
DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

1

AXMEDIS

Automating Production of Cross Media Content
for Multi-channel Distribution

www.AXMEDIS.org
DE3.1.2.2.2

Specification of AXMEDIS
Command Manager,

first update of DE3.1.2 part B
Version: 1.6
Date: 09-05-2006
Responsible: DSI (Rogai) (verified and approved by coordinator)
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: report
Visible to User Groups: yes
Visible to Affiliated: yes
Visible to the Public: yes
Deliverable Number: DE3.1.2.2.2
Contractual Date of Delivery: M18
Actual Date of Delivery: 10/05/2006
Title of Deliverable: DE3.1.2.2.2 Specification of AXMEDIS Command Manager, first update of
DE3.1.2 part B
Work-Package contributing to the Deliverable: WP3.1
Task contributing to the Deliverable: WP3, WP2
Nature of the Deliverable: report
Author(s): DSI
Abstract: this part includes the specification of components, formats, databases and protocol related
to the AXMEDIS Framework area AXMEDIS Object Model including only details on Command
Manager and its usage, the usage of the AXOM
Keyword List: AXOM, AXMEDIS Command Manager, MPEG-21 models, authoring tools and
players.

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

2

AXMEDIS Copyright Notice
The following terms (including future possible amendments) set out the rights and obligations licensee will be requested
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by
any other means.

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT.

1. DEFINITIONS

i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the
document have been accepted.

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a
Document.

iii. "Licensor" is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in
terms of companies and/or associations, see www.axmedis.org

iv. "Document" means the information contained in any electronic file, which has been published by the
Licensor’s as AXMEDIS official document and listed in the web site mentioned above or available by any
other means.

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.

2. LICENCE

1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to
present terms and conditions (the Licence) for the parts that are own and proprietary property the of
AXMEDIS consortium or its members.

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and
conditions.

3. TERM AND TERMINATION

1. Granted Licence shall commence on Acceptance Date.

2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions
of this Licence.

3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of
termination.

4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the
accessed Copyright.

5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or
obligations, shall survive termination of this Licence and shall continue in full force and effect.

6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it
as stated in the document itself will remain in force for a period of 5 years after license issue date or the
period stated in the document whichever is the longer.

4. USE

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:

i. remove this Copyright Notice on a Document or any of its reproduction in any form in which those
may be achieved;

ii. change or remove the title of a Document;

iii. use all or any part of a Document as part of a specification or standard not emanating from the
Licensor without the prior written consent of the Licensor; or

iv. do or permit others to do any act or omission in relation to a Document which is contrary to the
rights and obligations as stated in the present license and agreed with the Licensor

5. COPYRIGHT NOTICES

1. All Works shall bear a clear notice asserting the Licensor’s Copyright. The notice shall use the wording
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

3

6. WARRANTY

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.

2. For the avoidance of doubt the licensee should be aware that although the Copyright in the
documents is given under warranty this warranty does not extend to the content of any document
which may contain references or specifications or technologies that are covered by patents (also
of third parties) or that refer to other standards. AXMEDIS is not responsible and does not
guarantee that the information contained in the document is fully proprietary of AXMEDIS
consortium and/or partners.

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of
action which the Licensor may have, at all times keep the Licensor fully and effectively
indemnified against all and any liability (which liability shall include, without limitation, all
losses, costs, claims, expenses, demands, actions, damages, legal and other professional fees and
expenses on a full indemnity basis) which the Licensor may suffer or incur as a result of, or by
reason of, any breach or non-fulfillment of any of his obligations in respect of this License.

7. INFRINGEMENT

1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the
Copyright which comes to licensee notice and shall, at the Licensor’s request and expense, do all such
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.

8. GOVERNING LAW AND JURISDICTION

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.

2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.

Please note that:

• You can become affiliated with AXMEDIS. This will give you the access to a
huge amount of knowledge, information and source code related to the
AXMEDIS Framework. If you are interested please contact P. Nesi at
nesi@dsi.unifi.it. Once affiliated with AXMEDIS you will have the possibility
of using the AXMEDIS specification and technology for your business.

• You can contribute to the improvement of AXMEDIS documents and
specification by sending the contribution to P. Nesi at nesi@dsi.unifi.it

• You can attend AXMEDIS meetings that are open to public, for additional
information see WWW.axmedis.org or contact P. Nesi at nesi@dsi.unifi.it

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

4

Table of Content

1 EXECUTIVE SUMMARY AND REPORT SCOPE .. 5

1.1 THIS DOCUMENT CONCERNS (DSI) ... 6
1.2 LIST OF MODULES OR EXECUTABLE TOOLS SPECIFIED IN THIS DOCUMENT .. 6

2 GENERAL ARCHITECTURE AND RELATIONSHIPS AMONG THE MODULES PRODUCED............. 7

3 AXMEDIS OBJECT MANAGER (DSI) .. 8
3.1 GENERAL DESCRIPTION OF THE MODULE... 9

3.1.1 AXMEDIS Object loading... 10
3.2 MODULE DESIGN IN TERMS OF CLASSES .. 10

3.2.1 AxObjectManager Capabilities Overview ... 11
3.2.2 Class Methods Overview... 12

3.3 AXOBJECTMANAGER AS EVENTMANAGER.. 25
3.4 EXAMPLES OF USAGE .. 27
3.5 ERRORS REPORTED AND THAT MAY OCCUR .. 28

4 AXOID ASSIGNMENT (DSI) ... 28

5 OBJECT REGISTRATION (DSI) .. 28

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

5

1 Executive Summary and Report Scope

The full AXMEDIS specification document has been decomposed in the following parts:

DE
number

Deliverable title responsibl
e

DE3.1.2.2.1 Specification of General Aspects of AXMEDIS framework, first update of DE3.1.2 part A

AXMEDIS-DE3-1-2-2-1-Spec-of-AX-Gen-Asp-of-AXMEDIS-framework-upA-v1-0.doc

DSI

DE3.1.2.2.2 Specification of AXMEDIS Command Manager, first update of DE3.1.2 part B

AXMEDIS- DE3-1-2-2-2-Spec-of-AX-Cmd-Man-upB-v1-0.doc

DSI

DE3.1.2.2.3 Specification of AXMEDIS Object Manager and Protection Processor, first update of DE3.1.2 part
B

AXMEDIS-DE3-1-2-2-3-Spec-of-AXOM-and-ProtProc-upB-v1-0.doc

DSI

DE3.1.2.2.4 Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-4-Spec-of-AX-Editors-and-Viewers-upB-v1-0.doc

DSI

DE3.1.2.2.5 Specification of External AXMEDIS Editors/Viewers and Players, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-5-Spec-of-External-Editors-Viewers-Players-upB-v1-0.doc

EPFL

DE3.1.2.2.6 Specification of AXMEDIS Content Processing, first update of DE3.1.2 part C

AXMEDIS-DE3-1-2-2-6-Spec-of-AX-Content-Processing-upC-v1-0.doc

DSI

DE3.1.2.2.7 Specification of AXMEDIS External Processing Algorithms

AXMEDIS-DE3-1-2-2-7-Spec-of-AX-External-Processing-Algorithms-v1-0.doc

FHGIGD

DE3.1.2.2.8 Specification of AXMEDIS CMS Crawling Capabilities, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-8-Spec-of-AX-CMS-Crawling-Capab-v1-0.doc

DSI

DE3.1.2.2.9 Specification of AXMEDIS database and query support, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-9-Spec-of-AX-database-and-query-support-v1-0.doc

EXITECH

DE3.1.2.2.10 Specification of AXMEDIS P2P tools, AXEPTool and AXMEDIS, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-10-Spec-of-AXEPTool-and-AXMEDIA-tools-v1-0.doc

CRS4

DE3.1.2.2.11 Specification of AXMEDIS Programme and Publication tools, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-11-Spec-of-AX-Progr-and-Pub-tool-v1-0.doc

UNIVLEEDS

DE3.1.2.2.12 Specification of AXMEDIS Workflow Tools, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-12-Spec-of-AX-Workflow-Tools-v1-0.doc

IRC

DE3.1.2.2.13 Specification of AXMEDIS Certifier and Supervisor and networks of AXCS, first update of part
of DE3.1.2

AXMEDIS-DE3-1-2-2-13-Spec-of-AXCS-and-networks-v1-0.doc

DSI

DE3.1.2.2.14 Specification of AXMEDIS Protection Support, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-14-Spec-of-AX-Protection-Support-v1-0.doc

FUPF

DE3.1.2.2.15 Specification of AXMEDIS accounting and reporting, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-15-Spec-of-AX-Accounting-and-Reporting-v1-0.doc

EXITECH

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

6

1.1 This document concerns (DSI)
AXMEDIS Object Manager, so called AXOM, is the outer module exposing functionalities in order to
manipulate AXMEDIS Object (or MPEG-21 Digital Items). It hides all the underlying model for
representing loading, saving object content and metadata. This module is the keystone to build any
AXMEDIS compliant tools since it grants the developer to correctly manages the underlying content model,
while also respecting DRM constraints on the AXMEDIS Object. AXMEDIS Object Manager guarantees
DRM rules respect on AXMEDIS object manipulations according to the issued licences. AXMEDIS Object
Manager is the sole responsible of command execution (i.e. to command an execution of a desired
manipulation), because completion of this task requires features of all other modules in specification.

1.2 List of Modules or Executable Tools Specified in this document
A module is a component that can be or it is reused in other cases or points of the AXMEDIS framework or
of other AXMEDIS based solutions.
The modules/tools have to include effective components and/or tools and also testing components and tools.

Module/tool

Name
Module/Tool Description and purpose, state also in

which other AXMEDIS area is used
Standards exploited

if any
AXMEDIS Object
Manager

In AXMEDIS Editor, AXMEDIS players, AXMEDIS Content Processing
tools, and all tools that use the AXMEDIS object model

MPEG-21 REL/RDD

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

7

2 General architecture and relationships among the modules produced
AxObjectManager architecture work in cooperation with many modules involved in manipulating
AXMEDIS Objects and to provide at upper level applications useful methods to accomplish all needed tasks
in order to manage, modify, and even create, new objects. These interfaces are build in accordance to DRM
guidelines and accomplishes all operations enforcing DRM .

Any Content Consumption
Application

AxObjectManager

MPEG21
Object
Model

AXMEDIS
Object
Model

«refines»

«uses»

«uses» «uses»

«traces»

This module include several classes . The core is Axmedis Object Manager, that coordinates all other classes
and expose methods to upper level applications.
AxIndexManager supports indexing of managed elements, providing retrival functionalities for the entire
module.
AxCommand provide a common interface for all the defined commands in the module.
Another concept such as the “event” paradigm as explained in the Observer design pattern has been
considered an implemented in the AxObjectManager in order to allow application to effectively manage their
rendering of the multimedia package
An infrastructure of classes is related to AxObjectManager allowing event description. The
AxObjectManager is responsible for registering the event handler interested to different kind of events: those
which notify changes in the package structure and those that notify modification to the embedded digital
resources or the related metadata. Both AXMEDIS and MPEG-21 events have been provided.

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

8

3 AXMEDIS Object Manager (DSI)

Module/Tool Profile
AXMEDIS Object Manager

Responsible Name DAvide Rogai
Responsible Partner DSI
Status (proposed/approved) Proposed
Implemented/not implemented Implemented
Status of the implementation 90%
Executable or Library/module
(Support)

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows/Unix-Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/framework/source/axom

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Yes

Usage of the AXMEDIS Error
Manager (yes/no)

No

Major Problems not solved --
--

Major pending requirements -Right Enforcement logic
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

9

Protocol Used Shared with Protocol name or reference to a

section
Object ID Generation AXCS
Object Registration AXCS
AXDB Loader AXDB
AXDB Saver AXDB
Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
libcurl libcurl-7.15.0 LGPL
gsoap Gsoap 2.7 LGPL

3.1 General Description of the Module
Object Manager is the interface among objects representation and all others data-manipulation AXMEDIS
Editor modules (e.g. View Modules, plug-ins, etc…). Object Manager will provide all base operations (add,
change, delete, etc…) which will be needed to manipulate AXMEDIS objects, at all with elements index
management and coordination. Moreover, it will invoke, through the use of Protection Processor , Protection
Manager Support to verify each operation.

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

10

AxMPEG21ElementEvent

AxObjectManager

Any Content Manipulation
Application

AxInfo
AxResource

AxMetadata
AxObject

DIDLStatement
DIDLComponent

DIDLDescriptor
DIDLItem

AxCmdChangeRes

AxCmdDelete
AxCmdAdd
AxCmdExpand

AxObjectStructureEvent

AxEvent

access
execute

register

MPEG-21 model classes

AXMEDIS model classes

Commands

Events

AXOM.lib

Obtain data
for rendering

Manipulate
content

Get notice of
content changes

• Object Manager works in respect of DRM model, i.e. on every user action it shall invoke the control of

user grants on the involved items. That should be possible through the invocation of Protection Processor
(see AXMEDIS-DE3-1-2-2-3)

• Object Manager stores information about taken actions, in particular the following information shall be
stored:

o Kind of action and entities involved;
o Who takes the action;
o Where the action have been taken (AXMEDIS Editor installation identifier);
o When the action have been taken (timestamp);

Object Manger provides an interface to permit development of data-manipulation plug-ins by third party
developer. This functionality is implemented in ProtectionProcessor. (see AXMEDIS-DE3-1-2-2-3) and
exposed in Object Manager

3.1.1 AXMEDIS Object loading
AXMEDIS Object Manager can be created for managing new and existing objects. In case of existing object
they can be retrieved by means of different URIs. The supported protocols are:
• File System: file:// protocol or a path can be used to locate an object to be loaded an manipulated via

AXOM
• HTTP download: http:// is used when AXMEDIS object have to be retrieved from the Web
• AXDB checkout: a special database protocol as been defined withcorresponding URI type. The syntax

is axdb://<user>:<passwd>@<host>:<port>/<endpoint>?axoid=<axoid>&ver=<version>.
To save an AXMEDIS object or to upload on the AXDB specific command have been designed, for this
actions are governed by DRM rules.

3.2 Module Design in terms of Classes
AxObjectManager class is composed and is hard linked to a range of classes that implements needed
functionalities. Next Class Diagram shows relations between these classes. AxObjectManager is the core
class, this class derives from AxModelContainer that offers functionalities to hold AxObjects and Mpeg21
elements. AxIndexManager is in charge to maintain indexing throughout the object model. AxCommand
class and his derived children represent allowed commands exposed to the outer environment.
AxModelStatusManager controls status of the elements locking and unlocking Objects

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

11

Going deeply we can see how AxCommand class is used. From this class indeed derives all allowed
commands that could be requested at AxObjectManager. These commands share the common interface
provided by AxCommand, featuring specific methods and data structures to accomplish their tasks.

AxCommand

AxCommandAdd

AxCommandBeginChangeRes

AxCommandCopy

AxCommandDelete

AxCommandEditAxCommandEmbed

AxCommandEndChangeRes

AxCommandExpand

AxCommandGetMetadata

AxCommandGetProtInfo

AxCommandMove

AxCommandObtainAXOID

AxCommandRegister

AxCommandSave

AxCommandSetProtInfoAxCommandUploadOnDB

AxMPEG21CmdBeginChangeRes AxMPEG21CmdEmbedRes AxMPEG21CmdEndChangeRes AxMPEG21CommandAdd

AxMPEG21CommandCopy AxMPEG21CommandDelete AxMPEG21CommandEdit AxMPEG21CommandExpand

AxMPEG21CommandGetProtInfo AxMPEG21CommandMove AxMPEG21CommandSetProtInfo
A tipical command will override AxCommand::execute method to implement the operation sequence needed
to perform the task that command models. Other accessory methods could be implemented in the derived
command classes.

3.2.1 AxObjectManager Capabilities Overview

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

12

The following pictures shows how the entire module works in terms of sequence diagrams. In the first
picture an example of command execution is taken. The command , represented by AxCommand class, is
passed at AxObjectManager by mean of executeCommand method.
Next operations involves :

• Getting all grants elements, maintained in AxCommand, for command execution
• Getting all indexes of model elements, maintained in AxCommand, to unprotect for command

execution
• Checking all grants for command execution through ProtectionProcessor
• Unprotecting all elements needed for command execution
• Command execution.

AxObjectManager

1: executeCommand(command:AxCommand)

AxCommand

2: getRequiredGrants()

2: return grantList

3: getAccessedIndexes()

3: return indexList

ProtectionProcessor

8 + i: isGranted(obj:AxObject, grant:string, details:string)

AxIndexManager

5 + i: resolveIndexInAxObjectElement(axindex:AxIndex)

GrantListElement[i]

4+i: getIndex()

4+i: return axindex

5 + i: return obj

6 + i: getOperation()

6 + i: return grant

7 + i: getDetails()

7 + i: return details

a: 8 + i : return false

b: 8 + i: return true
9 + n: makeAxObjectElementClear

11: execute(model, indexManager, statusManager)

11: return

1: return not granted

1: return

n= indexList pointer
i= grantList pointer

9 + n: return

10 + n: unprotectElement(src, axom)

10 + n: return

3.2.2 Class Methods Overview

AxObjectManager - AxModelContainer

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

13

Core class of this module, expose methods to interface outer applications to inner classes of the module.
Through AxObjectManager indeed AxIndexManager, AxCommand and AxModelStatusManager are used.

+getAxModel() : AxObject *
+getDiModel() : DIDLDocument *
#AxModelContainer()
#setAxModel(in newAxModel : AxObject*)
#setDiModel(in newDiModel : DIDLDocument*)

AxModelContainer

«private»

+initialize()
+terminate()
+AxObjectManager()
+AxObjectManager(inout anURI : const string)
+~AxObjectManager()
+executeCommand(inout command : AxCommand)
+getAxObjectElement(inout index : const AxIndex) : AxObjectElement *
+getRootIndex() : const AxIndex &
+getMPEG21Element(inout index : const AxIndex) : MPEG21Element *
+getResourceAsset(inout resIndex : const AxIndex) : DataSource *
+invalidateDI(in exc : const SAXParseException* = 0)
+invalidateAx()
+mpeg21ToAXMEDIS(inout index : const AxIndex) : const AxIndex &
+axmedisToMPEG21(inout index : const AxIndex) : const AxIndex &
+getURI() : string &
+getErrorMsg() : string &
+isDIValid() : bool
+isAxValid() : bool
+isAxObjectElement(inout index : const AxIndex) : bool
+isMPEG21Element(inout index : const AxIndex) : bool
#setModel(in doc : DIDLDocument*)
#setModel(in obj : AxObject*)
#setURI(inout newURI : const string)
-makeMPEG21ElementClear(inout index : const AxIndex)
-makeAxObjectElementClear(inout index : const AxIndex)
-mpeg21ToAXMEDIS(inout elem : MPEG21Element) : AxObjectElement &
-axmedisToMPEG21(inout elem : AxObjectElement) : MPEG21Element &
+loadFromURI(in anURI : string) : AxObjectManager*

AxObjectManager

DIDLDocument

1 1

AxObject

1 1

AxObjectManager – Class methods
AxObjectManager - ~AxObjectManager
Class constructor and destructor
Initialize – terminate
These two static methods setup and dismiss all needed information and data structures in order to allow
usage of AxObjectManager and linked modules. Initialize has to be called as first step when an application
has to use Axmedis Object Model or MPEG-21 object model.in any way. Multiple calls of initialize don’t
cause changes in initialized items. Terminate has to be called whenever an application stops using Axmedis
Object Model and MPEG-21 Object Model
executeCommand
Performs operations to allow execution of the input AxCommand., then execute the command
getAxObjectElement – getMPEG21Element - getResourceAsset
Interface to AxIndexManager. Retrives element related to input AxIndex . Search path is chosen in
AxObject or DIDLDocument trees respectively. It returns a clone of the encapsulated object, it has to be
destroyed by client code.
getRootIndex
Return index of the root element of AxIndexManager. This index points both AxObject and

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

14

DIDLDocument roots
invalidateDI, invalidateAX
Make Digital Item tree or AxObject tree invalid
mpeg21ToAXMEDIS – axmedisToMPEG21
Convert MPEG21 element to AxObject element and vice versa. Return index of the converted element
getURI – setURI
Returns an set URI for the manager
isDIValid – isAxValid
Check validity status of the models
isMPEG21Element – isAxObjectElement
Checks if the given index refers an MPEG21Element or an AxObjectElement respectively
setModel
Sets the model root index in AxIndexManager
makeMPEG21ElementClear – makeAxObjectElementClear
Unprotect referred elements through the use of ProtectionProcessor
mpeg21ToAXMEDIS – axmedisToMPEG21
loadFromURI
a static methods for loading objects from multiple URI has been provided, in order to avoid a constructor
which can fail. By calling this static method a pointer to AxObjectManager ready to managed the loaded
document.

AxModelContainer – Class methods
AxModelContainer
Class constructor
getAxModel – getDIModel
Returns AxModel and DIDLDocument root pointers
setAxModel – setDIModel
Sets AxModel root and DIDLDocument root

AxIndexManager – AxIndex - AxModelStatusManager
These classes support AxObjectManager. AxIndexManager is demanded to manage access to data models
maintaining indexes for all the elements. The class maintains two different indexes, one for
MPEG21Elements and the other for AxObjectElements.
AxModelStatusManager provide functionalities to control the status of the model.

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

15

AxObjectManager

+AxIndexManager()
+~AxIndexManager()
+reset()
+getRootIndex() : const AxIndex &
+getIndexOf(inout element : AxObjectElement) : const AxIndex &
+getIndexOf(inout element : MPEG21Element) : const AxIndex &
+resolveIndexInAxObjectElement(inout index : const AxIndex) : AxObjectElement &
+resolveIndexInMPEG21Element(inout index : const AxIndex) : MPEG21Element &
+setMPEG21RootElement(inout element : MPEG21Element)
+setAxObjectRootElement(inout element : AxObjectElement)
+setElementIndexedBy(inout index : const AxIndex, inout element : MPEG21Element)
+setElementIndexedBy(inout index : const AxIndex, inout object : AxObjectElement)
+hasIndex(inout element : const AxObjectElement) : bool
+hasIndex(inout element : const MPEG21Element) : bool
+isValid(inout index : const AxIndex) : bool
+isValidAxObjectElement(inout index : const AxIndex) : bool
+isValidMPEG21Element(inout index : const AxIndex) : bool
#getNextFreeValue() : IndexType

-indexesToObjects : map<AxIndex *,AxObjectElement *>
-indexesToElements : map<AxIndex *,MPEG21Element *>
-objectsToIndexes : map<AxObjectElement *,AxIndex *>
-elementsToIndexes : map<MPEG21Element *,AxIndex *>
-freeValues : list<AxIndex :: IndexType>
-lastFreeValue : IndexType
-rootIndex : AxIndex *

AxIndexManager

1

1

«uses»

+operator ==(inout rhs : const AxIndex) : bool
+operator !=(inout rhs : const AxIndex) : bool
#AxIndex()
#AxIndex(inout Parametro1 : const AxIndex)
#AxIndex(in aValue : IndexType, inout manager : AxIndexManager)

AxIndex

+reset()
+setLocked(inout index : const AxIndex, in locked : bool) : bool
+isLocked(inout index : const AxIndex) : bool

-lockedIndexes : list<AxIndex *>
AxModelStatusManager

1

1

AxIndex Manager – Class methods
AxIndexManager - ~AxIndexManager
Class constructor and destructor
reset
Reset all the element index to an empty value. Delete all AxIndex elements in the index
getRootIndex
Return index of the root element of AxIndexManager.
getIndexOf
Get the AxIndex of input element.
resolveIndexInAxObjectElement – resolveIndexInMPEG21Element
Return element associated with input AxIndex
setMPEG21RootElement – setAxObjectRootElement
Sets root for MPEG21Element index and AxObjectElement index
setElementIndexedBy
Add a new entry in one of two indexes chosen by input element
hasIndex
Checks if the given element has an associated AxIndex
isValid – isValidAxObjectElement – isValidMPEG21Element
Check validity status of the element
getNextFreeValue
Returns next AxIndex number free from element associations

AxIndex– Class methods
AxIndex
Class constructor
operator ==
Checks if two AxIndex are equal
operator !=
Checks if two AxIndex are.different

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

16

AxModelStatusManager– Class methods
reset
Reset the class to initial state cleaning all locked indexes
setLocked
Lock target element
isLocked
Checks if target element is locked

AxCommand – AxGrant
These classes support commands definitions and execution. AxCommand represent the common interface for
all the command defined for the models. AxGrant models grants required for command executions. These
grants will be checked by Protection Processor (see DE- 3-1-2-2-3- ProtectionProcessor) .

AxCommand – Class methods
AxCommand - ~AxCommand
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getReverseCommand
Return the reverse version of this command if a reverse command is supported by the command itself
getRequiredGrants
Returns a list of grants needed for the execution of this command.
getAccessedIndexes
Return a list of AxIndex that refers to all the elements used by the execution of this command
isMPEG21Command
Checksif the command operates on an MPEG21Element

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

17

initializeRequiredGrants
Initialize the grant list for the command

AxGrant – Class methods
AxGrant - ~AxGrant
Class constructor and destructor
getIndex – getOperation –getDetails
Returns index , operation name and details for the grant

AxCommands
A list of all implemented command classes is now showed

AxCommandAdd: add a new AxObject to the tree. The object which is passed as an argument to the addition
is cloned with deep option set to true.

AxCommandAdd – Class methods
AxCommandAdd - ~AxCommandAdd
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
getIndexeOfAddedElement
Return the index of added element
getRequiredGrants
Return grants needed to command execution

AxCommandBeginChangeRes: Change the AxResource content. This command returns an output stream
where the modified resource can be written. The action has to be finalized with AxCommandEndChangeRes.

AxCommandBeginChangeRes– Class methods
AxCommandBeginChangeRes - ~AxCommandBeginChangeRes
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
getOuputStream
Return the output stream of Resource to be changed
getRequiredGrants
Return grants needed to command execution

AxCommandCopy: copy a target AxObject element to a destination

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

18

AxCommandCopy – Class methods
AxCommandCopy - ~AxCommandCopy
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
getNewElementIndex
Return the index of new element
getRequiredGrants
Return grants needed to command execution

AxCommandDelete: delete a target AxObject element

AxCommandDelete – Class methods
AxCommandDelete
Class constructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxCommandEdit: edit an element of the AxObject, this command can be used to modofy the attribute of any
element in the AxObject (e.g. to modify the mime-type of a resource).

AxCommandEdit – Class methods
AxCommandEdit
Class constructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxCommandEmbed: embed a new asset in an AxResource. Similar to the command for changing a resource,
this command modify at once all the resource asset. The main difference is that allows to pass an input
stream where the command will extract the content.

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

19

AxCommandEmbed – Class methods
AxCommandEmbed - ~AxCommandEmbed
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxCommandEndChangeRes: terminate an AxResource change operation. Finalize the changes of a given
resource. It has to be call when a resource modification process (beginning with a
AxCommandEndChangeRes) is terminates. After its execution the new resource will be embedded as an
asset.

AxCommandEndChangeRes – Class methods
AxCommandEndChangeRes - ~AxCommandEndChangeRes
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxCommandExpand: Returns indexes of target element’s children. This command is used to browse the
AxObject level by level.

AxCommandExpand – Class methods
AxCommandExpand - ~AxCommandExpand
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getChildrenIndexes
Return indexes to children of expanded node
getRequiredGrants
Return grants needed to command execution

AxCommandGetMetadata: return metadata indexes. This command is used to obtain the list of metadata,
which are associated to a given AxObject.

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

20

AxCommandGetMetadata – Class methods
AxCommandGetMetadata - ~AxCommandGetMetadata
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getMetadataIndexes
Return the indexes of retrived metadata
getRequiredGrants
Return grants needed to command execution

AxCommandGetProtInfo: returns Protection Information for target AxObject

AxCommandGetProtInfo – Class methods
AxCommandGetProtInfo - ~AxCommandGetProtInfo
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getToolList
Return a list ot tool types used to process element’s protection information
getRequiredGrants
Return grants needed to command execution

AxCommandMove: Move an AxObject element to a destination

AxCommandMove – Class methods
AxCommandMove - ~AxCommandMove
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxCommandObtainAxoid: It contact the suitable service in orded to obtain an AXOID. Inthis way it can be
uniquely identified in the AXMEDIS. This is a mandatory step before the publication/distribution.

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

21

AxCommandObtainAXOID – Class methods
AxCommandObtainAXOID - ~AxCommandObtainAXOID
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getAXOID
Return Axmedis Object ID (AXOID)
getRequiredGrants
Return grants needed to command execution

AxCommandRegister: Register the object. This is a mandatory step before the publication/distribution.

AxCommandRegister – Class methods
AxCommandRegister - ~AxCommandRegister
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxCommandSave: save the object in a output file

AxCommandSave – Class methods
AxCommandSave
Class constructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getState
Return state of saving process
getMessage
Return information about command execution errors
getRequiredGrants
Return grants needed to command execution

AxCommandSetProtInfo: set protection info for the object

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

22

AxCommandSetProtInfo – Class methods
AxCommandSetProtInfo - ~AxCommandSetProtInfo
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxCommandUploadOnDB: save the object in a AXDB

AxCommandUploadOnDB– Class methods
AxCommandUploadOnDB
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getState
Return state of saving process
getMessage
Return information about command execution errors
getRequiredGrants
Return grants needed to command execution

Note: the default constructor will target the “default database” (location will be retrieved by the current
configuration). If the extended constructor will be used, the target database is located by the proper
information.

AxMPEG21CmdBeginChangeRes: Changes a Resource asset in the MPEG-21 DI. See corresponding
command on the AXMEDIS Object.

AxMPEG21CmdBeginChangeRes – Class methods
AxMPEG21CmdBeginChangeRes - ~AxMPEG21CmdBeginChangeRes
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getOutputStream
Return output stream related to new Resource
getRequiredGrants

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

23

Return grants needed to command execution
AxMPEG21CmdEmbedRes: load resource asset content in an MPEG-21 DI

AxMPEG21CmdEmbedRes – Class methods
AxMPEG21CmdEmbedRes- ~AxMPEG21CmdEmbedRes
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
getIndexeOfAddedElement
Return the index of added element

AxMPEG21CmdEndChangeRes: End changes of the resource. To be called at the end of a Resource editing
which has been started by AxMPEG21CmdBeginChangeRes.

AxCmdEndChangeRes – Class methods
AxMPEG21CmdEndChangeRes - ~AxMPEG21CmdEndChangeRes
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxMPEG21CommandAdd: add a target MPEG-21 element to an MPEG-21 DI

AxMPEG21CommandAdd – Class methods
AxMPEG21CommandAdd - ~AxMPEG21CommandAdd
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getIndexeOfAddedElement
Return the index of added element
getRequiredGrants
Return grants needed to command execution

AxMPEG21CommandCopy: Copy target MPEG-21 Element

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

24

AxMPEG21CommandCopy – Class methods
AxMPEG21CommandCopy - ~AxMPEG21CommandCopy
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getNewElementIndex
Return the index of copy element
getRequiredGrants
Return grants needed to command execution

AxMPEG21CommandDelete: Delete target MPEG-21 Element

AxMPEG21CommandDelete – Class methods
AxMPEG21CommandDelete
Class constructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxMPEG21CommandEdit: Edit target MPEG-21 Element. It changes the attribute of the element with no
impact on the structure.

AxMPEG21CommandEdit – Class methods
AxMPEG21CommandEdit
Class constructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxMPEG21CommandExpand: Return indexes of target element’s children

AxMPEG21CommandExpand – Class methods
AxMPEG21CommandExpand- ~ AxMPEG21CommandExpand
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getChildrenIndexes
Return indexes to children of expanded node

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

25

getRequiredGrants
Return grants needed to command execution

AxMPEG21CommandGetProtInfo: Returns protection info for target MPEG-21 element

AxMPEG21CommandGetProtInfo – Class methods
AxMPEG21CommandGetProtInfo - ~AxMPEG21CommandGetProtInfo
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getToolList
Return a list ot tool types used to process element’s protection information
getRequiredGrants
Return grants needed to command execution

AxMPEG21CommandMove: Move target MPEG-21 element to destination

AxMPEG21CommandMove – Class methods
AxMPEG21CommandMove - ~AxMPEG21CommandMove
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxMPEG21CommandSetProtInfo: Set protection informations for MPEG-21 target element

AxMPEG21CommandSetProtInfo – Class methods
AxMPEG21CommandSetProtInfo - ~AxMPEG21CommandSetProtInfo
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

3.3 AxObjectManager as EventManager
The observer pattern has been implemented in the AxObjectManager (is not the sole case). In the following
diagram the main relationships among classes which build the event-driven enabling infrastructure.

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

26

The fundamental class is EventManager, since it implements management of event listener once for all in a
general manner. In fact it models in a template the common functionality of storing a list of event listeners
and firing a certain event on all of them. This template can model, as depicted in the diagram, all the
listener/event types.

+EventManager(in EventManager<Listener,Event>::FunctionType)
+~EventManager()
+fireEvent(inout event : const Event)
+operator +=(in listener : Listener*)
+operator -=(in listener : Listener*)

-mListeners : list<Listener *>
-mFunction : FunctionType

EventManager

Listener, Event

-mEventSource : AxIndex *
-mType : EventType
-mNamespace : string
-mAttributeName : string
-mOldValue : string
-mValue : string

MPEG21ElementEvent

+elementChanged(inout event : const MPEG21ElementEvent)

MPEG21ElementListener

-mEventSource : AxIndex *
-mEventSubject : AxIndex *
-mType : EventType

MPEG21StructureEvent

+MPEG21Event(inout message : const string = "")
+MPEG21Event(inout message : const string, inout causedBy : const MPEG21Event)
+MPEG21Event(inout from : const MPEG21Event)
+~MPEG21Event()
+getMessage() : const string &
+getCausedBy() : const MPEG21Event *
#clone() : MPEG21Event *

-mMessage : string
-mReturnMessage : string
-mCausedBy : MPEG21Event *

MPEG21Event

+structureChanged(inout event : const MPEG21StructureEvent)

MPEG21StructureListener

-is notified about1

*

-is notified about1

*

«bind»

MPEG21StructureEventManager

-manages 1

*

«bind»

MPEG21ElementEventManager

-manages 1

*
AxObjectManager

-fires*

*

-fires*

*

1

*

1
*

AnyView

1

1

Please note that MPEG21ElementEvent and MPEG21StructureEvent are examples of the event nature that
can be model and it is effective implemented by AxObjectManager. With this feature AxObjectManager can
accept the registration of classes which are conformant to the listener for the event that can be fired.
Event are modelled by the following classes:
• MPEG21Event;

o MPEG21ElementEvent: it models a change which has occurred in an MPEG21Element element
(e.g. attributes, text);

o MPEG21StructureEvent: it models a change occurred in the sub-tree starting from a certain
MPEG21Element (e.g. a child has been added/removed);

• AxObjectEvent

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

27

o AxObjectElementEvent: it is similar to that defined for MPEG21, while it targets an
AxObjectElement

• AxObjectStructureEvent: it is similar to that defined for MPEG21, while it targets an AxObjectElement

A view has to implement a specific method defined by the listener class and it has to register itself to
AxObjectManager in order to react to specific changes of the underlying content model.

3.4 Examples of usage
Is important to specify that any operation call in AxObjectManager requires the class initialized. Two static
methods, initialize and terminate, have to be called at the start and at the end of any chunk of code that
involve use of AxObjectManager. Classes initialized by this methods are lower model static factories,
loaders and writers.(see DE-3-1-2-2-3)

AxObjectManager::initialize();
...Any Code...
AxObjectManager::terminate();

This chunk of code shows an example of Object Manager’s command execution.. We suppose that initialize
is already executed.

Please note that after obtaining an object from the AxObjectManager (e.g. an AxResource) it has to be
destroyed, since it is a clone of the node (and only it) which is inside the object model.

In the following is also reported a simple example on how is possible to open a digital resource which has
been embedded in an AXMEDIS object, for rendering.

DE3.1.2.2.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

28

DataSource* loadedAsset=axom->getResourceAsset(index);
std::istream& embeddedStream = loadedAsset->getInputStream();
ResourceDecoder *decoder = new ResourceDecoder(embeddedStream,
encoding=="base64");
load(decoder->getInputStream(), mimetype);
delete decoder;
delete loadedAsset;

In this example the load function model the action of extracting the digital asset file and process them w.r.t.
the suitable format (based on mime-type information).

3.5 Errors reported and that may occur
Error code Description and rationales

0 Invalid Index: input index don’t refers expected element
1 Invalid input resource
2 Unable to unprotect the input element

4 AXOID Assignment (DSI)

See AXMEDIS – DE – 3-1-2-2-13 section 7

5 Object Registration (DSI)

See AXMEDIS – DE – 3-1-2-2-13 section 7

