Figure Core elements of ODRL

Right

Party

Asset

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

121

18.1.3 OMA DRM Rights Expression Language
OMA (Open Mobile Alliance) has developed the OMA DRM Rights Expression Language versions [4]
based on ODRL [3].
Rights are the collection of permissions and constraints defining under which circumstances access is
granted to DRM Content. The structure of the rights expression language enables the following functionality:

1. Metadata such as version and content ID
2. The actual rights specification consisting of

a. Linking to and providing protection information for the content, and
b. Specification of usage rights and constraints

Models are used to group rights elements according to their functionality, and thus enable concise definition
of elements and their semantics. The following models are used throughout this specification:

- Foundation model: constitutes the basis for rights. It contains the rights element bringing together
meta information and agreement information. The foundation model serves as the starting point for
incorporating the agreement model and the context model.

- Agreement model: expresses the Rights that are granted over an DRM Content. It consists of the
agreement element connecting a set of Rights with the corresponding DRM Content specified with
the asset element. The agreement model incorporates the permission model and the security model

- Context model: provides Meta information about the rights. It augments the foundation model, the
agreement model, and the constraint model by expressing additional information.

- Permission model: augments the agreement model. It facilitates the expression of permissions over
assets by specifying the access granted to a device. The permission model incorporates the constraint
model allowing fine-grained consumption control of DRM Content. The set of permissions
comprises play, display, execute, print, and export. Usage of the DRM Content MUST only be
granted according to the permissions explicitly specified by the corresponding Rights Object(s). A
permission that does not contain a constraint child element is unconstrained and access according to
the respective permission element(s) MUST be granted. Note that the REL only specifies
consumption and export rights and not management rights, e.g., install, uninstall, delete, or
distribution rights. This is made possible by the separation of DRM Content and Rights Objects
(although DRM Content and Rights Objects may be delivered together) freeing the REL from
unnecessary complexity and overhead. Content can be stored; however, it can only be accessed if a
corresponding Rights Object is available. Similarly, encrypted content can be super-distributed
without unnecessarily complicating the REL; no separate distribution permissions are necessary,
since DRM Content without the decryption key is of no value. The DRM Agent MUST ignore
unknown or unsupported permission elements. The DRM Agent MUST NOT grant alternative, not
explicitly specified rights to access Content instead. Known and supported permission elements
defined by the same Rights Object MUST remain unaffected and the DRM Agent MUST grant
access according to those. A Permission that is not granted due to unknown or unsupported
constraints (section 5.5) MUST NOT affect the granting of other permissions.

- Constraint model: enhances the permission model by providing fine-grained consumption control of
content. Constraints are associated with one permission element at a time. For a permission to be
granted all its constraints MUST be fulfilled. If a constraint is not understood or cannot be enforced
by the consuming device the parent permission is invalid and must no be granted. If present, a
constraint element should contain at least one of its child elements. If a constraint element does not
contain any constraints such as count, datetime, etc. it is unconstrained, and a DRM Agent must
grant unconstrained access according to the permission containing such an unconstrained constraint
element.

- Inheritance model: describes how a parent Rights Object can specify Permissions and Constraints for
one or more pieces of DRM Content each governed by a child Rights Object, using a limited subset
of the ODRL inheritance model. The DRM Agent must not accept parent child Rights Objects
constellations with more than one level of inheritance (i.e. parent-child). In other words, a parent
Rights Object must not inherit Permissions and Constraints from another Rights Object.

- Security model: Security constitutes an important part of a DRM system. OMA DRM 2.0 provides
confidentiality for the CEK of Rights Objects, integrity of the association between Rights Objects

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

122

and DRM Content and Rights Object integrity and authenticity. The ODRL security model, which
forms the basis for the security model of this specification, is based on XMLENC [5] and XMLSIG
[6].

18.1.4 PAR and Licenses: The problems

Different systems define different rights expression languages. If we want to make them interoperable, or
simply work with different kinds of devices we may be obliged to adapt rights expressions.

Moreover, changing versions of specifications make difficult to implement any kind of software to solve this
issue.

18.1.5 PAR and Licenses: Work performed

In order to be able to transform rights expressions expressed in different rights expression languages, the first
step to take is to study their common points. We have studied in detail the relationship between MPEG-21
REL and ODRL, based on the OMA DRM REL, as described next.

18.1.5.1 OMA-based MPEG-21 REL DTD

In order to perform adaptation of rights between OMA REL and MPEG-21 REL, we propose an equivalent
structure of the rights expression language of OMA DRM v1.0, but defined as a subset of MPEG-21 REL,
and not as a subset of ODRL. This research work was presented in [7], [8].

The main concept in this equivalent structure is the r:license element that conceptually is a container of a
r:grant or a r:grantgroup elements. A r:grant element conveys to someone the sanction to exercise a right
(mx:play, mx:execute or mx:print are considered) against a resource. In this case, a resource is represented
with the r:digitalResource element.

A r:license element also contains a r:otherinfo element that it is useful to include OMA DRM REL v1.0
information not considered by MPEG-21 REL, and it provides meta information about the rights.

The conditions considered are: sx:exerciseLimit that specifies the number of allowed exercises of a certain
right, validityInterval that specifies an interval of time within which a right can be exercised and
validityIntervalDurationPattern that specifies a period of time within which a right can be exercised.

<!ELEMENT r:license ((r:grantgroup|r:grant), r:otherinfo?)>
<!ATTLIST r:license
 xmlns:r CDATA #FIXED
 "urn:mpeg:mpeg21:2003:01-REL-R-NS”
 xmlns:dsig CDATA #FIXED

"http://www.w3.org/2000/09/xmldsig#"
xmlns:mx CDATA #FIXED
"urn:mpeg:mpeg21:2003:01-REL-MX-NS"
xmlns:sx CDATA #FIXED
"urn:mpeg:mpeg21:2003:01-REL-SX-NS">

<!ELEMENT r:grantgroup (r:grant+)>
<!ELEMENT r:grant

((mx:play|mx:execute|mx:print)?,
 r:digitalResource,
 r:allConditions?)>

<!ELEMENT mx:play EMPTY>
<!ELEMENT mx:execute EMPTY>
<!ELEMENT mx:print EMPTY>

<!ELEMENT r:digitalResource (r:nonSecureIndirect) >
<!ELEMENT r:nonSecureIndirect EMPTY>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

123

<!ATTLIST r:nonSecureIndirect URI CDATA #IMPLIED>

<!ELEMENT r:allConditions

(sx:exerciseLimit?,
 validityInterval?,
 validityIntervalDurationPattern?)>

<!ELEMENT sx:exerciseLimit (sx:count)>
<!ELEMENT sx:count (#PCDATA)>
<!ELEMENT r:validityInterval (r:notBefore?, r:notAfter?)>
<!ELEMENT r:notBefore (#PCDATA)>
<!ELEMENT r:notAfter (#PCDATA)>
<!ELEMENT sx:validityIntervalDurationPattern (sx:duration)>
<!ELEMENT sx:duration (#PCDATA)>
<!ELEMENT r:otherinfo (version?,KeyValue?)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT KeyValue (#PCDATA)>

Figure OMA-based MPEG-21 REL DTD

18.1.5.2 Interoperability between MPEG-21 REL and OMA DRM REL v2.0
In this section, we introduce different tables with XML equivalences, between the OMA DRM REL v2.0 and
the MPEG-21 REL subset that will lead us to achieve interoperability between the MPEG-21 REL subset for
the mobile domain and OMA DRM REL v2.0 specification. This work has been presented in [9], [10].

We use different models to group the XML equivalences according to their functionality and license
structure. The models described in this section are: Basic equivalences, Rights and Conditions. They define
the elements that form the subset of MPEG-21 REL that fulfils OMA DRM REL v2.0 specification.

Basic equivalences
The basic equivalences constitute the basis for licenses and include the necessary elements in any license.
The OMA DRM REL <rights> and <asset> elements are represented with the MPEG 21 REL <license> and
<digitalResource> elements. The OMA <context> element provides meta information about the rights, and is
represented with the MPEG-21 <otherinfo> element.

Table Basic model

OMA DRM REL v2.0 OMA-based MPEG-21 REL
<o-ex:rights> <r:license>
<o-ex:context>
 <o-dd:version>2.0</o-dd:version>
 <o-dd:uid>RightsObjectID</o-dd:uid>
 </o-ex:context>

<r:otherinfo>
 <version>1.0 </version>
 <uid>RightsObjectID</uid>
</r:otherinfo>

<o-ex:asset>
 <o-ex:context>
 <o-dd:uid>ContentID </o-dd:uid>
 </o-ex:context>
</o-ex:asset>

<r:digitalResource>
 <r:nonSecureIndirect URI='ContentID' />
</r:digitalResource>

Rights
In the following table are introduced the MPEG-21 REL rights equivalent to the rights specified in OMA
DRM REL. The <display> and <play> elements are represented with the <play> element, the <export -
move> element with the <move> element and the <export - copy> element with the <adapt> element and
<prohibitedAttributeChanges> elements.
Table Rights model

OMA DRM REL v2.0 OMA-based MPEG-21 REL
<o-dd:display/> <mx:play />

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

124

 <o-dd:play/> <mx:play />
 <o-dd:execute/> <mx:execute />
 <o-dd:print/> <mx:print />
<oma-dd:export
 oma-dd:mode="move">
 <o-ex:constraint>
 <oma-dd:system>
 <o-ex:context>
 <o-dd:version>
 1.0
 </o-dd:version>
 <o-dd:uid>
 XYZ
 </o-dd:uid>
 </o-ex:context>
 </oma-dd:system>
 </o-ex:constraint>
</oma-dd:export>

<mx:move/>
<r:digitalResource>
 <r:nonSecureIndirect
 URI="ContentID"/>
</r:digitalResource>
<r:allConditions>
 <mx:destination>
 <r:keyHolder>
 <r:info>
 <version>1.0</version>
 <uid>XYZ</uid>
 </r:info>
 </r:keyHolder>
 </mx:destination>
</r:allConditions>

<oma-dd:export
 oma-dd:mode="copy">
 <o-ex:constraint>
 <oma-dd:system>
 <o-ex:context>
 <o-dd:version>
 1.0
 </o-dd:version>
 <o-dd:uid>
 XYZ
 </o-dd:uid>
 </o-ex:context>
 </oma-dd:system>
 </o-ex:constraint>
</oma-dd:export>

<mx:adapt/>
<r:digitalResource>
 <r:nonSecureIndirect
 URI="ContentID1"/>
</r:digitalResource>
<mx:prohibitedAttributeChanges>
 <set definition=
 "urn:mpeg:mpeg21:2003:01-
 RDD-NS:2346"/>
 <set definition=
 "urn:mpeg:mpeg21:2003:01-
 RDD-NS:2347"/>
</mx:prohibitedAttributeChanges>
<r:keyHolder>
 <version>1.0</version>
 <uid>XYZ</uid>
</r:keyHolder>

Conditions
The following tables introduce different kinds of MPEG-21 REL conditions equivalent to the ones specified
in OMA DRM REL.

One kind of conditions represented are time conditions. The <datetime> element represented in MPEG-21
REL with the <validityInterval> element specifies an interval of time within which a right can be exercised.
The <interval> represented in MPEG-21 REL with the <validityIntervalDurationPattern> element specifies a
period of time within which a right can be exercised. Finally, the <accumulated> element represented in
MPEG-21 REL with the <validityTimeMetered> specifies the maximum period of metered usage time
during which the rights can be exercised.
Table Time conditions model

OMA DRM REL v2.0 OMA-based MPEG-21 REL
<o-ex:constraint>
 <o-dd:datetime>
 <o-dd:start>...
 </o-dd:start>
 <o-dd:end>...
 </o-dd:end>
 </o-dd:datetime>

<r:allConditions>
 <r:validityInterval>
<r:notBefore>...</r:notBefore>
<r:notAfter>...</r:notAfter>
 </r:validityInterval>
</r:allConditions>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

125

</o-ex:constraint>
<o-ex:constraint>
 <o-dd:interval>
 </o-dd:interval>
</o-ex:constraint>

<r:allConditions>
<sx:validityIntervalDurationPattern>
 <sx:duration>...</sx:duration>
</sx:validityIntervalDurationPattern>
</r:allConditions>

<o-ex:constraint>
 <o-dd:accumulated>
 PT10H
 </ o-dd:accumulated >
</o-ex:constraint>

<r:allConditions>
 <sx:validityTimeMetered>
<sx:duration>PT10H</sx:duration>
 </sx:validityTimeMetered>
</r:allConditions>

The next table introduces the rest of MPEG-21 REL conditions considered in the mobile subset we are
defining equivalent to the ones specified in OMA DRM REL. The <count> element represented in MPEG-21
REL with the <exerciseLimit> element specifies the number of allowed exercises. The <timed-count>
element specify the number of times a permission may be granted over an asset or resource, with the addition
of an optional timer attribute. This timer attribute specifies the number of seconds after which the count state
can be reduced. As the timer attribute is not specified in MPEG-21 REL, we have defined the
<exerciseLimitTime>, that consist of <count> and <duration> elements. The <individual> represented in
MPEG-21 REL with the <keyHolder> element specifies the individual to which content is bound. The
<system> represented in MPEG-21 REL with the <renderer> element specifies the target system to which
DRM Content and Rights Objects can be exported.
Table Other conditions model

OMA DRM REL v2.0 OMA-based MPEG-21 REL
<o-ex:constraint>
 <o-dd:count > 1
 </o-dd count>
</o-ex:constraint>

<sx:exerciseLimit>
 <sx:count>1</sx:count>
</sx:exerciseLimit>

<o-ex:constraint>
 <o-dd:timed-count
 timer=”30”>1
 </o-dd:timed-count>
</o-ex:constraint>

<r:otherinfo>
 <exerciseLimitTime>
 <sx:count>1</sx:count>
 <sx:duration>30 </ sx:duration>
</exerciseLimit>
</r :otherinfo>

 <r:grant licensePartId="Asset-1">
 <r:allConditions>
 <sx:exerciseLimit>
 <sx:count>1</sx:count>
 </sx:exerciseLimit>
</r:allConditions>
</r:grant licensePartId="Asset-1">
<r:otherinfo>
 <grant licensePartIdRef="Asset-1">
 <exerciseLimitDuration> 30
 </exerciseLimitDuration>
 </grant>
</r:otherinfo>

 <sx:exerciseLimit>
 <r:serviceReference
licensePartIdRef="externalService"/>
 <sx:count>1</sx:count>
</sx:exerciseLimit>

<o-ex:constraint>
 <o-dd:individual>
 <o-ex:context>
 <odd:uid> XYZ

<r:grant>
 <r:keyHolder>
 <r:info>
 <uid>XYZ</uid>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

126

 </odd:uid>
 </o-ex:context>
 </o-dd: individual>
</o-ex:constraint>

 </r:info>
 </r:keyHolder>
</r:grant>

<o-ex:constraint>
 <oma-dd:system>
 <o-ex:context>
 <odd:uid> XYZ
 </odd:uid>
 </o-ex:context>
 </oma-dd system>
</o-ex:constraint>

<mx:renderer>
 <r:keyHolder>
 <r:info>
 <uid>XYZ</uid>
 </r:info>
 </r:keyHolder>
</mx:renderer>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

127

19 Transcoding Metadata (UNIVLEEDS)

This module provides a collection of algorithms and tools for adaptation of XML metadata. The main
adaptation functions needed by the AXMEDIS Framework could be summarised in:

• Scaling metadata by filtering elements
o This can be done by specifying look-up tables (including XSLT) to define the valid/invalid

elements and processing the adaptation
• Adapting field (could be different name or size or others)

o Xerces can also use a given schema to validate the elements. With this validation function,
the elements can be detected for adaptation. Look-up tables (including XSLT) have to be
setup in order to adapt metadata from one standard to the other.

For XML metadata transcoding, the Xerces Libraries are used to parse a given piece of XML data.

The AxMetadata Model has been developed to provide the functionality for the transcoding of AXMEDIS
metadata. Current functionalities include:

• Loading, saving, writing to string and parsing an XML document using the Xerces SAX2
implementation

• Changing the Element name and Uri without validation
• Changing the Element values (currently there is no validation with respect to date and time elements
• Changing the Element Attribute values name, Uri and values without validation

Demonstrating the current functionality can be viewed in the Metadata Editor (see deliverable DE4.1.1
content modelling and managing).

19.1 Technical Details
reference to the
AXFW location of the
demonstrator

https://cvs.axmedis.org/repos/Framew
ork/source/metamodel/

https://cvs.axmedis.org/repos/Fram
ework/source/metadatamodel/

List of libraries used wxWindows v-2.4.2
Xerces-c++ v-2.6.0
Xalan-c++ v-1.9

wxWindows v-2.4.2
Xerces-c++ v-2.6.0
Xalan-c++ v-1.9

References to other
major components
needed

xerces-c_2_6D.dll

Problems not solved • Adding and deleting elements with
validation with schemas

• Adding and deleting attributes
with validation with schemas

• …..
• …..

Configuration and
execution context

Programming
language

Visual C++

19.2 Metadata: State of the art
The transcoding of metadata has two levels of adaptation that need to be considered. The first is transcoding
the metadata to represent the adaptation applied to the object such as scaling an object, reformatting etc. This
requires methods to adapt the metadata to represent the object in its new state. The second transcoding
depends on the devices to use the object. In this scenario, for small memory devices, the metadata may need
to be scaled and tables for this process are required to be devised.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

128

There are no specific tools for the adaptation of metadata in this manner, however libraries are being
developed such as Xerces, Xalan, and Expat for the parsing and handling of XML documents. This is an
ongoing research and development process. Xerces and Xalan provide libraries in both C++ and Java and
initial support of Schemas. The Xerces libraries provide methods for the programmatic generation and
validation of XML and customisable error handlers (see AXMEDIS FW Specifications in DE 3.1.2d). Xalan
libraries are an XSLT processor for transforming XML documents to HTML or another XML document
types. These methods can be utilized in the adaptation of the metadata for not only transcoding the format
changes info in the AxInfo elements but in the scaling of the metadata for different clients.

Validation is an important issue that needs to be considered where adapted metadata is valid after
transcoding. Due to the complex nature of AXMEDIS object, there may be one or more metadata sections
with different schemas, including Dublin Core, AXInfo and Mpeg7 and the next development method is to
devise methods to solve these problems.

19.3 Metadata: The problems
Some of the desired functionality has not been resolved:

• Adding and deletion of elements with validation to keep the metadata as valid XML using the
schemas.

• Adding and deletion of element attributes with schema validation.
• Moving elements to another part of the XML structure, this may or may not need to reallocate

children elements.

19.4 Metadata: Work performed
The following classes have been developed for the adaptation of XML AXMEDIS Metadata providing
functionalities for loading, saving, parsing, manipulating and writing XML files.

The implementation was performed using C++ MSVC7 and supported by wxWidgets ver. 2.4.2 and
XERCES 2.6.0 libraries. For the transcoding of metadata, the following classes were developed for the first
prototype to adapt generic XML metadata elements.

19.4.1 AxMetadata Class
This class is the main functionality for loading of an XML file or XML string, parsing the XML into a list of
elements, saving to an XML file and writing to an XML string.

19.4.2 AxmetadataElement Class
This class is for the XML Element data including the setting and retrieving of element name, value and Uri.
This class also allows the definition of parent Element and the child Elements to manipulate the structure of
the XML. The last functionality is the adding, retrieving and deletion of the Attributes for the XML Element.

19.4.3 AxMetadataAttribute Class
This class is for the attribute data including the setting and retrieving of an attribute name, value and Uri.

19.4.4 AxMetadataSAXImplementation Class
This class provides the functionality for defining the parser. The parsing rules are specified by the
startElement(…) and endElement(..) functions on how to process the AXMEDIS metadata XML Elements.
This class also processes the error handling using the Xerces error handling interface. During the parsing if
an error is found, an error value is returned and subject to the level of error i.e. warning, error, fatal error, the
appropriate message with the type of error and error information such as element or a pointer to the line
position if the XML was opened in a text reader.

Future implementation includes increasing the adaptation functionalities. This is achieved by adding the
following functionality:

• Adding and deleting XML elements,
• Adding and deleting attributes to an element

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

129

• Reposition the element to restructure the XML tree structure by defining a new parent element.
• Copying elements to a new position in the XML structure

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

130

20 Workflow Management and database (IRC)

20.1 Technical Details
reference to the AXFW location of the
demonstrator

https://cvs.axmedis.org/repos/Framework/source/Workflow

List of libraries used Pythonlib & Zope server
References to other major components needed Openflow
Problems not solved • …..

• …..
Configuration and execution context
Programming language Python

The workflow editor and viewer is the gateway interface for creating and changing new project workspaces
referred to as NPDs in the terminology adopted for the AXMEDIS Workflow and object life cycle analysis
elsewhere in our document.

Naturally the functionality of this editor/viewer at the level of NPD editing will be a subset of the use cases
already set-out for the AXMEDIS workflow management system particularly focusing on the global
management requirements of the NPD workspace including Actors, Objects, Processes, etc.

It is possible for the AXMEDIS workflow management system to support inter-factory workflow. An
example of this would be collaborating content producers who work jointly on common objects. Content
Factory A would create an object, then Factory B would perform some activities to add value to the object,
then returning it to Factory A for completion. Conceptually, this process is identical to the normal, intra-
factory scenario where activities are carried out in one content factory. In the inter-factory scenario, the
collaborating factories needs to establish an agreed workflow in order to manage their division of work
productively and efficiently. This workflow agreement can be modelled in the same manner as a
conventional intra-factory workflow.

We have not proposed for centralised single server architecture; rather each partner will have their workflow
running with their part of the project workflow definition. The transitions resulting into change of partner is
defined in the workflow to reflect the collaborative workflow logic as agreed between the collaborators. The
waiting period for the factories can be defined as “Idle/wait” activities within the workflow which are
completed upon receiving the workitem from the external factory. For example when the workitem is
handed to Factory B from Factory A, as defined in the workflow, Factory A will then start an “Idle/wait”
activity which will end upon receiving the workitem back from Factory B.

It is important that collaborating factories therefore share common WFMS tools in order to manage and track
the progress of an NPD across their combined activities. This enables dynamic planning and scheduling of
resources across the factories, much in the way that automotive companies operating just-in-time policies use
integrated logistics systems to track components through their value chain.

This dynamic visibility would not be possible if separate WFMS tools were employed in each factory and the
only communication available were some embedded historic metadata within objects passed between
factories.

For this reason, a common web-based editor is used for the AXMEDIS Workflow user interface, which is
capable of being accessed from multiple collaborating content producers, integrators and distributors sharing
a common inter-factory workflow.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

131

20.2 Writing and describing workflow, harmonising AXMEDIS tools

Openflow runs on the Zope platform which is managed through the “Zope Management Interface” using
industry standard browsers, typically by logging on as the administrator (admin) at
URL http://localhost:8080/manage. The screen shot below shows an example of this management interface.

Creating a new process in openflow is a multi-step process which begins with adding an OpenFlow container
using the Zope management interface as shown below (delineated by a an ellipse in red).

Adding an OpenFlow container through the Zope Management Interface

During the creation of the OpenFlow container, the name of the container must be specified as shown in the
next screen-shot.
.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

132

Creating the OpenFlow container

Next it is necessary to define the process and the activities pertaining to the process, together with
their transitions (From Activity and To Activity). These operations are performed by accessing the
tabs in the Openflow container as shown in the following screen-shots:

The process definition tab

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

133

Creating a new Process definition

Management of activity and transitions of a process

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

134

Editing a process activity

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

135

Defining process transition and related conditions

Applications associated to the activities are then specified selecting the Applications Tab.

: Defining process applications

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

136

The users and roles are configured as Zope users and roles as access control list (acl_users).

Once a process has been defined it can be tested. An instance of the process can be created and executed
directly in the processflow-instance management tab shown below.

Process instance management tab

The following Figure shows the of the workitems involved in the process instance that has been created.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

137

Monitoring and management of a specific process instance

Process Example:

The following simple example illustrates a process to request a AXMEDIS object manipulation (a mock-up
process). This is an example of explicit forwarding to different actors having different roles. The first actor
requests the creation of a new AXMEDIS object by filling out a form. The request goes to the second actor
(called Socius) who checks that the request is acceptable. The request is then forwarded to the third actor
(called Prefectus) for approval.

The following steps are necessary for the above example process to be enacted:

The first actor (called Tertius) enters an AXMEDIS object manipulation request by filling out the following
form as shown in the screen-shot below:

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

138

Tertius’ AXMEDIS object manipulation form

According to the processflow, the request goes to the next actor (called Socius). When Socius logs in, his
work list shows that there is a workitem in his worklist as shown in the screen-shot below:

Socius’ worklist and workitem activation

To execute the workitem, the actor (Socius) has to activate the workitem (Begin) and perform the related
activities. Next this actor either forwards the workitem to the next actor, which in this case is the supervisor
(called Prefectus), or rejects the request; as illustrated by the screen-shot below:

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

139

Socius’ workitem execution and forwarding

Then the activity is forwarded to the last actor and the process ends.

The sample workflow that is being defined for demonstration purpose, will be a inter factory workflow
utilising the important Axmedis tools like AXEPTool, PnP Engine, Axmedis Editor, etc. The following
diagram is the schematic of the sample workflow to be deployed for the demonstration. It includes two
factories sharing some content using AXEPTool. This workflow will be further refined to map to the actual
low level atomic activities that are available within the Axmedis Framework.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

140

The above workflow involves two partners. The partner 1 is responsible for generating the trailer from a
selected video file and then publishes over P2P network. The partner 2 downloads this trailer video from the
P2P network along with the original video file from the database. These two files are then formated to be
distributed to the user.

Trailer Generation

Video File

Distribution

Formating

Composition

Composition

P2P

Partner 1

Partner 2
Sample Workflow involving two partners

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

141

21 Workflow Integration of tools (IRC)

21.1 Technical Details
reference to the AXFW location of the
demonstrator

A path in the CVS for example:
https://cvs.axmedis.org/repos/Framework/source/Workflow/

List of libraries used gSOAP
References to other major components needed
Problems not solved • Multithreaded Plugins

• Complex Datatype mismatch amongst webservice
clients and services.

Configuration and execution context
Programming language C++

The Axmedis Workflow integration involes developing of following modules as per the specifications:

The AXMEDIS WorkFLow Area includes:

• WorkFLow Management User Interface and Tool
• WorkFlow Engine
• WorkFlow DataBase
• WF AXOM Request Adapter
• WF AXOM Input Queue Adapter
• WF Engine Request Adapter
• WF Engine Input Queue Adapter
• WF Rule Editor Request Adapter
• WF Rule Editor Input Queue Adapter
• WF DB Request Adapter
• WF DB Input Queue Adapter
• AXOM WorkFlow Gateway
• E ngine WorkFlow Gateway
• Rule Editors WorkFlow Gateway
• DB WorkFlow Gateway

The overall integration is divided into four channels in order to group the common functionalities together as
follows:

• Workflow Editors Interfaces
• Workflow Engines Interfaces
• Workflow Rule Editors/Viewers Interfaces
• Workflow Query Support Interfaces

As part of the first prototype development, we have developed the communication path which is the
backbone for the overall integration. The following diagram shows the modules that were developed for the
first prototype and the protocols used for laying the foundation.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

142

The following modules were delivered for the first prototype integration of Axmedis workflow:

1. Editor Channel
 i) Request Adaptors
 a) Source Code
 b) Documentation
 ii) Request Gateways
 a) Source Code
 b) Documentation
 iii) Plugin

a) Source Code
b) Documentation

2. Rule Editor Channel
 i) Request Adaptors
 a) Source Code
 b) Documentation
 ii) Request Gateways
 a) Source Code
 b) Documentation
 iii) Plugin

c) Source Code
d) Documentation

3. Engine Channel
 i) Request Adaptors
 a) Source Code
 b) Documentation
 ii) Request Gateways
 a) Source Code
 b) Documentation
 iii) Plugin

a) Source Code
b) Documentation

Workflow
Manager

Request
Gateways

Plugin

Request
Adapter

ASP.NET
Service

WS
Client

WS
Listener

Axmedis
Framework

1) Http Get
Request

6) Http Get
Response

3) WS SOAP
Request

5) WS SOAP
Response Openflow,

Zope Server IIS

Command &
Reporting

WF Integration Action Sequence

2) DLL Calls
4) DLL Calls

Editor Channel
Engine Channel

Rule Editor Channel

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

143

4. Openflow
 i) User Interface
 a) Source Code
 b) Documentation

For the next phase of project, we have planned to complete following task:

 Multithreading for all the Plug-ins.
 Removing any inconsistencies in the data structures being transferred.
 Replicating the database channel from the other channels.
 Second version of the openflow UI.
 Writing workflow for content production.
 Black-box testing for the overall integration using the workflow defined.
 White-box testing to eliminate any inaccurate results.

21.2 Integration Support with content processing tools (AXCP processing tools:
engine and scheduler)

The workflow engine interacts with the following content processing tools:

• Axmedis Compositional/Formatting Engine
• Axmedis Program and Publication Engine
• The Protection Tool Engine

The integration is realised as per the specification document. The integration involves two distinct channels
for workflow communication: Request Channel and Response Channel.

The Request Channel consists of Workflow Request Adaptors, Workflow Request Gateways and Webservice
Listeners, while the Response channel consists of Response Gateways and Input Queue Adaptors.

The Axmedis Engine WorkFlow channel passes through the WF Engine Request Gateway where the Engine
Command and Reporting exposes the following methods, via WebServices:

• Install_and_activate for installing a XML rule in the scheduler and activate it. This method is valid
for the Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for
the Protection Engine.

• Run_rule for immediately run a rule already loaded inside the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Activate_rule for activating a rule already loaded inside the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• deactivate_rule for disabling a not-running rule. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Suspend_rule for suspending a rule for a specified time interval. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

144

• Pause_rule, for suspending a rule until it will be restarted. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Kill_rule for stopping the execution of a rule. This method is valid for the Compositional/Formatting
engine, for the AxepTool Loading and Publication Engine and for the Protection Engine.

• Remove_rule for removing a rule from the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Resume_rule for resuming a paused rule. This method is valid for the Compositional/Formatting
engine, for the AxepTool Loading and Publication Engine and for the Protection Engine.

• Get_rule_status for getting the status of a rule inside the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Get_rule_logs for getting history log of a rule. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Get_list_of_rules for getting the list of the rules of a certain user inside the scheduler. This method is
valid for the Compositional/Formatting engine, for the AxepTool Loading and Publication Engine
and for the Protection Engine.

• Get_rule for getting the XML definition of a rule inside the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Status_request_to_PnP for getting the status of a Program of the Program and Publication Engine
• Suspend_PnP_Program for suspending a Program of the Program and Publication Engine
• Abort_PnP_Program for aborting a Program of the Program and Publication Engine
• Resume_PnP_Program for resuming a suspended Program of the Program and Publication Engine
• Activate_PnP_Program for acrivating a Program of the Program and Publication Engine
• WorFlow_Notification is used to return back to the requesting engine (basically PnP) the status

about the requested execution of a WorFlow process

The method invocation is performed via a WebService request where the parameters are sent (to Engine
Command and Reporting) and received back (in WebService result) from the Engine Command and
Reporting

The methods invoked and the parameters invoked by WF Engine Request Adapter to the WF Engine Request
Gateway are the same described in the preceeding Paragraph. Their encoding, however, is different. The
request in in fact sent through an http GET call where the paramteres are invoked as follows:

As an example to understand the response, consider the compositional/formatting engine response
to a request.

GET/Control_Panel/Products/OpenFlow/AXWF/comp_format_request_status?Credentials=”Crede
ntial string”&AXRQID=”Request ID string” HTTP/1.1" 200 368
"http://15.156.120.195:8080/Control_Panel/Products/OpenFlow/leave/leave_startform"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705; .NET CLR 1.1.4322)"

Where “Credential string” is a string containing the credentials and “Request ID string” is a string
containing the Request ID.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

145

The response to the invoked method has the same contents listed in the preceeding Paragraph and is sent via
an http GET response. The response is XML coded, following the schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Engine_Response">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true"
minOccurs="0"/>
 <xs:element name="errorcode" type="xs:int"/>
 <xs:element name="ruleid" type="xs:string" minOccurs="0"
maxOccurs="20"/>
 <xs:element name="status" type="xs:string" minOccurs="0"/>
 <xs:element name="xml_rule_schema" type="xs:string" minOccurs="0"/>
 <xs:element name="rulelog" type="xs:string" minOccurs="0"
maxOccurs="100"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The Engine Command and Reporting will send its notifications to the WorkFlow Engine by calling a
WebServices exposed by the WF Engine Response Gateway.

The URI of the WebService is indicated in the previous request made by the WF Request Gateway in the
EngineListenerService parameter.

The Notification shall also contain the original Request ID issued in the request (AXRQID).

21.3 Integration Support with Editors (AXCP rule editor and AXMEDIS editor)
The workflow engine interacts with the following Editor:

• Axmedis Editors (Object, DRM, Metadata, …)
• Axmedis Rule Editors (PnP, Content Processing, AXEPTool, etc).

The integration is realised as per the specification document. The integration involves two distinct channels
for workflow communication: Request Channel and Response Channel.

The Request Channel consists of Workflow Request Adaptors, Workflow Request Gateways and Webservice
Listeners, while the Response channel consists of Response Gateways and Input Queue Adaptors.

The Axmedis Workflow Manager communicate to AXOM’s Command and Reporting through WF Editor
Request Adapter. The WF Request Adapter sends the requests via an http GET call. This http GET call is
received by a Web Server running Microsoft IIS and directed to an ASP process called WF Request
Gateway. This ASP process decodes the GET requests and formats a WebService request towards the proper
Axmedis module, Axmedis Editor in this case. As AXOM, along with Command and Reporting, is a static
library, a listener service is required to listen to incoming Request from Workflow and invoke Axmedis
Editor accordingly. We call this listener service as AXOM_WebServices_Listener which will be resident on

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

146

client’s machine. AXOM WebServices Listener is a multithreading process written in C++ which exposes
methods through WebServices, listens to them and forwards the requests to the AXOM Command and
Reporting module which is a C++ library. So the interface between AXOM WebServices Listener and
AXOM Command and Reporting are C++ library calls.

As the AXOM and Commands and Reporting are a set of libraries, we define a new function
Workflow_Editor_Launcher within the AXOM_WebService_Listener Module to launch the Editor. Upon
receipt of a request to launch the Axmedis Editor, the Workflow_Editor_Launcher will launch the editor
using an ActiveX Call invoking the appropriate editor. This method will not return until the Editor is
terminated and the ActiveX control comes back, after which it can notify the workflow manager for the
completion of the activity.

As described before, the Axmedis Editor WorkFlow channel passes through the WF Editor Request Gateway
where the AXOM_WebService_Listener exposes the following methods, via WebServices:

• Edit_Object, for launching the Axmedis Object Editor and all its Plug-ins used for editing and
viewing Axmedis Objects, Object Behaviours, DRMs, Hierarchies and Metadata

• Add_Object to request the Axmedis Object Manager to have a new object created
• Compose_Object for creating a subobject inside an Axmedis Object
• Delete_Object to request the Axmedis Object Manager to have a specific object deleted
• Modify_Object to request the Axmedis Object Manager to have certain object attributes modified
• View_Object_Attribute to request the Axmedis Object Manager to allow the viewing of the object

attributes
• Add_History_Info to request the Axmedis Object Manager to have a history information added to an

object AXINFO
• View_History_Info to request the Axmedis Object Manager to retrieve history information of a

given object AXINFO
• Edit_Composition_Formatting_Rule for launching the Composition/Formatting Rule Editor
• Program_Publication_User_Interface for launching the Program/Publication User Interface
• Activate_Program_Publication for requesting the activation of a Program
• List_of_Programs for requesting the list of current programs in PnP
• Edit_AXEPTool_Rule for launching the AXEPTool Rule Editor
• Edit_Protection_Rule for launching the Protection Rule Editor

The method invocation is performed using a WebService request where the following parameters are sent (to
AXOM Command and Reporting) and received back (in WebService result) from the AXOM Command and
Reporting via AXOM_Web_Service_Listener:

2.2 Interface between the WF AXOM Request Adapter and the WF Editor Request Gateway

The methods invoked and the parameters sent by WF AXOM Request Adapter to the WF Editor Request
Gateway are the same described in the preceeding Paragraph. There encoding, however, is different. The
request in in fact sent through an http GET call where the paramteres are invoked as follows:

GET/Control_Panel/Products/OpenFlow/AXWF/editor_name_request_editor?AXOID=”Object ID
string”&Credentials=”Credential string”&AXRQID=”Request ID

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

147

string”&execution_parameters=”execution parameter
string”&attribute_values=”attribute_name_1:attribute_value1,attribute_name2:attribute_value2:,etc
”&log_info=”log_info string” HTTP/1.1" 200 368
"http://15.156.120.195:8080/Control_Panel/Products/OpenFlow/leave/leave_startform"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705; .NET CLR 1.1.4322)"

Where editor_name is to be replaced by appropriate editor identifier “Object ID string” is a string
containing the AXOID, “Credential string” is a string containing the credentials and “Request ID
string” is a string containing the Request ID.

The response to the invoked method has the same contents listed in the preceeding Paragraph and is sent via
an http GET response. The response is XML coded, following the schema:

<xs:element name="Editor_Response">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true" minOccurs="0"/>
 <xs:element name="errorcode" type="xs:int"/>
 <xs:element name="AXOID" type="xs:string" minOccurs="0"/>
 <xs:element name="historylog" type="xs:string" minOccurs="0"
maxOccurs="100"/>
 <xs:element name="attributes" minOccurs="0" maxOccurs="20">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="attributeid" type="xs:string"/>
 <xs:element name="attributevalue" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The AXOM Command and Reporting will send its notifications to the WorkFlow Engine via
AXOM_WebService_Listener which will call a WebServices exposed by the WF Editor Response Gateway .

The URI of the WebService is indicated in the previous request made by the WF Request Gateway in the
EditorListenerService parameter.

The Notification shall also contain the original Request ID issued in the request (AXRQID).

21.4 Integration Support with AXEPTools

The workflow engine interacts with the following engines of AXEPTool:

• AXEPTool Loading Tool Engine
• AXEPTool Publication Tool Engine

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

148

As part of refinements, all the Axmedis engines were unified to form a single interface towards Axmedis
Engines, the integration with AXEPTool is exactly same as that of content processing engines.

The integration is realised as per the specification document. The integration involves two distinct channels
for workflow communication: Request Channel and Response Channel.

The Request Channel consists of Workflow Request Adaptors, Workflow Request Gateways and Webservice
Listeners, while the Response channel consists of Response Gateways and Input Queue Adaptors.

The Axmedis Engine WorkFlow channel passes through the WF Engine Request Gateway where the Engine
Command and Reporting exposes the following methods, via WebServices:

• Install_and_activate for installing a XML rule in the scheduler and activate it. This method is valid
for the Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for
the Protection Engine.

• Run_rule for immediately run a rule already loaded inside the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Activate_rule for activating a rule already loaded inside the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• deactivate_rule for disabling a not-running rule. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Suspend_rule for suspending a rule for a specified time interval. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Pause_rule, for suspending a rule until it will be restarted. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Kill_rule for stopping the execution of a rule. This method is valid for the Compositional/Formatting
engine, for the AxepTool Loading and Publication Engine and for the Protection Engine.

• Remove_rule for removing a rule from the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Resume_rule for resuming a paused rule. This method is valid for the Compositional/Formatting
engine, for the AxepTool Loading and Publication Engine and for the Protection Engine.

• Get_rule_status for getting the status of a rule inside the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Get_rule_logs for getting history log of a rule. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Get_list_of_rules for getting the list of the rules of a certain user inside the scheduler. This method is
valid for the Compositional/Formatting engine, for the AxepTool Loading and Publication Engine
and for the Protection Engine.

• Get_rule for getting the XML definition of a rule inside the scheduler. This method is valid for the
Compositional/Formatting engine, for the AxepTool Loading and Publication Engine and for the
Protection Engine.

• Status_request_to_PnP for getting the status of a Program of the Program and Publication Engine
• Suspend_PnP_Program for suspending a Program of the Program and Publication Engine
• Abort_PnP_Program for aborting a Program of the Program and Publication Engine

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

149

• Resume_PnP_Program for resuming a suspended Program of the Program and Publication Engine
• Activate_PnP_Program for acrivating a Program of the Program and Publication Engine
• WorFlow_Notification is used to return back to the requesting engine (basically PnP) the status

about the requested execution of a WorFlow process

The method invocation is performed via a WebService request where the parameters are sent (to Engine
Command and Reporting) and received back (in WebService result) from the Engine Command and
Reporting

The methods invoked and the parameters invoked by WF Engine Request Adapter to the WF Engine Request
Gateway are the same described in the preceeding Paragraph. Their encoding, however, is different. The
request in in fact sent through an http GET call where the paramteres are invoked as follows:

As an example to understand the response, consider the compositional/formatting engine response
to a request.

GET/Control_Panel/Products/OpenFlow/AXWF/comp_format_request_status?Credentials=”Crede
ntial string”&AXRQID=”Request ID string” HTTP/1.1" 200 368
"http://15.156.120.195:8080/Control_Panel/Products/OpenFlow/leave/leave_startform"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705; .NET CLR 1.1.4322)"

Where “Credential string” is a string containing the credentials and “Request ID string” is a string
containing the Request ID.

The response to the invoked method has the same contents listed in the preceeding Paragraph and is sent via
an http GET response. The response is XML coded, following the schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Engine_Response">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true"
minOccurs="0"/>
 <xs:element name="errorcode" type="xs:int"/>
 <xs:element name="ruleid" type="xs:string" minOccurs="0"
maxOccurs="20"/>
 <xs:element name="status" type="xs:string" minOccurs="0"/>
 <xs:element name="xml_rule_schema" type="xs:string" minOccurs="0"/>
 <xs:element name="rulelog" type="xs:string" minOccurs="0"
maxOccurs="100"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

150

As desdcribed before, the Engine Command and Reporting will send its notifications to the WorkFlow
Engine by calling a WebServices exposed by the WF Engine Response Gateway.

The URI of the WebService is indicated in the previous request made by the WF Request Gateway in the
EngineListenerService parameter.

The Notification shall also contain the original Request ID issued in the request (AXRQID).

21.5 Integration Support with Query Support
The integration is realised as per the specification document. The integration involves two distinct channels
for workflow communication: Request Channel and Response Channel.

The Request Channel consists of Workflow Request Adaptors, Workflow Request Gateways and Webservice
Listeners, while the Response channel consists of Response Gateways and Input Queue Adaptors.

The Axmedis DB WorkFlow channel passes through the WF DB Request Gateway where the Loader/Saver
and the Query Support WebServices Interface modules will expose the following methods, via WebServices:

• Edit_Query for launching the Query Support User Interface
• Delete_selection for removing a selection from selection DB
• Load_selection for getting a selection from selection DB
• Save_selection for storing a selection in selection DB
• List_user_selection for listing the current selections in DB associated to the user
• List_entitled_selections for listing the current selections in DB that the user is entitled to execute
• Activate_selection_sync for activating a selection and waiting its completion
• Activate_selection_async for activating a selection and getting completion notification later

• Check_out_sync for checking-out an Object (MPEG-21 file) from Axmedis DB and waiting the

completion of the operation
• Check_out_async for checking-out an Object (MPEG-21 file) from Axmedis DB and getting

completion notification later
• commit_sync for checking-in an Object (MPEG-21 file) to Axmedis DB
• commit_async for checking-in an Object (MPEG-21 file) to Axmedis DB and getting completion

notification later

The method invocation is encoded in an http GET request that contains both the method and the INPUT
parameters. The related GET response will encode the OUTPUT parameters:

The methods invoked and the parameters invoked by WF DB Request Adapter to the WF DB Request
Gateway are the same described in the preceeding Paragraph. Their encoding, however, is different. The
request in in fact sent through an http GET call where the paramteres are invoked as follows:

As an example to understand the response, consider the compositional/formatting engine response
to a request.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

151

GET/Control_Panel/Products/OpenFlow/AXWF/WFDB_request_status?Selection_ID=”Selection
ID string”&Credentials=”Credential string”&AXRQID=”Request ID string”&Path=”path string”
HTTP/1.1" 200 368
"http://15.156.120.195:8080/Control_Panel/Products/OpenFlow/leave/leave_startform"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705; .NET CLR 1.1.4322)"

Where WFDB is the workflow database, “Selection ID string” is a string containing the AXOID,
“Credential string” is a string containing the credentials and “Request ID string” is a string
containing the Request ID and “path string” contains the designated pathname to get the MPEG-21
file.

The response is XML coded, following the schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Database_Response">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true"
minOccurs="0"/>
 <xs:element name="errorcode" type="xs:int"/>
 <xs:element name="AXOID" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="XML_Selection" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string"/>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Selection_ID" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="Version" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The Notification is used, as mentioned, to return to the WorkFlow the results of the requested operation.
Specifically, it contains:

• Edit_Query for notifying the termination of the editor:

o NOTIFICATION: AXRQID, Completion_Result (OK, EXCEPTION)

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

152

• Activate_Selection_async for notifying the completion of the search:

o NOTIFICATION: AXRQID, Completion Result (list of selected objects, EXCEPTION)
List_of_selected_objects is the list of AXOIDs selected in the Query

• Check_out_async:

o NOTIFICATION: AXRQID, Completion_Result (OK, EXCEPTION)

• commit_async

o NOTIFICATION: AXRQID, Completion_Result (version, EXCEPTION)
Version is the version of the loaded object

Where the AXRQID is the AXRQID in the original request from the WorkFlow and Completion_result it
can be either positive (OK or returned parameters) or negative (EXCEPTION is an error code returned for
diagnostic purposes and useful for troubleshooting).

The NOTIFICATION is sent via an XMLRPC call whose XML encoding is specified:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Database_Notification">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true"
minOccurs="0"/>
 <xs:element name="errorcode" type="xs:int"/>
 <xs:element name="AXRQID" type="xs:string"/>
 <xs:element name="AXOID" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="Version" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Where WFDB is the workflow database and AXRQID is a string containing the the original request
sent to the Engine.

Result is a positive integer when the request was successfully completed, or negative integer
otherwise.

Status is a string containing the newly created AXOID if result is positive, otherwise a string
containing the returned error.

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

153

21.6 Integration Support with AXMEDIS P&P Editor

The integration is realised as per the specification document. The integration involves two distinct channels
for workflow communication: Request Channel and Response Channel. This integration is exactly same as
for the Axmedis Editors as mentioned above.

The Request Channel consists of Workflow Request Adaptors, Workflow Request Gateways and Webservice
Listeners, while the Response channel consists of Response Gateways and Input Queue Adaptors.

The following functions are available for P&P Editor.

o Axmedis Program and Publication User Interface
o AXEPTool Publication/Loading Rule Editor

The Axmedis Rule Editor WorkFlow channel passes through the WF Rule Editor Request Gateway where
the User Command and Reporting will expose the following methods, via WebServices:

• Program_Publication_User_Interface for launching the Program/Publication User Interface
• Activate_Program_Publication for requesting the activation of a Program
• List_of_Programs for requesting the list of current programs in PnP

The method invocation is performed via a WebService request where the following parameters are sent (to
User Command and Reporting) and received back (in WebService result) from the User Command and
Reporting.

The methods invoked and the parameters invoked by WF Rule Editor Request Adapter to the WF Rule
Editor Request Gateway are the same described in the preceding Paragraph. Thier encoding, however, is
different. The request is in fact sent through an http GET call where the parameters are invoked as follows:

GET/Control_Panel/Products/OpenFlow/AXWF/rule_editor_name_request_status?AXRID=”Rule
ID string”&Credentials=”Credential string”&AXRQID=”Request ID string” HTTP/1.1" 200 368
"http://15.156.120.195:8080/Control_Panel/Products/OpenFlow/leave/leave_startform"
"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705; .NET CLR 1.1.4322)"

Where rule_ditor_name is to be replaced by appropriate editor identifier “Rule ID string” is a
string containing the AXRID, “Credential string” is a string containing the credentials and “Request
ID string” is a string containing the Request ID.

The response to the invoked method has the same contents listed in the preceeding Paragraph and is sent via
an http GET response. The response is XML coded, following the schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:element name="Rule_editor_Response">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" type="xs:boolean"/>
 <xs:element name="errormsg" type="xs:string" nillable="true"
minOccurs="0"/>
 <xs:element name="errorcode" type="xs:int"/>

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

154

 <xs:element name="programid" type="xs:string" minOccurs="0"
maxOccurs="20"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

As desdcribed before, the User Command and Reporting sends its notifications to the WorkFlow Engine by
calling a WebServices exposed by the WF Rule Editor Response Gateway.

The URI of the WebService is indicated in the previous request made by the WF Request Gateway in the
UserListenerService parameter.

The Notification shall also contain the original Request ID issued in the request (AXRQID).

22 Bibliography

• [Bes01] F. Bes, M. Jourdan, F. Khantache “A Generic Architecture for Automated Construction of
Multimedia Presentation”, Amsterdam, The Nederlands, 2001.

• [Bol99] S. Boll, W. Klas, J. Wandel “A Cross-Media Adaptation Strategy for Multimedia
Presentations”, Ulm, Germany, 1999.

• [Bol01] S. Boll, W. Klas “ZYX - a multimedia document model for reuse and adaptation of
multimedia content”, Wien, Austria, 2001.

• [Bol03] S. Boll “MM4U - A framework for creating personalized multimedia content”, 2003.

• [Bul98] D.C.A. Bulterman "User-centered abstractions for adaptive hypermedia presentations",
Bristol, United Kingdom, 1998.

• [Bul05] D.C.A. Bulterman, L. Hardman "Structured Multimedia Authoring", Amsterdam, The
Nederlands, 1993-2005.

• [Har99] L. Hardman, J. van Ossenbruggen, K. Sjoerd Mullender, L. Rutledge, D.C.A. Bulterman
"Do you have the time? Composition and linking in time-based hypermedia", Darmstadt, Germany,
1999.

• [Jou98] M. Jourdan, N. Layaïda, C. Roisin, L. Sabry-Ismail, L. Tardif “Madeus, an authoring
environment for interactive multimedia documents”, Bristol, UK, 1998.

• [Lem03] T. Lemlouma, N. Layaida “Adapted content delivery for different contexts”, 2003.

• [Pih03] K. Pihkala "Extensions to the SMIL Multimedia Language", Helsinki, Finland, 2003.

• [Roi03]C. Roisin, V. Kober, V. Quint, P.Genevès, P. Navarro “Editing SMIL with Timelines”, 2003.

• [Rut98] L. Rutledge, L. Hardman, J. van Ossenbruggen, D.C.A. Bulterman "Structural Distinctions
Between Hypermedia Storage and Presentation", Bristol, United Kingdom, 1998.

• [Thu02] T.T. Thuong, C. Roisin “A Multimedia Model Based on Structured Media and Sub-
elements for Complex Multimedia Authoring And Presentation”, 2002.

• [Van01]J. van Ossenbruggen, J. Geurts, F. Cornelissen, L. Hardman, L. Rutledge “Towards second
and third generation web-based multimedia”, Hong Kong, 2001.

• [Vil01] L. Villard “Authoring transformations by direct manipulation for adaptable multimedia
presentations”, Atlanta, Georgia, USA, 2001.

• [W3C05] W3 Consortium (Bulterman et al.) "Synchronized Multimedia Integration Language

DE4.3.1 – Content Composition and Formatting

AXMEDIS project

155

(SMIL 2.0)", 2005.

• [Wei94] L. Weitzman, K. Wittenburg "Automatic presentation of multimedia documents using
relational grammars", San Francisco, CA, USA, 1994.

• [Zha02] K. Zhang, D.Q. Zhang, Y. Deng “Graphical Transformation of Multimedia XML
Documents” Red Bank, NJ, USA, 2002.

• [Zha05] K. Zhang, J. Kong, M. Qiu, G. Song "Multimedia layout adaptation through grammatical
specifications", Dallas, TX, USA, 2005.

23 Other reference

• [1] ISO/IEC, ISO/IEC IS 21000-5 – Rights Expression Language.
• [2] XrML, http:// www.xrml.org/.
• [3] Open Digital Rights Language (ODRL). http://odrl.net.
• [4] OMA DRM Rights Expression Language, OMA-Download-DRMREL-V2_0-20041210-C. 10

December 2004.
• [5] XML Encryption Syntax and Processing, W3C Candidate Recommendation 10 December 2002,

http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
• [6] XML Signature Syntax and Processing, W3C Recommendation 12 February 2002,

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
• [7] Prados, J., Rodríguez, E., Delgado, J., Profiles for interoperability between MPEG-21 REL and

OMA DRM, CEC 2005, Munich (Germany), 19 – 22 July 2005, ISBN 0-7695-2277-7.
• [8] Delgado, J., Prados, J., Rodríguez, E., Interoperability between MPEG-21 REL and OMA DRM:

A profile?, ISO/IEC JTC1/SC29/WG11 MPEG2005/M11580, January 2005.
• [9] Delgado, J., Prados, J., Rodríguez, E., Interoperability between different Rights Expression

Languages and Protection Mechanisms, AXMEDIS 2005, Florence (Italy), 30 November – 2
December 2005, To be published.

• [10] Delgado, J., Prados, J., Rodríguez, E., A subset of MPEG-21 REL for interoperability with
OMA DRM v2.0, ISO/IEC JTC 1/SC 29/WG 11/ M11893, April 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 400
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 3.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 400
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 3.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

