DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

e =
-1 BB &7
|~ S e &

(admedis)

Automating Production of Cross M edia Content
for Multi-channel Distribution
www.AXMEDIS.org

DE3.1.2.2.3
Specification of AXMEDIS
Object Manager and Protection Processor,
first update of DE3.1.2 part B

Date: 08-05-2006
Responsible: DSI (Vallotti) (revised and approved by coordinator)

Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: report
Visible to User Groups: yes
Visible to Affiliated: yes
Visible to the Public: yes

Deliverable Number: DE3.1.2.2.3

Contractual Date of Delivery: M18

Actual Date of Delivery: 17/5/2006

Title of Deliverable: Specification of AXMEDIS Object Manager and Protection Processor,
first update of DE3.1.2 part B

Work-Package contributing to the Deliverable: WP3.1

Task contributing to the Deliverable: WP3, WP2

Nature of the Deliverable: report

Author(s): DSI, EPFL (MISSING Contributions), FUPF, FHGIGD

Abstract: this part includes the specification of components, formats, databases and protocol related
to the AXMEDIS Framework area including AXOM, loading and saving MPEG-21 objects,
formats, protection processor.

Keyword List: AXOM, Object Model, MPEG-21, BIM, IPMP, Protection Information

AXMEDISProject 1

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Copyright Notice

The following terms (including future possible amendments) set out the rights and obligations licensee will be requested
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by
any other means.

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT.

1. DEFINITIONS
i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the
document have been accepted.

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a
Document.

iii. "Licensor"is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in
terms of companies and/or associations, see www.axmedis.org

iv. "Document" means the information contained in any electronic file, which has been published by the
Licensor's as AXMEDIS official document and listed in the web site mentioned above or available by any
other means.

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.
2. LICENCE
1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to

present terms and conditions (the Licence) for the parts that are own and proprietary property the of
AXMEDIS consortium or its members.

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and
conditions.

3. TERM AND TERMINATION

1. Granted Licence shall commence on Acceptance Date.

2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions
of this Licence.

3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of
termination.

4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the
accessed Copyright.

5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or
obligations, shall survive termination of this Licence and shall continue in full force and effect.

6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it
as stated in the document itself will remain in force for a period of 5 years after license issue date or the
period stated in the document whichever is the longer.

4. USE

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:

i remove this Copyright Notice on a Document or any of its reproduction in any form in which those
may be achieved,;

ii. change or remove the title of a Document;

iii. use all or any part of a Document as part of a specification or standard not emanating from the
Licensor without the prior written consent of the Licensor; or

iv. do or permit others to do any act or omission in relation to a Document which is contrary to the
rights and obligations as stated in the present license and agreed with the Licensor

5. COPYRIGHT NOTICES

1. All Works shall bear a clear notice asserting the Licensor's Copyright. The notice shall use the wording
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.

AXMEDISProject 2

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

6. WARRANTY

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.

2. For the avoidance of doubt the licensee should be aware that athough the Copyright in the
documentsis given under warranty this warranty does not extend to the content of any document
which may contain references or specifications or technologies that are covered by patents (also
of third parties) or that refer to other standards. AXMEDIS is not responsible and does not
guarantee that the information contained in the document is fully proprietary of AXMEDIS
consortium and/or partners.

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of
action which the Licensor may have, at al times keep the Licensor fully and effectively
indemnified against al and any liability (which ligbility shall include, without limitation, all
losses, costs, claims, expenses, demands, actions, damages, legal and other professional fees and
expenses on a full indemnity basis) which the Licensor may suffer or incur as a result of, or by
reason of, any breach or non-fulfillment of any of his obligations in respect of this License.

7. INFRINGEMENT
1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the

Copyright which comes to licensee notice and shall, at the Licensor’'s request and expense, do all such
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.

8. GOVERNING LAW AND JURISDICTION

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.

2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.

Please note that:

e You can become affiliated with AXMEDIS. This will give you the access to a
huge amount of knowledge, information and source code related to the
AXMEDIS Framework. If you are interested please contact P. Nes at
nes @dsi.unifi.it. Once affiliated with AXMEDIS you will have the possibility
of using the AXMEDI S specification and technology for your business.

e You can contribute to the improvement of AXMEDIS documents and
specification by sending the contribution to P. Nesi at nesi @dsi.unifi.it

e You can atend AXMEDIS meetings that are open to public, for additiona
information see WWW.axmedis.org or contact P. Nesi at nesi @dsi.unifi.it

AXMEDISProject 3

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Table of Content

1 EXECUTIVE SUMMARY AND REPORT SCOPKEccoiiieeie ettt ssreenteestessreesseesaeesbaesanesnsesnnesasesnnes 7
11 THISDOCUMENT CONCERNS (DS) ..uiuiietiirieiisieieisie ettt ss et saesasessesesensnsans 8
12 L1ST OF MODULES OR EXECUTABLE TOOLS SPECIFIED IN THISDOCUMENT (DSI) wevevviirieinisieivisieenesiee s 8
13 L1ST OF FORMATS SPECIFIED IN THISDOCUMENT (DSI) ..vcviiiiieeiisieiiiisieesisie et st sesaesenens 9

2 GENERAL ARCHITECTURE AND RELATIONSHIPS AMONG THE MODULES PRODUCED (DS,

) I TS 10

3 MPEG-21 OBJECT MODEL (DSI)..iitiieieieieiriiieesesieisesie e sesieesss e sesse e sss e e e s sss e sessesassssesssansessssssessssnsessnsns 11
31 GENERAL DESCRIPTION OF THE IMODULE ... uviiiitiieiteeceteeeeteeeetesesteesstessssaessesaessssesssssessssessssesssssessssessssessasens 12
3.2 MODULE DESIGN IN TERMS OF CLASSESuveiiitiieiiteeeeteeeisteessseseessessssessesessassessssssssssessssssssssessassessssssssssessasssesns 12

321 DI'sObject Model CapahilitieS OVEIVIEWcccouviiriiiiiririisiie et b e ssenan 14
322 ClassesS and MEthOOS OVEIVIEW........ceiiiiiieieiiteeteeeeite e st steeesstesbesbesstesessbeebesseessesbessesbesssessesbessesssessesssatenns 16
3.3 EXAMPLES OF USAGE ...uteiitieiteiitiesteesseessesssessessessesssesssesssesssessssssssssassssessasesssesssssesssesssesssesssesssesssssssessssesssesnnes 20
34 INTEGRATION AND COMPILATION ISSUES.....ueiiiteitriireeiseessesiseessessseessessssessesssssssssssssssssssesssssssessseessesssssssesssssssenss 20
35 ERRORS REPORTED AND THAT MAY OCCURcitiiitietieitieiteeiseeiseeaseesssssesssssssessssssesssesssesssesssesssessssssssssssssssssnnes 21

4 MPEG-21 LOADER (DS]) cutiiititrisieisieteiesise st st e s s ses e sse st sasse s sas e st se e ssssasesassesessesesesassesessnsessssnsesssss 22
4.1 GENERAL DESCRIPTION OF THE IMODULEc.utictiiitieitieiteistessteesseesessstesssssssessbessteessesssesssesssessssssssssssessssssesssssnes 23
4.2 MODULE DESIGN IN TERMS OF CLASSES ...veiuviitiitieteesressteessesssesssesssesssessssssssssssssssesssesssesssesssesssesssssssessnssssassnnes 24

4,22 ClasS MENOUS OVEIWIEIVcvicviieiieiecie ittt sttt st e st s b e sbesatssessasebesbe s st e besbssbsssssssebesbsssssstesesarens 26
4.3 EXAMPLES OF USAGE ...eeccuveeieteeeeieeeesteeeisessessessasssasssessassessassesassessassessasessassessasssssssssssnsessasssssnsessansesssssssssessasessns 30
4.4 INTEGRATION AND COMPILATION ISSUES.....ucciuiireiieeiseesessseessessseessessssessesssesssesssssssssassessssessessssessesssesssesssesssenss 30
4.5 CONFIGURATION PARAMETERS......ceiiitiiiteeeireeiitetestesesseessssessssessassssssessssssssasesssssessssessssssssssesssssessasesssssessassees 30
4.6 ERRORS REPORTED AND THAT MAY OCCURccitiiteeiteesreeiseesseesseesseessessssssesssesssssssesssesssesssesssesssesssssssessnsesssssnnes 30

5 MPEG-21 SAVER (DS])...utitiieiieserietsestees e e e s e st seeseseesae e s seeseesesaesse e ssessesessessensssessessesessenseseesessasensessessanessessen 32
51 GENERAL DESCRIPTION OF THE IMODULEccvteitieiteesteeiteesseesseessessesssessesssesssesssesssessssessessssssssessesssessesssessssenee 33
52 MODULE DESIGN IN TERMS OF CLASSES ...veiviiitiiteeiteestesiseesseeiseessessssssesssssssssssssssesssesssssssesssesssesssssssessssssssssnnes 33

521 MPEG-21Saver CapabilitieS OVEIVIEW.........ceririeiririierieieisie sttt sttt s et se st 34
52.2 Class and MEthOUS OVEINVIEWccuiciiiuiiiie ittt sttt sttt st e be s e sbe s e sassbs e s e bssbesssenbesbesnssssestsatens 35
53 EXAMPLES OF USAGEveiitiiiteiitieiteesteeseseseesssssstssssssstesabessseassesssesssessassssessssssssssnsssnssensesssesssesssesssesssssssesssssssensnnes 37
54 INTEGRATION AND COMPILATION ISSUES.....ueiiiteitriireeiseessesiseessessseessessssessesssssssssssssssssssesssssssessseessesssssssesssssssenss 37
55 ERRORS REPORTED AND THAT MAY OCCURcoviitiitieiteeiteeiteesseessesssesssessssssssssssssssesssesssesssesssesssesssssssessnssssessnnes 37

6 AXMEDISOBJIECT MODEL (DSI) c.oiiiciitisteeeiriiseeseseeseesesssseesessesaesssssssessesessessessesessessesessessesessessessssessessessssssees 38
6.1 GENERAL DESCRIPTION OF THE IMODULEuviiiitiieiteeceeeeeeteeeeteeeeteessatessssaessesaessssesssssesssssssssessssssssnsessssessasses 39
6.2 MODULE DESIGN IN TERMS OF CLASSESuviiiitieeeiteeieteeiisteesssesesssessssessessessasssssssssssssessasssssssessassessssssssssessasssesns 39

B.2.1 AXMEIAAA. ... ccoviitecriiieeie ettt ettt et e e e et e s b e s be e e e b e e b e ebeeabeabeshesheeaseabeabeeheeatebesheeaeensenbeeheeaeenbenreebeens 41

B.2.2 AXINFO ittt et b et b et a e b beebe et e abe bt e he et et e abeeheebesbesheeae e rebeeheeneentesreeteens 41

B.2.3 AXDUDIINCOIvecticteitieieite ettt et be s b e s bt e e e s e st e sbeebaebesbesbeeaeeabeabesbeeasesseseeeaeensenbesbesnsenteseeabenns 45

(ST) (@]| I OSSR 46

(ST T D Oo 11 o | RS URRR 46

L T D (® o] <o SOOI 46

B.2.7 AXRESOUICE.....oeccteiiteeiteeiteeite st e et e s bt et e e abeesbeesbeesbeesaeesaeeeabesaseeabeesbeeabeesbeeabeesbeeabeesasesaseanbeesbeeabeesaeaabeesasesanesnnis 47

(SIS TN & 0o T o1V, = =" = = U W < TR S 48

LS T S (0 = o < SRR 50

7 AXMEDISOBJECT PREPROCESSOR AND POSTPROCESSOR (EPFL)...cccccoiiiireiiieteesieeeseseeseees 52
71 GENERAL DESCRIPTION OF THE IMODULEuviiiitiieiteeieeeeeeteeeeteeeeteesstesssssessesaessssesssssessssessssessssssssnsessssessssees 53
7.2 MODULE DESIGN IN TERMS OF CLASSESuveiiitiieeiteeeeteeeisteessseseessessssessessessasssssssesssssessasssssssessassessssssssssessasssssns 53

A R = (= = (= (0= 3 o Y= 53
T7.2.2 MPEG-2L BiNAIZBHONoccviiuierieieetiitisiee st ere et eseestestesteeeesesbesbeessessessesaeessenseabesssessessesassseessentessessssssesseatenns 55
7.3 TECHNICAL AND INSTALLATION INFORMATION ..veiiieiveetreireesesiseesersseesseessesssesssssssssssesssssnsesssssssessssessesssensenns 55
7.4 DRAFT USER IMANUAL ..teiitteiteeiteeiteestee st e stesressesbessseessessseasseessssssessassssessasesnsesnsesssesnsesssesssesssesssessssssseesssesseesnnes 55

AXMEDISProject 4

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

7.5 EXAMPLES OF USAGE ...cutetestesteeueestessesieeieesesseesesseessessessesseeseessesseeaeeneeseaheemeemsesseneeeae e e e b e e seeneenseseeabeeneeneensesrenein 55

7.6 INTEGRATION AND COMPILATION ISSUES.....c.uteuteutetestessereeseassessessessessessesseessasessesnesssssessessesnsassesssssesnsessessesnes 55

7.7 ERRORS REPORTED AND THAT MAY OCCURccutiutetetisueeueeseessesseseessessessesseesessessesseesssnsessessesssessessesseensensesessses 55

7.8 FORMAL DESCRIPTION OF ALGORITHM <............... e 55
8 PROTECTION PROCESSOR (DSI) ..ottt se e sesesesesesssss s sssssese s sesesesessssesessnees

8.1 GENERAL DESCRIPTION OF THE MODULE
8.1.1 AXMEDIStool registration and certification
8111 Software and hardware fingerprint

8.1.1.2 Tool certificate.....oovvvvveveeiececreerne.
8.1.1.3 TOOI REGISIIALiON COrtifiCALE. ... c.eereereiiiiiieieerr ettt ettt ettt s s
8.1.1.4 (O o< v) (o= (O
8.1.15 User Identifier/Identification...........cccceevevieicrecnene.
8.1.1.6 Date and time......ccccoevieieieciece e
8.1.1.7 ACtON NISLONY ...
8118 Enabling Code..........ccocoreuiiiininiiiincccces
8.1.1.9 Trustiness Of AtOOIc.ccveveeeerieececeece et
8.1.1.10 Certified SOftware........ccceceevevveiveiseceee e
8.1.1.11 EXECULION CONLIOIS.....ceeveiieiieeieieiiieee et
8.1.2 Robustness against malicious user actions
8.2 MODULE DESIGN IN TERMS OF CLASSESecviiitiiteeteesreeiseesseeiseessessssssesssssssesssssssesssesssssssesssesssessssssssssssssssssanes
8.2 1 GENETA SITUCIUIEeeveiviitieiectiete ettt ste st bttt e e s be et ebesae st e sbeeab e besbesbseseesbeabesbeessenbesbssbseseessebesbesnsestestsabeans
8.2.2 ProtectionProcessor and CipherDataSourCEMaNAQEYcuoviueveririeerisiereresseesesiesesessesessssesesessesessseseesseses 65
S T O o g S = o 1TSS 67
8.2.4 Protection INfOrmation iNEEMPIrEtalioNcceerueiriereirieieise e e st se e sase e besessesesessesenensesen 68
LIS T I == o -
8.2.6 Certificate INtEIfAaCE MOUUIE........ceoceiceiceicece ettt et se s st b e s e s besbesaesseesesabens
8.2.7 FINGEIPrINt IMOTUIE......ceuiiieeieiet et bbbttt s b ettt e st bbb e bbbt enan
8.2.8 TOO! CEIITICAION...cveeite ittt sttt ettt s e bt e et e beebe e besbesbeere e s et e abeessesbesbesbeessensebesbeessenseseeatenns
8.29 Grant AULhOriSALION REGUESES..........cuiririiiiriieereeieit ettt s b bbb e enan
8.210 Tool recovery/recertification
8.2.11 Protection ToolS aS AXMEDIS PlUG-INSovvviiiiiinirieisis st sttt sss e sessanens 77
8.3 INTEGRATION AND COMPILATION ISSUES.....u0eiiteetreiiresiseessesssessseesseessesssssssssssssssssssesssssssesssesssessseessesssssssessssssens 78
8.4 CONFIGURATION PARAMETERS.cuvtittitteeittiiteesteesteesteesaesssessaessssssssssssesssssssessssssesssesssssssesssssssssssssssesssesssesssesnne 78
8.5 ERRORS REPORTED AND THAT MAY OCCURcitiitieteentesiteesseesseeasesssssssesssssssesssssssesssesssesssesssesssesssssssesssssssassnnes 78
9 ENCRYPTION/DECRYPTION SUPPORT (FUPKF).....ceiiitieinisineisisene st esss s 80
9.1 GENERAL DESCRIPTION OF THE IMODULEc.vtiitiiitieitieiteestessteesseesesssaesssssssessbssssesssesssesssesssesssessssssssessssssessssanes 81
9.2 MODULE DESIGN IN TERMS OF CLASSESuveiiiieeeiteeeeteeeisteessseseassessssessessessassessssssssssessssssssssessassessssssssssessasssssns 81
9.2.1 Architecturefor encryption / decryption SUPPOI.........cceeeiiieriereeeeiieeeseeese s sasse s s sesesessesessesesesessanens 81
9.3 IMPLEMENTATION OF THE ALGORITHMSutiiitieiieeeiiteeeseeeesseeesssesssssesssesessssssssssssssesesssessssesssssessssssesssesssssesssses 82
9.4 EXAMPLES OF USAGEteiitieiteeitiesteesseessesssessessessesssesssesssssssesssssssessassssessasssssesssssesssesssesssesssesssesssssssessssesssesnnes 82
9.5 FORMAL DESCRIPTION OF ENCRYPTION / DECRY PTION SUPPORT OPERATIONSviiuviiiteeiteeiteesressreessesssessrassnnas 83
10 COMPRESSUNCOMPRESS SUPPORT (DSI) .cvectrieiiiirieerisiee s enes 85
10.1 GENERAL DESCRIPTION OF THE MODULE.......ctcitiiitieiteeiteesteesteessesssressessasssssessessesssesssssssesssssssessssssssessssnsesssesnee 86
10.2 EXAMPLES OF USAGE ..iiteiiteeiteeiteesteesseesseessesseassesssesssessseessessssessessssssssssassssesssesssesssesssssssesssssssessssssssesssesnsesssssnes 86
11 SCRAMBLE/DESCRAMBLE SUPPORT (EPFL) .ottt nees 88
11.1 GENERAL DESCRIPTION OF THE MODULE.......ctcitiiitiiiteeiteesteesseessesssesssessssssssesssessseessesssssssesssssssessssssssessssnsesssesnne 89
11.2 MODULE DESIGN IN TERMS OF CLASSEScciotiitiiitiiiteeitrestessseessesssesssessssssssssssessssssesssssssesssssssessssssssssssssssesssssnns 0
11.3 TECHNICAL AND INSTALLATION INFORMATION ...ccveiiteeitiesreeiseessesiseessessssssssssessssessesssesssesssssssesssssssssssssnsesssesnne 91
11.3.1 (LU= TR o] T 91
11.4 INTEGRATION AND COMPILATION ISSUES......uuiieitieiireeeeiteeeistesesseeeassessaseseassessassessssssssssessssesssssesssssessssssssssessassseans 92
12 MPEG-21 DIBO (EPFL) ettt ittt ettt see s s ae s sa e e ene s e e nesseseeneesensenensensenensensenes 93
121 MPEG-2LDIPINAXMEDIS.....o oottt ettt ettt s st s st sbes s e s saessaassbesesbesbesbessbessbessbesasessressnsesnnnsnns 94
12.2 GENERAL DESCRIPTION OF THE MODULE.......ceeittiiteeiteeiteesteesseesseesssesssssssessesssesseessesssssssesssssssesssesssesssssssesssesnee 95
O T O XS R ORSRPRN 95
13 MPEG-2L DIM (EPFL) ..ttt sttt bttt bbbttt b bt tenn 97

AXMEDISProject 5

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

131 MPEG-21 DI METHODSIN AXMEDIS ..ottt 98
13.11 Relationship between DIMS, DIBOS, anNd DIXOS.........ccuviieiiiieinisieisesieeses e sessesssessesesesssssssssessssssenens 929

13.2 GENERAL DESCRIPTION OF THE MODULE
14 MPEG-21 DIA PROCESSING(EPFL)

14.1 GENERAL DESCRIPTION OF THE MODULE ... ccitiuteueetestestesseeseesteseestesseeseessesaesseeneessesseeseesssseessesseensensessesnsensanses 101
15 MPEG-2L DIA (EPFL) c.et ittt ettt sssse s se e e st e se e e e e e se e se et sesesesesennnnnnnenesesenesenen 104
16 AXMEDIS DATA MODEL (DSI) cooiriiiiirieeeieieeeeeeneseseses s seeasessssesssesesesesesesesessssesesssssesensssssssssssssssssssesssnsess 105

16.1 AXMEDISOBIECTSASMPEG2L OBJIECTS......cciiririirriieiiriretsesiest st ssne s s es 105

16.1.1 MPEG21 Digital [TEMS.....cceueeeiririieseeee ettt 105
16.1.2 AXMEDIS ODJECLS......cociirereresiri ettt ne e n e enenna 107
16.1.3 BaSIC AXMEDIS ODJECL: ...ttt sttt sttt 108
16.1.4 Protected BasiC AXMEDIS ODJECE: ..ottt 109
16.1.5 CompPOSiteE AXMEDIS OBJECL:......uciiieiriiieiriseesee ettt s e s e e 110
16.1.6 Protected Composite AXMEDIS ObJECE:cviviieiririeirieine ettt st snns 111
16.1.7 REFEITEA AXMEDIS OBJECL ...ttt sttt bbbttt bbb 112
16.1.8 GOVErNED AXMEDIS ODJECL:vviiiuieeirirere ettt b bbb s st s se e s bbbt enenene e 112
16.1.9 AXMEDIS Metadata Model (DSI, EPFL,) e seseseses e es 113
16.1.9.1 Dublin Core Metadata............ccvvermrennireereerirniecenens
16.1.10 Examplesof AXMEDIS Objects
17 AXTNFO (DSI) .ttt bbb b £ e bbb bbb ettt st e e e ne bt bebebtas
18 AXMEDISTOOL FINGERPRINT (DS, FUPF)....ccoiiiiiiririeieietseeeene ettt 145
19 AXMEDISPROTECTION INFO (DSI, FHGIGD)cociiiiitiirieieieieeeeesesesese st sesese s sesesena 148
20 PROTECTION TOOL DESCRIPTION (DS]) ...eeuttrietiinieieinieieeneeieesieieeseeseesssieeseesesesss e ssesessssssesessesenens 149
21 RIGHTS AND ENFORCEMENT (FUPF, DSI, ALL) wvitiiiiitirrirereres et 152
211 DESCRIPTION OF TYPICAL CONTENT MANIPULATION ...cutiteietertestesserseessessessesseessessessesssessessessessessesssssesseensenes 152
2111 General issue on distinguish Adapt and Modify INEENES..........ccevriiriiinnes e 152
21.2 EXAMPLESOF AXMEDIS OBJECT MANIPULATIONitttrtetetrserestressesessssestsessesessssesssessesessssesssessesessssessssnsesenns 152
2121 AdAING 10 FOOL TEVEL ...t bbbttt b bbbt 152
21.2.2 AddiNg tO NESLEA TEVEL ...ttt b et e s nnas 154
21.2.3 Transformation Of DaSiC ODJECES.......cciiiieeierciic et s r e e enans 154
21.24 Transformation of objectsin aCoMPOSILIONcccuveririiieirinie et e 155
21.25 Deletion of objects from acomposition (from root level or nested)........c.cocevveerereiennccesscese e 155
21.2.6 Copying of objects from acomposition 10 @NONEYccoiiirreir e 156
21.2.7 Moving of objects from acomposition t0 @NOLNEN...........cc.cciiiireierci e 158
21.2.8 Playing/rendering of objects (basiC, COMPOSITE).........coeirriiirrieeree e 158
21.29 Manipulation Of ObjECt MELATALA.eiirereeireree e et 159
21.3 MAPPING RIGHTS ON USER ACTION ..cuttitiiuieiertiseesteeseentesseseeseessessessesasessessessessesssessessesssessessessesnsessesssssesseensenes 159

AXMEDISProject 6

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

1 Executive Summary and Report Scope

The full AXMEDIS specification document has been decomposed in the following parts:

DE Deliverabletitle respons
number ible
DE3.1.22.1 Specification of General Aspects of AXMEDI S framework, first update of DE3.1.2 part A DSl
AXMEDIS-DE3-1-2-2-1-Spec-of-AX-Gen-Asp-of-AXMEDI S-framework-upA-v1-0.doc
DE3.1.2.2.2 Specification of AXMEDIS Command Manager, first update of DE3.1.2 part B DSl
AXMEDIS- DE3-1-2-2-2-Spec-of-AX-Cmd-Man-upB-v1-0.doc
DE3.1.2.2.3 Specification of AXMEDIS Object Manager and Protection Processor, first update of DE3.1.2 part B DSl
AXMEDIS-DE3-1-2-2-3-Spec-of-AX OM-and-ProtProc-upB-v1-0.doc
DE3.1.2.2.4 Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B DSl
AXMEDIS-DES-1-2-2-4-Spec-of-A X -Editors-and-Viewers-upB-v1-0.doc
DE3.1.2.25 Specification of External AXMEDIS Editors/Viewers and Players, first update of DE3.1.2 part B EPFL
AXMEDIS-DE3-1-2-2-5-Spec-of-External -Editors-Viewers-Players-upB-v1-0.doc
DE3.1.2.2.6 Specification of AXMEDIS Content Processing, first update of DE3.1.2 part C DSl
AXMEDIS-DE3-1-2-2-6-Spec-of-A X -Content-Processing-upC-v1-0.doc
DE3.1.2.2.7 Specification of AXMEDIS External Processing Algorithms FHGIGD
AXMEDIS-DE3-1-2-2-7-Spec-of-A X -External-Processing-Algorithms-v1-0.doc
DE3.1.2.2.8 Specification of AXMEDIS CMS Crawling Capabilities, first update of part of DE3.1.2 DSl
AXMEDIS-DE3-1-2-2-8-Spec-of-AX-CM S-Crawling-Capab-v1-0.doc
DE3.1.2.2.9 Specification of AXMEDIS database and query support, first update of part of DE3.1.2 EXITEC
H
AXMEDIS-DE3-1-2-2-9-Spec-of-A X -database-and-query-support-v1-0.doc
DE3.1.2.2.10 | Specification of AXMEDIS P2P tools, AXEPTool and AXMEDIS, first update of part of DE3.1.2 CR+#A
AXMEDIS-DE3-1-2-2-10-Spec-of-AXEPTool-and-AXMEDI A-tools-v1-0.doc
DE3.1.2.2.11 | Specification of AXMEDIS Programme and Publication tools, first update of part of DE3.1.2 UNIVLE
EDS
AXMEDIS-DE3-1-2-2-11-Spec-of-A X-Progr-and-Pub-tool -v1-0.doc
DE3.1.2.2.12 | Specification of AXMEDIS Workflow Tools, first update of part of DE3.1.2 IRC
AXMEDIS-DE3-1-2-2-12-Spec-of-AX-Workflow-Tools-v1-0.doc
DE3.1.2.2.13 | Specification of AXMEDIS Certifier and Supervisor and networks of AXCS, first update of part of DSl
DE3.1.2
AXMEDIS-DE3-1-2-2-13-Spec-of-A X CS-and-networks-v1-0.doc
DE3.1.2.2.14 | Specification of AXMEDIS Protection Support, first update of part of DE3.1.2 FUPF
AXMEDIS-DE3-1-2-2-14-Spec-of -A X -Protection-Support-v1-0.doc
DE3.1.2.2.15 | Specification of AXMEDIS accounting and reporting, first update of part of DE3.1.2 EXITEC
H
AXMEDIS-DE3-1-2-2-15-Spec-of-A X-Accounting-and-Reporting-v1-0.doc
AXMEDIS Project 7

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

1.1 This document concerns (DSI)
AXMEDIS Object Manager and Protection Processor.

AXMEDIS Object Manager, so called AXOM, is the coordinator of al other modules used by or built in

AXMEDIS Editor. Coordination activities it is important to permit development of others AXMEDIS Editor

modules almost independently each other. AXMEDIS Object Manager guarantees DRM rules respect on

AXMEDIS object manipulations.

AXMEDIS Object Manager works in respect of AXMEDIS Data Model Support and it fundamentally is

composed by three modules:

e AXMEDIS Command Manager which is the real interface for processing content models as the
AXMEDIS Data Model and protected according to the tools of the AXMEDIS Protection processor

e AXMEDIS Data Model Support to model the AXMEDIS objects according to MPEG-21 and
additional requirements identified

e AXMEDIS Protection Processor to protect and processing registration, certification, and to protected
and unprotect digital resources according to a dynamic mechanism similar to that of IPMP of MPEG21.

In particular, AXMEDIS Data Model Support can be decomposed in four modules and two formats:

e MPEG-21 Object Model allows to represent a MPEG-21 document as software object model

e MPEG-21 Loader alowstoload an MPEG-21 document

e MPEG-21 Saver allowsto save a software object model to a MPEG-21 document

e AXMEDIS Object Model alows to represent an AXMEDIS document as a software object model on
the basis of the MPEG-21 Object Model

e AXMEDISData Mode defines the structure and the information of an AXMEDIS Object

¢ AXInfo defines the structure of the AXMEDIS B2B information

Protection Processor has mainly four tasks:

1. Toregister and certify an AXMEDIStool containing the AXOM, e.g. editor, player, engine, etc.

2. To control software which uses sensible content and does not contain AXOM, e.g. plug-ins for

fingerprint

3. Toreved attacks during tool execution, e.g. code debugging

4. To protect and un-protect elements of AXMEDI S object
In the following those aspects will be described and solutions are proposed for them. After that, class
implementation and interaction will be described.

1.2 List of Modules or Executable Tools Specified in this document (DSI)

A module is a component that can be or it is reused in other cases or points of the AXMEDIS framework or
of other AXMEDI'S based solutions.
The modules/tool s have to include effective components and/or tools and also testing components and tools.

M odule/tool Module/Tool Description and purpose, statealsoin | Standards exploited
Name which other AXMEDISareaisused if any

MPEG-21 Object MPEG-21 DIDL; MPEG-21

Model IPMP

MPEG-21 Loader MPEG-21 DIDL; MPEG-21
IPMP

MPEG-21 Saver MPEG-21 DIDL; MPEG-21
IPMP

AXMEDIS Object Dublin Core

Model

AXMEDIS Object W3C Xlnclude, MPEG-21

Pre-processor and Binary Format

Post-processor

Protection MPEG-21 IPMP; X.509 v3

Processor

Encryption/Decrypt

ion Support

AXMEDISProject)

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Compress/uncompr

ess Support

Scramble/Descram

ble Support

MPEG-21 DIBO ISO/IEC FDIS 21000-
10:2005(E) - MPEG-21 DIP

MPEG-21 DIM ISO/IEC FDIS 21000-
10:2005(E) - MPEG-21 DIP

MPEG-21 DIA ISO/IEC FDIS 21000-

Processing 7:2005(E) - MPEG-21 DIA

1.3 List of Formats Specified in this document (DSI)

A format can be (i) an XML content file for modelling some information, (ii) a file format for storing
information, (iii) aformat that is manipulated by the tools described in this document, etc...

Format Name | Format Description and purpose, state Standar ds exploited if any
also in which other modulesis used

MPEG-21 DIA MPEG-21 DIA

AXMEDIS Data MPEG-21 DIDL; MPEG-21 IPMP
Model

AXlInfo

AXMEDIS Tool
Fingerprint

AXMEDIS MPEG-21 IPMP
Protection Info

Protection Tool
description

AXMEDISProject 9

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

2 General architecture and relationships am
produced (DSI, All)

ong the modules

The following figure sketch out the genera architecture of the AXMEDIS Object Manager and Protection

Processor togethers

AXMEDIS Object M anager

«uses»

]

bttt il AXMEDIS Editor::Protection

|

|

—l |
«uses» }

Manager Support Client

unprot/prot procedure and information

AXMEDI S Project

AXMEDIS Data Base Area::AXMEDIS Data K —-—----— 1
Model Support } AXMEDIS Command Manager
Compress/ K-mmmmmmmmmmme - «USes»]
uncompress Support i
D R — i
[Protection Processor
|
I
'l T T
ses
Scramble/ S s> m——---- «uses»= """~ ! |
deScramble Support i ! !
[| |
«uses» } [
(I | «uses»
| 1 1
T Il I I
Decryption Support | ! !
| | |
I I I
| | |
|
- ; : :
| |
o | | V)
Encryption Support !
} Tool ID estimation

10

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

3 MPEG-21 Object Model (DSI)

M odule/Tool Profile

Responsible Name

MPEG-21 Object Model

Andrea Vallotti, Davide Rogai

Responsible Partner DSl

Status (proposed/approved) Proposed

Implemented/not implemented | Implemented

Status of the implementation In refinement

Executable or Library/module Library

(Support)

Single Thread or Multithread Multithread

Language of Devel opment C++

Platforms supported Windows XP; Linux; Windows Mobile

Reference to the AXFW https:.//cvs.axmedis.org/repos/Framework/proj ect/axom/dimodel

location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axom/di model

https.//cvs.axmedis.org/repos/Framework/incl ude/axom/di model

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/ Framework/bin/axom/

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServicesif any, add
accession information (user and
Passwd) if any

Test cases (present/absent)

Present

Test cases location

https.//cvs.axmedis.org/repos/Framework/doc/test/axom/

Usage of the AXMEDIS No
configuration manager (yes/no)
Usage of the AXMEDIS Error Yes

Manager (yes/no)

Major Problems not solved

Major pending requirements

Interfaces APl with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used

Shared with

format name or reference to a
section

AXMEDI S Project

11

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Protocol Used Shared with Protocol name or reference to a
section
Used Database name
User Interface Development model, language, | Library used for the development,
etc. platform, etc.
Used Libraries Name of the library and version License status. GPL. LGPL. PEK,
proprietary, authorized or not

3.1 General Description of the Module

The MPEG-21 Object Model provides the means to represent an MPEG-21 Digital Item as a software object
model. That is, a DI is represented as a tree of class instances. Each class represent one of the elements
defined in the MPEG-21 standard. In particular, the elements of MPEG-21 DID and IPMP has been
modelled since these parts of the standard are fundamental in order to represent protected and clear-text Dls.
This module provides all those features needed in order to completely handling and managing the DI model,
including:

e Insertion, deletion and modification of model, model elements, and model element’ s attributes

e Modularity and expandability of model representation.

e Managing of inclusion functionalities and post parsing inclusions resolving and loading.

o Vadlidation of model representation.
Items representation doesn’t stop to DI hierarchy but includes even DIl hierarchy modelling.

3.2 Module Design in terms of Classes

The class diagram below gives an overview of the MPEG-21 Object Model. IPMP elements are fully
integrated in the representation tree of DI. This structure aso alow insertion and managing of new
hierarchies, like DIl hierarchy.

AXMEDISProject 12

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

MPEG21LeafElement |

virtual

c_o_.>mmmao=_|v_ AbstractAssertion

AN

DIDLCondition | ——[>| AbstractCondition

AbstractS: t _A|_ DIDLStatement _UJI

AbstractFragment _A|_ DIDLFragment _H

N

©
AV AbstractDIElement _A M AbstractResource DIDLResource Nl
2 AbstractSelection DIDLSelection
c
—] piLAnchor >am=moDS=n=$ 1 § ~] V.
ContainsAsset
_ DIDLChoice Iv_ AbstractChoice T AbstractDescriptor _A|_ DIDLDescriptor _‘f I
N = [Contansany
ContainsAn
_ DIDLComponent AbstractComponent T AbstractAnnotation _A|_ DIDLAnnNotation _‘;r y A
7AN AN
_ DIDLItem V_ Abstractitem _K AbstractContainer _A|_ DIDLContainer _‘r
VAN 7S
| MPEG21LeafElement
> DIDLElement K
DIDLDeclarations _
IPMPElement
|enpIA
< .
g AV !
4
| 1 m_wv MPEG21El t _A GenericlPMPElement
MPEG21ElementCollection i ‘ virtual
0.1

MPEG21Document

IPMPltem
IPMPComponent
IPMPChoice

IPMPAnchor

_ IPMPCondition

IPMPContainer

IPMPAnnotation

IPMPDescriptor

IPMPSelection

_ _‘
_ _‘

* IPMPAssertion _‘

IPMPS it

IPMPFragment
IPMPResource

13

AXMEDI S Project

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

3.2.1 DI's Object Model Capabilities Overview

A fundamental role in module architecture is carried out by MPEG21ElementCollection. This class manages
representation tree structure of DI, it implements type checking on elements, element ordered insertion,
deletion, retrieving and representation visit.

Next diagram shows a deepest look to type checking implementation. All element classes in the model
contains a dtatic instance of Class element to specify their types. This instance provide type checking
methods needed by MPEG21ElementCollection to alow or deny insertion in a particular position of
representation tree, and then enabling it to find the right place in the tree for an incoming new element.

Recognizable AbstractClass
/\

+isSuperClassOf(in ptr : const Recognizable*) : bool
+isSuperClassOf(inout rec : const Recognizable) : bool

MPEG21Element % L‘F _______ _!
+CLASS : Class<MPEG21Element> +static Class
#mChildrenCollection : MPEG21ElementCollection >N
-mParentElement : MPEG21Element * 1 4 |*isSuperClassOfiin ptr : const Recognizable*) : bool
-mChildren : MPEG21ElementList +isSuperClassOf(inout rec : const Recognizable) : bool
-mOwnerDocument : MPEG21Document *

MPEG21ElementCollection could, using functionalities introduced by Class static element, determine if and
where anew element isinserted in the representation of DI as next figure shows.

MPEG21Element MPEG21ElementCollection mElementList mSublLists
addChiId(newChiId) 1: addElement(toAdd) | 2: find(toAdd) | |
! 1 1 |
toAdd is not already present U }
e ,,,,,,,,,,,,,,,,,,,,,,,,, |
3: find_if(begin,end,isSuperClasof(toAdd)) }
| |
insertPosition - root element suppoﬁ toAdd's type as child type U
,,,,,,,,,,,,,,,,,,,,,,,,,, ‘,,,,,,,,,,,,,,,,,,,,,,
4: insert(insertPosition, toAdd) } }
| |
insertion ok insertion ok insertion ok /u i
oo T e e L e LT L L LR L EE RS ;

If insertion is not allowed, e.g. in case where the given element is not allowed to be inserted as a child of the
target element, type checking alow rejection of insertion operation, granting consistency between
representation of DI and XML Schema defined in MPEG-21 specification.

MPEG21Element MPEG21ElementCollection mElementList mSublLists

addChild(toAdd) | 1: addElement(toAdd) ! 2: find(toAdd) ! !
> I |
toAdd is not already present U }
e I
3: find_if(begin,end,isSuperClasof(toAdd)) }
I I
insertion fails insertion fails mSubList.end U
& o TS T T TTTTTTTT T NS Tt TTTTTTTTTTT T } ”””””””””””””” T

MPEG21Element collection provide a flexible management of representation tree. A IPMPItem could easily
substitute a DIDLItem in a representation, e.g. by means of a protection operation. This is alowed since
IPMPltem and DIDL Item has the same Abstractltem static member inside.

To manage those crititcal elements which carries the content for the representation a special behaviour is
needed. We have to point out that those element are leaf elements for the representation, so we can eady
group them with a common class MPEG21L eafElement. Another distinction we could do is about content
these element carries: this may be text or metadata or may be some kind of multimedia content. Object
model has to separate managing of these two cases .Classes ContainsAny for metadata and ContainsAsset for
multimedia contents solve those problems and offers functionalities to maintain content information or
references multimedia data. The latter indeed has not to be loaded in memory in many use cases.

AXMEDISProject 14

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

contains
DIDLItem 1 : DIDLItem MPEG21ElementCollection 1 : MPEG21ElementCollection

contains

_| DIDL Descritptor 1 : DIDLDescriptor i MPEG21ElementCollection 2 : MPEG21EIementCollection|
contains

_I DIDL Descriptor 2 : DIDLDescri tor|—| MPEG21ElementCollection 3 : MPEG21EIementCoIIection|
contains

| DIDLitem 2 DIDLItem | | MPEG21ElementCollection 4 : MPEG21ElementCollection |
contains

_I DIDLItem3 : DIDLItem|L]' MPEG21ElementCollection 5 : MPEG21ElementCollection |

DIDLItem4 DIDLItem|

contains
DIDLItem 1 : DIDLItem MPEG21ElementCollection 1 : MPEG21ElementCollection

contains

_IDIDLDescrit tor 1 : DIDLDescriptor |—|t _ MPEG21ElementCollection 2 : MPEG21EIementCoIIection|
contains

DIDL Descriptor 2 : DIDLDescriptor MPEG21ElementCollection 3 : MPEG21EIementCoIIection|
contains
| DIDLitem 2 : DIDLtem| | MPEG21ElementCollection 4 : MPEG21ElementColletion |

—| IPMPltem 1 : IPMPItem|

AXMEDISProject 15

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

MPEG21LeafElement

+~MPEG21LeafElement()

+addChild(in child : MPEG21Element*)

+insertChildAfter(in newChild : MPEG21Element*, in refChild : MPEG21Element*)
+insertChildBefore(in newChild : MPEG21Element*, in refChild : MPEG21Element*)
+removeChild(in child : MPEG21Element*)

+deleteChild(in child : MPEG21Element*)

#MPEG21LeafElement()

ContainsAsset
+~ContainsAsset() ContainsAny
+getAsset() : DataSource & +~ContainsAny()
+setAsset(in asset : DataSource*) +copyContent(inout from : const ContainsAny)
+isEmpty() : bool +addChild(in child : MPEG21Element*)
#ContainsAsset(in asset : DataSource*) +setMPEG21Content(in element : MPEG21Element*)
#ContainsAsset(inout src : const ContainsAsset) +setXMLContent(in element : DOMElement*)
+setTextContent(in text : string)
1 +getMPEG21Content() : MPEG21Element &

+getMPEG21Content() : const MPEG21Element &
+getXMLContent() : DOMElement &
+getXMLContent() : const DOMElement &
+getTextContent() : const string &

1 +containsMPEG21() : bool

+containsXML() : bool

+_containsText() : bool
+isEmpty() : bool
#ContainsAny()

#ContainsAny(inout src : const ContainsAny)
-fireContentChanged()

3.2.2 Classes and Methods Overview

MPEG21Element

This class acts as interface for all hierarchy elements. All methods defined and implemented by this class are
virtual and could be overridden by inheriting elements.

MPEG21Element — class methods

addCild — insertChildBefore — insertChil dAfter — removeChild — deleteChild

These methods are used to manage structure. All these methods match an appropriate method in
MPEG21ElementCollection and acts as an interface for functionalities implemented by this class.
getChildren — get ChildrenByClass getChildAfter — getChildBefore

These methods are used to retrive children elements linked in MPEG21ElementCollection. All these
methods uses MPEG21ElementCollection functionalities to retrive elements or groups of elements from
representation tree

clone, copyData, copyChildren

These virtual methods are implemented to provide element copy functionalities. These methods are
specialized by local elements implementation

MPEG21Element - ~M PEG21Element — M PEG21Element(M PEG21Element)

Constructor, destructor and copy constructor.

getNamespace

Retruns a string containing the element’ s namespace.

getElementName

Returns a string containing the name of the element.

getParentElement setParentElement

Returns a pointer to element’ s parent or set a parent for the elment

getNextSibiling — getPreviousSibiling

Returns a pointer to next or previous parent’s child element

AXMEDISProject 16

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

getOwnerDocument — setOwnerDocument — protSetOwnerDocument

Returns or set alin

k to the document that contains the e ement.

getAllowedChildren

This method returns a vector containing the allowed children types for the element.
getTextDescription

Returns a textual description of the element

makeT hisParentOf

Makes this element parent of the target element

MPEG21Element

+CLASS : Class<MPEG21Element>
#mChildrenCollection : MPEG21ElementCollection
-mParentElement : MPEG21Element *

-mChildren : MPEG21ElementList
-mOwnerDocument : MPEG21Document *

+MPEG21Element(in ownerDocument : MPEG21Document* = 0)
+MPEG21Element(inout src : const MPEG21Element, in deep : bool = 0)
+~MPEG21Element()

+addChild(in newChild : MPEG21Element*)

+insertChildBefore(in newChild : MPEG21Element*, in refChild : MPEG21Element*)
+insertChildAfter(in newChild : MPEG21Element*, in refChild : MPEG21Element*)
+removeChild(in child : MPEG21Element*)

+deleteChild(in child : MPEG21Element*)

+clone(in deep : bool = false) : MPEG21Element *

+copyData(inout src : const MPEG21Element)

+getNamespace() : const string &

+getElementName() : const string &

+getOwnerDocument() : MPEG21Document *

+setOwnerDocument(in newOwnerDocument : MPEG21Document*)
+getChildren() : const MPEG21ElementList &

+getChildrenByClass(inout elementClass : AbstractClass) : MPEG21ElementList
+getChildAfter(in after : const MPEG21Element*) : MPEG21Element *
+getChildBefore(in before : const MPEG21Element*) : MPEG21Element *
+getAllowedChildren() : const vector<AbstractClass *> &

+getParentElement() : MPEG21Element *

+getPreviousSibling() : MPEG21Element *

+getNextSibling() : MPEG21Element *

+getTextDescription() : const string &

#setParentElement(in newParentElement : MPEG21Element*)
#makeThisParentOf(in newChild : MPEG21Element*)

#copyChildren(inout src : const MPEG21Element, in deep : bool = false)
#protSetOwnerDocument(in newOwnerDocument : MPEG21Document*)

MPEG21ElementCollection
This class defines methods to manage Object Model representation tree
Any MPEG21Element include an instance of this class.

MPEG21ElementCollection

-mElementList : list<MPEG21Element *>
-mSubLists : vector<ClassSubList *>

+MPEG21ElementCollection()

+~MPEG21ElementCollection()

+insertBefore(in tolnsert : MPEG21Element*, in wherelnsert : MPEG21Element*)
+insertAfter(in tolnsert : MPEG21Element*, in wherelnsert : MPEG21Element*)
+addElement(in toAdd : MPEG21Element*)

+removeElement(in toRemove : MPEG21Element*)

+addReferences(inout allowedchild : vector<AbstractClass *>)
+addCrossReference(inout classes : const vector<AbstractClass *>)

+getElementList() : const list<MPEG21Element *> &

+getElementsByClass(inout elementClass : AbstractClass) : vector<MPEG21Element *>
-insertincludeBefore(in tolnsert : MPEG21Element*, in wherelnsert : MPEG21Element*)
-insertincludeAfter(in tolnsert : MPEG21Element*, in wherelnsert : MPEG21Element*)
-addInclude(in toAdd : MPEG21Element*)

-removelnclude(in toErase : MPEG21Element*)

| MPEG21ElementCollection — class methods

AXMEDI S Project

17

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

MPEG21ElementCollection - ~M PEG21ElementCollection

Class constructor and destructor

insertBefore — insertAfter

Insert an element in the element list in a position specified by the wherelnsert element.. Throws an
exception if input position is not in accordance with inserted element or if input element is not allowed or
aready present inthelist

addElement

Retrive the right insertion position for input element and insert it as last element of his own type in the
elementList

removeElement

Removes target element from the elementList. Throws an exception if the element is not present in the
collection

addReferences — addCrossReferences

Initialize the collection adding alowed childrens entries to mSubLists and setting list pointers to represent a
children placement that satisfies Digital 1tem Schema definition of the element

getElementList — getElementListByClass

Returns entries contained in the elementList.

insertlncludeBefore — insertl ncludeAfter — addl nclude — removel nclude

Manages XInclude elements allowing insertion and removal from the collection

MPEG21Document and DIDLDocument
These classes acts as interface between object model and upper level applications. Methods implemented by
these classes alow communication about document structure or element modifications. These class acts even
as wrappers for object representation, providing access point to DI.
MPEG21Document

+createMPEG21Element(inout ns : const string, inout elementName : const string) : MPEG21Element *
+createMPEG21Element(inout ns : const string, inout elementName : const string, inout attrs : const Attributes) : MPEG21Element *
+elementChanged(inout event : const MPEG21ElementEvent)

+structureChanged(inout event : const MPEG21StructureEvent)

+changingOwnerDocument(in element : MPEG21Element*)

DIDLDocument

+DIDLDocument()

+~DIDLDocument()

+getRootElement() : MPEG21Element &

+setRootElement(in rootElement : MPEG21Element*)
+getDeclarations() : DIDLDeclarations *

+setDeclarations(in declarations : DIDLDeclarations*)
+addStructureListener(in listener : MPEG21StructureListener®)
+removeStructureListener(in listener : MPEG21StructureListener*)
+addElementListener(in listener : MPEG21ElementListener*)
+removeElementListener(in listener : MPEG21ElementListener*)

DI DL Document — class methods

DIDLDocument - ~DIDL Document

Class constructor and destructor

getRootElement — setRootElement

Get or set root representation element pointer in the document representation

addStructurelistener — removeStructurel istener

Set or remove the class Listener who has to manage structure changes events in the model for upper
communication

addElementL istener — removElementL istener

Set or remove the class Listener who has to manage elements changes events in the model for upper
communication

createM PEG21Element

AXMEDISProject 18

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Provide interface about element creation for upper level application — See factory classes in MPEG-21
Loader module in this document for further information
elementChanged — structureChanged — changingOwnerDocument

Communicate changes from model to MPEG21Document

MPEG21L eafElement
Offer adifferent interface for those classes who represents representation tree leafs.
Children managing methods are overridden and throws an exception if invoked.

+~MPEG21LeafElement()

+addChild(in child : MPEG21Element*)

+insertChildAfter(in newChild : MPEG21Element*, in refChild : MPEG21Element*)
+insertChildBefore(in newChild : MPEG21Element*, in refChild : MPEG21Element*)
+removeChild(in child : MPEG21Element*)

+deleteChild(in child : MPEG21Element*)

#MPEG21LeafElement()

M PEG21L eafElement — class methods

MPEG21L eafElement - ~M PEG21L eaf Element
Class constructor and destructor
addChild — insertChildAfter — insertChildBefore — removeChild — deleteChild

Overrides MPEG21ElementCollection methods. These methods throws an exception when a child operation
istried on aleaf element

ContainsAny

-mMMPEG21Element : MPEG21Element *
-mDOMElement : DOMElement *

-mText : string

+~ContainsAny()

+copyContent(inout from : const ContainsAny)
+addChild(in child : MPEG21Element*)
+setMPEG21Content(in element : MPEG21Element*)
+setXMLContent(in element : DOMElement*)
+setTextContent(in text : string)
+getMPEG21Content() : MPEG21Element &
+getMPEG21Content() : const MPEG21Element &
+getXMLContent() : DOMElement &
+getXMLContent() : const DOMElement &
+getTextContent() : const string &
+containsMPEG21() : bool

+containsXML() : bool

+containsText() : bool

+isEmpty() : bool

#ContainsAny()

#ContainsAny(inout src : const ContainsAny)
-fireContentChanged()

ContainsAny —class methods

ContainsAny - ~ContainsAny

Class constructor copy constructor and destructor

addChild

Overrides MPEG21L eaf Element::addChild.Check the content to be added. If is MPEG21Content and the
element contains no element of such type it calls setMPEG21Content method
getM PEG21Content — setM PEG21Content

Set or get the MPEG-21 content of this element pointed by mMPEG21Element
getXML Content — setX ML Content

Set or get the generic XML content of this element pointed by mDOM Element
getTextContent — setTextContent

Set or get the generic Text content of this element pointed by mText

containsM PEG21 — containsT ext — containsXM L

Returnstrue if the specified element is present.

copyContent

Copy the content of this element.

AXMEDIS Project 19

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

iSEmpty
Returns true if the element pointers are empty.
fireContentChanged

Communicate to owner document if the content of this element is changed

ContainsAsset

-mAsset : DataSource *

+~ContainsAsset()

+getAsset() : DataSource &

+setAsset(in asset : DataSource*)

+isEmpty() : bool

#ContainsAsset(in asset : DataSource*)
#ContainsAsset(inout src : const ContainsAsset)

ContainsAsset — class methods

ContainsAsset - ~ContainsAsset

Class constructor, copy constructor, destructor

getAsset — setAsset

Get or set asset for this element. Asset will contain a pointer to a DataSource element
isEmpty

Returns true if the element has no Asset defined.

3.3 Examples of usage

Following code shows how the elements of the model are used. In the example an item is created and a
descriptor child is added. Then the item is set as root MPEG-21 Element of the new created document.

DIDLDocument doc;

DIDLItem* item=new DIDLItem;
DIDLDescriptor* desc=new DIDLDescriptor;
item->setID ("axl") ;
item->addChild(desc) ;
item->getChildren() [0] ; //return desc

doc.setRootElement (item); //set item as root element of doc

3.4 Integration and compilation issues

MPEG-21 Module itself depends from Xerces C++ in some data structure definitions used in MPEG-21
elements

The following table summarizes the needed library in order to use MPEG-21 module
Name OS/Platform Library file Description
Windows/PC | Linux/PC
Xerces C++ X X xerces-c_2.lib | Provides data support structures for XML
parsing
Common X X common.lib

AXMEDISProject 20

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

3.5 Errors reported and that may occur
Error signals through exceptions throwing.

Error code Description and rationales

A requested element is not found

A referred element is not found

An inserting element is already present

The given element has wrong type thus cannot be inserted

No element can be inserted as a child of selected element

W[N] O

Input element is not an element of specified type to clone

AXMEDI S Project

21

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

4 MPEG-21 Loader (DSI)

M odule/Tool Profile

Responsible Name

MPEG-21 L oader
Andrea Vallotti, Davide Rogai

Responsible Partner

DSl

Status (proposed/approved)

Implemented/not implemented

implemented

Status of the implementation

Executable or Library/module
(Support)

Static library

Single Thread or Multithread

Language of Devel opment

C++

Platforms supported

Windows, Linux

Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repoy..........

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServicesif any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)

Test cases location

htep:/HiHHNHINN

Usage of the AXMEDIS
configuration manager (yes/no)

Y€Es

Usage of the AXMEDIS Error
Manager (yes/no)

yes

Major Problems not solved

Major pending requirements

Interfaces APl with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used

Shared with

format name or reference to a
section

AXMEDI S Project

22

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Protocol Used Shared with Protocol name or reference to a
section
Used Database name
User Interface Development model, language, | Library used for the development,
etc. platform, etc.
Used Libraries Name of the library and version License status. GPL. LGPL. PEK,
proprietary, authorized or not

4.1 General Description of the Module

The MPEG-21 Loader allows to load in memory an MPEG-21 DI. In particul ar, the Loader reads data from a
stream of bytes and it creates a software model of the DI (see MPEG-21 Object Model). In order to load a
DI, the first step is processing the XML or BIN format. The resources of the object could be too big in order
to be adlocated as awhole in memory. A driven loading is the only useful mean in order to get the benefits of
a memory representation of the DI, without the occupation of (potentially) giga bytes of data (e.g. aMPEG2
video resource of amovie).

The DOM implementation expose a node filtering feature that can reject a node after the DOM builder has
loaded it; thisis unacceptable for the loader purpose, because the resource could be only removed after it has
occupied the whole memory and the loader has caused a fatal error on the system.

The solution is to intercept the “resource” tags occurrences before they are loaded in memory; something
that the SAX2 interface can manage. In the object model the resource includes a way to retrieve the content
stream still located on the file system. The new resource element must redirect access to the effective content
location (stream to the file/storage position) during access functions (play, adapting, copying...).

It is even important to understand that, for the same reason of memory saving, an XlInclude element,
introduced in MPEG-21 specification as a hook to insert references in a DI XML Document, must not be
loaded as a whole, but it has to be inserted in the object model structure as an equivalent entity. Since
MPEG-21 awaits the use of a pre-processor to resolve XlInclude references and expand target content in the
document before parsing, MPEG-21 Loader has to skip these operations and provide a different behaviour to
manage this case.

The IPMP Content of an IPMPltem (it is used to protect content inside DIs) is treated in the same way; it
could be a big amount of dataand it will be not loaded in the object model. The part in the object model that
refer to a stream on the file will be integrated if requested by the user actions.

AXMEDIS Project 23

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

All these issues drives to a design that takes into account different implementations for different parsed
elements. The concept of factory is useful to work out all troubles.

4.2 Module Design in terms of Classes

Next picture shows design of loader module. DIDLDocumentLoader represents the interface through which
a user of the modd (or a upper level application) may create an MPEG-210bject Model from an XML
representation of the same. Whether DIDLDocumentLoader attends initialization and coordination in parsing
activity and creation of a new DIDLDocument element to wrap information obtained, MPEG21L oader
implements parsing methods. The latter has been implemented as a content handler for a SAX2 parser, as
defined by the W3C. In order to create new elements, MPEG21Loader uses MPEG21ElementFactory
architecture. This group of classes implements the pattern Factory for each hierarchy foreseen by Object
Model, MPEG21ElementFactory coordinates creation calling the right factory instance on the base of

information received from MPEG21L oader. New elements are added as components of the tree and wrapped
in DIDLDocument..

Di LoaderChainElement

«protected»

«instance» «uses» ‘

7777777777 MPEG21Loader 77—777—777—777—777——777—777+DIDLDocumentLoader|»ﬂ
|

|

| ~ i f

! \ ~ _«instance» «instance» |
|

|

\ ~o I
\ ~o

SO e 3

\
- «uses» S~ Z
ContamsAssetLoader| \ ~o DIDLDocument
S \ \)| XILoader
S~ «uses» \
S~ \ «uses» -
S~ \ Pl 0.1
>~ \ e
~< \ -
T~ \ -7 MPEG21E| N
~_ N - ement K|
S\ -~ 1
J MPEG21ElementFactory |\
- - 7/ ! N \\\\ «uses»
«uses» _-7 «uses»,” «uses» S\ «uses» RSy
-7 2l | AN S~
//’ // | \\ S~
- | N ~
- .7 | AN S~
//// e || N S~
- 7 ~
e L7 N | ~~
DIDLElementFactory | | DlIElementFactory | |XIEIementFactory | | IPMPElementFactory | | IPMPInfoElementFactory
T I T ‘ ‘ T T T
<<instanct‘e>> r‘r\ r‘n r‘r\ r‘n
|

«instance»

|
I «instance»
! |

|

} «instance» | I I

I I =777 !

! | NSMPEG21ElementFactory | ! —— “‘

|

| ‘ |
|

|
«instance»

[xiglement | ||PMPE|er:gnt| [IPMPInfoElement]
| | |

421 MPEG-21 L oader Capabilities Overview
Next sequence diagram shows deeply loading chain operations and how the module will come to a complete

object representation from an input XML document. file. SAX2XMLReader is a SAX2 parser complaining
with W3C directives.

AXMEDISProject 24

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

DIDLDocumentLoader MPEG21ElementFactory
1 Ioad(fileName)l
—_——»
2: SAX2XMLReader()
SAX2XMLReader
: parse(inputSource) i
. 4: startElement(uri, localname, gname, attrs)
[TTY
5: DIDLDocument(
} 4:return
—————————————— B e L et il
|
T | 6: startElement(uri, localname, gname, attrs)
|
| 7: MPEG21Loader()
} MPEG21Loader
|
8: takeContfoI(sax2Parser, ownerlLoader, dataSource) i
| »
} 8: return U
Kemmmmmm oo - T mmmmm o b
9: startElement(uri, localname, gname, attrs) }
! | >
T [T
10: createMPEG21Element:=createMPEG21Element(ns, elementName, attrs, ownerDocument)
|
| 10: return
gy
| 9: return
K== - e ittty nn
! 6: return !
L e e ettt R 9
} 11: startElement(uri, localname, gname, attrs)
12: XlLoader()
| XlLoader
13: takeControl(sax2Parser, ownerLoadér, dataSource)
13: return

e
14: startElement(uri, localname, gname, attrs)

15: createMPEG21Element(ns, elementName, attrs, ownerDocument)

I
15: return

20: resumeControl()

T

18:

T
s return

16: endEIement(uri, localname,

17: resumeControl()

detachParsedElement()

18: return

16: return

1
19: endElement(uri, localname, gname)

21: detachParsedElement()

21: return

AXMEDI S Project

} 19: return
: P mmmmmmmmmosssesseeeoeeoe- -
P ! 23: endElement(uri, localname, gname)
|
o l 23: return N
2: return

gname)

25

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

L oading operations follow a recursive pattern. All loading classes are supposed to be proficient in a specific
namespace or element managing. Transitions through different loaders and factories are established by a root
coordinating element (MPEG21ElementFactory for the factories and MPEG21Loader for the loaders) that
implements capabilities to select the proper class on the base of the inputs that comes from XML parser. In
the case of factories classes the architecture is composed by static elements, any loader will refer to static
MPEG21ElementFactory class to create a new element, this implementation issue is possible because
factories are stateless elements. Loader instead are not static, a proper loader instance is created when
required by loading flows. When a loader end his task is deleted freeing memory. Loader indeed needs a
inner state to work.

4.2.2 Class Methods Overwiew

Loader ChainElement:

This class represents |oaders common interface. Methods defined here are virtual and could be overridden by
local implementations of the loader classes.

LoaderChainElement

+~LoaderChainElement()
+detachParsedElement() : MPEG21Element *
+takeControl(inout sax2Parser : SAX2XMLReader, inout ownerLoader : LoaderChainElement, inout dataSource : DataSource)
+resumeControl()

+getErrorMsg() : SAXParseException *
+resetErrorMsg()

+propagateError()

+warning(inout exc : const SAXParseException)
+error(inout exc : const SAXParseException)
+fatalError(inout exc : const SAXParseException)
#LoaderChainElement()

#clean()

L oader ChainElement — class methods

L oaderChai Element — ~L oaderChainElement

Class constructor and destructor

detachParsedElement

Returns root element of the representation tree parsed by the loader
takeControl

take the control of the parsing flow from another loader instance.
resumeControl

Resume the control of parsing flow from another loader instance. The loader adds as a child element of his
representation tree the root element contained by the other loader
getErrorMsg

Retrivie information about an occurred error from a bottom |oader instance
propagateError

Send a message to a upper loader of an error occurrence.

warning — error

Rise awarning or an error during the parsing operations

Clean

Reset the loader

DIDLDocumentLoader

This class acts as access point and root element for all loading activities. It is responsible to create a new
DIDLDocument representation in memory and to instance a new MPEG21Loader that will be the real engine
of loading. At the end of his work DIDLDocumentLoader will collect parsed DI representation and will be
ableto add the representation to the newly created DIDLDocument

AXMEDISProject 26

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

DIDLDocumentLoader

-mDocument : DIDLDocument *

-mState : DIDLDocumentLoaderState *

+detachParsedElement() : MPEG21Element *

+takeControl(inout sax2Parser : SAX2XMLReader, inout ownerLoader : LoaderChainElement, inout dataSource : DataSource)
+resumeControl()

+propagateError()

#clean()

+DIDLDocumentLoader()

+~DIDLDocumentLoader()

+load(inout source : DataSource) : DIDLDocument *

+load(inout fileName : const string) : DIDLDocument *

+characters(in chars : const XMLCh*, in length : const unsigned int)

+endElement(in uri : const XMLCh*, in localname : const XMLCh*, in gname : const XMLCh¥*)

+startElement(in uri : const XMLCh?*, in localname : const XMLCh*, in gname : const XMLCh*, inout attrs : const Attributes)
-setState(in newState : DIDLDocumentLoaderState*)

DIDLDocumentLoader derives from the abstract class LoaderChainElement, therefore the former
implements all the functions defined in the latter. These functions are not replicated in the table bel ow.

DIDL DocumentL oader — class methods

DIDL DocumentL oader — ~DIDL DocumentL oader

Class constructor and destructor

detachParsedElement

Returns root element of the representation tree parsed by the loader

load

L oad a representation from a data source or afile entry

characters

Skip useless characters in document

startElement

Called by the XML parser when a start element event occurs. Changes from state to state. It could lead to
state change, MPEG21L oader instantiation or exception rising. Depending from the state is even the
creation of a new document or a new element to be added to representation tree

endElement

Cdled by the XML parser when an end element event occurs. Add current parsed element to the
representation tree

MPEG21Loader
The real engine of loading, through an instance of this class the loading of target document is accomplished.
L oading operations are worked out in a recursive way, going down in pre-order visit . When the loader finds
an unmanageable element it instances a proper loader chosen between available loader factories and gives it
the loading control. Control will be returned ,along with the loading output, when unmanageable namespace
or elements ends.

MPEG21Loader

+resumeControl()

#clean()

+MPEG21Loader()

+~MPEG21Loader()

+addLoaderFactory(inout ns : const string, inout elemName : const string, in loaderFactory : LoaderFactoryType)
+addDefaultNsLoaderFactory(inout ns : const string, in loaderFactory : LoaderFactoryType
+getLoaderFactory(inout ns : const string, inout elemName : const string = ™) : LoaderFactoryType
+characters(in chars : const XMLCh*, in length : const unsigned int)

+ignorableWhitespace(in chars : const XMLCh*, in length : const unsigned int)

+endElement(in uri : const XMLCh*, in localname : const XMLCh*, in gname : const XMLCh*)

+startElement(in uri : const XMLCh*, in localname : const XMLCh*, in gname : const XMLCh*, inout attrs : const Attributes)
+load(inout dataSource : DataSource) : MPEG21Element *

MPEG21Loader derives from the abstract class Loader ChainElement, therefore the former implements all
the functions defined in the latter. These functions are not replicated in the table below.

MPEG21L oader —class methods

MPEG21L oader — ~ MPEG21L oader
Class constructor and destructor

AXMEDISProject 27

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

load

L oad a representation from a data source

addL oaderFactory

Adds to the loader a Factory for a specified element in a specified namespace

addDefaultNsL oaderFactory

Adds a Factory to manage a specified namespace’'s elements creation

getl oaderFactory

Get the factory associated with input namespace

characters

Skip usel ess characters in document

ignorableWhitespace

Skip useless whitespace in document

startElement

Called by an XML parser when a start element event occurs. Changes from state to state. It could lead to
state change, MPEG21Loader instantiation or exception rising. Depending from the state is even the
creation of a new document or a new element to be added to representation tree

endElement

Called by an XML parser when an end element event occurs. Add current parsed element to the
representation tree

XILoader
Thisisaclassfor Xl hierarchy elements loading . This class provides the needed functionalities to manage
the difference between Xlnclude and other elements. However the implementation is transparent and the
class provides the same methods of a common |oader

XlLoader

+resumeControl()

+XILoader()

+~XlILoader()

+endElement(in uri : const XMLCh*, in localname : const XMLCh*, in gname : const XMLCh*)

+startElement(in uri : const XMLCh*, in localname : const XMLCh*, in gname : const XMLCh*, inout attrs : const Attributes)

MPEG21ElementFactory

This class coordinate automatic creation of elements on the base of element namespace and element name

inputs. Selecting the proper factories and maintains a ng/factory reference map are first tasks of this class.
MPEG21ElementFactory

+createMPEG21Element(const string ns, const string elementName ,

MPEG21Document* ownerDocument = 0) : MPEG21Element *
+createMPEG21Element(const string ns, const string elementName ,

Attributes attrs , MPEG21Document* ownerDocument = 0) : MPEG21Element *
+addNSMPEG21ElementFactory(inout ns : const string, in factory : NSMPEG21ElementFactory*)
+removeNSMPEG21ElementFactory(inout ns : const string) : NSMPEG21ElementFactory *
+deleteNSMPEG21ElementFactory(inout ns : const string)

MPEG21ElementFactory — class methods

createM PEG21Element

Call and delegate the proper namespace factory to instance a new element of the input element type .
Alternative method also pass attrs content to fills element’ s proper attributes fields.

addNSM PEG12ElementFactory — removeN SM PEG21ElementFactory — del eteN SM PEG21ElementFactory

Adds removes or deletes named factory from the collection available in MPEG21ElementFactory

DIDLElementFactory

This class and the classes below are examples of specific NS factory classes. Main task of these classes is
selection of the right element to instance on the base of element name. A secondary task of this classes is
filling the new element with provided attributes value.

AXMEDISProject 28

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

DIDLElementFactory

+createMPEG21Element(const string elementName ,
MPEG21Document* ownerDocument = 0) : MPEG21Element *
+createMPEG21Element(const string elementName , const Attributes attrs,
MPEG21Document* ownerDocument = 0) : MPEG21Element *
+getNamespace() : const string &

DIDL ElementFactory — class methods

createM PEG21Element

Create a new IPMPElement of the input element type . Alternative method also fills element’s proper
attributes fields in the created el ement

getNamespace

Returns the factory target namespace

IPMPElementFactory
+createMPEG21Element(const string elementName ,
MPEG21Document* ownerDocument = 0) : MPEG21Element *
+createMPEG21Element(const string elementName , const Attributes attrs,
MPEG21Document* ownerDocument = 0) : MPEG21Element *
+getNamespace() : const string &

| PM PElementFactory — class methods

createM PEG21Element

Create a new IPMPElement of the input element type . Alternative method also fills element’s proper
attributes fields in the created element

getNamespace

Returns the factory target namespace

DIIElementFactory

+createMPEG21Element(const string elementName ,
MPEG21Document* ownerDocument = 0) : MPEG21Element *
+createMPEG21Element(const string elementName , const Attributes attrs,
MPEG21Document* ownerDocument = 0) : MPEG21Element *
+getNamespace() : const string &

DIl ElementFactory — class methods

createM PEG21Element

Create a new IPMPElement of the input element type . Alternative method also fills element’s proper
attributes fields in the created element

getNamespace

Returns the factory target namespace

IPMPInfoElementFactory

+createMPEG21Element(const string elementName ,
MPEG21Document* ownerDocument =0) : MPEG21Element *
+createMPEG21Element(const string elementName , const Attributes attrs,
MPEG21Document* ownerDocument = 0) : MPEG21Element *
+getNamespace() : const string &

| PM PI nfoElementFactory — class methods

createM PEG21Element

Create a new IPMPElement of the input element type . Alternative method aso fills element’s proper
attributes fields in the created element

getNamespace

Returns the factory target namespace

AXMEDISProject 29

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

XIElementFactory

+createMPEG21Element(const string elementName,

+createMPEG21Element((const string elementName, : const Attributes attrs,

+getNamespace() : const string &

MPEG21Document* ownerDocument = 0) : MPEG21Element *

MPEG21Document* ownerDocument = 0) : MPEG21Element *

XIElementFactory — class methods

createM PEG21Element

Create a new IPMPElement of the input element type . Alternative method also fills element’s proper

attributes fields in the created element
getNamespace

Returns the factory target namespace

4.3 Examples of usage

In the following code example use of DIDLDocumentL oader interface is showed. To point out the ease of
use of thisinterface. Only target input xml file is needed to completely parse an XML MPEG-21 Document

DI DLDocunent Loader | oader;

DI DLDocunent Wit er docunmentwi;

DI DLDocunent *doc=Il oader . | oad(" MPEQR1XM_REPRESENTATI ON. xm ") ;
std::ofstreamfil estr("MPERIXM.OQUTPUT. xm ") ;

documentwi . witeDocunent (*doc, & il estr);

filestr.close();

4.4 Integration and compilation issues

The following table summarizes the needed library in order to use MPEG-21 Loader.

Name OS/Platform Library file Description
Windows/PC | Linux/PC
Xerces C++ X X xerces-c 2.lib | Provide parsing functiondities for the
module
Common X X common.lib

4.5 Configuration Parameters

Config parameter Possible values

AXOM_CONF_MODULE- Any valid URL which points to schemafile location for MPEG-21 Schema

SCHEMA_LOCATION_PARAM

4.6 Errors reported and that may occur

Error code Description and rationales

Class Loaders

This loader has already an Owner Loader

This loader has already a SAX2Parser instance

resumeControl not supported

No available Active loader. Propagate error call improper

Improper method call to this loader

Specified element expected

ol h(W|IN|F

Element unexpected

Class Factories

~

Invalid input elment name is given to element factory

(o]

Namespace Factory already added in MPEG21ElementFactory

AXMEDI S Project

30

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Class Documents

9 Document has not a root element

10 Invalid input element type

AXMEDI S Project

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

5 MPEG-21 Saver (DSI)

M odule/Tool Profile

Responsible Name

MPEG-21 Saver
Andrea Vallotti, Davide Rogai

Responsible Partner DSl

Status (proposed/approved)

Implemented/not implemented | implemented
Status of the implementation

Executable or Library/module static library
(Support)

Single Thread or Multithread

Language of Devel opment C++

Platforms supported Windows, Linux
Reference to the AXFW https://cvs.axmedis.org/repod.........cce.....
location of the source code

demonstrator

Reference to the AXFW https://cvs.

location of the demonstrator
executable tool for interna
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServicesif any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)

Test cases location

htep:/HiHHNHINN

Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved

Major pending requirements

Interfaces APl with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used

Shared with

format name or reference to a
section

AXMEDI S Project

32

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Protocol Used Shared with Protocol name or reference to a
section
Used Database name
User Interface Development model, language, | Library used for the development,
etc. platform, etc.
Used Libraries Name of the library and version License status. GPL. LGPL. PEK,
proprietary, authorized or not

5.1 General Description of the Module

The MPEG-21 Saver alows to obtain the XML representation of a software representation of a DI. In
particular, the Saver browses the object model of DI and writes the XML representation of the latter to a
stream of byte. In order to exploit this task, the Saver makes use of an XML writer which is in charge of
managing the issues related to the XML syntax.

5.2 Module Design in terms of Classes

As shown in next picture MPEG-21 writer top element is DIDLDocumentWriter. Through this element an
application or user could use module to write a DIDLDocument as DI XML representation. All elementsin
the module uses an instance of XMLWriter class. This class is responsible for XML syntax of the produced
document. All issues that derives from data writing, dataformat, and data syntax from an XML point of view
(including namespaces, prefixes rules and XML Schema compliance) are resolved by means of this class.
Last elements included in this module MPEG21ElementWriter and related namespace writers (i.e.
NSWriters) navigates representation tree providing input data for XMLWriter, in the right order to alow a
correct output XML document.

AXMEDISProject 33

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

«uses»
DIDLDocument K== =======-=---—-—---—--------=
|
|
|
|
DIDLDocumentWriter fp——--——-—-—————————————
«uses» «USES» }
,,,,,,,,,,,, |
I :
| |
| |
| |
| |
| |
I A4

/,/’I MPEG21ElementWriter |~\\

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
«uses» Pie T ~
- «uses»/// «uses» \\\\«uses» ~~_ «uses» }
e e i N S~o [
-7 s ~ >~ |
- e : S~ ~<_
P < -

- -~ /// \ \\\ S~ }
- . Ny ~ ~~_ !
DIDLEIementWriterl | DIIElementWriter | | IPMPElementWriter | | IPMPInfoElementWriter | |X|EIementWriter |
|

T T T T T
| | | | | }
L 1				

| | | |
I I A I I |
| | | | | 1
| | | | | |
| | [NSMPEG21Elementwriter| | ! ! |
| | | | | }

I I ' I I
«uses» «uses» «uses» «uses» «uses» }

1 1 I 1 1
I I I I I !
| | | | | |
| | | | | H
| | | | |
e XMLWriter K-=---—-——————————— - ! I
|
! «uses» |
|

5.2.1 MPEG-21Saver Capabilities Overview
Next sequence diagram deeply shows writing operation. DIDLDocumenWriter instances a new XMLWriter.

DIDLDocumentWriter MPEG21ElementWriter DIDLElementWriter DlIElementWriter XMLWriter

1:writeDocument(sourée,output) 2: XMLWriter(output)
I
|

|
|
— | : —
| 2: return new XMLWriter:writer U
<,,,,,,,,,,,,,,,,,,L ,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

4: writeTo(source, writer)

5: writeTo 6: writeStartElement

1
return from 6 U
,,,,,,,,,,,,, S

7: writeChildren(source, writer)

/ a+n: writeTo'(source, writer)
[
1

L . . b + n: writeChildren(source, writer)
A recursive iteration will < L
lead program flow to write LJ b + n:children writed ¢ + n: writeEndElement
all preoredered | LA bl m e N >
representation tree. return fromc +n

o«

: writeEndElement

H >
return from 4 return from 8
e 77777777777777777 < - A

~XMLWriter()

|
return from 1

|
‘ 1
Messaggiol } U
& - e e e e !

Once the new XMLWriter is available DIDLDocumentWriter starts writing operations, asking XMLWriter to
write XML document header. Writing operations flow is given to MPEG21ElementWriter, this class will
decide the writer which will take control of writing for next element of representation tree. The chosen writer

AXMEDISProject 34

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

(DIDLElementWriter in the picture) will send a startElement command to XMLWriter in order to write
element start tag and then, depending on the current element, ask MPEG21ElementWriter to check and write
children of current element. Here begins a recursive iteration that will lead to a complete pre-ordered visit of
representation tree, performing writing of any single element. In order to point out the role of XMLWriter,
this element maintains the state information useful for writing operations (open element tags, current
namespace domains and namespace/prefix parallelism).

5.2.2 Class and Methods Overview
DIDLDocumentWriter
Interface for writing operations.

DIDLDocumentWriter
+writeDocument(inout toWrite : DIDLDocument, in output : ostream*)

DIDL DocumentWriter — class methods

writeDocument

This method starts starts writing operations . In this method a new XMLWriter is created and is used to
write input document in output stream

MPEG21ElementWriter
This static class manage al writing flow choosing wich namespace writer is able to write current element
MPEG21ElementWriter

-assocs : map<std :: string, NSMPEG21ElementWriter *>

+MPEG21ElementWriter()

+~MPEG21ElementWriter()

+writeTo(inout source : const MPEG21Element, in writer : XMLWriter*)
+addNSMPEG21ElementWriter(inout ns : const string, in writer : NSMPEG21ElementWriter*)
+removeNSMPEG21ElementWriter(inout ns : const string) : NSMPEG21ElementWriter *
+deleteNSMPEG21ElementWriter(inout ns : const string)

+writeChildren(inout source : const MPEG21Element, in writer : XMLWriter*)
+writeContainsAny(inout source : const ContainsAny, in writer : XMLWriter*)
+writeContainsAsset(inout source : const ContainsAsset, in writer : XMLWriter*)

+isDefined(inout ns : const string) : boo

MPEG21ElementWriter —class methods

MPEG21ElementWriter - ~MPEG21ElementWriter

Contstructor and destructor

writeTo

Choose wich NSwriter will save current element. Namespace is taken from input element.

addNSM PEG21ElementWriter — removeNSMPEG21ElementWriter — deleteNSM PEG21ElementWriter
Add remove or delete from assoc a pair ns/writer

writeChildren

Write children of input element. Children are selected in preorder visit and for each child method writeTo is
caled

writeContainsAny — writeContai nsAsset

Special implementation for two element types of representation tree.

isDefined

Check if apair ngwriter is defined in MPEG21ElementWriter

Namespace Writers
These classes implements methods to manage writng of elements related to a specific namespace.

AXMEDISProject 35

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

DIDLElementWriter

+writeTo(inout source : const MPEG21Element, in writer : XMLWriter*)
+anchorWriter(inout source : const MPEG21Element, in writer : XMLWriter*)
+annotationWriter(inout source : const MPEG21Element, in writer : XMLWriter*)
+assertionWriter(inout source : const MPEG21Element, in writer : XML Writer*)
+choiceWriter(inout source : const MPEG21Element, in writer : XMLWriter*)
+componentWriter(inout source : const MPEG21Element, in writer : XMLWriter*)
+containerWriter(inout source : const MPEG21Element, in writer : XMLWriter*)
+conditionWriter(inout source : const MPEG21Element, in writer : XMLWriter*)
+declarationsWriter(inout source : const MPEG21Element, in writer : XMLWriter*)
+descriptorWriter(inout source : const MPEG21Element, in writer : XMLWriter*)
+fragmentWriter(inout source : const MPEG21Element, in writer : XMLWriter*)
+itemWriter(inout source : const MPEG21Element, in writer : XMLWriter*)
+resourceWriter(inout source : const MPEG21Element, in writer : XMLWriter*)
+selectionWriter(inout source : const MPEG21Element, in writer : XMLWriter*)
+statementWriter(inout source : const MPEG21Element, in writer : XMLWriter*)

DIDL ElementWriter — class methods

writeTo

Choose wich element writer will save current element. Element name is taken from input €lement.
anchorWriter — annotationWriter — assertionWriter — choiceWriter — componentWriter — containerWriter —
conditionWriter — declarationsWriter — descriptorWriter — fragmentWriter — itemWriter — resourceWriter —
selectionWriter — statementWriter

These methods manage writing of specific DIDL elements

DIIElementWriter

+writeTo(inout source : const MPEG21Element, in writer : XMLWriter*)
+writeldentifier(inout source : const MPEG21Element, in writer : XMLWriter*)
+writeRelldent(inout source : const MPEG21Element, in writer : XMLWriter*)
+writeType(inout source : const MPEG21Element, in writer : XMLWriter*)

DIl ElementWriter —class methods

writeTo
Choose wich element writer will save current element. Element name is taken from input element.
writeldentifier — writeRelldentifier — writeType

These methods manage writing of specific DIl elements

XIElementWriter

+writeTo(inout source : const MPEG21Element, in writer : XMLWriter*)
+writeXInclude(inout source : const MPEG21Element, in writer : XMLWriter*)
+writeXIFallback(inout source : const MPEG21Element, in writer : XMLWriter*)

XIElementWriter —class methods

writeTo
Choose wich element writer will save current element. Element name is taken from input element.
writeX1nclude — writeX| Fallback

These methods manage writing of specific DIl elements

IPMPElementWriter
+writeTo(inout source : const MPEG21Element, in writer : XMLWriter*)

| PM PElementWriter —class methods

writeTo

Writes | PM P element to output stream

IPMPInfoElementWriter

+writeTo(inout source : const MPEG21Element, in writer : XMLWriter*)
+licenseReferenceWriter(inout source : const IPMPInfoLicenseReference, in writer : XMLWriter*)
+remoteWriter(inout source : const IPMPInfoRemote, in writer : XMLWriter*)

+toolWriter(inout source : const IPMPInfoTool, in writer : XMLWriter*)

+toolRefWriter(inout source : const IPMPInfoToolRef, in writer : XMLWriter*)
-genericWriter(inout source : const IPMPInfoElement, in writer : XMLWriter*)

AXMEDISProject 36

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

|PM Pl nfoElementWriter — class methods

writeTo

Choose wich element writer will save current element. Element name is taken from input element.
licenseReferenceWriter — tool Writer — remotWriter — tool RefWriter -

These methods manage writing of specific DIl elements

genericWriter

Writes a generic | PM PInfoElement

5.3 Examples of usage

The following example code shows how is used DIDL DocumentWriter interface to write a DIDL Document
formerly loaded by DIDLDocumentLoader. To point out the use of a std::ofstream as target output stream.
All output streams are valid target of writeDocument method.

Dl DLDocument Loader | oader;

Dl DLDocunment Wi ter documentwri;

Dl DLDocument *doc=I oader . | oad(" MPEG21XM_REPRESENTATI ON. xm ") ;
std::ofstreamfil estr("MPERIXM.OQUTPUT. xmi ") ;

documentw i . witeDocunent (*doc, & il estr);

filestr.close();

5.4 Integration and compilation issues
The following table summarizes the needed library in order to use MPEG-21 Loader.

Name OS/Platform Library file Description
Windows/PC | Linux/PC
Common X X common.lib Provide access to xmlwriter and support for
off-schema elements

5.5 Errors reported and that may occur

Error code Description and rationales
0 Namespace Factory already added in MPEG21ElementFactory
1 Invalid input element type

AXMEDISProject 37

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

6 AXMEDIS Object Model (DSI)

M odule/Tool Profile

Responsible Name

AXMEDIS Object Model

Davide Rogai, Andrea Vallotti

location of the source code
demonstrator

Responsible Partner DSl

Status (proposed/approved) Approved

Implemented/not implemented | Implemented

Status of the implementation

Executable or Library/module Static librsy

(Support)

Single Thread or Multithread

Language of Devel opment C++

Platforms supported Windows, Linux

Reference to the AXFW https:.//cvs.axmedis.org/repos/Framework/source/axom/axmodel/

https://cvs.axmedis.org/repos/Framework/include/axom/axmodel/

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServicesif any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)

Test cases location

Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved

Major pending requirements

Interfaces APl with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used

Shared with

format name or reference to a
section

AXMEDI S Project

38

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Protocol Used Shared with Protocol name or reference to a
section
Used Database name
User Interface Development model, language, | Library used for the development,
etc. platform, etc.
Used Libraries Name of the library and version License status. GPL. LGPL. PEK,
proprietary, authorized or not

6.1 General Description of the Module

The AXMEDIS Object Model provides the means to represent an AXMEDIS Object as a software object
model on the basis of the MPEG-21 Object Model. In fact, an AXMEDIS Object is a particular kind of DI.
That is, an AXMEDIS Object isaDI with a given structure and providing mandatory information such as the
AXOID and AxInfo as explained in the following sections. Therefore, the object model of an AXMEDIS
object is a tree of class instances each of which refers to the corresponding class instance in the MPEG-21
Object Model.

Moreover, the AXMEDIS Object Model provides the means to create an object model on the basis of a
MPEG-21 object model and to synchronize the two models.

6.2 Module Design in terms of Classes

In this section the classes modelling AXMEDI S objects are reported.

Abstract class AxObjectElement represents any element that can be stored in an AXMEDIS Object. It refers
to an MPEG21Element that representsit in the corresponding MPEG21 Digital Item.

Class AxMetadata represents any XML metadata associated with content, it is further specialised in Axinfo,
xDublinCore and AxOID. The mPublic attribute indicates if the metadata has to visible even if the object is
protected.

Abstract class AxContent represents content to be stored in AXMEDIS objects, it can be AxObject or
AxResource. An AxResour ce represents any digital resource identified with a mime type, it can be an image,
adocument, an audio. An AxObject can contain any number of metadata and of content.

AXMEDISProject 39

AxProtectedObject

«uses»

AxReferredObject

>| Xinclude

-is identified by

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

> AxObject

1

-is described by

AxPublicMetadataTree

-is described by 1

1

«uses»

|
|
|
|
|
|
|
|
|
|
|
| -contains
} AxClearObject
|
|
|
|
|
|
|
|
|
|

AxMetadata K

AxDublinCore

«uses»

e 2D DIDLDescriptor

> AxContent

«uses»

——————————————————————————— DIDLItem

ax01 : AxClearObject

MPEG21Element

-is represented by
[>{ AxObjectElement

1 1

«uses»

——————————— DIDLComponent

AxResource

IPMPItem Abstractitem

The following is the object diagram of a basic object:

i01: DIDLItem

! pmt01 : AxPuincMetadataTreel

id1 : AxOID
S ———S|

d_id1: DIDLDescriptor

info1 : Axinfo

d_info1 : DIDLDescriptor

dc1 : AxDublinCore

priv1 : AxMetadata

d_dc1 : DIDLDescriptor

rA : AxResource

d_priv1 : DIDLDescriptor

cA : DIDLComponent

AXMEDI S Project

While the following is the object diagram of a composite AXMEDIS object:

40

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

ax01 : AxClearObject i01 : DIDLItem
! pmt01 : AxPublicMetadataTree |
id1 : AxOID d_id1 : DIDLDescriptor
S —

infol : Axinfo d_infol : DIDLDescriptor
dcl : AxDublinCore d_dc1 : DIDLDescriptor
privl : AxMetadata d_privl : DIDLDescriptor

A : AxResource cA : DIDLComponent

ax02 : AxClearObject i02 : DIDLItem
— | S—

jpmtoz : AxPublicMetadataTree |

id2 : AxOID d_id2 : DIDLDescriptor
| —
info2 : Axinfo d_info2 : DIDLDescriptor
dc2 : AxDublinCore d_dc2 : DIDLDescriptor

f ¢B : DIDLComponent

6.2.1 AxMetadata

Class AxMetadata is a class to store any XML metadata.

The MPEG21Element it refers to should be a DIDLDescriptor, containing a DIDLSatement with the XML
content. XML content can be accessed trought a DOMNode object.

AxObjectElement

+getDIElement() : MPEG21Element
+setDIElelemt(in diElement : MPEG21Element)

I

AxMetadata

-mPublic : bool = true

+isPublic() : bool

+setlsPublic(in public : bool = true)
+getMetadatalD() : string
+setMetadatalD(in value : string)
+getDOMNode() : <unspecified>

6.2.2 AxiInfo

Class AxInfo, derived from AxMetadata, provides access to the information related to the AXMEDIS object.
Methods available for this class are:

ObjectCreator Management

+getObjectCreatorAXCID() : string

+setObjectCreatorAXCID(in value : string)

allow to get and set the AXCID value for the ObjectCreator

+getObjectCreatorName() : string

+setObjectCreatorName(in value : string)

AXMEDISProject 41

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

allow to get and set the Name value for the ObjectCreator

+getObjectCreatorURL () : string
+setObjectCreatorURL (in value : string)

allow to get and set the URL value for the ObjectCreator

+getObjectCreatorCompany() : string
+setObjectCreatorCompany(in value : string)

allow to get and set the Company value for the ObjectCreator

+getObjectCreatorCompanyURL () : string
+setObjectCreatorCompanyURL (in value : string)

allow to get and set the CompanyURL value for the ObjectCreator

+getObjectCreatorNationality() : string
+setObjectCreatorNationality(in value : string)

allow to get and set the Nationality value for the ObjectCreator

ObjectContributor Management

+addObjectContributor(in position : int = -1) : int

adds a new ObjectContributor in the position given (starting from 0), position -1 meansto add at the
end.
the return value indicates the position in which it is added.

+removeObjectContributor (in position : int)

removes an ObjectContributorfrom the position specified

+getObjectContributorCount() : int

returns the number of ObjectContributor present

+findObjectContributorByAX CID(in axcid : string) : int

returns the position of an ObjectContributor with a specific AXCID. It returns -1 if not found.

+findObjectContributorByName(in name : string) : int

returns the position of an ObjectContributor with a specific Name. It returns -1 if not found.

+getObj ectContributorAXCID(in refNum : int = 0) : string
+setObjectContributorAXCID(in refNum : int, in value : string)

allow to get and set the AXCID value for an ObjectContributor identified by position

+getObjectContributorName(in refNum : int = 0) : string
+setObjectContributorName(in refNum : int, in value : string)

allow to get and set the Name value for an ObjectContributor identified by position

+getObj ectContributorURL (in refNum : int = 0) : string
+setObjectContributorURL (in refNum : int, in value : string)

allow to get and set the URL value for an ObjectContributor identified by position

+getObj ectContributorCompany(in refNum : int = 0) : string
+setObj ectContributorCompany(in refNum : int, in value : string)

allow to get and set the Company value for an ObjectContributor identified by position

+getObjectContributorCompanyURL (in refNum : int = 0) : string
+setObj ectContributorCompanyURL (in refNum : int, in value : string)

allow to get and set the CompanyURL value for an ObjectContributor identified by position

+getObjectContributorNationality(in refNum : int = 0) : string
+setObjectContributorNationality(in refNum : int, in value : string)

allow to get and set the Nationality value for an ObjectContributor identified by position

Owner

Management

+getOwner|D() : string
+setOwner| D(in value: string)

allow to get and set the code identifying the owner

+getOwnerlDCading() : string
+setOwner| DCoding(in value: string)

allow to get and set the coding used to identify the owner

+getOwnerName() : string
+setOwnerName(in value: string)

AXMEDISProject 42

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

allow to get and set the name of the owner

+getOwnerURL () : string
+setOwnerURL (in value: string)

allow to get and set the URL of the owner

+getOwnerCompany() : string
+setOwnerCompany/(in value: string)

allow to get and set the company of the owner

+getOwnerCompanyURL () : string
+setOwnerCompanyURL (in value: string)

allow to get and set the company URL of the owner

+getOwnerNationality() : string
+setOwnerNationality(in value: string)

allow to get and set the nationality of the owner

+addOwnerDescription(in position:int = -1) : int

adds a new description of the owner at the position specified or at the end if position is -1. The
return value indicates the position where it is added.

+removeOwnerDescription(in position:int)

removes the description specified

+getOwnerDescription(in position:int = 0) : string
+setOwnerDescription(in position:int, in value:string)

allow to get and set the value of the description

+getOwnerDescriptionL anguage(in position:int = 0) : string
+setOwnerDescriptionL anguage(in position:int, in value:string)

allow to get and set the value of the description language

Distributor Management

+addDi stributor()

adds a Distributor if not present.

+removeDistributor()

removes the Distributor

+getDistributorCount() : int

returns the number of Distributors present

+getDistributorAXDID() : string
+setDistributorAXDID(in value : string)

allow to get and set the AXDID value for the Distributor

+getDistributorName() : string
+setDistributorName(in value : string)

allow to get and set the Name value for the Distributor

+getDistributorURL () : string
+setDistributorURL (in value : string)

allow to get and set the URL value for the Distributor

+getDistributorNationality() : string
+setDistributorNationality(in value : string)

allow to get and set the Nationality value for the Distributor

Object Status

+getAccessMode() : string
+setAccessMode(in value : string)

allow to get and set the Access the the object “READ_ONLY"” or “READ_WRITE”". These strings
have been used instead of C++ enum in order to simply the interface with JavaScript applications
(e.g. AXMEDIS Content Processing)

+getCreationDate() : DateTime

get the local date and time of object creation

+getl astM odificationDate() : DateTime

get the local date and time of object modification

AXMEDISProject 43

DE3.1.

2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

+getVersion() : int

get the version of the object

+getRevision() : int

get the revision of the object

+getObjectStatus() : string
+setObjectStatus(in value : string)

allow to get and set the current status of the object, the status values are factory dependent and set by
the workflow therefore cannot be defined a priori.

+getObjectType() : string

allow to get object type (“BASIC” or “COMPOSITE")

+getObj ectlsProtected() : bool
+setObj ectl sProtected(in val ue:bool)

allowsto get and set if the object is protected or not

+getProtectionStamp() : string
+setProtectionStamp(in value:string)

allowsto get and set the protection stamp

+getObj ectlsGoverned() : bool
+setObj ectl sGoverned(in value:bool)

allow to get and set if the object contains alicence or not. The license is not stored in the axinfo, the
setter should be used to update the axinfo when the licence is added/removed from the object

PromoOf Management

+addPromoOfA X Ol D(in axoid:string, in position:int=-1)

adds a new AXOID in the PromoOf section, the position indicates where to put the AXOID, -1
means at the end

+removePromoOfAX Ol D(in position:int)

removes the AXOID in the position specified

+getPromoOfAXOIDCount() : int

get the count of AXOID in the PromoOf section

+getPromoOfAXOID(in position:int) : string
+setPromoOfAX OID(in position:int, in value:string)

allow to get and set the AXOID in a specified position

Workf

low Status

+getWorkflowWorkltemlI D() : string
+setWorkflowWorkItemlID (in value : string)

allow to get and set the WorkflowWorkltemI D

+getWorkflowWorkspacel nstancel D() : string
+setWorkflowWorkspacel nstancel D (in value : string)

allow to get and set the WorkflowWorkspacel nstancel D

Intern

al Potential Available Rights Management

+addI nternal Potential AvailableRights()

adds a new Internal PAR section

+removel nternal Potential AvailableRights()

removes the Internal PAR section

+getl nternal Potential Avail abl eRightsCount()

gets how many Internal PAR sections are present (0 or 1)

+getl nternal Potential Avail abl eRightsStatus() : string
+setl nternal Potential Avail abl eRightsStatus(in value:string)

allow to get and set the internal PAR status

+getl nternal Potential Avail ableRightslicense() : DOMNode

gets the DOM node of the license

Potential Available Rights Management

+addPotential AvailableRights()

adds anew PAR section if not present

AXMEDI S Project

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

+removePotential AvailableRights()

removes the PAR section

+getPotential Avail ableRightsCount()

gets how many PAR sections are present (0 or 1)

+getPotential AvailableRightsLicensingURL () : string
+setPotential AvailableRightsLicensingURL (in value:string)

allow to get and set the licensing URL

+getPotential Avail ableRightsStatus() : string
+setPotential AvailableRightsStatus(in value:string)

allow to get and set the PAR status

+getPotential AvailableRightsLicense() : DOMNode

gets the DOM node of the license

Object History Management

+getHistoryOfVersion(in version:int) : DOMNode

gets the history of aversion asaDOM Node

6.2.3 AxDublinCore
Class AxDublinCore allows to manage a Dublin Core descriptor:

AxObjectElement

+getDIElement() : MPEG21Element
+setDIElelemt(in diElement : MPEG21Element)

I

AxMetadata
-mPublic : bool = true

+isPublic() : bool

+setlsPublic(in public : bool = true)
+getMetadatalD() : string
+setMetadatalD(in value : string)
+getDOMNode() : <unspecified>

N\

AxDublinCore

+addDCElement(in type : string, in value : string, in language : string = ")
+removeDCElement(in type : string, in refNum : int = 0)
+setDCElementValue(in type : string, in refNum : int, in value : string)
+getDCElementValue(in type : string, in refNum : int = 0) : string
+setDCElementLanguage(in type : string, in refNum : int, in language : string)
+getDCElementLanguage(in type : string, in refNum : int = 0) : string
+getDCElementCount(in type : string) : int

Example of use:
AxDublinCore aDC,;

if(aDC.getDCElementCount(“ creator”)==0)
aDC.addDCElement(“ creator”, “Mozart”);

AXMEDI S Project

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

else
aDC.setDCElement(“creator”, 0, “Mozart”);

string creator=aDC.getDCElementV a ue(* creator”);

6.2.4 AxOID
Class AxOID embeds the AXOID identifier.
AxObjectElement

+getDIElement() : MPEG21Element
+setDIElelemt(in diElement : MPEG21Element)

I

AxMetadata
-mPublic : bool = true

+isPublic() : bool

+setlsPublic(in public : bool = true)
+getMetadatalD() : string
+setMetadatalD(in value : string)
+getDOMNode() : <unspecified>

AxOID

+getID() : string
+setlD(in value : string)

6.2.5 AxContent
Abstract class AxContent represents content to be stored in AXMEDIS objects, it is specialized in AxObject

or AxResource.
AxObjectElement

+getDIElement() : AbstractDIElement
+setDIElelemt(in diElement : AbstractDIElement)
+isProtected() : bool

+getProtectioninfo() : Protectioninfo
+setProtectionInfo(in protectioninfo : ProtectionInfo)

AxContent

+getContentID() : string
+setContentID(in value : string)

6.2.6 AxObject
Class AxObject represents an AXMEDIS Object, in its different forms. Generally, it models the basic

relations of an AXMEDIS object like identification (refers to an AXOID) and classification with metadata
that has to be always accessible (in any form) the so called “Public Metadata’.

AXMEDISProject 46

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

AxObjectElement

+getDIElement() : MPEG21Element
+setDIElelemt(in diElement : MPEG21Element)

T

AxContent

+setContentID(in id : string)
+getContentID() : string

I

AxObject

+getAxOID()
+setAxOID()
+getPublicMetadataTree()

TTT

AxProtectedObject AxClearObject AxReferredObject
+getAxOID() : AxOID +getAxOID() : AxOID +getAxOID() : AxOID
+getPublicMetadataTree() +addMetadata(in metadata : AxMetadata, in position : int = -1) +getPublicMetadataTree()
+setAxOID() +getPublicMetadataTree()

+removeMetadata(in position : int)

+getMetadataCount() : int

+getMetadata(in position : int) : AxMetadata
+addContent(in content : AxContent, in position : long = -1)
+removeContent(in position : int)

+getContentCount() : int

+getContent(in position : int) : AxContent

Class AxClearObject represent a “ clear-text” aggregation of content and metadata. It can contain any number
of metadata and any number of content. It exposes all the needed methods in order to manipulate the content
structure it represents.

Class AxProtectedObject represent a “ protected” (i.e. not accessible without permission) AXMEDIS Object.
Since the classification have to be aways possible methods to access Public metadata of the pretected object
are available. The AXOM it isin charge of obtaining the corresponding AxClearObject when an authorized
action has to be performed.

Class AxReferredObject models reference to external AXMEDIS Objects. In order to immediately perceive
which kind of object isreferred public metadata are retrievable.

6.2.7 AxResource
Class AxResource represents any digital resource identified with a mime type, it can be an image, a
document, an audio etc.

AXMEDISProject 47

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

AxObjectElement

+getDIElement() : MPEG21Element
+setDIElelemt(in diElement : MPEG21Element)

T

AxContent

+setContentID(in id : string)
+getContentID() : string

I

AxResource

+getMimeType() : string
+setMimeType(in value : string)
+getRef() : string

+setRef(in ref : string)
+embedFile(in fileName : string)
+removeEmbeddedResource()
+getlnputStream()

6.2.8 AxPublicMetadataTree

Class AxPublicMetadataTree represents a hierarchy of metadata associated to an AXMEDIS Object. This
class alows accessing public metadata of the owner AXMEDIS object and the public metadata tree of the
child objects. The AxPublicMetadataTree is designed to be a read-only information for the AxObject
consumer, since only AxClearObject, AxProtectedObject and AxReferredObject are entitled to update a
consistent metadata structure on the basis of the underlying content.

1

AxPublicMetadataTree

+getOwnerObject() : AxObject*
+setOwnerObject(in newOwner : AxObject) *
+getChildMetadataTreeList() : std::vector<AxPublicMetadataTree*>
+addChildMetadataTree(in metadataTree : AxPublicMetadataTree)
+removeMetadataTree(in metadataTree : AxPublicMetadataTree)
+getMetdata() : std::vector<AxMetadata*>

+addMetadata(in metadata : AxMetadata)

+removeMetadata(in metadata : AxMetadata)

AxMetadata

Please note that such a hierarchy does not duplicate the existing metadata elements, while it is ssmply a
shortcut to reach them in an uniform manner with respect to object forms (e.g. protected).

In the following diagram an object configuration has been depicted in order to understand the direct link in
order to access the metadata structure that describe the protected content.

Please note that the corresponding MPEG-21 element configuration has been depicted.

AXMEDISProject 48

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

ax01 : AxProtectedObject r i01 : IPMPItem

L' m_treel : AxPublicMetadataTree id - IPMPIdentifier
c_info : IPMPContentInfo|

d_i01 : DIDLItem

4' id1 : AXOID —{d_id1 : DIDL Descriptor|
infol : Axinfo Id infol : DIDLDescriptor|

dcl : AxDublinCore Id dcl: DIDLDescriQtor|

m_tree2 : AxPuincMetadataTree| d_i02 : DIDLItem
I | S

id2 : AXOID [—]d_id2 : DIDL Descriptor |
info2 : Axinfo [d_info2 : DIDLDescri tor|
dc2 : AxDublinCore Id dc2 : DIDLDescriptor|

contents : IPMPContents |

In the following diagram a clear-text object which contains a resource and referred object is presented.
Please note how transparently the PublicMetadataTree is able to access to the whole metadata hierarchy
without doubling the existing metadata elements of the clear-text object.

AXMEDISProject 49

ax01 : AxClearObject

m_treel : AxPuincMetadataTreel
id1 : AXOID

i01 : DIDLItem

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

d_id1 : DIDL Descriptor

infol : AxInfo
dcl : AxDublinCore

Id infol : DIDLDescrigtorl

d_dc1 : DIDLDescriptor

privl : AxMetadata

Id privd : DIDLDescriQtorl

IA : AxResource

cA : DIDLComponent

ax02 : AxReferredObject '7

m_tree2 : AxPublicMetadataTree

id2 : AXOID

x02 : XInclude

c_info : Fallback

d_i02 : DIDLItem

d_id2 : DIDL Descriptor

info2 : AxInfo

2 : AxDublinCor

Id info2 : DIDLDescriptorl

d_dc2 : DIDLDescriptor

|m tree3 : AxPuincMetadataTreel

d_i03 : DIDLItem

d_id3 : DIDLDescriptor

id3 : AXOID
info3 : AxInfo [d_info3 : DIDL Descri torl
dc3 : AxDublinCore

d_dc3 : DIDLDescriptor

6.2.9 AxLoader

Class AxLoader has been designed in order to obtain an AXMEDIS Object Model once the MPEG-21 Model
has been loaded by the suitable loader. In fact it is able to build AxObjectElement instances against
corresponding MPEG21Element instances.

AXMEDISProject 50

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

AxLoader

+createAxObjectElement(inout mpeg21Element : MPEG21Element) : AxObjectElement *
+createAxObject(inout document : DIDLDocument) : <non specificato> *
+createAxClearObject(in item : DIDLItem) : AxClearObject *
+createAxProtectedObject(in ipmpitem : IPMPItem) : AxProtectedObject *
+createAxReferredObject(inout xinclude : XiInclude) : AxReferredObject *
+createAxResource(inout component : DIDLComponent) : AxResource *
+createAxMetadata(inout descriptor : DIDLDescriptor) : AxMetadata *
+createAxInfo(inout descriptor : DIDLDescriptor) : AxInfo *

+createAxDublinCore(inout descriptor : DIDLDescriptor) : AxDublinCore *

+createAxOID(inout descriptor : DIDLDescriptor) : AxOID *
#AxLoader()

#~AxLoader()

«instance» «instance»

—| AxProtectedObject |< ——————————————————————— B e e

«instance» «instance»

|
i
AxClearObjectK-----—---—-=--—--"--"-"—-"-"-—————— Jlr ——————————————————————— AxOID
|
I
+
|
|
|
|
|

«instance» «instance»

AxReferredObject K- ——-—=--—-—-—-—-—-—-———-——~——~ -~~~ - AxDublinCore

«instance»

It is afull static clas exposing al static functions to build any type of AxObjectElement. Any function is
responsible of containing the knowledge about how the AXMEDIS Model is mapped onto the MPEG-21 DI
(e.g. a AxClearTextObject expects an Item with a certain number of mandatory descriptors and some
components or items).

Please note that the main entry point for loading AXMEDIS Object is createAxObject that is able to examine
awhole DIDL Document representing the object. This function will use all the specific loading functions for
clear-text, protected or referred objects and for loading metadata and resources.

AXMEDISProject 51

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

7 AXMEDIS Object Preprocessor and Postprocessor (EPFL)

M odule/Tool Profile

MPEG-21 Object Model

Responsible Name Beilu Shao
Responsible Partner EPFL

Status (proposed/approved) Proposed
Implemented/not implemented | Implemented
Status of the implementation

Executable or Library/module Library
(Support)

Single Thread or Multithread

Language of Devel opment C++

Platforms supported Windows, Linux
Reference to the AXFW https:.//cvs.axmedis.org/repos/A pplications/PreProcessor/xinclude/

location of the source code
demonstrator

[DSI] Why is this located in Application directory while, as stated
above, it should be alibrary?

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServicesif any, add
accession information (user and
Passwd) if any

Test cases (present/absent)

Present

Test cases location

https.//cvs.axmedis.org/repos/Appli cations/PreProcessor/testXinclude/

Usage of the AXMEDIS
configuration manager (yes/no)

Yes

Usage of the AXMEDIS Error
Manager (yes/no)

Yes

Major Problems not solved

-- std::istream* resolveXInclude(const XInclude& xi) is needed
-- integration with loader--

Major pending requirements

Interfaces APl with other tools,
named as

Communication model and format
(protected or not, etc.)

Name of the communicating tools
References to other major
components needed

Formats Used

Shared with format name or reference to a

section

AXMEDI S Project

52

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Protocol Used Shared with Protocol name or reference to a
section

Used Database name

User Interface Development model, language, | Library used for the development,

etc. platform, etc.

Used Libraries Name of the library and version License status. GPL. LGPL. PEK,
proprietary, authorized or not

LibXML 2.0 LibXML 2.0 MIT License

7.1 General Description of the Module
MISSING

7.2 Module Design in terms of Classes

7.2.1 Reference Solver

The reference resolver works in the following situation: when an application wants to obtain a part of the
object which is referred but not present in the object, reference resolver will provide the resolved part as an
input. The function of the resolver like std::istream* resolveXInclude(const XInclude& xi) will be called to
do this.

Reference integrator is a module for the automatic integration of the Xinclude elements at loading time. It
works in some way that the user never knows whether some parts of the object have been retrieved outside
the object or not. The processes of resolving and integration are performed together in the loading phase. For
instance, when the player loads an axmedis object, the loader will call the resolver to find referred elements
which are not present in this object but exist in some other objects. After obtaining these referred elements,
the integrator integrates these elements and transfers the original object with the new composite one.

The following diagram demonstrates an instance, e.g. a player, asks to resolve a reference. We assume that
the object referenced is a resource contained inside an AXMEDI S object located in the AXMEDI S database.
The resolver uses the Database Web Service to find and download the AXMEDIS object inside of which
there is the target resource. Once the AXMEDI S object is downloaded, the reference resolver uses the Object
Manager to extract the resource from the AXMEDIS Object. Finally, the resource is returned to the calling
instance by means of a pointer or reference to an outputStream interface. If the referenced object is not in the

AXMEDISProject 53

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

local file system, the reference resolver uses the Axmedis Database Web Service to localize and download
the object.

Any Reference Object Database
. Web
instance Resolver Manager .
Service

ResolveReference(reference)

Search object in database|

ke----AXMEDISobject .\ ____________

OpenObject(axObject)

< ,,,,,,,,,,,,,,,,,,,,

getResource(resourcelD.

outputStream

Fig. the working process of reference resolver

[DSI] As we told you, Reference Resolver should be able to resolve severa kind of protocols not only
AXMEDIS protocol. Did you have considered this? For example, http, ftp, etc...

What is the “outputStream” shown in the figure? Where does this stream write? Who uses it in order to
write? | do not understand. | supposed reference resolver should return an “inputStream”? Am | wrong?

The following diagram demonstrates the process of integration. We assume that some instance wants to
insert a resource which is located inside Objectl into Object2. The integrator first resolves Objectl with the
resolver and extracts the target resource from Object1 and then it adds the referred part into Object2.

Any Reference Object Object Database

. Web

instance Integrator Manager 1 Manager 2)
Service

Integrate
Reference(reference)

Get AX object from database

k- AXMEDISobject .\ 4

OpenObject(axObject)

1

getResource(resourcel D;

CommandAdd() //to add part of
object1 in object2

e S . m

Fig. the working process of reference integrator
[DSI] It isnot really understandable where Object Manager 1 and 2 comes from?

AXMEDISProject 54

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

7.2.2 MPEG-21 Binarization
MISSING

7.3 Technical and Installation information

References to other mgor
components needed

Axmedis |oader

Problems not solved

e Integration with the loader
o std::istream* resolveXInclude(const XInclude& xi) is needed

Configuration and execution

context

7.4 Draft User Manual
MISSING

7.5 Examples of usage
MISSING

7.6 Integration and compilation issues

MISSING

7.7 Errors reported and that may occur

MISSING

Error code

Description and rationales

7.8 Formal description of algorithm <............... >

MISSING

name

Method

Description

Input
parameters

Output
parameters

name

AXMEDI S Project

55

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Method

Description

Input
parameters

Output
parameters

AXMEDI S Project

56

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

8 Protection Processor (DSI)

M odule/Tool Profile

Responsible Name

Pr otection Processor
AndreaVdlotti, Leonardo Ortimini

Responsible Partner

DSl

Status (proposed/approved)

Implemented/not implemented

Status of the implementation

Executable or Library/module
(Support)

Single Thread or Multithread

Language of Devel opment C++

Platforms supported Windows/Linux
Reference to the AXFW

location of the source code
demonstrator

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServicesif any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)

Test cases location

Usage of the AXMEDIS
configuration manager (yes/no)

Y€Es

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved

Major pending requirements

Interfaces APl with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used

Shared with

format name or reference to a
section

AXMEDI S Project

57

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Protocol Used Shared with Protocol name or reference to a
section
Used Database name
User Interface Development model, language, | Library used for the development,
etc. platform, etc.
Used Libraries Name of the library and version License status. GPL. LGPL. PEK,
proprietary, authorized or not

8.1 General Description of the Module

Protection Processor has mainly four tasks:

1. Toregister and certify an AXMEDIStool containing the AXOM, e.g. editor, player, engine, €tc...

2. To control software which uses sensible content and does not contain AXOM, e.g. plug-ins for

fingerprint

3. Toreveal attacks during tool execution, e.g. code debugging

4. To protect and un-protect elements of AXMEDIS abject
In the following those aspects will be described and solutions are proposed for them. After that, class
implementation and interaction will be described.

8.1.1 AXMEDIS tool registration and certification

In the following the needed information to reach an adequate level of protection will be identified and
described. For each identified information, the responsible component is found out and the relationship to the
other is depicted. At the end, the interactions and operations among all involved components to guarantee
trustiness of atool are described.

8.1.1.1 Software and hardware fingerprint

Given adevice and an installation of an AXMEDIS compliant software on it, a fingerprint estimation of the
whole tool (software/installation and hardware/device together) is possible. In particular, this section refers
to software which embed an AXOM (and thus a Protection Processor), eg. AXMEDIS editor,
compositional/formatting engine, plug-ins for external viewer/editor, etc. The certification of plug-ins for
AXOM (i.e. which do not contain an AXOM) is discussed later. By fingerprint estimation is intended an
extraction of relevant information regarding the device and the most important files of the application (i.e.
those files which are fundamental for the trustiness of the environment). The proposed fingerprint is
composed by the following data:

AXMEDISProject 58

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

for each hard-disk in the device: serial, controller revision number

for each processor in the device: name (i.e. the standard description of its features), seria (if
reachable)

BIOS: name (comprehensive of the version), seria

optionally, for each network device: MAC address

operative system: name, version, installed upgrade (e.g. SP1), serial (e.g. product id)
manufacturer-defined name of all available components e.g. video device, audio device,
motherboard, €tc...

For each of the following files:

a. executablefileor library containing the AXOM

b. main file of each plug-ins

c. configuration files

d. secure cachefiles
the following features have to be collected:

i. full name (path and file name)

ii. physical position (e.g. if mass storage is an hard-disk it is the cluster index)

iii. digest (e.g. MD5)

iv. creation date and time

v. last modification date and time

vi. size

8. AXMEDISTool TypelD (AXTTID)

9. AXMEDIS Registration Tool ID (AXRTID) which isthe digest of the main program executable file
Please, see “AXMEDIS Tool Fingerprint” section for fingerprint XML format details. All thisinformation is
estimated by the Protection Processor. It is responsible of their estimation, they are stored on the AXMEDIS
Certifier and Supervisor and transmitted to it by means of the PMS Client. It is to point out that last
modification date and time (previous point 7-v) and size (previous point 7-vi) should not be considered as
parts of the fingerprint for those file which change during the lifetime of atool, e.g. configuration file and
secure cache, otherwise information stored on the AXCS and those estimated at runtime will hardly
correspond.

The fingerprint is estimated and used for the following operation:

1. Tool certification —the tool hasto transmit its complete fingerprint to the AXCS.

2. Tool re-certification — the tool has to transmit complete fingerprint to the AXCS in order to allow a

deep fingerprint verification and support decision about tool re-certification of adisabled tool.

3. Tool re-verification —the tool has to transmit complete fingerprint to the AXCSin order to allow a

deep fingerprint verification.
A digest of the fingerprint is used in other operations. Digests are generated by different algorithms in
different cases

1. Tool Verification — the tool has to re-estimate the fingerprint and to transmit a digest of it to the

AXCS. Calculation method: SHA1

2. Grant Authorisation — tool fingerprints digest is included in the new generated action log describing

the requesting action. Calculation method: SHA1

3. Offline Tool Verification — tool fingerprints digest is created to compare with the enabling code
received as a return of Tool Certification operation. The digest is created by means of SHA512
algorithm

NP

2L

~

8.1.1.2 Tool certificate

Tool certificate is issued by an AXCS to the tool itself when the latter certifies itself at the first activation.
The certificate is formatted in the X.509v3 format. It contains the following information:

Version 2 (that is X.509v3 isidentified by this value)
SerialNumber The serial number of the certificate. It is defined by the issuer which isthe AXCS
Signature The encryption algorithm used to encrypt the signature. In this case, the signature

algorithm is the RSA with SHA-1 which is identified by the following ASN.1
object identifier:

sha-1WithRSAEncryption OBJECT IDENTIFIER ::=

{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkes-1(1) 5 }

AXMEDISProject 59

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

| ssuer The AXCS which issued the certificate expressed in the X.500 format

Validity The validity period of the certificate which for the AXMEDIS purposes could be
onef/five year since the issuing time

Subject Identified who or what receives the certificate. In this caseit isthe AXTID which

identifies the tool

SubjectPublicKeylnfo | The encryption algorithm used to generate the public key and the public key
itself. In this case, the used encryption agorithm is the RSA which is identified
by the following ASN.1 object identifier:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs11}

Encrypted The encrypted digital signature of the certificate

Extensions Extension to the certificate. This field can contain the activation code for the tool
and other information. See DE3.1.2.2.13 regarding OIDs tree assigned by IANA
to AXMEDIS

Before generating the certificate, the AXCS requests to the Key Generator (component of the PMS Server) to
generate a key pair (public/private keys). As said above, the AXCS inserts the public key into the tool
certificate and sends certificate and private key to the tool. They are packed together as stated in PKCS #12.
The integrity of transmitted information is guaranteed by a signature using the private key of the AXCS (see
PKCS #12 — Public-key integrity mode). The privacy of that information is guaranteed because it is
encrypted using the public key of the user who is registering the tool (see PKCS #12 — Public-key privacy
mode).

The certificate and the private key are stored in the specific device certificate repository and in the PMS
Client secure cache. In that way, their consistence can be tested every time the tool is used, the Protection
Processor isin charge of doing that check.

The private key corresponding to the tool certificate is marked as un-extractable (see PKCS #11), i.e. it can
be used on the device where it have been stored on the first time but it cannot be exported on other devices,
not even by the device administrator. The tool certificate has to be accessible from al the user of a device to
avoid multiple registration of the same tool by different users.

8.1.1.3 Tool Registration Certificate

Tool Registration Certificate is issued by Tool Creator and included in tool installation. This certificate
provide evidence of tool authenticity and is used in certification operation of the tool

Version 2 (that is X.509v3 isidentified by this value)

SerialNumber The serial number of the certificate. It is defined by the issuer which isthe AXCS

Signature The encryption algorithm used to encrypt the signature. In this case, the signature
algorithm is the RSA with SHA-1 identified by the following ASN.1 object
identifier:

sha-1WithRSAEncryption OBJECT IDENTIFIER ::=
{iso(1) member-body(2) us(840) rsadsi(113549) pkecs(1) pkes-1(1) 5 }

| ssuer The AXCS which issued the certificate expressed in the X.500 format

Validity The validity period of the certificate which indicates the expiration date of
validity of the tool

Subj ect The AXRTID of thetool used for the first certification

SubjectPublicKeylnfo | The encryption algorithm used to generate the public key and the public key
itself. In this case, the used encryption agorithm is the RSA which is identified
by the following ASN.1 object identifier:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs11}

Encrypted The encrypted digital signature of the certificate

Extensions Extension to the certificate.

This certificate is included in tool installation and contains tool information needed to certify the tool. It is
not stored in the system certificate repository nor in the secure cache. Its presence is bounded to a predefined
path in the installation folder. Removal of this certificate from the right path will be treated as a tampering
action, thus disabling the tool until a recovery action is performed. Security about replacement of this
certificate is granted by his signature validated through public key cryptography .

AXMEDISProject 60

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

8.1.1.4 User certificate

User certificate is issued by an AXCS to the user at the registration time. It is useful to recognize who is
using atool or is making action on an object. The certificate is formatted in the X.509v3 format. It contains
the following information:

Version 2 (that is X.509v3 isidentified by this value)

SerialNumber The serial number of the certificate. It is defined by the issuer which isthe AXCS

Signature The encryption algorithm used to encrypt the signature. In this case, the signature
algorithm is the RSA with SHA-1 identified by the following ASN.1 object
identifier:

sha-1WithRSAEncryption OBJECT IDENTIFIER ::=
{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkes-1(1) 5 }

| ssuer The AXCS which issued the certificate expressed in the X.500 format

Validity The validity period of the certificate which for the AXMEDIS purposes could be
onef/five year since the issuing time

Subject The AXUID of theregistered user

SubjectPublicKeylnfo | The encryption agorithm used to generate the public key and the public key
itself. In this case, the used encryption algorithm is the RSA which is identified
by the following ASN.1 object identifier:

rsaEncryption OBJECT IDENTIFIER ::= { pkes11}

Encrypted The encrypted digital signature of the certificate
Extensions Extension to the certificate. This field can contain the email of the user and other
information

Before generating the certificate, the AXCS requests to the Key Generator (component of the PM S Server) to
generate a key pair (public/private keys). As said above, the AXCS inserts the public key into the user
certificate and sends certificate and private key to the user. They are packed together as stated in PKCS #12.
The integrity of transmitted information is guaranteed by a signature using the private key of the AXCS (see
PKCS #12 — Public-key integrity mode). The privacy of that information is guaranteed because it is
encrypted using something the user knows, e.g. a password given by the user during the registration (see
PK CS #12 — Password privacy mode).

The certificate can be delivered to the user using the email address he gave as reference during the
registration.

Another suitable solution is to send certificate and private key (possibly packed together) to the user at the
end of the registration through a secure channel, e.g. using secure protocol https (http on SSL) instead of the
un-secure http.

The certificate and the private key are stored in the specific device certificate repository and in the PMS
Client secure cache. In that way, their consistence can be tested every time the tool is used, the Protection
Processor isin charge of doing this check.

User certificate import and export have to be someway controlled, i.e. if auser triesto export a certificate the
system have to check if he/she is the subject the certificate was issued to. For example, the PKCS #12
formatted packet the user receives at registration time is protected by the password he/she gave at that time.
The main issue is to be sure that an user cannot extract a certificate installed on a device without proving
he/she isreally the certificate owner.

8.1.1.5 User Identifier/Identification

As stated in the previous sub-section, the AXUID (AXMEDIS User Identifier) of a user is contained in
his’her certificate. On a multi-user device (e.g. a personal computer with MS Windows), several certificates
for different users can be stored. In that scenario, the main issue is how an AXMEDIS tool can get the right
certificate (thus the right AXUID) for the current user.

Usually a multi-user device manages one certificate repository for each system users. In that case, the
AXMEDIS tool can look for a certificate issued by the AXCS in the current user certificate repository and
use that certificate, if exists, as reference certificate for the current system user. Note that each user should
have only one personal certificate issued by the AXCS.

The Protection Processor is in charge of looking for the certificate in the system repository and to get the
contained AXUID which univocally identified the AXMEDIS user.

AXMEDISProject 61

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

8.1.1.6 Date and time

Since licenses can be based on date/time condition, date and time control is a fundamental issue to be
addressed.

Date and time have to be measured at the registration and every time an action is made. These measures (or
at least the last one) should be stored in atrusted place which can be suitably the AXCS.

In that way, during certification and authentication, the AXCS can verify if the nominal sequence of the
actions (i.e. the sequence according to which actions were stored) matches the timeline sequence (obtainable
using the measured date and time).

Each record of the history of actions (see below) have to be labelled with the date and time of execution.

8.1.1.7 Action history

Action history permits to control if the user made some not-allowed actions during off-line working. That is,
when the tool is used on-line (i.e. it can freely communicate with the PMS Server) every time the user
request to do an action on an object the request is processed and, if it is authorized, an action log (containing
the action type, the user id, the tool id, date and time, etc...) is sent to the AXCS. On the other hand, if for a
while the tool has been used off-line (i.e. without communication to and from the PMS Server), each
authorized action generates an action log which is cached on the device (within the a secure cache). As soon
as aconnection to the PMS Server is available, the set of cached action logsis sent to it.
Theinformation involved in thiskind of control is:

1. theaction logs which are stored on the device

2. ahash (e.g. MD5) of the past history of actions which is stored on the AXCS and on the device.
Every time the tool can communicate with the PMS Server, the former sends to the latter the cached action
logs (or a single action log if it is working on-line) and the updated hash of the history, i.e. a hash which is
function of the old hash and the cached action logs. Managing of action history and its verification is
complete responsibility of PMS (client and server) that implements internal methods used to store action logs
and calculate history. Protection processor isin charge of providing to the PMS all data PM S cannot recover
itself in order to fill action logs (see below). Data needed to create an action log are provided to the PMS
Client by the Protection Processor every time the latter receives a Grant Authorisation Request.

8.1.1.8 Enabling code

Enabling code is issued by the AXCS to the tool during the registration (it is stored in the tool certificate).
The code is function of the fingerprint of the device, and is used to compare current tool fingerprint vs
fingerprint registered at verification time. This check is done offline while enabling code is calculated at
certification time. The calculation is made using a one way hash function, SHA512, applied on the
fingerprints XML representation. With this method any changes in current tool fingerprint is detected,
enabling protection processor to perform further verify and recovery actions.

8.1.1.9 Trustiness of atool

In this sub-section, a feasible mechanism to test the trustiness of a tool (the pair application/device) is
depicted. The information described above isinvolved in that check.

Protection PMS Client AXCS
Pr ocessor

Finoerprint registration | estimates FPy; - stores FPy;

9e&rp timet estimates FP;; joins FP, to action logs; verifies FP, w.r.t. FPy;
. . .] i calculate; verifies FP; digest

Fingerprint digest calculate; w.rt. FP digest;

Tool certificate verifies; store |r'1 stores gengr_at%l keys, generates
system repository; certificate;

User certificate verifies; store |r_1 stores gengr.ateﬁ. keys, generates
system repository; certificate;

User |dentifier gets | from USEM | joinsto action logs; i
certificate;

Tool |dentifier gets | from tool joinsto action logs; i
certificate;

AXMEDISProject 62

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

verifies, stores date and

Date and time measures, joinsto action logs; time of the last action log;

estimate new history | verifiesaction logs;
hash; manages action | stores new history hash;
logs,

stores history hash;

Action history -

generates as function of
Enabling code tests; - FPy; put into the tool
certificate

In the above table, all task of each involved component are reported with respect to the needed information,
i.e. which component generates/estimates an information and which other uses/verifiesit.

If atool have been successful registered by an user, at runtime the tool is considered trusted if, and only if,
al the following tests succeed:

1. The user certificate is valid, i.e. it is digitaly signed by the certification authority (which is an
AXCS). Control performed by the Protection Processor;

2. Thetool certificateisvalid. Control performed by the Protection Processor;

3. The enabling code contained in the tool certificate and the re-estimated fingerprint are compatible
according to the test described above. Control performed by the Protection Processor;

4. The re-estimated fingerprint digest matches the registration-time fingerprint digest which is stored
on the AXCS. Control performed by the AXCS;

5. The history hash calculated by the PMS Client, using the old one and the action logs (both securely
stored by the PMS Client into the Secure Cache), coincides with the same hash estimated by the
AXCSusing itsown copy of the old history hash and the action logs received;

6. The execution date and time of all the action listed in the action logs are consistent each other (i.e.
the nominal order matches the timeline order) and with respect to the last action execution date and
time stored on the AXCS;

8.1.1.10 Certified software

AXMEDIS tool features can be enriched by means of plug-ins. Usually plug-ins are pieces of software
exposing functions for specific purposes. Thus it is not suitable to equip a (likely) simple piece of software
(as a plug-in can be) with the AXOM to ensure DRM respect. Nevertheless, a plug-in can be used to
manipulate DRM-liable data, e.g. afingerprint extractor plug-in.

To tackle this lack of security, each pieces of software created to enrich AXOM functionalities via plug-in
and to manage content have to be previously registered by the AXCS (see DE3.1.2.2.13, AXCS Tool-Offline
Registration Web Application). Registration process results in the creation of a signed description of the
plug-in, from now on let call it “manifest”. For more details about the manifest see Plug-in description
format in DE3.1.2.2.4.

Every time a piece of protected content have to be passed to an external software, the Protection Processor
controlsif the binary file containing the software corresponds to the signature contained in the manifest. The
latter has to be placed in the same directory where the plug-in is placed.

8.1.1.11 Execution controls

Protection Processor should inhibit AXMEDIS tool functioning as soon as it reveals that tool execution is
under tracking. That is, Protection Processor should test if execution is under debug. That control is useful to
avoid malicious user to disclose all security mechanism used within AXOM to guarantee trustiness of the
environment.

This feature is system-dependant and it will be specifically developed for each platform AXMEDIS Tool
should be capable to run on.

8.1.2 Robustness against malicious user actions
In the following table are listed several feasible actions which a malicious user can carry out to illegally use
DRM-controlled content. Each attack is shortly described and

Feasible attacks description System avoid/detect capabilities

Migrate an AXMEDIS tool | The software and hardware fingerprints of the two devices are not
installation from the registered | equal, even if the two device has been assembled with same

AXMEDISProject 63

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

device to another

components, thus enabling code will fail.

Software under debug during
execution

Protection processor monitors if the application embedding it is under
debug, if it is protection processor will clear al sensible data on the
device. Moreover, if this monitoring system is deactivated modifying
the appliacation file, the fingerprint of the tool will change and it will
stop working.

Change system time to use time-
constrained content out of DRM-
alowed period

This attack will work until the device works off-line. As soon as the
tool can communicate with an AXCS thus, if IPR infringement is
detected by the latter, the tool will be disabled and the sensible
information will be cleared.

Migration of tool certificate

There are two countermeasurs against this action:

e The certificate is stored in two different places. the system
certificate repositorty and the secure cache of PMS Client. The
user can move the one stored in the system repository to
another device but a simple consistency control between the
two copies will defeat the attack

e The certificate contains the signed activation code used to
verify the tool integrity. Therefore, a certificate copied by
another device will never work

An user uses content by illegally
exposing the identity of another
user

If a user exposes al the credential of another user the attack will be
not detect. Nevertheless, this attack is similar to the usage of stolen
credit card and it cannot be considered solvable problem: the
privateness of the personal certificate is exclusive interest of the user
himself/herself

Change pieces of hardware

Depending on the wideness of changes, the tool is disabled and a re-
certify action isrequired to restore the tool’ s functionalities

Create a backup of the newly-
installed AXMEDIS toal. Illegaly
use content off-line (i.e. without
external controls). Restore the
virgin version of the tool before re-
connect to the network.

If a ghost image of the hard disk is made before using the content and
then it is restored on the original hard-drive after content has been
illegally used off-line, the attack will not be revealed by the
protection processor or the AXCS. Nevertheless, this action requires
such technical support and knowledge that it is not applicable by the
common user and it do not alow a spread distribution of unprotected
content. Thusit is not of interest for us.

8.2 Module Design in terms of Classes

8.2.1 General Structure

The following figure sketch the general architecture of Protection Processor.
ProtectionProcessor is the main class of the Protection Processor package. It provides protection services to
the Data Model Support, the Command Manager and the PMS Client. As described in the previous sub-

sections, it isin charge of:

1. certifying and verifying an AXMEDIS tool

2. controlling software which uses sensible content and does not contain AXOM
3. revedling attacks during tool execution

4. protecting and un-protecting AXMEDIS elements

AXMEDI S Project

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

I CipherDataSourceManager |

*

1 JAN PPPlugininstance
. *
«private» —_PPPIugin Profile

CipherDataSource 1 1 ! DebugDetectionThread |
¢ | & .
PMSClient ProtectionProcessor g DeviceFingerprint
1 1 1) 1
|AuthorizationThread FingerprintEstimationThread
1
N B
|TooIRegInterface| 1 |TO0ICertInterface|

UsrCertinterface

CertInterface

The above figure shows the general architecture of Protection Processor module. As depicted there,
ProtectionProcessor is the coordinator of all other classes. Moreover, it is the direct interface trough which
AXOM and AXMEDIS Tools can exploit all security features.

In the following subsections, each classes (or set of classes) will be described and their methods will be
explained.

8.2.2 ProtectionProcessor and CipherDataSourceManager

As depicted in the picture above, ProtectionProcessor class is the core of this package. It is the connection
point among all other utilities (fingerprint estimator, control thread, protection tools, etc...). It aso
implements a private interface (CipherDataSourceManager) which is needed for an easy and transparent use
of CipherDataSource. Please notice that Protection Processor is a singleton, i.e. only one instance of
ProtectionProcessor can be instantiated for each tool.

In the following the relevant methods of ProtectionProcessor are described:

e initialize — it is a static function which initializes the unique ProtectionProcessor instance and part of
its related classes. An AXMEDIS compliant tool has to call this function after the initialization of
Configuration Manager and before any other action.

o initializeTools — it is a static function which initializes the list of available protection tools. It hasto be
called after Protection Processor and Plug-in Manager initializations and before any other action.

e getlnstance — it is a static function which allows retrieving the unique instance of ProtectionProcessor
(Singleton design pattern). If the method is invoked before Protection Processor has been initialized, it
throws an exeception.

o islnitialized — it test whether te Protection Processor has been aready initialized or not.
terminate — it is a static function which terminates the Protection Processor. It has to be called when
no more security features are needed.

AXMEDISProject 65

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

CipherDataSourceManager

+createDataSource(inout descr : const IPMPInfoDescriptor) : CipherDataSource *

+createDataSourcelLike(inout sample : const CipherDataSource) : CipherDataSource *

+deletingDataSource(inout del : const CipherDataSource)

#~CipherDataSourceManager()

#createDataSource(in cplStream : ICipherStream*, inout ownerManager : CipherDataSourceManager) : CipherDataSource *

«private»

ProtectionProcessor

+initialize()

+initializeTools()

+getinstance() : ProtectionProcessor &

+islnitialized() : bool

+terminate()

+unprotectElement(inout src : IPMPElement, in axom : AxObjectManager* = 0) : DIDLElement *
+protectElement(inout src : const DIDLElement) : IPMPElement *

+hasPendingProtection(in elem : const DIDLElement) : bool

+getProtectionToolsOf(inout elem : const DIDLElement) : ConstToolListType
+setProtectionToolsOf(inout elem : const DIDLElement, inout tools : const ConstToolListType)
+applyProtection(inout element : DIDLElement)

+applyProtection(inout document : DIDLDocument)

+getToollDList() : const list<std :: string> &

+getlPMPToolProfile(inout toollD : const string) : const IPMPToolProfile &

+certify() : bool

+recertify() : bool

+isGranted(in obj : AxObject*, in grant : const string, in details : const string) : bool
-selfVerify() : bool

-verify() : bool

-debugCheck() : bool

-disableTool()

-ProtectionProcessor()

-ProtectionProcessor(inout Parametro1 : const ProtectionProcessor)

-~ProtectionProcessor()

-createOCipherStreamFrom(inout descr : const IPMPInfoDescriptor) : OCipherStream *
-createlCipherStreamFrom(inout descr : const IPMPInfoDescriptor) : ICipherStream *
-addPluginProfile(in profile : PPPIluginProfile*)

-getiPMPToollnstance(inout identifier : const string, in encodingTool : bool) : Alg *
-getPlugininstance(inout identifier : const string) : PPPlugininstance *

-getTime() : string

-checkGrants(in grant, in details, in AXCID, in AXDID, in AXOID, in AXWID, in objectVersion, in ownerName, in protectionStamp) : bool
-authorise(in grant, in details, in AXCID, in AXDID, in AXOID, in AXWID, in ObjectVersion, in OwnerName, in protectionStamp) : bool

e unprotectElement — it unprotects the given IPMPElement returning the corresponding DIDLElement.
Needed Protection Information is retrieved from the protected element itself or from the Secure Cache
(on the base of AXOID, version and Protection Stamp).

o protectElement — it protects the given DIDLElement returning the corresponding IPMPElement. In
order to protect the clear-text element, Protection Processor uses:

o Protection Information previously set by the User (e.g. through the AXMEDIS Editor);
o the Protection Information previously used to unprotect the original IPMPElement, only if
the given DIDLElement derives from a previously unprotected | PMPElement

o hasPendingProtection — it test whether there is a list of Protection Tools associated with the given
DIDLElement

e getProtectionToolsOf — it returns the list of Protection Tools associated with a given DIDLElement.
Thislist isreturned if and only if Protection Information has been set by the User or it was contained
in the original IPMPElement.

o setProtectionToolsOf — it allows associating a list of Protection Tools to a given DIDLElement. This
method overrides the old Protection Tool list.

o applyProtection — these two static functions recursively protect all those elements which have pending
Protection Information starting from the given root element (which can be a DIDLDocument or a
generic DIDLElement). These functions visit the model tree in a post-ordered way.

e getToolIDList —it returnsthelist of al available Protection Tool identifiers.

AXMEDISProject 66

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

o getlPMPToolProfile —if the required profile exists, this method retrieves the profile of the Protection
Tool given itsidentifier.

o certify —this function is called at first tool activation to certify it, sending the required information to
the AXCS.

o recertify — this function is called whenever a user needs to recover a disabled tool. The method try to
recertify the tool through a call to PMS, and if this operation give positive result, the tool is enabled
once again. Elsewhere the tool remains disabled (no other operation is possible)

e isGranted — this function has to be called before the execution of any action on an AXMEDIS object.
This function is called by the AXMEDIS Object Manager (see related section). This method receives
from upper levels information needed to check, through PMS Client interface, if the requested action
is performable in accordance with the licenses that user/tool pair owns. Calling this method starts a
chain of operations, leading to a complete tool, user and environment verification. Direct verification
functionalities are hidden by this public method.

The above methods are the public interface of ProtectionProcessor. It aso implement the following functions
which are used internally:

o selfVerify — check tool fingerprint vs. enabling code comparing the SHA-512 of xml tool fingerprint
with the enabling code. If the test fails, the tool is blocked, all sensible data are removed and the tool
needs to be recertified.

o verify —interface between PMS Client verify method and Protection Processor. In this context the tool
fingerprint digest , used for verification, is calculated using SHA-1 on extracted tool fingerprint

o debugCheck — This method reveals if some debug application is active on the tool. If a positive result
happens, the toal is disabled.

o disableTool — Through a call at this method protection processor block the tool, deleting all sensible
data contained in secure cache of PMS Client and denies al further operations on the tool. The only
means to recover a disabled tool isto recertify it.

e Constructor and Destructor — they are private since ProtectionProcessor can be instantiated and
deleted only by static functionsinitialize and ter minate respectively.

o createOCipherSream — this private functions creates an output cipher stream given an
IPMPInfoDescriptor. See next subsections for details.

o createlCipherSream — this private functions creates an input de-cipher stream given an
IPMPInfoDescriptor. See next subsections for details.

Moreover, as stated before, ProtectionProcessor implements the interface CipherDataSourceManager in
order to be able to manage CipherDataSource obtained by protected elements. Cipher DataSourceManager
declares the following methods:

o createDataSource —it creates a Cipher DataSource given the Protection Information.

o createDataSourcelike — it creates a CipherDataSource starting from a given one. This method does
not make an exact copy of the passed data source. Instead it creates a cipher data source which
conforms to the Protection Information of the given one.

o deletingDataSource- this function is called in the destructor of CipherDataSource in order to warn the
related Cipher DataSourceManager that it has been del eted.

The other private functions are simply utilities which are not explained here.

8.2.3 Cipher streams

|CipherDataSource|<>—|ICipherStream|—[>| istream I‘—' streambuf |—’| ostream IQ—|OCipherStream
1 1 1 1

1 1
1 1

ICipherBuf | | OCipherBuf

1

1 1
1 1
* 1

Alg CipherChain

In order to easily integrate the ciphering and de-ciphering mechanisms with the other modules (such as
MPEG-21 Loader and Saver, €fc...), a stream-based approach has been adopted. That is, given a blob of

AXMEDISProject 67

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

bytes representing a protected DIDL element, and the related Protection Information, ProtectionProcessor is
able to create an instance of 1CipherStream class. As show in the figure above, ICipherSream is derived
from std::istream class of the STL thus exposing the same interface. An instance of this class allows reading,
using the common C++ stream functions, the clear-text version of the blob of bytes.

On the other hand, an instance of OcipherSream, which derives from std::ostream, protects data written
through it on the basis of given Protection Information. Therefore, an instance of OCipher Sream could be
used as normal C++ stream but it also performs protection actions on the written data.

Both ciphering streams act as Decorator (see Design Pattern) for other C++ streams. For example, a standard
C++ fileinput stream (i.e. std::ifstream) is opened on afile containing protected blob of bytes. Thisstreamis
wrapped by an instance of 1CipherSream. Every time the user request some data, the cipher stream reads
(protected) data using the wrapped file stream and, on the basis of its settings, unprotect them thus returning
clear-text data to the user.

CipherChain
-defaultinii) .
+CipherChair() 1
+CipherChain(inout out: ostream) >
+CipherChain(inout in : istream)
+CipherChain(inout out: ostream, inout in: istream) Alg
+~CipherChain() +Alg()
+PushDataRequestin from: unsigned char, in howmany: unsigned long : unsigned long +~Alg()
+PopDataReques(in to : unsigned char, in howmany: unsigned long) : unsigned long +BlockProcesgin Parametrdl : unsigned long) : unsigned long
+AddToolToChair(in element: Alg*) +GetInSize() : unsigned long
+TestEOL) : bool +GetOutSiz€) : unsigned long
+SetEOD() +GetInBuffer() : unsigned char*
+setDestinatior(inout out: ostream) +GetOutBuffer() : unsigned char*
+setSource(inout in: istream) +GetState() : int

The main classes for the realization of cipher streams are Alg and CipherChain. Alg is an abstract class
which is the base class of al Protection Tools. That is, each Protection Tool has to expose the interface
provided by Alg. In particular, a given Protection Tool has to implement its own specific BlockProcess
function which, given a block of bytes, has to produce the clear-text version of this block w.r.t. the
implemented algorithm. In this way, different Protection Tools can be treated in a common manner.
CipherChain is the coordinator of a set of Protection Tools, i.e. it isin charge of providing to each tools the
appropriate amount of data and applying to each block of bytes the required tools in the correct order.
CipherChain can work in two different modalities: push and pop. The push mode is used by the
OCipherStream class since usualy the user pushes the data to be protected into the stream. On the other
hand, the pop mode is used by the | Cipher Stream.

For the sake of completeness, it is worth to point out that | Cipher Buf and OCipherBuf are the real owners of
CipherChain instances. In fact, due to the STL architecture, these are the classes which customize the
behaviour of streams.

8.2.4 Protection Information interpretation

In the AXMEDIS project, Protection Information is represented using the MPEG-21 IPMP standard as

explained in the section “AXMEDIS Protection Info”. This format can be easily interpreted using the

MPEG-21 Loader (see related section) since the MPEG-21 IPMP XML Schema has been integrated in the

MPEG21Element hierarchy. Once created the object model of a given piece of Protection Information, the

ProtectionProcessor can create cipher streams. In particular, it is able to retrieve Protection Tool instances

from loaded Plug-ins on the basis of their profiles, and to combine them together (see section 8.2.11). After

that, thislist of tool instances will be used by the cipher streams in order to protect (or unprotect) content.

Protection Information may include:

e How each element of an AXMEDIS object has been protected, i.e. encrypted, encoded, compressed and
scrambled

e How each chunk of aresource has been protected, e.g. specifying that a given set of protection tools has
to be applied from byte X to byte Y of a given resource (and not to the whole resource). In that way,
different protection can be applied to aresource along its consumption.

e Itisbased on an XML schemawhich allowsto describe sort of protection procedures

Different tools can be selected by means unique identifiers defined in the framework. The tools can on the

device, downloaded from some server or directly contained within the protection info.

AXMEDISProject 68

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

The decomposition and the application of the dynamic IPMP can be performed at level of data segments and
blocks and may change over time if different coding protection models are enforced into the same resource.
Thisis quite different with respect to dynamically change the IPMP rules when the resource is streamed.
Note that the single resource may have different tools, different keys, different combination of tools, etc...

8.2.5 Threads
Protection Processor module contains three thread classes. These have been designed in order to do specific
functions in an asynchronous way w.r.t. the execution of the program. That is:

o DebugDetectionThread — at random time instants, it tests whether the application is under debug or
not. It simply calls the debugCheck method provided by ProtectionProcessor.

e FingerprintEstimationThread — at random time instants, it estimates the fingerprint and its hashes
which are needed for the control during program execution. This has been designed since fingerprint
estimation is atime consuming task which cannot be done every time an action is done

e AuthorizationThread — at random time instants, it cals the verify function provided by
ProtectionProcessor. In that way the tool is verified even when any action is done.

8.2.6 Certificate Interface Module

Certinterface

+CertInterface()

+CertInterface(inout Parametro1 : const CertInterface)

+~CertInterface()

+initialize()

+dismiss()

+findSysCert(in key : const char*, in store : const char*, in flag : bool = true) : PCCERT_CONTEXT
+findNextCert(in previous : PCCERT_CONTEXT = 0) : PCCERT_CONTEXT

+storeCert(in cert : PCCERT_CONTEXT, in storeName : const char*, in flag : bool = true) : bool
+isInitialized() : bool

+verifySysCert(in contextPtr : PCCERT_CONTEXT) : bool

UsrCertlnterface ToolReginterface

+ToolReglnterface()

:_U_strcl_ertlnterface() +ToolReglnterface(inout Parametro1 : const ToolReglnterface)
initialize() . +~ToolReg|nterface()

+UsrCertnterface(inout Parametro1 : const UsrCertlnterface) _loadToolRegData(in regcert : PCCERT_CONTEXT)

+~UsrCertinterface() +getToolRegID() : string &

-loadUsrCertData(in usrcert : PCCERT_CONTEXT) +getToolRegDDL() : string &
+d|sm|ss()') +islnitialized() : bool
+getUID() : string & +dismiss()

+islnitialized() : bool +initialize()

ToolCertinterface

+ToolCertlnterface()

+ToolCertInterface(inout Parametro1 : const ToolCertinterface)
+~ToolCertInterface()

-loadToolCertData(in toolcert : PCCERT_CONTEXT)

+storeNewCertificate(in toolBase64 : string, in pass : string) : bool
+dropToolCert()

-compareCert(in toolcert : PCCERT_CONTEXT) : bool

+getToollD() : string &

-decodePK12TB64(in toolBase64 : string, in pass : string) : PCCERT_CONTEXT

1

1

1
ProtectionProcessor

1

This module has the task to coordinate access to certificate data, meanwhile providing trustness, verification
and management of those structures. Methods for this module are described below.

initialize — This method provide loading data to the proper certificate interface. Meanwhile certificate
verification, management and validation checks are performed.

dismiss — This method delete all information stored in calling interface, resetting to a starting state. This
operation is useful to prevent tampering user to read and maybe change memory values for certificates data.

storeNewCertificate — is used in certify operation when the tool receives its certificate. This method
automatically store certificate instance in the proper system repository for future use.

AXMEDISProject 69

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

dropTool Certificate —is used in a recertify operation when the tool receives a new certificate. The old and
invalid certificate is dropped.

getUID getToolID getToolReglID... — those methods provide access to data loaded from the certificates. If
the certificate is not initialized the content is an empty string.

verifySysCert — Implements a validity check for certificate and certificate validation chain. If the verification
fails (due to expiration date reaching or for un-trusted certification chain or error in some certificate
signature) the certificate interface cannot be initialized. Used as private method for the specific certificate
interfaces.

8.2.7 Fingerprint Module

ProtectionProcessor

DeviceFingerprint

+DeviceFingerprint()

+~DeviceFingerprint()

+enqueueFile(in filepath : const string, in FeatureMask : unsigned char) : bool
+systemProbing() : bool

+getDigest() : const string

+createSHA512Digest(in toHash : const string) : const string
+createXMLFingerprints() : const string

+clear()

1
1

CommandTranslator

-ReadLineFromVFS(in input : FILE*, in data : char*, in length : unsigned long) : unsigned long
-InitNetInfo(in device : char*) : __unnamed_13746748_1 *
-FreeNetInfo(in net : __unnamed_13746748_1%)
-RetrieveHDInfo(in n : unsigned long, in hda : char*, in hdb : char*, in hdc : char*, in hdd : char*) : char *
-CMOSMemoryRead(in cmos : char*) : bool
-RetrieveCMOSSerial() : char *

+CommandTranslator()

+~CommandTranslator()

+RetrieveNICName(in n : unsigned long) : char *
+RetrieveNICMACAddress(in n : unsigned long) : char *
+RetrieveNICNumber() : unsigned long
+RetrieveCPUNumber() : unsigned long
+RetrieveCPUName(in n : unsigned long) : char *
+RetrieveCPUVendorString(in i : unsigned long) : char *
+RetrieveCPUSerial(in i : unsigned long) : char *
+RetrieveCPUDescription(in n : unsigned long) : char *
+RetrieveHDDescription(in n : unsigned long) : char *
+RetrieveHDSerial(in n : unsigned long) : char *
+RetrieveHDNumber() : unsigned long
+RetrieveOSVersion() : char *

+RetrieveOSUpgrade() : char *

+RetrieveOSSerial() : char *

+RetrieveOSName() : char *

+RetrieveFileSize(in filename : char*) : char *
+RetrieveFileCreationDate(in filename : char*) : char *
+RetrieveFileLastModificationDate(in filename : char*) : char *
+RetrieveFileDigest(in filename : char*) : char *
+RetrieveFileFullName(in filename : char*) : char *
+RetrieveFilePhysicalPosition(in filename : char*) : char *
+VerifyPermission() : bool

+RetrieveBIOSVersion() : char *

+RetrieveBIOSName() : char *

+RetrieveBIOSSerial() : char *

This module is in charge for tool fingerprint extraction and fingerprint hash calculation. The architecture of
the module is ssmple, a class DeviceFingerprint, provide coordination and interface to Protection Processor.
Instead, in CommandTrand ator, methods to access system information are implemented.

systemProbing — This method recover system information and installation information from the loca
machine using CommandTranslator functionalities. A call to this method is requested whenever a digest or
fingerprint creation operations are needed.

getDigest — Returns SHA1 digest of the ToolFingerprint retrived by means of systemProbing. The hash is
calculated on the chained fingerprint text.with no added xml tags.

AXMEDISProject 70

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

getXMLFingerprints — Returns XML Representation of ToolFingerprints stored in a std::string field. A call
to systemProbing is needed before this operation.

createSHA512Digest — this method implements SHA512 interface. It returns a 64 byte string that contains
the argument hash.

clear — Clear the device class deleting all stored contents. Needed to prevent fingerprint screening by
malicious user.

8.2.8 Tool certification
During tool certification, the protection processor checks:
o If some process is debugging the application. In that case operations ends.
o Certificate status. For each user and tool registration certificates ProtectionProcessor checks
existence, validity and authenticity. If checks fails operations ends
o Existence of atool certificate. If this certificate exists this operation ends because only a certification
for each tool is permitted. To restore disabled tool and recover a new tool certificate the operation
recertify has to be exploited.
ProtectionProcessor call tool fingerprint module for fingerprint extraction and send obtained XML
fingerprint representation, along with tool registration id, deadline and user id to PMS client calling certify
method. PM S Client have to send those information to AXCV to evaluate certification request.
If certification succeeds a certificate for the tool containing tool id (TID), enabling code and the public key is
issued, along with the private key for the tool, in PK CS#12 format.
ProtectionProcessor store the new certificate through the ToolCertinterface module, completing certify
operation.
All sensible datais cleaned from memory, as soon asit is no more useful for method workflow.

The next sequence diagram depict a complete certification scenario.

AXMEDISProject 71

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

protectionProcessor msFEPDevice msUserCert msToolReg msPMSCIi msToolCer
certify) | | | | |
— e debugCheck() | | | |
| | | |
I I I I
I I I I
I I I I
~ 1 1 1 1
N I I I I
~ | | | |
K———__- true | | | |
: initialize() : :
| false |

K- e it oo bommmmooo
initialize() 1 1
Il » L |
true | U i
ittt sttt |
initialize() 1
| a !
true
|
_________________ oo

systemProbing() |

fp:=createXMLFingerprints()

clear()

uld::getUID()—:_
1

| i

trld::getTooIReng()
|

deadLine:=gétTooIRegDDL()
|
T

I
cr:=certify(uid, rtid, fp, deadLine)

— |

dismiss()

i
|
dismiss() i

4
|
|
| IS
|
|
|

i

I I
| initialize() |
]]]
[} [}
| true |
I I I
K- —————-——m - el r———-—-—----- [T

| dismiss() | | |

|] | | |
T T T T
true | | | |
I I I I
- - | | | |
I I I I

The figure above shows the case of successful certification. This can fail in severa points. If this happens the
method ends in several ways (summarized below) and it returns false. The possible failure points are;
o debugCheck() return false — someone is debugging the tool. The latter is disabled by calling
disableTool() method;
o firstinitialize() called on msTool Cert return true — this means the tool has been already certified;
o initialize() called on msUserCert or msToolReg return false — the tool misses user or tool registration
certificate. The already initialized certificate data are deleted calling dismiss();
o cr.certificationResult is fal se — the certification failed;
last initialize() called on msToolCert return false — this means the tool certificate has not been
correctly stored;

AXMEDISProject 72

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

8.2.9 Grant Authorisation Requests

The figures below depict the interaction among protection processor and PMS

consumption and handling.

tid:=getToollD()

I
uid:=getUID() ;

»

1

|
|
timeStamp:z‘getTime()

[|

protectionProcessor msUserCert msToolCert msFPDevice
isGranted(obj, grant, details) } } } }
! debugCheck() } }
“~o 1 1 1	
~o	
_— true	
initialize()	
(-	
true	
K=o	
initialize()	
» !	
true	
K mmm o ‘ 1	
selfVerify() } } }	
[
“~o 1 1 1	
So I I I	
K——___> true } } }	
verify() } } }	
[I I I	
: : :	
Ke—___V true ! ! !	
!	
> I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

praéh::getDigest()
|

|

|

|

|

|

|

|

|

|

|

| |
systemProbing() }
| |
I

|

|

T

|

|

|

|

client during content

msPMSCIi

| | b |
ret:=authorise(CID, DID, OID, tid, uid, WID, fpHash, timeStamp, objVer, oppetails, oplID, owner, protStamp, true)

'

'

-

dismiss()

|
|
p |

dismiss()

|
|
|
p |

S T]

1]

[

|
The figure above shows interactions among objects involved in an authorization request. In particular,
Protection Processor makes some controls in order to ensure the trustiness of the tool and, if these controls
succeed, invoke the authorise method of the PMS Client. In the above sequence diagram &l the controls
succeed however, the are several point of failure. In all the following cases, the tool is disabled and the

method returns fal se:

o debugCheck() returns fal se — someone is debugging the tool;

AXMEDI S Project

73

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

o initialize() called on msUserCert or msToolCert return false — the tool misses user or tool certificate.
The aready initialized certificate data are deleted calling dismiss();
o sdfVerify returns fal se — the activation code has not been verified;
o verify returns false — the verification against data on the AXCSfails;
Once the tool has been disabled, recovering is alowed through recertify method.
As stated above and depicted in the figures, Protection Processor uses PMS Client to communicate the
verification information to the AXCS. That data consist of:
o TID —thetool identifier assigned to the tool at certification time by the AXCS
e Tool fingerprint hash — to make the communication lighter, the whole tool fingerprint is transmitted
only if its hash do not match the one stored on the AXCS. This operation is performed through
reverify method.
Communication between Protection Processor and AXCS works on a secure channel provided by the PMS
Client. It has to be pointed out that even if communication is established by the PMS client certificates for
communication are managed by the protection processor (as all the other security information) thus PMS
client has to request the communication certificates to the protection processor every time it has to open a
secure channel.
Disabling atool include removal of al sensible information about tool/user from the device. All data stored
in the secure of PMS Client cache has to be removed in this context. In the sequence diagrams below some
key operation in certifying and verifying are explained and analyzed.

Next diagrams deeply explain tool verification in order to point out case where tool verification fails. In this
case, the tool is disabled since it means that the user has performed something which could be considered as
a tampering action. Reverify method is used in al the cases where fingerprint digest does not match the
server side counterpart. This situation occurs whenever some change on the device has been made. However,
minor changes are allowed by the system that can use recertify inputs to deeply analyze tool fingerprint and
decide to block or not the tool.

protectionProcessor msFPDevice msUserCert msToolCert msPMSCIi

verify() | |
| i
|

systemProbing()

»
Lgl

fpHash:=getDigest()

-

} tid:=getToollD()

uid:=ge:tUID() U
| 1]
} verify(uid, tid, fpHash)
3
clear) |

true ‘
& T]

Please notice that the return value of reverify method is also the return value of the verify method. In fact, in
the case reverify returns true, the tool can be considered verified. On the other hand, if the former does not,
the tool will be considered tampered and therefore disabled.

AXMEDISProject 74

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

protectionProcessor msFPDevice msUserCert msToolCert msPMSCIi
verity | | | | |
I I I I
systemProbing : : : :
L I I I
getDigest i i i
I I I
I I I
| | |
L | | |
getToollD : : :
I I » ! I
getuID | | i
| o ! 1
T I
I I
I I
1 . 1
I rry! I
| ve |fyI N
i false i
_______________ R SR _____________L,l
I
I

clear()

T reverify(uid, tid, fp)
|
|

[} I I
I I I
P u | | |
I I I I
I I I I

|
Next diagrams explain self verification and actions taken to manage detection of changing in the fingerprints
of the module.

protectionProcessor msFPDevice msToolCert

selfVerify() | |
1 |

ec:=getEnablingCode()

systemProbing()

fp:=createXMLFingerprints()

fpHash:=createSHA512Digest(fp)

clear()

compare(ec, foHash)

[

~

< ____v true

s N

In an offline environment there are no chances to further verifications and the tool is automatically disabled.
Instead, in an online scenario, some actions are taken to recover the situation through calling reverify. If the
checks give positive result a new tool certificate along with a new enabling code is issued restoring a
consistent status of the tool. Otherwise, the tool is disabled and it has to be explicitly recertified.

R

AXMEDISProject 75

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

AXMEDI S Project

protectionProcessor msUserCert msFPDevice msToolCert msPMSCIi

- T T T T T
selfVerify : : : : :
I | | |
ec:=getEnablingCode() : :
+ + L |
systemPrlobing() : U :
; L |
fp:=createXMLFingerprints() | |
! | |
fpHash:=createSHA512Digest(fp) i i
Il I |
clear() | |
I I I
I I I
! I I
compare(ec, fpHash) L | |
| | | |
I: I I I I
I I I I
I I I I
~_ | | 1 |
~< I I I I
o I I I I
K—____» false ! ! ! !
I I I I
I I I I
uid:=getUID() | | | |
’LI | | |
I I I
I I I
:tid::getToollD() : : :
| | U |
I I I
I I I
| reverify(uid, tid, fp) i
| | o |

| e T]

K—————————-- To———————— - e B

76

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

8.2.10 Tool recovery/recertification

protectionProcessor msUsrCert msFPDevice msPMSCIi msToolCert
recertify() | |
1 I
uid:i=getUID() |
]

»

1

I
systemProbing()

|
|
|
|
|
|
|
i
tid:=getToollD()
E
|
|
|
|

fp:=createX™m LF'ingerprints()

clear()
|
|
|

res:=}ecertify(uid, tid, f;ﬁ_)
I I

|
; ‘
storeNewCertificate(cr.toolBase64PKCS12.ptr, cr.toolBase64PKCS12.size, psw)

| |

| |

| |

| |

| |

]

>

N i

| |
In order to recover a disabled tool recertify operation is provided. Protection Processor request a verification
of tool fingerprint at AXCV through PMS Client. If the operation succeeds a new tool certificate and a new
enabling code for the tool are issued by AXCV.

8.2.11 Protection Tools as AXMEDIS Plug-ins

PPPluginProfile

1 1 [+PPPIluginProfile(inout pluginProfile : const AxPluginProfile)
AxPlugininstance K> AxPluginProfile <>{*~PPPluginProfile() .
+getCategory() : const string &
1 1 +getldentifier() : const string &

+getLibrary() : const string &

+getVersion() : const string &

+getVendor() : const string &

+getMainLibrary() : const string &

+getDescription() : const string &

+getToollDList() : list<std :: string>

+getPluginProfile() : const AxPluginProfile &

+getlPMPToolProfile(inout toolID : const string) : const IPMPToolProfile &

*

1

PPPlugininstance IPMPToolProfile
+PPPIlugininstance(inout workingDir : const string, inout profile : const PPPluginProfile) +IPMPToolProfile(inout elem : const DOMElement)
+~PPPlugininstance() +~IPMPToolProfile()
+createEncodinglPMPTool(inout toollD : const string) : Alg * +getld() : const string &
+createDecodinglPMPTool(inout toollD : const string) : Alg * +getName() : const string &
+releaselPMPTool(in ipmpTool : Alg*) +getDescription() : const string &
+hasBeenlnstantiated(in ipmpTool : Alg*) : bool +getParamDescrList() : const ConstParamDescrListType &

+getType() : ToolType
+isAuthoring() : bool

Protection Tools used by the Protection Processor are distributed as AXMEDIS Plug-ins (see section
“Module - AXMEDIS Editor Plug-in Manager” in DE3.1.2.2.4). Each plug-ins contains a set of Protection
Tools. Moreover, the manifest of the plug-in contains a specific description which reports the identifiers of
the provided tools and their main features.

In particular, an AXMEDIS Plug-in containing some protection tools has to export the following functions:

extern "C" Alg* createIPMPTool (const std::string& toolID, bool encoding)
extern "C" void releaseIPMPTool (Alg* tool)

AXMEDISProject 77

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

createIPMPTool alows creating Protection Tool instances by providing the tool identifier (tool1D).
When the encoding parameter is true, the function has to return the encoding version of the tool itself.
Otherwise, the function has to return the decoding part of the required tool. That is, atool identifier identifies
the couple of encoding and decoding a gorithms.

realeaseIPMPTool releases the given tool instance. This function has been introduced for the tool
instances are created by the dynamic library and they have to be deleted by it.

The above figure shows the main classes involved in the management of protection plug-ins (i.e. AXMEDIS
Plug-ins containing Protection Tools). In particular:

e PPPluginInstance iSan extension of AxPluginInstance. An instance of this class represents a
loaded protection plug-in. This class allows exploiting specific functions of this kind of plug-ins (e.g.
create and release Protection Tools).

e PPPluginProfile WrapsAxPluginProfile in order to allow accessto generic and specific datain
the plug-in description. In particular, it provides methods to get the identifiers of contained Protection
Tools and to get the description of any of them (given the related identifier).

e IPMPToolProfile alows accessing the data contained in the description of a Protection Tools (see
section 20).

Please refer to “Module - AXMEDIS Editor Plug-in Manager” in DE3.1.2.2.4 for more details about
AxPluginInstance and AxPluginProfile.

During ProtectionProcessor: :initializeTools execution, Protection Processor gets al the plug-in
profiles belonging to “IPMPTool” category. For each profile, it creates a new pPPluginProfile instance
which wraps the generic profile and parses the specific descriptor contained in the latter.

When a Protection Plug-in is needed, a new instance of PPPIugininstance is allocated passing it the related
profile. In thisway, the plug-in instance is able to retrieve al the data it needs directly from the profile. Once
created, the plug-in instance is registered to the Plug-in Manager.

8.3 Integration and compilation issues
Protection Processor relays on the PMS Client.

The following table summarizes the needed library in order to use the Protection Processor.
Name OS/Platform Library file Description
Windows/PC | Linux/PC
OpenSSL X X libeay32.lib | Provides several functions for certificate
ssleay32.lib | management and SSL connections.
Crypto++ X X cryptlib.lib Provides functions for exploiting SHA-512
Common X X common.lib
Crypto AP X crypt32.lib
SNMP API X SnmpAPI.lib
8.4 Configuration Parameters
Config parameter Possible values
PMSCLIENT - Any valid URL which points to the reference PM S Server
PMSClientEndpoint
PMSCLIENT - Any valid DSN name for the secure cache database
PMSClientLocalDSN
PMSCLIENT - Any valid user name for the secure cache database
PMSClientUser
PMSCLIENT - Any valid password for the secure cache database
PMSClientPsw

8.5 Errors reported and that may occur

Error code Description and rationales

0 The protection processor has not been initialized

AXMEDISProject 78

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

1 Tools has to be initialized after protection processor
initialization

2 Unable to unprotect an ipmp element which does not contain
protection info and it even is not an AXMEDIS object

3 Unable to parse protection information which are not MPEG21 IPMP
compliant

The given DIDL element has not pending protection information

IPMP Tool not available

A plugin with the given identifier has been already loaded

An IPMP tool with the given identifier has been already loaded

IPMP Tool profile not available

Ol N[0 b

Key for retriving certificate not found

AXMEDISProject 79

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

9 Encryption/Decryption Support (FUPF)
M odule/T ool Profile

Encryption/Decryption Support

Responsible Name

Victor Rodriguez

location of the source code
demonstrator

Responsible Partner FUPF

Status (proposed/approved) Approved

Implemented/not implemented | Implemented

Status of the implementation Implemented

Executable or Library/module Static library

(Support)

Single Thread or Multithread Multithread

L anguage of Development C and C++

Platforms supported Windows

Reference to the AXFW https:.//cvs.axmedis.org/repos/Framework/source/encdecsup

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Errore. Riferimento a collegamento ipertestuale non valido.

N/A

Reference to the AXFW
location of the demonstrator
executable tool for public
download

N/A

Address for accessing to
WebServicesif any, add
accession information (user aNd
Passwd) if any

N/A

Test cases (present/absent)

Absent

Test cases location

Usage of the AXMEDIS
configuration manager (yes/no)

No

Usage of the AXMEDIS Error
Manager (yes/no)

No

Major Problems not solved

Major pending requirements

Interfaces APl with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a
section
Protocol Used Shared with Protocol name or reference to a

AXMEDI S Project

80

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

section
Used Database name
User Interface Development model, language, | Library used for the development,
etc. platform, etc.
Used Libraries Name of the library and version License status. GPL. LGPL. PEK,
proprietary, authorized or not
Open SSL

9.1 General Description of the Module

This module provides the needed functionality for encrypting / decrypting AXMEDIS.

The functionalities of this module will also be available as an AXMEDIS plugin for the Protection Processor.
The form of the module in such a case will change from a static library (LIB) to adynamic library (DLL), at
least for the Windows version (as specified).

The functionality offered by this module is "function-oriented” in nature, rather than "object-oriented”,
therefore main functions are offered as static members. This will remain thisway, asit was. However, while
for an static library the model was perfectly valid, in the case of a dynamic library; it has to be stressed that
the resulting DLL may not be multi-thread compliant.

9.2 Module Design in terms of Classes

9.2.1 Architecture for encryption / decryption support

Next figure shows the description of this module.

The agorithmic workload lies on OpenSSL, making thus this module as a simple adapter to the AXMEDIS
requirements. The front-end class is EncryptionDecryption, which provides two evident methods: cipher and
decipher.

Three classes are needed to dea with EncryptionDecryption, namely, Data, KeyAX and Algorithm whose use
is self-explaining.

AXMEDISProject 81

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

EncryptionDecryption

Scipher(sourceData : Data, cipherKey : KeyAX, cipherAlgorithm : Algorithm) : Data
S¥decipher(cipheredData : Data, decipherKey : KeyAX, decipherAlgorithm : Aigorithm) : Data

Data KeyAX Algorithm
Efdata : byte [] Eikey : byte] EHalgorithm : int

KeyAX(newKey : byte []) : KeyAX & Algorithm (newAlgorithm : int) : Algorithm
Ssetkey(newKey : byte []) SgetAlgorithm () : int
S¥getkeyByte() : byte [] SsetAlgorithm (newAlgorithm : int)

®Data(newData : byte) : Data
WgetData() : byte []
¥setData(newData : byte [])

Class diagram for the Encryption / Decryption Support

The functionality of the classes inside the UML diagram is asfollows:

EncryptionDecryption: Provides de basic functions for ciphering and deciphering of data, hiding to the
calling application the complexity derived of the use of the OpenSSL library.

Data: Represents the data (either in clear or ciphered) used by the EncryptionDecryption class.

KeyAX: Represents the key for ciphering / deciphering the data.

Algorithm: Represents the algorithm for ciphering / deciphering data. The list of supported algorithms will
be also implemented in this class by using constants in the corresponding programming language (C/C++).

9.3 Implementation of the algorithms

The implementation of the algorithmsis carried out through the OpenSSL library. It definesitself as:

The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, full-featured, and
Open Source toolkit implementing the Secure Sockets Layer (SS. v2/v3) and Transport Layer Security (TLS
v1) protocols as well as a full-strength general purpose cryptography library.

OpenSSL license follows the Apache fashion, what alows its use freely both for commercial and non-
commercial application. Axmedis has already approved its use, and it is arobust, reliable library. It has been
ported into different platforms, and the ease of use and its compl eteness make from it the right choice.

The use of OpenSSL is transparent for the user of the EncryptionDecryption module: modules that use it
does not need to know how EncryptionDecryption isinternally implemented and which librariesit rely on.
However, EncryptionDecryption is a static library, and as such, does not include itself the third parties code.
Therefore, at linking time of an executable tool that requires EncryptionDecryption module, not only the
encryptiondecryption.lib has to be linked, but also the corresponding OpenSSL libraries.

9.4 Examples of usage
It will be shown how to cipher a sample text.

Data cleardata(“this is a clear text”); //holds the clear text to be ciphered
Data ciphered; //will hold the ciphered data
Algorithm *cipher = new Algorithm(axeds::AES_128_CBC_ALGORITHM) ; //algorithm
axeds: :byteType *cKey = new axeds::byteType[cipher->getSizeKey()]; //key

KeyAX clave (cKey, cipher->getSizeKey()) ; / /key

clave.setKey (Data ("abracadabra") .getData(),12); //key is abracadabra
ciphered=EncryptionDecryption: :encrypt (cleardata,clave, *cipher); //encrypt!

delete arr;
delete key;
delete cipher;

AXMEDISProject 82

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

9.5 Formal description of Encryption / Decryption Support operations

EncryptionDecryption

Method cipher

Description This method ciphers the sourceData passed as parameter using the KeyAX ciphering key and
the algorithm indicated by the cipherAlgorithm. The returned information is the ciphered data.
This method makes use of the corresponding operations inside the OpenSSL library for the
different ciphering algorithms supported by it.

Input sourceData : Data, the data to be ciphered

parameters cipherKey : KeyAX, the key to be used to cipher data
cipherAlgorithm : Algorithm, the algorithm used to cipher data

Output Data, the ciphered data

parameters

Method decipher

Description This method deciphers the cipheredData passed as parameter using the KeyAX deciphering
key and the algorithm indicated by the decipherAlgorithm. The returned information is the
datain clear.
This method makes use of the corresponding operations inside the OpenSSL library for the
different deciphering algorithms supported by it.

Input cipheredData : Data, the data to be deciphered

parameters decipherKey : KeyAX, the key for deciphering the data
decipherAlgorithm : Algorithm, the algorithm for the deciphering the data

Output Data, the original data, in clear

parameters

Data

Method Data

Description Constructor of the class which receives as parameter the datato be ciphered / deciphered.

Input NewData: byte]], an array of bytes containing the data either ciphered or in clear

parameters

Output A new instance of the Data class

parameters

Method getData

Description This method requests the data stored inside this class.

Input None

parameters

Output byte[], the byte array representing the data contained inside this class

parameters

Method SetData

Description This method allows setting new datainside this class.

Input byte[], the byte array representing the data contained inside this class

parameters

Output None

parameters

KeyAX

Method KeyAX

Description Constructor of the class which receives as parameter the key for ciphering / deciphering data.

Input NewKey: byte]], an array of bytes containing the key

parameters

Output A new instance of the KeyAX class

parameters

AXMEDI S Project

83

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Method getKey

Description This method requests the key stored inside this class.

Input None

parameters

Output byte[], the byte array representing the key contained inside this class
parameters

Method setKey

Description This method allows setting new key inside this class.

Input byte[], the byte array representing the key contained inside this class
parameters

Output None

parameters

Algorithm

Method Algorithm

Description Constructor of the class which receives as parameter the algorithm identifier
Input NewAlgorithm:int, the identifier of the algorithm contained inside this class. It will depend on
parameters the values

Output A new instance of the Algorithm class

parameters

Method getAlgorithm

Description This method requests the algorithm stored inside this class.

Input None

parameters

Output int, the identifier of the algorithm contained inside this class. It will depend on the values
parameters defined by OpenSSL

Method setAlgorithm

Description This method allows setting new algorithm inside this class.

Input int, the identifier of the algorithm contained inside this class. It will depend on the values
parameters defined by OpenSSL

Output None

parameters

AXMEDI S Project

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

10 Compress/uncompress Support (DSI)

M odule/Tool Profile

Compr ess/luncompr ess Support

Responsible Name

Responsible Partner

Status (proposed/approved)

Implemented/not implemented

Status of the implementation

Executable or Library/module
(Support)

Single Thread or Multithread

Language of Devel opment

Platforms supported

Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repoy...........

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServicesif any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)

Test cases location

htep:/HiHHNHINN

Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved

Major pending requirements

Interfaces APl with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used

Shared with

format name or reference to a

section

AXMEDI S Project

85

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Protocol Used Shared with Protocol name or reference to a
section
Used Database name
User Interface Development model, language, | Library used for the development,
etc. platform, etc.
Used Libraries Name of the library and version License status. GPL. LGPL. PEK,
proprietary, authorized or not

10.1 General Description of the Module

Compress and uncompress support is provided by the wxWidgets library. It provides input stream to access
to ZIP files (wxZiplnputStream) and input/output streams for gzip compression (wxZliblnputStream,
wxZlibOutputStream).

wxZliblnputStream and wxZlibOutputStream are filtering streams they get/send information from/to other
wx I nput/OutputStream to uncompress/compress information.

10.2 Examples of usage

For example to compress a buffer of 1024 bytes to a file named “compressed.dat”:
char datal[1024];

// £ill the data buffer

wxFileOutputStream ofile(“compressed.dat”);
wxZlibOutputStream compress(ofile);

compress.Write(data, 1024);
While to uncompressiit:

wxFileInputStream ifile(“compressed.dat”);
wxZlibInputStream uncompress(ifile);

AXMEDISProject 86

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

char datal[l1024];

uncompress.Read(data, 1024);
if (uncompress.LastRead() !=1024)

AXMEDI S Project

87

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

11 Scramble/Descramble Support (EPFL)

M odule/Tool Profile

Scramble/Descramble Support
Responsible Name Marco Mattavelli
Responsible Partner EPFL
Status (proposed/approved) Approved
Implemented/not implemented | Implemented
Status of the implementation
Executable or Library/module

(Support)

Single Thread or Multithread Multithread

Language of Devel opment C

Platforms supported

Reference to the AXFW https://cvs.axmedis.org/repos/ Software/Applications/Cryptlib/Crypt
location of the source code

demonstrator

Reference to the AXFW https://cvs. axmedis.org/repos/Software/Applications/Cryptlib/binaries

location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServicesif any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)

Test cases location http: /TN
Usage of the AXMEDIS
configuration manager (yes/no)
Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --

Major pending requirements -

Interfaces APl with other tools, | Name of the communicating tools | Communication model and format
named as References to other major | (protected or not, etc.)
components needed
Formats Used Shared with format name or reference to a
section

AXMEDISProject 88

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Protocol Used Shared with Protocol name or reference to a
section
Used Database name
User Interface Development model, language, | Library used for the development,
etc. platform, etc.
Used Libraries Name of the library and version License status. GPL. LGPL. PEK,
proprietary, authorized or not

[DSI] Very nice description of Cryptlib library! 1 understand you would like to use Cryptlib in order to
provide Scramble and Descramble Support but | would like to have also a description of your module. Y our
module should be integrated with Protection Processor using Protection Plug-in specification. Please,
provide something more than the trivial description of athird-party library.

11.1 General Description of the Module

The word “scrambling” is often mis-used as a synonym of cryptography.
The term cryptography refersto the tools and mechanisms enabling:

e Tamper detection allows the information receiver to verify that it has not been modified during
transmission. If there were any attempt to modify or substitute data, a false message would be
detected.

e Authentication allows the information receiver to determine who sent the message.
Privacy/confidentiality ensures that no one can read the message except the intended receiver.
Integrity assures the receiver that the message that they recelved was not modified in any way since
it was sent from the origin.

¢ Non-repudiation is a mechanism that proves that the sender really sent the message.

Lastly, scrambling alows two communication parties to disguise information they send to each other. The
sender encrypts/scramble the information before sending it. The receiver decrypts/descramble the
information after receiving it.

In cryptographic terminology, the message is called plaintext or cleartext. Encryption is encoding the
contents of the message in such away that hides its contents from outsiders. The encrypted message is called
the ciphertext. The process of retrieving the plaintext from the ciphertext is called decryption. Encryption
and decryption usually make use of a key, and the coding method is such that decryption can be performed
only by knowing the proper key.

AXMEDISProject 89

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Scrambling / Descrambling algorithms are based on secret key algorithms.

In secret key cryptography, a single key is used for both encryption and decryption. The sender uses the key
to encrypt the plaintext and then sends the ciphertext to the receiver. The receiver applies the same key to
decrypt the message and recover the plaintext. There are several widely used secret key cryptography
schemes [Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output
Feedback (OFB) and Counter (CTR) modes] and they are generally categorized as being either block ciphers
or stream ciphers. A block cipher is so-called because it encrypts blocks of data at atime. The same plaintext
block will always be encrypted into the same ciphertext when using the same key. Stream ciphers operate on
a single bit, byte, or word at a time, and implements a feedback mechanism so that the same plaintext will
yield different ciphertext every timeit is encrypted.

Usually, scrambling / descrambling algorithms refer to stream ciphers algorithms.

In the past, the scrambling process did not change the information with the content but it only “mix” it. In
thisway the “preview” of the content could be done with low cost device.

Scrambling algorithms used to allow “content preview” functionality are strongly linked to proprietary and
“unknown” solutions and implementation. Thisiswhat in cryptography is called “security by obscurity” that
itisnot an “open” approach.

Due to the evolution of the attacks and the openness of the approach, AXMEDIS should use more
sophisticated scrambling algorithms that use strong known secret key agorithms. A well-know library called
cryptlib provides many functions, including all what may be necessary in the project.

11.2 Module Design in terms of Classes

The cryptlib library consists of a set of layered security services and associated programming interfaces that
provide an integrated set of information and communications security capabilities. Much like the network
reference model, cryptlib contains a series of layers that provide each level of abstraction, with higher layers
building on the capabilities provided by the lower layers.

At the lowest level are basic components such as core encryption and authentication routines, which are
usually implemented in software but may also be implemented in hardware (due to the speed of the software
components used in cryptlib, the software is usually faster than dedicated hardware).

Scrambling can be supported by mixing the severa available symmetric encryption mechanisms provided at
the lowest layer of the security stack.

‘ High-level interface ‘

Secure data Secure communications Certificate
enveloping sessions management

Security services interface

Key Digital Key
. . Key management
exchange signature generation
Encryption services interface ‘ : ‘ Key store interface ‘
Adaptation Adaptation Adaptation
Native layer layer . Native layer
encryplion | ey Thidparty | | | catabase | =y
services : ' : services
encryption encryption : database
services services : services

The application programming interface (API) serves as an interface to arange of plug-in encryption modules
that allow encryption agorithms to be added in a fairly transparent manner, so that adding a new algorithm
or replacing an existing software implementation with custom encryption hardware can be done without any
trouble.

The standardised API alows any of the algorithms and modes supported by cryptlib to be used with a
minimum of coding effort. In addition the easy-to-use high-level routines alow for the exchange of
encrypted or signed messages or the establishment of secure communications channels with a minimum of
programming overhead.

Language bindings are available for C/ C++, C#/ .NET, Delphi, Java, Python, Tcl, and Visual Basic (VB).

AXMEDISProject 90

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

cryptlib has been written to be as foolproof as possible. On initialisation it performs extensive self-testing
against test data from encryption standards documents, and the APIs check each parameter and function call
for errors before any actions are performed, with error reporting down to the level of individual parameters.
In addition logical errors such as, for example, a key exchange function being called in the wrong sequence,
are checked for and identified.

11.3 Technical and Installation information

All necessary constants, types, structures, and function prototypes are defined in a language-specific header
file as described below. You need to use these files for each module that makes use of cryptlib. Although
many of the examples given in this manual are for C/C++ (the more widely-used ones are given for other
languages as

well), they apply equally for the other languages. All language bindings for cryptlib are provided in the
bindings subdirectory. Before you can use a specific language interface, you may need to copy the file(s) for
the language that you’ re using into the cryptlib main directory or the directory containing the application that
you're building. Alternatively, you can refer to the file(s) in the bindings directory by the absol ute pathname.

11.3.1 Initialisation

Before you can use any of the cryptlib functions, you need to call the cryptlnit function to initialise cryptlib.
You aso need to call its companion function cryptEnd at the end of your program after you've finished
using cryptlib. cryptlnit initializes cryptlib for use, and cryptEnd performs various cleanup functions
including automatic garbage collection of any objects you may have forgotten to destroy. You don’t have to
worry about inadvertently calling cryptlnit multiple times (for example if you're caling it from multiple
threads), it will handle the initialisation correctly.

However you should only call cryptEnd once when you' ve finished using cryptlib. If you call cryptEnd and
there are till objects in existence, it will return CRYPT_- ERROR_INCOMPLETE to inform you that there
were |leftover objects present.

cryptlib can tell this because it keeps track of each object so that it can erase any sensitive data that may be
present in the object (cryptEnd will return a CRYPT_- ERROR_INCOMPLETE error to warn you, but will
nevertheless clean up and free each object for you). To make the use of cryptEnd in a C or C++ program
easier, you may want to use the C atexit () function or add a call to cryptEnd to a C++ destructor in
order to have cryptEnd called automatically when your program exits. If you're going to be doing
something that needs encryption keys (which is pretty much everything), you should aso perform a
randomness poll fairly early on to give cryptlib enough random data to create keys:

cryptAddRandom(NULL, CRYPT_RANDOM_SLOWPOLL) ;

Randomness polls are described in more detail in “Random Numbers’ on page 279. The randomness poll
executes asynchronously, so it won't stall the rest of your code while it's running. The one possible
exception to this polling on startup is when you're using cryptlib as part of alarger application where you're
not certain that cryptlib will actually be used. For example a PHP script that’'s run repeatedly from the
command line may only use the encryption functionality on rare occasions (or not at all), so that it’s better to
perform the slow poll only when it's actually needed rather than unconditionally every time the script is
invoked. This is a somewhat special case though, and normally it's better practice to always perform the
slow poll on startup.

As the text above mentioned, you should initialize cryptlib when your program first starts and shut it down
when your program is about to exit, rather than repeatedly starting cryptlib up and shutting it down again
each time you use it. Since cryptlib consists of a complete crypto operating system with extensive
initialisation, internal

security self-tests, and full resource management, repeatedly starting and stopping it will unnecessarily
consume resources such as processor time during each initialisation and shutdown. It can aso tie up host
operating system resources if the host contains subsystems that leak memory or handles (under Windows,
ODBC and LDAP are particularly bad, with ODBC leaking memory and LDAP leaking handles. DNSisaso
rather leaky — thisis one of the reasons why programs like web browsers and FTP clients consume memory
and handles without bounds). To avoid

this problem, you should avoid repeatedly starting up and shutting down cryptlib:

AXMEDISProject o1

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Right
cryptInit () ;
serverLoop:
process data;
cryptEnd() ;

Wrong
serverLoop:
cryptInit () ;
process data;
cryptEnd() ;

C/C++

To use cryptlib from your C or C++ application you would use:
#include "cryptlib.h"

cryptInit () ;
/* Calls to cryptlib routines */

cryptEnd ()

11.4 Integration and compilation issues

Cryptlib is re-entrant and completely thread-safe, allowing it to be used with multithreaded applications on
systems that support threads. Because it is thread-safe, lengthy cryptlib operations can be run in the
background if required while other processing is performed in the foreground. In addition cryptlib itself is
multithreaded so that computationally intensive internal operations take place in the background without
impacting the performance of the calling application.

AXMEDISProject 92

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

12 MPEG-21 DIBO (EPFL)

M odule/Tool Profile

Compr ess/luncompr ess Support
Responsible Name
Responsible Partner EPFL
Status (proposed/approved)

Implemented/not implemented

Not implemented

Status of the implementation

Executable or Library/module
(Support)

Single Thread or Multithread

Language of Devel opment C++

Platforms supported Windows XP

Reference to the AXFW https://cvs.axmedis.org/repod.........cce.....
location of the source code

demonstrator

Reference to the AXFW https://cvs.

location of the demonstrator
executable tool for interna
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServicesif any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)

Test cases location

htep:/HiHHNHINN

Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved

Major pending requirements

Interfaces APl with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used

Shared with

format name or reference to a

section

AXMEDI S Project

93

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Protocol Used Shared with Protocol name or reference to a
section
Used Database name
User Interface Development model, language, | Library used for the development,
etc. platform, etc.
Used Libraries Name of the library and version License status. GPL. LGPL. PEK,
proprietary, authorized or not

12.1 MPEG-21 DIP in AXMEDIS

In the MPEG-21 Digital Item Processing standard, Digital 1tem Base Operations (DIBOs) are defined as the
functional building blocks utilized by a Digital Item Method (DIM). They can be considered somewhat
analogous to the standard library of functions of a programming language. Their implementation as a
software library of functions can be then derived quite straightforwardly from the MPEG-21 specification. In
fact, a DIBO is described by a normatively defined interface; and normatively defined semantics. The
module architecture shall then be structured as software implementation of the normative interfaces and shall
be compliant with the normatively defined semantics.

AXMEDIS will support only those Basic Operations needed for the implementation of interactivity at the
level of content consumption. Examples of DIBOsthat may be supported:

Play(element, async)

This DIBO causes the DIDL element represented by the element parameter to be rendered into a transient
and directly perceivable representation. The element parameter shall be a DOM rlement Object representing
a COMPONENT or DESCRIPTOR to be played. It is an error to invoke this DIBO if the element parameter is
not aDOM Element Object representing a COMPONENT or DESCRIPTOR, in which case an invalid parameter
exception is generated.

The manner of playing the element, appropriate to its content, is left as an implementation choice of the
DIBO implementer.

Release(PlayStatus)

AXMEDISProject o4

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

This DIBO causes playing of the DIDL element associated with the specified playstatus to be stopped and
any state information to be released. The p1aystatus parameter shall be an object that was returned by acall
to thep1ay DIBO to play the associated element which isto be stopped.

Adapt (element, metadata) ;

This DIBO alows a DIM author to explicitly request an adaptation of the DIDL element represented by the
element parameter.

The metadata parameter is an array of Element Objects representing additional information the DIM author
suggests can be considered when adapting the resource. The metadata parameter may be null if the DIM
author does not wish to provide any such suggestions. If the metadata parameter is not null and is not an
array of DOM Ee1ement Objects then an invalid parameter exception is generated.

If an adaptation of the element does take place and is successful, then an E1ement Object representing the
DIDL element for the adapted element is returned. This can then be utilized as a parameter to other
appropriate DIBOs. The original element remains unchanged.

The MPEG-21 DIA specification provides the following tools related to resource adaptation which an
implementer of this DIBO can consider supporting.

e Usage Environment Descriptions;

Bitstream Syntax Description based adaptation;

Terminal and network quality of service;

Usage Constraints Descriptions; and

DIA Configuration.

If the available DIBOs standardized by MPEG, should not support the entire range of AXMEDIS use cases,
an extension to the provided functionality can be implemented by means of User defined Opraations called
DIXOs (Digital Item eXtensions Operation).

12.2 General Description of the Module

This module is in charge of implementing the MPEG-21 Digital Item Base Operations (DIBOs) relevant for
the purposes of AXMEDIS. It will be implemented as a library of processing functions to be called upon
requests coming from the Digital Item Method Engine (see following section).

Once the AXMEDIS Object Manager retrieves MPEG-21 DIP information in a managed AX Object it
dispatches the DIP excerpt to the DI Method Engine (DIME). This component isin charge of executing the
received DIP script either by calling the appropriate DIBOs implementation or, if present, by executing the
ECMA script embedded in the DIP description.

12.3 Classes

An implementation of the DIBO in terms of C++ classes shall include methods for
e getting an handle to the concerned resource to be processed (getHandle (..)) ;
o actualy implement the required operation on the resource ((e.g. p1ayDIBO (...));
¢ send back the control on the provided handle to the DIM engine (releaseHandle (..)).

A formalization of the concerned classes is provided below:

AXMEDISProject 95

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

AXMEDI S Project

PlayDIBO

+getResourceHandle()
+playHandle()
+releaseResource()

ReleaseDIBO

+getResourceHandle()
+releaseHandle()
+releaseResource()

AdaptDIBO

+getResourceHandle()
+AdaptHandle()
+releaseResource()

96

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

13 MPEG-21 DIM (EPFL)

M odule/Tool Profile

Compr ess/luncompr ess Support

Responsible Name

Responsible Partner

Status (proposed/approved)

Implemented/not implemented

Status of the implementation

Executable or Library/module
(Support)

Single Thread or Multithread

Language of Devel opment

Platforms supported

Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repoy..........

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServicesif any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)

Test cases location

htep:/HiHHNHINN

Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved

Major pending requirements

Interfaces APl with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used

Shared with

format name or reference to a

section

AXMEDI S Project

97

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Protocol Used Shared with Protocol name or reference to a
section
Used Database name
User Interface Development model, language, | Library used for the development,
etc. platform, etc.
Used Libraries Name of the library and version License status: GPL. LGPL. PEK,
proprietary, authorized or not

13.1 MPEG-21 DI Methods in AXMEDIS

This module implements the execution of Digital Item Methods (DIMs) embedded into an AXMEDIS
object. Starting from a Digital Item Declaration (DID) describing the structure of the DI it is possible to add
interactivity to that DI using DIMs. A DIM expresses the interaction of an MPEG-21 User with a DI. It
contains calls to DIBOs and describes the possible interactions of an MPEG-21 User (e.g., a human
consumer) with the DI.

A DIM can be implemented either as a combination ECMA Script constructs (e.g. for and ++ operators) and
DIBOs or as a pure sequence of DIBOs. This module shall parse the received DID, retrieve the DIM to be
executed and call the appropriate DIBOs or ECMA Script interpreter in order to trigger the actual execution.

Examples of DIMs are shown below:

<l-- DIM implementation -->
<Resource mimeType="application/mp21-method">
function PlayAdaptedMovie(arg1) {
var resource=arg1.lastChild;
var metadata=arg1 firstChild;
DIA.AdaptResource(resource, metadata);
DIP.PlayResource(resource,true);

</Resource>

Thisisan example of DIM using both ECMA Script and DIBOs

AXMEDISProject 08

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

<l-- DIM implementation -->
<Resource mimeType="application/mp21-method"><![CDATA][
function main(){
var movies = ObjectMap.getObjects("urn:foo:Movie");
for(i = 0; i < movies.length; i++) {
RunDIM("current”, null, "PlayAdaptedMovie", movies(i]);

}
130 s

</Resource>

Thisis an example of DIM implemented uniquely as a chian of DIBOs.
13.1.1 Relationship between DIMs, DIBOs, and DIXOs

The DIMs call the DIBOs and the DIXOs to delegate processing to keep the DIM script simple. DIMs may
choose to use DIBOs when they are available and DIXOs when the required functionality is not available as
aDIBO.

The invacation mechanisms for DIBOs and the DIXOs from DIMs are different. The DIBOs have a mapping
to DIML and this is used to call the DIBOs from within a DIM. The invocation mechanism for DIXOs is
unique to the DIXO Language used to write the DIXOs. The same call for agiven DIXO Language is used to
invoke all the DIXOs in that DIXO Language from a DIM, where the name and the arguments of the DIXO
are al in turn arguments to that invocation call.

DIXOs while implementing the extended processing may call normatively defined DIBOs and other DIXOs.
The invocation mechanism of DIBOs and other DIXOs from any DIXO is direct using the bindings of
DIBOs in that particular DIXO Language.

13.2 General description of the module

This module is in charge of receiving MPEG-21 DIP scripts from the AX Object Manager, to parse the
received XML excerpt and coordinate the processing of the DIBOs implementation and the ECM A script
engine. A received MPEG-21 DIP script can be either a mixture of ECMA scripts and DIBOs calls or a
simple chain of DIBOs. The DIM Module will be in charge of traducing the actions expressed MPEG-21
DIP descriptors in synchronous calls to the relevant libraries.

AX Object > AXOM

extracts the MPEG-21 DIP information

|
uses :

v

ECMAscript Engine [¢-------1 DIM Engine e DIP Parser
et uses__--- uses\:/ ________ o
PlayDIBO AdaptDIBO ReleaseDIBO

Once the AXMEDIS Object Manager retrieves MPEG-21 DIP information in a managed AX Object it
dispatches the DIP excerpt to the DI Method Engine (DIME). This component isin charge of executing the
received DIP script either by calling the appropriate DIBOs implementation (Play, Release, Adapt, etc.) or, if
present, by executing the ECMA script embedded in the DIP description.

AXMEDISProject 99

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

14 MPEG-21 DIA Processing(EPFL)

M odule/Tool Profile

Compr ess/luncompr ess Support
Responsible Name Marco Mattavelli
Responsible Partner EPFL
Status (proposed/approved)
Implemented/not implemented | Not implemented
Status of the implementation
Executable or Library/module

(Support)

Single Thread or Multithread

Language of Devel opment C++

Platforms supported Windows XP

Reference to the AXFW https://cvs.axmedis.org/repod.........cce.....
location of the source code

demonstrator

Reference to the AXFW https://cvs.

location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServicesif any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)

Test cases location http: /TN
Usage of the AXMEDIS
configuration manager (yes/no)
Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --

Major pending requirements -

Interfaces APl with other tools, | Name of the communicating tools | Communication model and format
named as References to other major | (protected or not, etc.)
components needed
Formats Used Shared with format name or reference to a
section

AXMEDISProject 100

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Protocol Used Shared with Protocol name or reference to a
section
Used Database name
User Interface Development model, language, | Library used for the development,
etc. platform, etc.
Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

14.1 General Description of the Module

To achieve interoperable transparent access to (distributed) advanced multimedia content, the adaptation of
Digital Items is required. This concept is illustrated in the figure below. As shown in this conceptua
architecture, a Digital Item is subject to a resource adaptation engine, as well as a description adaptation
engine, which together produce the adapted Digital Item.

AXMEDI S Project

Digital ltem

Adaptation Engine

Digital ltem

Resource
Adaptation Engine

Description
Adaptation Engine

A

Scope of /

DIA Tools

standardization

Adapted

Digital ltem

DIA Descriptions

[lustration of Digital Item Adaptation

101

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

The seventh part of ISO/IEC 21000 (MPEG-21) specifies descriptions and format-independent mechanisms
to provide support for Digital Item Adaptation in terms of resource adaptation, description adaptation, and/or
Quality of Service management and are collectively referred to as DIA Tools. It is important to emphasise
that the adaptation engines themselves are non-normative tools of Digital Item Adaptation.

In the context of AXMEDIS, the MPEG-21 DIA Tools of interest are the Usage Environment Description
Tools, which include User characteristics, Terminal capabilities, Network characteristics and Natural
environment characteristics. These tools provide descriptive information about the various properties of
the usage environment, which originate from Users, to accommodate, for example, the adaptation of Digital
Items for transmission, storage and consumption.

1. User characteristics: These are tools for describing various characteristics of Users, including
genera User information, usage preferences and usage history, presentation preferences,
accessibility characteristics, mobility characteristics and destination.

2. Terminal capabilities. The description of a terminal's capabilities is primarily required to satisfy
consumption and processing constraints of a particular terminal. Terminal capabilities are defined by
a wide variety of attributes. Among them are codec capabilities, which include encoding and
decoding capabilities, device properties, which include power, storage and data |/O characteristics,
and input-output characteristics, which include display and audio output capabilities.

3. Network characteristicss These tools specify network characteristics in terms of network
capabilities and conditions, including available bandwidth, delay and error characteristics. These
descriptions could be used for efficient and robust transmission of resources.

4. Natural Environment Characteristics. These tools are used to describe natural environment
characteristics including location and time of usage of a Digital Item, as well as characteristics that
pertain to audio-visual aspects. For the visua aspects, illumination characteristics that may affect the
perceived display of visual information are specified. For the audio aspects, the description of the
noise levels and a noise frequency spectrum are specified.

As an example, an instantiation of the codec capabilities of a termina is given below. In this description
instance, the terminal is capable of decoding MP3 and AMR audio formats, the JPEG image format, and the
MPEG-4 video format (Simple Profile @ Level 1). It is aso able to encode audio in an AMR format and
encode video in the MPEG-4 format (Simple Profile @ Level 1).

<DIA>
<Description xsi:type="UsageEnvironmentType">
<UsageEnvironmentProperty xsi:type="TerminalsType">
<Terminal>
<TerminalCapability xsi:type="CodecCapabilitiesType">
<Decoding xsi:type="AudioCapabilitiesType">
<Format

href="urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001:4.4">
<mpeg7:Name xml:lang="en">MP3</mpeg7:Name>
</Format>
<Format
href="urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001:6">
<mpeg7 :Name xml:lang="en">AMR</mpeg7 :Name>
</Format>
</Decoding>
<Decoding xsi:type="ImageCapabilitiesType">
<Format
href="urn:mpeg:mpeg7:cs:VisualCodingFormatCS:2001:4">
<mpeg7:Name xml:lang="en">JPEG</mpeg7 :Name>
</Format>
</Decoding>
<Decoding xsi:type="VideoCapabilitiesType">
<Format

href="urn:mpeg:mpeg7:cs:VisualCodingFormatCS:2001:3.1.2">
<mpeg7:Name xml:lang="en">

AXMEDISProject 102

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

MPEG-4 Visual Simple Profile @ Level

1
</mpeg7 :Name>
</Format>
</Decoding>
<Encoding xsi:type="AudioCapabilitiesType">
<Format

href="urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001:6">
<mpeg7:Name xml:lang="en">AMR</mpeg7:Name>
</Format>
</Encoding>
<Encoding xsi:type="VideoCapabilitiesType">
<Format

href="urn:mpeg:mpeg7:cs:VisualCodingFormatCS:2001:3.1.2">
<mpeg7:Name xml:lang="en">
MPEG-4 Visual Simple Profile @ Level

1
</mpeg7 :Name>
</Format>
</Encoding>
</TerminalCapability>
</Terminal>
</UsageEnvironmentProperty>
</Description>

</DIA>

AXMEDISProject 103

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

15 MPEG-21 DIA (EPFL)

MISSING

AXMEDI S Project

104

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

16 AXMEDIS Data Model (DSI)
It also includes a description of the AXMEDIS details that make of AXMEDIS of a specialization of
MPEG21 format.

16.1 AXMEDIS Objects as MPEG21 Objects

An AXMEDIS Object has to be an MPEG21 digital item but any MPEG21 digita item is not an AXMEDIS
Object. This means that an AXMEDIS Object will have a specific structure and will not support all the
extremely flexible structuring capabilities of MPEG21 digital items.

In this section will be investigated how AXMEDIS Objects could be represented using the structuring
features of MPEG21.

16.1.1 MPEG21 Digital Iltems
The following figure describes how a MPEG21 Digital Item is structured.

For a complete description see part 2 of the MPEG21 standard describing the Digital Item Description
Language. This part of the standard is related to unprotected digital items only.

The elements contained in a MPEG21 digital items are:
¢ Container —isacontainer of items or of other containers;
o Item — represents a digital item, it contains Descriptors (metadata of the whole digital item)
Components (content that builds up the item), and it also contains other secondary elements;
e Descriptor — contains metadata thought a Statement element or a Component (e.g. for thumbnails)
Component — contains Resources and Descriptors (metadata of the resource);
e Resource — contains an external reference to the resource (audio, video, text,...) or it can host it
inside the element using base64 encoding;
e Annotation — contains an annotation
Anchor —isalink into the content
e Condition, Choice, Selection — are used to group sub parts of the item on the basis of end user
selections, thisto avoid streaming of big items.
For references to other elements the xi:include elements can be used.

When considering protected MPEG21 digital items, the standardization process of this feature, is not
currently at level of International Standard but at level of Committee Draft.

Protected content in MPEG21 is obtained by substituting a sub tree of the original XML tree with an element

having the same name (but with different namespace) and containing the protected version of the sub treein
binary form and the additional information needed to enable access to the content.

AXMEDISProject 105

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

-
didl:DIDLType

|
|
|
|
| | |
| | [digiitem £ \
| |
| |
| |
| |
|
|
L

="

, didi:Choice [}
g

= ’d\uI:Fragment

—
| didi:AnnotationType

AXMEDISProject 106

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

16.1.2 AXMEDIS Objects
AXMEDIS Objects can be classified as:

Basic AXMEDIS Object: containing one or more digital resources (image, video, document, etc.) and
metadata related to the whole object. Resources can be stored inside the object or outside.

Protected Basic AXMEDI S Object: containing one or more protected digital resources and metadata of the
whole object (in clear but certified). Protected resources can be stored inside the object or outside.

Composite AXMEDIS Object: containing a set of AXMEDIS Objects (Basic or Composite, protected or
not). It has specific metadata for the whole object in addition to metadata related to sub-objects. The
sub-objects can be stored inside the object or referenced.

Protected Composite AXMEDI S Object: as the previous but the whole object is protected (the metadata of
the whole object and of the sub-objects has to be accessible in clear)

Referred AXMEDI S Object: refersto an AXMEDIS object using a url/urn, it may contain metadata of the
object.

Governed AXMEDI S Object: anyone of the previous containing the license to use the object

In the following possible mappings of AXMEDIS Objects as MPEG21 digital items are reported. A tree like
structure is used to represent the XML structure.

MPEG21 Descriptors are used to contain metadata related to the content. The Satement element inside the
Descriptor can contain any XML or text, MPEG21 does not fix its content.

The order where Descriptor elements are reported is not fixed, however some of them are required (have to
be present) and others are optiona (may be missing). Some Descriptors are specified in the standard for
Digital Item Identification:

o Identifier, used to identify the object, MPEG21 does not provide a new identification scheme but it
allows to host any kind of identification code. A Registration Authority will be set up to register
identification schemes to be used in MPEG21 Digital Items. A URI is used as identifier, for
Example: <dii:ldentifier>urn:mpegRA:mpeg21:dii:isrc:US-203-99-32476</dii:Identifier> identifies an object
using al SRC code. An Identifier can be used to store the AXMEDIS Object ID.

o Relatedidentifier, used to identify the work with a uri. It can be used to store the AXMEDIS Work
ID. Example: <dii:RelatedIdentifier>urn:mpegRA:mpeg21:dii:iscw: T-034.524.680-1</dii:RelatedIdentifier>

The AXInfo element is used to contain information specific for AXMEDIS framework. Metadata like title,
author, etc. and mpeg7 metadata are not stored inside AXInfo to allow MPEG21 terminals to access to these
metadata even if they are not AXMEDIS compliant tools. Other AXMEDIS specific metadata related to the
content can be defined (e.g. for technical information), and hosted in specific Descriptor elements, if a
suitable standardized format is not available (e.g mpeg?).

The following example shows an example of an object with multiple descriptors:

<?xml version="1.0" encoding="UTF-8"?>
<DIDL xmIns="urn:mpeg:mpeg21:2002:02-DIDL-NS" xmIns:ax="urn:axmedis:01" xmins:dii="urn:mpeg:mpeg21:2002:01-DlI-
NS" xmins:mpeg7="urn:mpeg:mpeg7:schema:2001" xmlIns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:dc="http://purl.org/dc/elements/1.1/" xmIns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
xmins:mx="urn:mpeg:mpeg21:2003:01-REL-MX-NS" xmIns:sx="urn:mpeg:mpeg21:2003:01-REL-SX-NS"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation="urn:axmedis:01 AXMEDIS.xsd">
<Item>
<l--
Descriptor containing the AXOID to identify the object (REQUIRED)
>
<Descriptor id="dsc_id">
<Statement mimeType="text/xml">
<ax:Objectldentifier>
<dii:ldentifier>urn:axmedis:axoid:AO01AGSHDI</dii:Identifier>
<Version>0</Version>
</ax:Objectldentifier>
</Statement>
</Descriptor>
<l--
Descriptor containing the AXInfo containing information regarding the object (REQUIRED)

AXMEDISProject 107

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

->
<Descriptor id="public_dsc_ax">
<Statement mimeType="text/xml">
<ax:AXlInfo>

</ax:AXInfo>
</Statement>
</Descriptor>
<l--
Descriptor containing the Dublin Core information regarding the object (REQUIRED)
->
<Descriptor id="public_dsc_dc">
<Statement mimeType="text/xml">
<rdf:Description>
<dc:title xml:lang="en">When the Thistle Blooms</dc:title>
<dc:title xml:lang="it">Quando il Cardo Sboccia</dc:title>
<dc:creator>Always Red</dc:creator>
<dc:publisher>PDQ Records</dc:publisher>
</rdf:Description>
</Statement>
</Descriptor>
<l--
Descriptor containing the MPEG?7 information regarding the object (OPTIONAL)
->
<Descriptor id="public_dsc_mpeg7">
<Statement mimeType="text/xml">
<mpeg7:Mpeg7>

</mpeg7:Mpeg7>
</Statement>
</Descriptor>
<l--
Component elements containing the resource (REQUIRED for single object)
-
<Component id="cmp">
<Resource mimeType="video/mp4v-es" encoding="base64">
aadsfadsfsyd647dgd78r85hfuv8nbr8fnfo85nfog9gm569gmty9ghmg90hdhd8fhfjd9d9
dhd8f95mnfk9gfm59fgt95mkt0jhdf8fnj587fjd67n3jf84mfO0eedjf8fj58tm58fm58emds9o

</Resource>
</Component>
</ltem>
</DIDL>

References in an object to other objects can be done using the AXOID. This allows to reconstruct objects
relations in any other place. An additional complexity is due to the use of temporary AXOIDs which are
forbidden to be used outside the AXMEDIS Factory.

References to resources (audio, document, video, ... files) can be done using a path. However have to be
noted that a resource have not a unique ID this means that sharing a resource among objects is not possible.

16.1.3 Basic AXMEDIS Object:

DIDL
Item
Descriptor
Statement
dii:Identifier (contains the AXOID, REQUIRED)
urn:axmedis:obj:id:AX0ID1
Descriptor
Statement
ax:FingerprintAlgID (contains the fingerprint algorithm id, REQUIRED for published obj)
Descriptor
Statement
dsig:Signature (containsthe object signature, REQUIRED for published obj)

Descriptor
Statement

AXMEDISProject 108

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

dii:Identifier (contains any other identifier, OPTIONAL)
Descriptor
Statement
dii:RelatedIdentifier (containstheWorkiD, OPTIONAL)
Descriptor
Statement
dii:Type (contains the type of object, OPTIONAL)
Descriptor
Statement
ax:AXInfo (contains AXMEDIS specific information, REQUIRED)
Descriptor
Descriptor
Statement
ax:MetadataStatus (contains information on the status of the DC metadata, OPTIONAL)
Descriptor
Statement
ax:MetadataVisibility (contains the visibility of the DC metadata, OPTIONAL, public if not
present)
Descriptor
Statement
dsig:Signature (contains the signature of the DC metadata, OPTIONAL)
Statement
rdf:Description (contains Dublin Core metadata, REQUIRED)
Descriptor
Statement
mpeg7 :Mpeg7 (contains MPEG7 metadata, OPTIONAL)
Descriptor
Statement
???: XXX (contains any other metadatain XML, OPTIONAL)
Component
Resource (containg/refers the resource, REQUIRED)
Component (another component, OPTIONAL)
Resource (containg/refers the resource, REQUIRED)

Thus aBasic AXMEDIS Object is structured in the following way:

DIDL
Item
OBJECT_AXOID
OBJECT _METADATA
CONTENT

where:
e OBJECT_AXOID is a Descriptor containing the ax:Objectldentifier element with the AXOID of the
basic object;
e OBJECT _METADATA isasequence of Descriptors containing the metadata of the basic object;
e CONTENT is a sequence of Components
Each Descriptor element can have inside other Descriptor elements with information on the metadata itself.
This descriptors can contain:
e an ax: MetadataStatus element with information on the status of metadata
e an ax:MetadataVisishility element with information on the visibility of the metadata when the object
is protected: public (the default one) when the metadata has to be accessible in clear, private when
the metadata has to be accessible only after unprotection.
Note: Multiple components will be used for HTML documents containing images inside. Normally only one
component is present.

16.1.4 Protected Basic AXMEDIS Obiject:

A Protected AXMEDIS Object is obtained by protecting the root Item.

The dii:Identifier with the AXOID, the ax:FingerprintAlglD and the dsig: Sgnature for the protected object
are stored in aAXMEDI S specific element (ax:Objectldentification) inside the ipmpdidl: I dentifier.

AXMEDISProject 109

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

The descriptors of the protected object are accessible in clear in the ipmpdidl: ContentInfo element, it should
not contain another ax: FingerprintAlglD element or a different dsig: Sgnature element.

DIDL

ipmpdidl:Item

ipmpdidl:Identifier
ax:0bjectIdentification
dii:Identifier
ax:FingerprintAlgID
dsig:Signature
ipmpdidl:Info
ipmpinfo:IPMPInfoDescriptor
ipmpinfo:Tool

ipmpdidl:ContentInfo
didl:Item
Descriptor
Statement
dii:Identifier
Descriptor
Statement
dii:Identifier
Descriptor
Statement
dii:RelatedIdentifier
Descriptor
Statement
dii:Type
Descriptor
Statement
ax:AXInfo
Descriptor
Statement
rdf:Description
Descriptor
Statement
mpeg7 : Mpeg7
Descriptor
Statement
2?27 : XXX
ipmpdidl:Contents
XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

(contains the AXOID, REQUIRED)

(contains protection information)

(contains metadata of the object in clear)

(contains the AXOID, REQUIRED)

(contains any other identifier, OPTIONAL)

(contains the WorkID, OPTIONAL)

(contains the type of object, OPTIONAL)

(contains AXMEDIS specific information, REQUIRED)

(contains Dublin Core metadata, REQUIRED)

(contains MPEG7 metadata, OPTIONAL)

(contains any other metadatain XML, OPTIONAL)

16.1.5 Composite AXMEDIS Object:

A composite object obtained by composing objects O,, O, ... O, is structured as follows:

DIDL

Item

OBJECT_AXOID
OBJECT_METADATA
FIRST_ITEM[Oy]
FIRST_ITEM[O;]

FIRST_ITEM[Oy]

where:

e OBJECT_AXOID isaDescriptor containing the AXOID of the composed object;

e OBJECT _METADATA isasequence of Descriptors containing the metadata of the whole object
e FIRST_ITEM[O] isafunction to get the first child item of the object, it is used to skip the DIDL tag.

the following is an example of double composition:

AXMEDISProject 110

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

AXOID1 = COMPOSE(AXOID2, AXOID3 = COMPOSE(AXOID4, AXOIDS))

AXOID1 — acomposite object
AXOID2 — abasic object
AXOID3 - acomposite object

AXOID4 —abasic object
AXOID5 —abasic object

DIDL
Item
Descriptor (contains AXOID1)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
Item
Descriptor (contains AXOID2)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
Component
Item
Descriptor (contains AXOID3)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
Item
Descriptor (contains AXOID4)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
Component
Item
Descriptor (contains AXOID5)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
Component

16.1.6 Protected Composite AXMEDIS Object:

A Protected Composite AXMEDIS Object is obtained, as for basic objects, protecting the root [tem.

DIDL
ipmpdidl:Item
ipmpdidl:Identifier
ax:0bjectIdentification
diji:Identifier
FingerprintAlgID
dsig:Signature

(contains AXOID1)
(contains the fingerprint algorithm used)
(contains the signature for the protected data)

ipmpdidl:Info

(contains protection information)
ipmpdidl:ContentInfo (contains metadata of the objectin clear)
didl:Item (contains the metadata of the object)
Descriptor (contains AXOID1)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
Item
Descriptor (contains AXQOID2)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
Item
Descriptor (contains AXOID3)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
Item
Descriptor (contains AXQOID4)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
Item

AXMEDIS Project

111

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Descriptor (contains AXOID5)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
ipmpdidl:Contents
XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX

16.1.7 Referred AXMEDIS Object

A referred object may contain metadata of the referred object and it references to the real AXMEDIS object.
A referred object my be used in places where should be any other kind of AXMEDIS object (basic,
composite, basic protected, composite protected)

Referred objects can be used to produce query/promotional objects.

Thefollowing is an example.

DIDL
xi:include ref=..AXOIDI..
xi:fallback
didl:Item
Descriptor (contains AXOID1)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
Item
Descriptor (contains AXOID2)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
Item
Descriptor (contains AXQOID3)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
Item
Descriptor (contains AXOID4)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)
Item
Descriptor (contains AXOID5)
Descriptor (contains AXinfo)
Descriptor (contains Dublin Core metadata)

16.1.8 Governed AXMEDIS Object:
A Governed AXMEDIS Object contains the licence inside a descriptor like in the following example:

DIDL
Item
Descriptor
Statement
dii:Identifier (contains the AXOID, REQUIRED)
Descriptor
Statement
dii:RelatedIdentifier (containstheWorkiD, OPTIONAL)
Descriptor
Statement
ax:AXInfo (contains AXMEDIS specific information, REQUIRED)
Descriptor
Statement
rdf:Description (contains Dublin Core metadata, REQUIRED)
Descriptor
Statement
mpeg7 :Mpeg7 (contains MPEG7 metadata, OPTIONAL)
Descriptor
Statement
r:license (contains the license for the object, OPTIONAL)
(any other of the previous structures)

AXMEDISProject 112

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

16.1.9 AXMEDIS Metadata Model (DSI, EPFL,)
Metadata information related to an object, as seen in previous section, is split among various Descriptors.
These Descriptors can contain:
¢ identification information (as standardized by MPEG21) for AXOID, AXWID and Type
o AXMEDIS specific information regarding object life-cycle (in AXInfo)
e Dublin Core metadata
e MPEG 7 metadata
e any other metadata represented in XML
These descriptors may contain other Descriptors with information on the metadata itself like:
e metadata status explaining the current status of the metadata provided (e.g. "to be revised",
"minimal");
e metadata visibility (public/private) telling if the metadata should be provided in clear when the
object is protected (default if not stated) or should be accessible only after deprotection;
o metadata certification containing a signature for the statement contained in the descriptor.
Thus the structure for a descriptor is:

Descriptor
Descriptor
Statement
ax:MetadataStatus
"to be revised"
Descriptor
Statement
ax:MetadataVisibility
"private"
Descriptor
Statement
dsig:Signature
Statement
mpeg7 :Mpeg7

The descriptors can be found in any order and are all optional.

16.1.9.1 Dublin Core Metadata

The Dublin Core Metadata I nitiative produced RDF schemas and XML schemas to allow the representation
of Dublin Core metadata (for details see http://dublincore.org/) AXMEDIS will use this schemas to represent
basic metadata.

The 15 basic metadata terms defined in Dublin Core are;
contributor
coverage
creator
date
description
format
identifier
language
publisher
relation
rights
source
subject
title

type

each term may be repeated more than one time meaning that all of them applies to the resource described.
Terms may be written in a different language and the language used is identified by a xml:lang attribute.
A resource with:

AXMEDISProject 113

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

<dc:creator>J. Doe<dc:creator>
<dc:creator>M. White<dc:creator>
<dc:title xml:lang="en">A title<dc:title>
<dc:title xml:lang="it">Un titolo<dc:title>

has two authors (J. Doe and M. White) and atitle expressed in English and Italian.

In the following table is reported the definition for the DC terms as found in
(http://dublincore.org/documents/dcmi-terms/).

contributor

URI:
Definition:

Comment:

coverage
URI:
Definition:

Comment:

References:
creator
URI:
Definition:

Comment:

date
URI:
Definition:

Comment:

References:
description
URI:
Definition:

Comment:

for mat
URI:
Definition:

Comment:

http://purl.org/dc/elements/1.1/contributor

An entity responsible for making contributions to the content of the resource.

Examples of a Contributor include a person, an organisation, or a service. Typically, the name of a Contributor should
be used to indicate the entity.

http://purl.org/dc/elements/1.1/coverage

The extent or scope of the content of the resource.

Coverage will typically include spatial location (a place name or geographic coordinates), temporal period (a period
label, date, or date range) or jurisdiction (such as a named administrative entity). Recommended best practice is to
select a value from a controlled vocabulary (for example, the Thesaurus of Geographic Names [TGN]) and that, where
appropriate, named places or time periods be used in preference to numeric identifiers such as sets of coordinates or
date ranges.

[TGN] http://www.getty.edu/research/tool s'vocabul ary/tgn/index.html

http://purl.org/dc/elements/1.1/creator

An entity primarily responsible for making the content of the resource.

Examples of a Creator include a person, an organisation, or a service. Typically, the name of a Creator should be used
to indicate the entity.

http://purl.org/dc/elements/1.1/date

A date associated with an event in the life cycle of the resource.

Typicaly, Date will be associated with the creation or availability of the resource. Recommended best practice for
encoding the date value is defined in a profile of 1SO 8601 [W3CDTF] and followsthe YYYY-MM-DD format.

[W3CDTF] http:/Aww.w3.0rg/ TR/INOTE-datetime

http://purl.org/dc/elements/1.1/description

An account of the content of the resource.

Description may include but is not limited to: an abstract, table of contents, reference to a graphical representation of
content or a free-text account of the content.

http://purl.org/dc/elements/1.1/format

The physical or digital manifestation of the resource.

Typicaly, Format may include the media-type or dimensions of the resource. Format may be used to determine the
software, hardware or other equipment needed to display or operate the resource. Examples of dimensions include size
and duration. Recommended best practice is to select a value from a controlled vocabulary (for example, the list of
Internet Media Types [MIME] defining computer media formats).

AXMEDIS Project 114

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

References:
identifier
URI:
Definition:

Comment:

language
URI:
Definition:

Comment:

References:
References:
publisher
URI:
Definition:

Comment:

relation
URI:
Definition:

Comment:

rights
URI:
Definition:

Comment:

source
URI:
Definition:

Comment:

subject
URI:
Definition:

Comment:

title
URI:
Definition:

[MIME] http://www.isi.edu/in-notes/iana/assignments/media-types/media-types

http://purl.org/dc/elements/1.1/identifier

An unambiguous reference to the resource within a given context.

Recommended best practice is to identify the resource by means of a string or number conforming to a forma
identification system. Example formal identification systems include the Uniform Resource Identifier (URI) (including
the Uniform Resource Locator (URL)), the Digital Object Identifier (DOI) and the International Standard Book
Number (ISBN).

http://purl.org/dc/elements/1.1/language

A language of the intellectual content of the resource.

Recommended best practice is to use RFC 3066 [RFC3066], which, in conjunction with 1SO 639 [ISO639], defines
two- and three-letter primary language tags with optional subtags. Examples include "en" or "eng" for English, "akk"
for Akkadian, and "en-GB" for English used in the United Kingdom.

[RFC3066] http://www.ietf.org/rfc/rfc3066.txt
[1S0639] http://www.loc.gov/standards/iso639-2/

http://purl.org/dc/elements/1.1/publisher

An entity responsible for making the resource available

Examples of a Publisher include a person, an organisation, or a service. Typically, the name of a Publisher should be
used to indicate the entity.

http://purl.org/dc/elements/1.1/relation

A reference to arelated resource.

Recommended best practice is to reference the resource by means of a string or number conforming to a formal
identification system.

http://purl.org/dc/elements/1.1/rights

Information about rights held in and over the resource.

Typicaly, a Rights element will contain a rights management statement for the resource, or reference a service
providing such information. Rights information often encompasses Intellectual Property Rights (IPR), Copyright, and
various Property Rights. If the Rights element is absent, no assumptions can be made about the status of these and other
rights with respect to the resource.

http://purl.org/dc/elements/1.1/source

A reference to aresource from which the present resource is derived.

The present resource may be derived from the Source resource in whole or in part. Recommended best practice is to
reference the resource by means of a string or number conforming to aformal identification system.

http://purl.org/dc/elements/1.1/subject

The topic of the content of the resource.

Typically, a Subject will be expressed as keywords, key phrases or classification codes that describe a topic of the
resource. Recommended best practice is to select a value from a controlled vocabulary or formal classification scheme.

http://purl.org/dc/elements/1.1/title

A name given to the resource.

AXMEDISProject 115

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Comment: Typically, aTitle will be aname by which the resource is formally known.
Multiplicity: 0..many (title in many languages)

type

URI: http://purl.org/dc/elements/1.1/type

Definition: The nature or genre of the content of the resource.

Comment: Type includes terms describing general categories, functions, genres, or aggregation levels for content. Recommended
best practice is to select a value from a controlled vocabulary (for example, the DCMI Type Vocabulary
[DCMITY PE]). To describe the physical or digital manifestation of the resource, use the Format element.

References. [DCMITY PE] http://dublincore.org/documents/dcmi-type-vocabulary/

Many other terms has been introduced as refinements of these basic terms like:

e abstract asrefinement of description

e alternative as refinement of title

e comformsTo as refinemet of relation

e efc.
The full list is reported in the following and additiona information can be found in
(http://dublincore.org/documents/dcmi-terms/).

abstract

Definition: A summary of the content of the resource.
Refines: http://purl.org/dc/elements/1.1/description
accessRights

Definition: Information about who can access the resource or an indication of its security status.
Comment: Access Rights may include information regarding access or restrictions based on privacy, security or other regulations.
Refines: http://purl.org/dc/elements/1.1/rights

alternative
Definition: Any form of the title used as a substitute or alternative to the formal title of the resource.
Comment: Thisqualifier can include Title abbreviations as well as trandations.

Refines: http://purl.org/dc/elements/1.1/title

audience

Definition: A class of entity for whom the resource is intended or useful.

Comment: A class of entity may be determined by the creator or the publisher or by athird party.
available

Definition: Date (often arange) that the resource will become or did become available.

Refines: http://purl.org/dc/elements/1.1/date

bibliographicCitation
Definition: A bibliographic reference for the resource.

Comment: Recommended practice is to include sufficient bibliographic detail to identify the resource as unambiguously as
possible, whether or not the citation isin a standard form.

Refines: http://purl.org/dc/elements/1.1/identifier

conformsTo
Definition: A reference to an established standard to which the resource conforms.

Refines: http://purl.org/dc/elements/1.1/relation

created

Definition: Date of creation of the resource.

AXMEDISProject 116

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Refines: http://purl.org/dc/elements/1.1/date
dateAccepted

Definition: Date of acceptance of the resource (e.g. of thesis by university department, of article by journal, etc.).
Refines: http://purl.org/dc/elements/1.1/date

dateCopyrighted

Definition: Date of a statement of copyright.

Refines: http://purl.org/dc/elements/1.1/date
dateSubmitted

Definition: Date of submission of the resource (e.g. thesis, articles, etc.).

Refines: http://purl.org/dc/elements/1.1/date

educationL evel

Definition: A general statement describing the education or training context. Alternatively, a more specific statement of the location
of the audience in terms of its progression through an education or training context.

Refines: http://purl.org/dc/terms/audience

extent

Definition: The size or duration of the resource.
Refines: http://purl.org/dc/elements/1.1/format
hasFor mat

Definition: The described resource pre-existed the referenced resource, which is essentially the same intellectual content presented
in another format.

Refines: http://purl.org/dc/elements/1.1/relation
hasPart

Definition: The described resource includes the referenced resource either physically or logically.

Refines: http://purl.org/dc/elements/1.1/relation

hasVersion

Definition: The described resource has a version, edition, or adaptation, namely, the referenced resource.
Refines: http://purl.org/dc/elements/1.1/relation

isFor matOf

Definition: The described resource is the same intellectual content of the referenced resource, but presented in another format.
Refines: http://purl.org/dc/elements/1.1/relation
isPartOf

Definition: The described resource is aphysica or logical part of the referenced resource.
Refines: http://purl.org/dc/elements/1.1/relation
isReferencedBy

Definition: The described resource is referenced, cited, or otherwise pointed to by the referenced resource.
Refines: http://purl.org/dc/elements/1.1/relation
isReplacedBy

Definition: The described resource is supplanted, displaced, or superseded by the referenced resource.
Refines: http://purl.org/dc/elements/1.1/relation

isRequiredBy

Definition: The described resource is required by the referenced resource, either physically or logically.

Refines: http://purl.org/dc/elements/1.1/rel ation

issued
AXMEDI S Project 117

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Definition: Date of formal issuance (e.g., publication) of the resource.

Refines: http://purl.org/dc/elements/1.1/date

isVersionOf

Definition: The described resource is a version, edition, or adaptation of the referenced resource. Changes in version imply
substantive changes in content rather than differences in format.

Refines: http://purl.org/dc/elements/1.1/relation

license
Definition: A legal document giving official permission to do something with the resource.

Comment: Recommended best practice is to identify the license using a URI. Examples of such licenses can be found at
http://creativecommons.org/licensed.

Refines: http://purl.org/dc/elements/1. Urights

mediator
Definition: A class of entity that mediates access to the resource and for whom the resource isintended or useful.

Comment: The audiences for a resource are of two basic classes: (1) an ultimate beneficiary of the resource, and (2) frequently, an
entity that mediates access to the resource. The mediator element refinement represents the second of these two classes.

Refines: http://purl.org/dc/terms/audience

medium

Definition: The material or physical carrier of the resource.
Refines: http://purl.org/dc/elements/1.1/format
modified

Definition: Date on which the resource was changed.

Refines: http://purl.org/dc/elements/1.1/date

provenance

Definition: A statement of any changes in ownership and custody of the resource since its creation that are significant for its
authenticity, integrity and interpretation.

Comment: The statement may include a description of any changes successive custodians made to the resource.
references
Definition: The described resource references, cites, or otherwise points to the referenced resource.

Refines: http://purl.org/dc/elements/1.1/rel ation

replaces
Definition: The described resource supplants, displaces, or supersedes the referenced resource.
Refines: http://purl.org/dc/elements/1.1/relation

requires

Definition: The described resource requires the referenced resource to support its function, delivery, or coherence of content.
Refines: http://purl.org/dc/elements/1.1/relation

rightsHolder

Definition: A person or organization owning or managing rights over the resource.

Comment: Recommended best practiceis to use the URI or name of the Rights Holder to indicate the entity.
spatial

Definition: Spatial characteristics of the intellectual content of the resource.

Refines: http://purl.org/dc/elements/1.1/coverage

tableOfContents

Definition: A list of subunits of the content of the resource.

AXMEDISProject 118

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Refines: http://purl.org/dc/elements/1.1/description

temporal

Definition: Temporal characteristics of the intellectual content of the resource.
Refines: http://purl.org/dc/elements/1.1/coverage

valid

Definition: Date (often arange) of validity of aresource.
Refines: http://purl.org/dc/elements/1.1/date

AXMEDIS will support all these metadata (basic and refined), however in case of collision with information
stored in other descriptors like in AXInfo or Identifiers, these ones are considered valid and the DC ones are
dependent. Meaning that in case of inconsistency between these information the AXInfo and the Identifiers
have a higher priority and can be used to fix the DC values (under user control).

Have to be noted that not al refined elements may have sense in the AXMEDIS context, thus some of them
may be not considered by some applications (e.g. DB may not index some metadata).

16.1.10 Examples of AXMEDIS Objects

Basic AXMEDI S Object
The following is an example of a Basic AXMEDIS Object

<?xml version="1.0" encoding="UTF-8"?>
<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS" xmins:ax="urn:axmedis:01" xmlIns:dii="urn:mpeg:mpeg21:2002:01-DII-NS"
xmins:mpeg7="urn:mpeg:mpeg7:schema:2001" xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:dc="http://purl.org/dc/elements/1.1/" xmIns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS" xmIns:mx="urn:mpeg:mpeg21:2003:01-
REL-MX-NS" xmins:sx="urn:mpeg:mpeg21:2003:01-REL-SX-NS" xmins:dsig="http://www.w3.0rg/2000/09/xmldsig#"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemaLocation="urn:axmedis:01 AXMEDIS-new.xsd">
<Item>
<l--
Descriptor containing the AXOID to identify the object (REQUIRED)
>
<Descriptor id="dsc_id">
<Statement mimeType="text/xml|">
<dii:ldentifier>urn:axmedis:axoid:OBJ_A001AGSHDI</dii:ldentifier>
</Statement>
</Descriptor>
<Descriptor id="dsc_fingprt">
<Statement mimeType="text/xml">
<ax:FingerprintAlglD>axobjFingerprint</ax:FingerprintAlgID>
</Statement>
</Descriptor>
<Descriptor id="dsc_sign">
<Statement mimeType="text/xml">
<dsig:Signature>
<dsig:Signedinfo>
<dsig:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2000/WD-xml-c14n-20000710"/>
<dsig:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#dsa"/>
<dsig:Reference>
<dsig:Transforms>
<dsig:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#base64"/>
<dsig:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#null"/>
</dsig:Transforms>
<dsig:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<dsig:DigestValue>j6lwx3rvEPOOvVKtMup4NbeVu8nk=</dsig:DigestValue>
</dsig:Reference>
</dsig:SignedIinfo>

<dsig:SignatureValue>MCOCFFrVLtRIkMc3Daon4BgqnkhCOIEaAhUAK8pH1iRNK+qll+sisDTz2TFEALE=</dsig:SignatureValue>
</dsig:Signature>
</Statement>
</Descriptor>
<I--
Descriptor containing the Relatedldentifier to identify the work (OPTIONAL)
>
<Descriptor id="dsc_rel_id">

AXMEDISProject 119

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

<Statement mimeType="text/xml|">
<dii:Relatedldentifier>urn:mpegRA:mpeg21.dii:iscw:T-034.524.680-1</dii:RelatedIdentifier>
</Statement>
</Descriptor>
<l--
Descriptor containing the Type to identify the type of object (OPTIONAL)
>
<Descriptor id="dsc_type">
<Statement mimeType="text/xml|">
<dii:Type>Music</dii:Type>
</Statement>
</Descriptor>
<l--
Descriptor containing the AXInfo containing information regarding the object (REQUIRED)
>
<Descriptor id="dsc_axinfo">
<Statement mimeType="text/xml|">
<ax:AXInfo>
<ax:ObjectCreator>
<ax:AXCID>... a creator ID ...</ax:AXCID>
<ax:ObjectCreatorName>J. Doe</ax:ObjectCreatorName>
<ax:ObjectCreatorURL>mailto:jdoe @invideo.com</ax:ObjectCreatorURL>
<ax:ObjectCreatorCompany>InVideo</ax:ObjectCreatorCompany>
<ax:ObjectCreatorCompanyURL>http://www.invideo.com</ax:ObjectCreatorCompanyURL>
<ax:ObjectCreatorNationality>US</ax:ObjectCreatorNationality>
</ax:ObjectCreator>
<ax:AccessMode>read_write</ax:AccessMode>
<ax:CreationDate>2004-12-27T15:00:00</ax:CreationDate>
<ax:LastModificationDate>2004-12-27T16:43:00</ax:LastModificationDate>
<ax:Version>1</ax:Version>
<ax:Revision>1</ax:Revision>
<ax:ObjectStatus>production</ax:ObjectStatus>
<ax:ObjectType>BASIC</ax:ObjectType>
<l--
History of the object
>
<ax:History>
<ax:ObjVersion number="1">
<ax:When>2004-12-27T16:27:00</ax:When>
<ax:Who>J. Doe</ax:Who>
<ax:Where>
<ax:Organization>InVideo</ax:Organization>
<ax:Site>Atlanta</ax:Site>
<ax:Machine>JDOE_01</ax:Machine>
</ax:Where>
<ax:What>
<ax:Description>First version</ax:Description>
</ax:What>
</ax:ObjVersion>
<ax:ObjVersion number="2">
<ax:When>2004-12-27T16:27:00</ax:When>
<ax:Who>J. Doe</ax:Who>
<ax:Where>
<ax:Organization>InVideo</ax:Organization>
<ax:Site>Atlanta</ax:Site>
<ax:Machine>JDOE_05</ax:Machine>
</ax:Where>
<ax:What>
<ax:Commands>
<ax:Cmd>
<ax:AXTID>.... a Tool ID ...</ax:AXTID>
<ax:AXTTID>... a Tool Type ID...</ax:AXTTID>
<ax:AXRTID>... a Real Tool ID ...</ax:AXRTID>
<ax:Operation>
<ax:Name>Add</ax:Name>
</ax:Operation>
<ax:Revision>1</ax:Revision>
</ax:Cmd>
<I-- To be completed -->
</ax:Commands>
</ax:What>
</ax:ObjVersion>
</ax:History>
<l--
Workflow information
>

AXMEDISProject 120

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

<ax:Workflow>
<ax:WorkltemID>... a work item ID... </ax:WorkltemID>
<ax:WorkspacelnstancelD>.... a workspace instance ID ...</ax:WorkspacelnstancelD>
</ax:Workflow>
<l--
Rights potentially available on the object
->
<ax:PotentialAvailableRights>
<ax:LicensingURL>http://www.axmedis.org</ax:LicensingURL>
<ax:PARStatus/>
<r:license>
<r:grantGroup>
<r:.grant>
<mx:play/>
<r:allConditions>
<sx:validitylntervalFloating>
<sx:duration>P1M</sx:duration>
</sx:validitylntervalFloating>
<r:validityInterval>
<r:notAfter>2010-01-01T00:00:00</r:notAfter>
</r:validitylnterval>
</r:allConditions>
</r:grant>
<r.grant>
<mx:move/>
</r:grant>
<r:.grant>
<mx:delete/>
</r:grant>
</r:grantGroup>
</r:license>
</ax:PotentialAvailableRights>
</ax:AXInfo>
</Statement>
</Descriptor>
<l--
Descriptor containing the Dublin Core information regarding the object (REQUIRED)
>
<Descriptor id="dsc_dc">
<Descriptor>
<Statement mimeType="text/xml">
<ax:MetadataStatus>to be revised</ax:MetadataStatus>
</Statement>
</Descriptor>
<Statement mimeType="text/xm|">
<rdf:Description>
<dc:title xml:lang="en">When the Thistle Blooms</dc:title>
<dc:title xml:lang="it">Quando il Cardo Shoccia</dc:title>
<dc:creator>Always Red</dc:creator>
<dc:publisher>PDQ Records</dc:publisher>
</rdf:Description>
</Statement>
</Descriptor>
<I--
Descriptor containing the MPEG?7 information regarding the object (OPTIONAL)
>
<Descriptor id="dsc_mpeg7">
<Descriptor>
<Statement mimeType="text/xml">
<ax:MetadataVisibility>private</ax:MetadataVisibility>
</Statement>
</Descriptor>
<Statement mimeType="text/xml|">
<mpeg7:Mpeg7>
<mpeg7:DescriptionUnit xsi:type="MediaProfileType">
<mpeg7:MediaFormat>
<mpeg7:VisualCodingFormat href="urn:mpeg:mpeg7:cs:MPEG7VisualCodingFormatCS:3.1.2"/>
<mpeg7:BitRate>64000</mpeg7:BitRate>
</mpeg7:MediaFormat>
<mpeg7:MediaQuality>
<mpeg7:QualityRating ratingType="objective">
<mpeg7:RatingValue>35.6</mpeg7:RatingValue>
<mpeg7:RatingMetric>
<mpeg7:QualityRatingScheme href="urn:mpeg:mpeg7:cs:MPEG-
7QualityRatingSchemeCS:2.3"/>
<mpeg7:RatingStyle>higherBetter</mpeg7:RatingStyle>

AXMEDISProject 121

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

</mpeg7:RatingMetric>
</mpeg7:QualityRating>
</mpeg7:MediaQuality>
</mpeg7:DescriptionUnit>
</mpeg7:Mpeg7>
</Statement>
</Descriptor>
<I--
Component elements containing the resource (REQUIRED for single object)
>
<Component id="cmp">
<Resource mimeType="video/mp4v-es" encoding="base64">
aadsfadsfsyd647dgd78r85hfuv8nbr8fnfo85nf9g9gm569gmty9ghmg90hdhd8fhfjd9d9
dhd8f95mnfk9gfm59fgt95mkt0jhdf8fnj587fjd6 7n3jf84mf00eed]f8fj58tm58fm58emds9o

</Resource>
</Component>
</ltem>
</DIDL>

Protected Basic AXMEDI S Object

<DIDL xmins="urn:mpeg:mpeg21:2002:02-DIDL-NS" xmins:ipmpdidl="urn:mpeg:mpeg21:2004:01-IPMPDIDL-NS"
xmins:ipmp="urn:mpeg:mpeg21:2004:01-IPMP-NS" xmIns:ax="urn:axmedis:01" xmIns:dii="urn:mpeg:mpeg21:2002:01-DII-NS"
xmIns:mpeg7="urn:mpeg:mpeg7:schema:2001" xmlins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:dc="http://purl.org/dc/elements/1.1/" xmins:r="urn:mpeg:mpeg21:2003:01-REL-R-NS" xmIns:mx="urn:mpeg:mpeg21:2003:01-
REL-MX-NS" xmins:sx="urn:mpeg:mpeg21:2003:01-REL-SX-NS" xmins:dsig="http://www.w3.0rg/2000/09/xmIdsig#"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation="urn:axmedis:01 AXMEDIS-new.xsd">
<ipmpdidl:ltem>
<ipmpdidl:ldentifier>
<ax:Objectldentification>
<dii:ldentifier>urn:axmedis:obj:id:9d00eda5-cb23-48c3-8675-972fce3e0a22</dii:ldentifier>
<ax:FingerprintAlgID>axobjFingerprint</ax:FingerprintAlgID>
<dsig:Signature>
<dsig:Signedinfo>
<dsig:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2000/WD-xml-c14n-20000710"/>
<dsig:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#dsa"/>
<dsig:Reference>
<dsig:Transforms>
<dsig:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#base64"/>
<dsig:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#null"/>
</dsig:Transforms>
<dsig:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<dsig:DigestValue>j6lwx3rvEPOOvVKtMup4NbeVu8nk=</dsig:DigestValue>
</dsig:Reference>
</dsig:Signedinfo>

<dsig:SignatureValue>MCOCFFrVLtRIkMc3Daon4BqgnkhCOIEaAhUAkK8pH1iRNK+qll+sisDTz2TFEALE=</dsig:SignatureValue>
</dsig:Signature>
</ax:Objectldentification>
<f/ipmpdidl:ldentifier>
<ipmpdidl:Info>
<ipmp:IPMPInfoDescriptor>
<ipmp:Tool>
<ipmp:ToolBaseDescription>
<ipmp:IPMPToolID>urn:mpegRA:mpeg21:IPMP:ABC005:77:29</ipmp:IPMPToollD>
<ipmp:Remote ref="urn:IPMPToolsServer:ToolEnc005-3484"/>
</ipmp:ToolBaseDescription>
</ipmp:Tool>
<ipmp:Tool>
<ipmp:ToolBaseDescription>
<ipmp:IPMPToollID>urn:mpegRA:mpeg21:IPMP:ABC064:55:86</ipmp:IPMPToolID>
<ipmp:Remote ref="urn:IPMPToolsServer:ToolWat005-6393"/>
</ipmp:ToolBaseDescription>
</ipmp:Tool>
</ipmp:IPMPInfoDescriptor>
</ipmpdidl:Info>
<ipmpdidl:Contentinfo>
<ltem>
<l--
Descriptor containing the AXOID to identify the object (REQUIRED)
>
<Descriptor id="dsc_id">

AXMEDISProject 122

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

<Statement mimeType="text/xml">
<dii:ldentifier>urn:axmedis:obj:id:9d00eda5-cb23-48c3-8675-972fce3e0a22</dii:ldentifier>
</Statement>
</Descriptor>
<l--
Descriptor containing the Relatedldentifier to identify the work (OPTIONAL)
->
<Descriptor id="dsc_rel_id">
<Statement mimeType="text/xml">
<dii:Relatedldentifier>urn:mpegRA:mpeg21:dii:iscw:T-034.524.680-1</dii:RelatedIdentifier>
</Statement>
</Descriptor>
<l--
Descriptor containing the Type to identify the type of object (OPTIONAL)
->
<Descriptor id="dsc_type">
<Statement mimeType="text/xml">
<dii:Type>Music</dii:Type>
</Statement>
</Descriptor>
<l--
Descriptor containing the AXInfo containing information regarding the object (REQUIRED)
->
<Descriptor id="dsc_axinfo">
<Statement mimeType="text/xml">
<ax:AXInfo>
<ax:ObjectCreator>
<ax:AXCID>... a creator ID ...</ax:AXCID>
<ax:ObjectCreatorName>J. Doe</ax:ObjectCreatorName>
<ax:ObjectCreatorURL>mailto:jdoe@invideo.com</ax:ObjectCreatorURL>
<ax:ObjectCreatorCompany>InVideo</ax:ObjectCreatorCompany>
<ax:ObjectCreatorCompanyURL>http://www.invideo.com</ax:ObjectCreatorCompanyURL>
<ax:ObjectCreatorNationality>US</ax:ObjectCreatorNationality>
</ax:ObjectCreator>
<ax:AccessMode>read_write</ax:AccessMode>
<ax:CreationDate>2004-12-27T15:00:00</ax:CreationDate>
<ax:LastModificationDate>2004-12-27T16:43:00</ax:LastModificationDate>
<ax:Version>1</ax:Version>
<ax:Revision>1</ax:Revision>
<ax:ObjectStatus>production</ax:ObjectStatus>
<ax:ObjectType>BASIC</ax:ObjectType>
<I--
History of the object
>
<ax:History>
<ax:ObjVersion number="1">
<ax:When>2004-12-27T16:27:00</ax:When>
<ax:Who>J. Doe</ax:Who>
<ax:Where>
<ax:Organization>InVideo</ax:Organization>
<ax:Site>Atlanta</ax:Site>
<ax:Machine>JDOE_01</ax:Machine>
</ax:Where>
<ax:What>
<ax:Description>First version</ax:Description>
</ax:What>
</ax:ObjVersion>
<ax:ObjVersion number="2">
<ax:When>2004-12-27T16:27:00</ax:When>
<ax:Who>J. Doe</ax:Who>
<ax:Where>
<ax:Organization>InVideo</ax:Organization>
<ax:Site>Atlanta</ax:Site>
<ax:Machine>JDOE_05</ax:Machine>
</ax:Where>
<ax:What>
<ax:Commands>
<ax:Cmd>
<ax:AXTID>.... a Tool ID ...</ax:AXTID>
<ax:AXTTID>... a Tool Type ID...</ax:AXTTID>
<ax:AXRTID>... a Real Tool ID ...</ax:AXRTID>
<ax:Operation>
<ax:Name>Add</ax:Name>
</ax:Operation>
<ax:Revision>1</ax:Revision>
</ax:Cmd>

AXMEDISProject 123

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

<!l-- To be completed -->
</ax:Commands>
</ax:What>
</ax:ObjVersion>
</ax:History>
<l--
Workflow information
>
<ax:Workflow>
<ax:WorkltemID>... a work item ID... </ax:WorkltemID>
<ax:WorkspacelnstancelD>.... a workspace instance ID ...</ax:WorkspacelnstancelD>
</ax:Workflow>
<l--
Rights potentially available on the object
>
<ax:PotentialAvailableRights>
<ax:LicensingURL>http://www.axmedis.org</ax:LicensingURL>
<ax:PARStatus/>
<r:license>
<r:grantGroup>
<r:.grant>
<mx:play/>
<r:allConditions>
<sx:validityIntervalFloating>
<sx:duration>P1M</sx:duration>
</sx:validitylntervalFloating>
<r:validitylnterval>
<r:notAfter>2010-01-01T00:00:00</r:notAfter>
</r:validityInterval>
</r:allConditions>
</r.grant>
<r:.grant>
<mx:move/>
</r.grant>
<r:.grant>
<mx:delete/>
</r:grant>
</r:grantGroup>
</r:license>
</ax:PotentialAvailableRights>
</ax:AXInfo>
</Statement>
</Descriptor>
<l--
Descriptor containing the Dublin Core information regarding the object (REQUIRED)
->
<Descriptor id="dsc_dc">
<Descriptor>
<Statement mimeType="text/xml">
<ax:MetadataStatus>to be revised</ax:MetadataStatus>
</Statement>
</Descriptor>
<Descriptor>
<Statement mimeType="text/xml">
<dsig:Signature>
<dsig:Signedinfo>
<dsig:CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2000/WD-xml-c14n-
20000710"/>
<dsig:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#dsa"/>
<dsig:Reference>
<dsig:Transforms>
<dsig:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#base64"/>
<dsig:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#null"/>
</dsig:Transforms>
<dsig:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<dsig:DigestValue>j6lwx3rvEPOOvKtMup4NbeVu8nk=</dsig:DigestValue>
</dsig:Reference>
</dsig:Signedinfo>

<dsig:SignatureValue>MCOCFFrVLtRIkMc3Daon4BggnkhCOIEaAhUAK8pH1iRNK+q1l+sisDTz2TFEALE=</dsig:SignatureValue>
</dsig:Signature>
</Statement>
</Descriptor>
<Statement mimeType="text/xml">
<rdf:Description>
<dc:title xml:lang="en">When the Thistle Blooms</dc:title>

AXMEDISProject 124

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

<dc:title xml:lang="it">Quando il Cardo Sboccia</dc:title>
<dc:creator>Always Red</dc:creator>
<dc:publisher>PDQ Records</dc:publisher>
</rdf:Description>
</Statement>
</Descriptor>
<I--
Descriptor containing the MPEG?7 information regarding the object removed because it is private
->
</ltem>
</ipmpdidl:ContentInfo>
<ipmpdidl:Contents>agsdhsjdddjfhf945734md9ov784nf.... 7283udfhjdf94jdbnhcysd8e</ipmpdidl:Contents>
</ipmpdidl:ltem>
</DIDL>

AXMEDISProject 125

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

17 AXinfo (DSI)

The AXInfo contains information to manage the object inits entire life-cycle, it contains

In the following documentation of AXInfo schemais reported.

element AXInfo

diagram

(e B-(o

namespace urn:axmedis:01

children

ObjectCreator

= CreationDate

—|: LastModificationDate |

= Version

smeree-

e

1]
=]
=
@
[y
2
[11]
=
=]
[11]
(=1

.,_
'
g

i

&
=
n
=
Q
e
=

[

'--1: PotentialAvailableRights

Creator information (AXCID, Name, Company, URLS, ...)
Contributor information (AXCID, Name, Company, URLS, ...)
Distributor information (AXDID, Name, URLS, ...)
Accessinformation (read only or read/write)
Creation and modification times

The History of the object (version/revision, commands performed on the object)
The Workflow information, etc.
Potential Available Rights (PAR) for the object and licensing information

-

ObjectCreator ObjectContributor Owner Distributor AccessMode CreationDate LastModificationDate Version

Revision

ObjectStatus

ObjectType

ObjectlsGoverned

IsPromoOf

ax:History

Workflow

InternalPotentialAvailableRights PotentialAvailableRights

AXMEDI S Project

126

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

description

constraints if the AccessMode is missing it should be considered as readOnly

element AXInfo/ObjectCreator

diagram

ObjectCreator] ==

—FOhjectCreaturuatiunality

namespace urn:axmedis:01

children AXCID ObjectCreatorName ObjectCreatorURL ObjectCreatorCompany ObjectCreatorCompanyURL
ObjectCreatorNationality

description It contains information regarding the person who created the object

example <ObjectCreator>
<AXCID>9383726716152748549594873723</AXCID>
<ObjectCreatorName>John Doe</ObjectCreatorName>
<ObjectCreatorURL>mailto:j.doe@video2.org</ObjectCreatorURL>
<ObjectCreatorCompany>VIDEO2</ObjectCreatorCompany>
<ObjectCreatorCompanyURL>http://www.video2.com</ObjectCreatorCompanyURL>
<ObjectCreatorNationality>US</ObjectCreatorNationality>

</ObjectCreator>

element AXInfo/ObjectCreator/AXCID

diagram =
g ~AXCID

namespace urn:axmedis:01
type xs:string

description It contains the AXMEDIS Creator Identifier

element AXInfo/ObjectCreator/ObjectCreatorName

diagram

FOhjec’tCrea‘turHame |

namespace urn:axmedis:01
type xs:string
description personal name of the creator

constraints This tag should be removed when published on the P2P or on B2C

element AXInfo/ObjectCreator/ObjectCreatorURL

diagram

Fohjecﬂ:reaturum_ |

namespace urn:axmedis:01
type xs:anyURI

description URL associated to the object creator, it could be the email address

AXMEDISProject 127

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

constraints This tag should be removed when published on the P2P or on B2C

element AXInfo/ObjectCreator/ObjectCreatorCompany

diagram

FOhjec’tCrea‘turCumpany |

namespace urn:axmedis:01
type xs:string

description name of the company of the creator

element AXInfo/ObjectCreator/ObjectCreatorCompanyURL

diagram

FOhjec’tCrea‘turCumpanyﬂRL |

namespace urn:axmedis:01
type xs:anyURI

description URL of the company of the creator

element AXInfo/ObjectCreator/ObjectCreatorNationality

diagram

FOhjenCreaturuatiunamy |

namespace urn:axmedis:01
type xs:string

description nationality of the creator company using the ISO 3166 two letters code

element AXInfo/ObjectContributor

diagram

ObjectContributor EJ—EJE'_

—FDbjE{:tC ontributorlationality

namespace urn:axmedis:01

children AXCID ObjectContributorName ObjectContributorURL ObjectContributorCompany
ObjectContributorCompanyURL ObjectContributorNationality

description It contains information regarding the person contributing to the object realization

element AXInfo/ObjectContributor/AXCID

diagram =
AXCID

namespace urn:axmedis:01
type xs:string

description It contains the AXMEDIS Creator Identifier

AXMEDISProject 128

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

element AXInfo/ObjectContributor/ObjectContributorName

diagram

FDbjE{:tC ontributorName

namespace urn:axmedis:01
type xs:string
description personal name of the contributor

constraints This tag should be removed when published on the P2P or on B2C

element AXInfo/ObjectContributor/ObjectContributorURL

diagram

[FobjectContributoruRL

namespace urn:axmedis:01
type xs:anyURI
description URL associated to the object contributor, it could be the email address

constraints This tag should be removed when published on the P2P or on B2C

element AXInfo/ObjectContributor/ObjectContributorCompany
diagram

FDbjectC ontributorCompany

namespace urn:axmedis:01
type xs:string

description name of the company of the contributor

element AXInfo/ObjectContributor/ObjectContributorCompanyURL
diagram

FDbjE{:tC ontributorCompanyURL

namespace urn:axmedis:01
type xs:anyURI

description URL of the company of the creator

element AXInfo/ObjectContributor/ObjectContributorNationality

diagram

|§Dbj ectContributorNationality

namespace urn:axmedis:01
type xs:string

description nationality of the contributor company using the ISO 3166 two letters code

AXMEDI S Project

129

DE3.1.2.2.3 -

Specification of AXMEDIS Object Manager and Protection Processor

element AXInfo/Owner

diagram

namespace
children
description

example

_____________ -

Elill'|.|'vu'n£:rhlatii:inalil'_q.r

.
:
' =
L -4 OwnerDescription !
:
!

urn:axmedis:01

OwnerlD OwnerName OwnerURL OwnerCompany OwnerCompanyURL OwnerNationality OwnerDescription

It contains information regarding the owner of the content, if not present the creator is the owner

<Owner>
<OwnerlD coding="SIAE">0038367292-292893-202383</OwnerID>
<OwnerCompany>VIDEO Production</OwnerCompany>
<OwnerCompanyURL>http://www.videoproduction.com</OwnerCompanyURL>
<OwnerNationality>US</OwnerNationality>

</Owner>

element AXInfo/Owner/OwnerlID

diagram

namespace
type
attributes
description

example

urn:axmedis:01

extension of xs:string

Name Type Use Default Fixed
coding xs:string required

identification code to identify the content owner, the coding attribute is used to state which coding scheme is used

<OwnerlD coding="SIAE">10293834-236272-353</Owner|D>

element AXInfo/Owner/OwnerName

diagram

namespace

type

description

= OwnerHame

urn:axmedis:01
xs:string

name of the content owner

element AXInfo/Owner/OwnerURL

diagram

namespace

type

description

urn:axmedis:01
xs:anyURI

the URL of the owner (website or email)

AXMEDI S Project

130

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

element AXInfo/Owner/OwnerCompany

diagram =
OwnerCompany

namespace urn:axmedis:01

type xs:string

description company name owning the content

element AXInfo/Owner/OwnerCompanyURL
diagram

FOwnerCumpanyURL |

namespace urn:axmedis:01
type xs:string

description URL of the company owning the content (web site)

element AXInfo/Owner/OwnerNationality

diagram

FOwnerHa‘tiunality |

namespace urn:axmedis:01
type xs:string

description Nationality of the content owner encoded using ISO 3166 two letters code

element AXInfo/Owner/OwnerDescription

diagram

FOwnerDescripﬁun |

namespace urn:axmedis:01

type extension of xs:string

Name Type Use Default Fixed

attributes . .
lang xs:string required

description A description of the owner, the lang attribute states the language used for the description

element AXInfo/Distributor

diagram

Distributor [-]

namespace urn:axmedis:01

children AXDID DistributorName DistributorURL DistributorNationality

description It contains information about the Distributor that distributed the object, it will be present only in the B2C phase

element AXInfo/Distributor/AXDID

diagram

namespace urn:axmedis:01

AXMEDISProject 131

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

type xs:string

description is the AXMEDIS Distributor Identifier

element AXInfo/Distributor/DistributorName

diagram E——
DistributorHame

namespace urn:axmedis:01

type xs:string

description name of the distributor

element AXInfo/Distributor/DistributorURL

diagram E——
DistributorURL

namespace urn:axmedis:01
type xs:anyURI

description URL of the distributor (web site)

element AXInfo/Distributor/DistributorNationality
diagram

Fnistrihuturuatiunamy |

namespace urn:axmedis:01
type xs:string

description Nationality of the distributor encoded using ISO 3166 two letters code

element AXInfo/AccessMode

diagram =

namespace urn:axmedis:01

type restriction of xs:string

enumeration readOnly

facets) 2
enumeration read_write

description states if the object can be changed (read_write) or not (readOnly)

constraints The AccessMode should be the same in all the AXInfos of a composite object, however in case they are missing or
contradictory the one at the top level should be considered valid.

element AXInfo/CreationDate

diagram = .
CreationDate

namespace urn:axmedis:01
type xs:dateTime

description date and time of object creation

element AXInfo/LastModificationDate
diagram

FLastMudiﬁcatinnnate |

namespace urn:axmedis:01
type xs:dateTime

AXMEDISProject 132

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

description date and time of object modification

element AXInfo/Version

diagram = .
Yersion

namespace urn:axmedis:01
type xs:nonNegativelnteger

description number of version of the object, it should be incremented each time the object is uploaded in the AXDB

element AXInfo/Revision

diagram = —

namespace urn:axmedis:01
type xs:nonNegativelnteger

description number of revision of the object, it should be incremented each time the object is saved to disk and it should return to 0
when uploaded in the AXDB

element AXInfo/ObjectStatus

diagram E——
ObjectStatus

namespace urn:axmedis:01
type xs:string

description status of the object (e.g. in production, published, ...)

element AXInfo/ObjectType

diagram E—
ObjectType

namespace urn:axmedis:01

type restriction of xs:string

enumeration BASIC
enumeration COMPOSITE

description it states if the object is BASIC or COMPOSITE

facets

constraints in case the object is BASIC it should have the structure of an AXMEDIS Basic Object, and the structure of an AXMEDIS
Composite Object for a COMPOSITE one. The value for this tag can be also derived from the object structure.

element AXInfo/ObjectlsGoverned

diagram

FOhjec’tlsGuuerned |

namespace urn:axmedis:01
type xs:boolean

description states if the object has a licence inside (true) or not (false)/

element AXInfo/lsPromoOf

v

1.0

namespace urn:axmedis:01

AXMEDISProject 133

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

children AXOID

description contains a sequence of AXOIDs referring to objects for which this object is a promotional version

element AXInfo/IsPromoOf/AXOID

diagram

namespace urn:axmedis:01

type xs:token

description an identifier of an AXMEDIS object for which the whole object is a promotional version

element AXInfo/Workflow

diagram

WorkspacelnstancelD |

namespace urn:axmedis:01

children WorkltemID WorkspacelnstancelD

description it contains information for the workflow management of the object

element AXInfo/Workflow/WorkltemID

e

namespace urn:axmedis:01
type xs:string

description the identifier of the workitem

element AXInfo/Workflow/WorkspacelnstancelD

diagram

FWDrkspacelns’tanceII] |

namespace urn:axmedis:01
type xs:string

description Identifies the workspace instance

element AXInfo/InternalPotentialAvailableRights

diagram

namespace urn:axmedis:01

type ax:PotentialAvailableRightsType

children LicensingURL PARStatus r:license

contains all the rights really available on the object, not all these rights can be exploited by end users or distributors.

description
the LicensingURL contains the URL to acquire a license for the object and PARStatus contains the status like to be

AXMEDISProject 134

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

verified, verified, ...

constraints the license is not a complete licence, it is used to contain only the grants but without the principal and the resource
elements.

element AXInfo/PotentialAvailableRights

diagram

namespace urn:axmedis:01

type ax:PotentialAvailableRightsType

children LicensingURL PARStatus r:license

description contains the rights available outside the AXMEDIS Factory usually it is a subset of the InternalPotentialAvailableRights.

the LicensingURL contains the URL to acquire a license for the object and PARStatus contains the status like to be
verified, verified, ...

constraints the license is not a complete licence, it is used to contain only the grants but without the principal and the resource
elements.

complexType PotentialAvailableRightsType

diagram = .
LicensingURL

(PotentialvailableRightsType E— —=+—]

,r.llcense

namespace urn:axmedis:01

children LicensingURL PARStatus r:license

description this type contains the information on the rights potentially available on the object, its status and the url to be used to
acquire areal license

element PotentialAvailableRightsType/LicensingURL

diagram E— -
LicensingURL

namespace urn:axmedis:01
type xs:anyURI

description contains the URL to be used to acquire a licence for the object

element PotentialAvailableRightsType/PARStatus

diagram =
PARStatus

namespace urn:axmedis:01
type xs:string

description contains the current status of the PAR like: to be verified, verified, ...

AXMEDISProject 135

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

element History

diagram !

'''''''''''''''''''''' '\'? -

namespace urn:axmedis:01

children ObjVersion

description contains the history of the object

element History/ObjVersion
diagram

ObjVersion [—=e— [}

namespace urn:axmedis:01

children When Who Where What

Name Type Use Default Fixed
number xs:nonNegativelntege
r

attributes

description contains information on the history of a specific version of the object, the number attribute indicates the version number

element History/ObjVersion/When

diagram

namespace urn:axmedis:01
type xs:dateTime

description contains the date & time when the version was uploaded on the AXDB

element History/ObjVersion/Who

diagram

namespace urn:axmedis:01
type xs:string

description contains the name of the person who uploaded he object on the AXDB

element History/ObjVersion/Where

diagram

namespace urn:axmedis:01

children QOrganization Site Machine

description contains the indication of the location where the upload was performed

AXMEDISProject 136

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

element History/ObjVersion/Where/Organization

diagram = ——

namespace urn:axmedis:01
type xs:string

description contains the indication of the Organization where the upload was performed

element History/ObjVersion/Where/Site

diagram

namespace urn:axmedis:01
type xs:string

description contains the indication of the site where the upload was performed

element History/ObjVersion/Where/Machine

diagram

namespace urn:axmedis:01
type xs:string

description contains the indication of the machine where the upload was performed

element History/ObjVersion/What

diagram L
-+ Description !

= e = S N —

L-4 Commands

namespace urn:axmedis:01

children Description Commands

description contains what have been performed on the object as a textual description and as the list of commands performed.

element History/ObjVersion/What/Description

diagram = —
Description

namespace urn:axmedis:01
type extension of xs:string

attributes . -
lang xs:string optional

description contains textual description of what have been done on the object for the specific object version

element History/ObjVersion/What/Commands

diagram
: (o fawmd

_____________ oy e

namespace urn:axmedis:01
children ax:Cmd

description contains the commands performed on the object.

AXMEDI S Project

Name Type Use Default

Fixed

137

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

element Cmd

diagram =

(omi B

namespace urn:axmedis:01

children AXTID AXTTID AXRTID Operation Revision Who When Where

description contains information regarding a command performed on the object

element Cmd/AXTID

diagram =
¢ “AXTID

namespace urn:axmedis:01

type xs:string
description contains the AXMEDIS Tool ID identifying the tool used to perform the command

element Cmd/AXTTID

diagram =
¢ “AXTTID

namespace urn:axmedis:01
type xs:string
description contains the AXMEDIS Tool Type ID identifying the type of tool used to perform the command

element Cmd/AXRTID

diagram =
¢ ~AXRTID

namespace urn:axmedis:01
type xs:string

description contains the AXMEDIS Real Tool ID identifying the tool instance used to produce the object

element Cmd/Operation

diagram

Operation [

0.

AXMEDISProject 138

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

namespace urn:axmedis:01
children Name Argument

description contains the operation performed to the object

element Cmd/Operation/Name

diagram

namespace urn:axmedis:01
type xs:string

description contains the name of the operation performed on the object

element Cmd/Operation/Argument

diagram
: —E

namespace urn:axmedis:01

description contains an argument for the operation, it can be any xml tag.

element Cmd/Revision

diagram = —
Revision

namespace urn:axmedis:01
type xs:nonNegativelnteger

description contains the revision number to which the command contributes

element Cmd/Who

diagram

namespace urn:axmedis:01
type xs:string

description contains information regarding who performed the operation

element Cmd/When

diagram

namespace urn:axmedis:01
type xs:dateTime

description contains when (date & time) the operation was performed

element Cmd/Where

diagram

namespace urn:axmedis:01

AXMEDI S Project

139

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

children Organization Site Machine

description contains the location where the operation was performed

element Cmd/Where/Organization

diagram = ——

namespace urn:axmedis:01
type xs:string

description contains the Organization where the operation was performed

element Cmd/Where/Site

diagram

namespace urn:axmedis:01
type xs:string

description contains the site where the operation was performed

element Cmd/Where/Machine

diagram

namespace urn:axmedis:01
type xs:string

description contains the identifier of the machine where the operation was performed
element MetadataStatus

diagram =
MetadataStatus

namespace urn:axmedis:01
type xs:string

description contains the editorial status of the metadata descriptor (e.g. to be completed, verified, ...)

element MetadataVisibility

diagram

FMetadataVisibnitg

namespace urn:axmedis:01

type restriction of xs:string

enumeration public

facets . p
enumeration private

desciption contains the visibility of metadata when the object is protected, private means that the metadata should not be
accessible in clear, public otherwise.

AXMEDI S Project 140

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

element Objectldentification

diagram = -
,clu:lclentlfler

—J:,ax:FingerprintAIng 1

Objectidentification [}—{—=-]

.
L-a deig:Signature |

namespace urn:axmedis:01
children dii:ldentifier ax:FingerprintAlgID dsig:Signature

description contains the Identifier element with the AXOID, the fingerprint algorithm to be used for object recognition and the
signature for the whole object (protected)

The following is the complete textual description of the AXInfo Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:axmedis:01" xmins:dsig="http://www.w3.0rg/2000/09/xmldsig#"
xmins:dii="urn:mpeg:mpeg21:2002:01-DII-NS" xmins:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
xmins:xs="http://www.w3.0rg/2001/XMLSchema" xmIns:ax="urn:axmedis:01" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:import namespace="urn:mpeg:mpeg21:2002:02-DIDL-NS" schemaLocation="mpeg21xmlschemas\DIDL.xsd"/>
<xs:import namespace="urn:mpeg:mpeg21:2004:01-IPMPDIDL-NS" schemaLocation="mpeg21xmlschemas\ipmpDIDL.xsd"/>
<xs:import namespace="urn:mpeg:mpeg21:2002:01-DII-NS" schemalocation="mpeg21xmlschemas\dii.xsd"/>
<xs:import namespace="urn:mpeg:mpeg21:2003:01-REL-R-NS" schemaLocation="mpeg21xmlschemas\rel-r.xsd"/>
<xs:import namespace="urn:mpeg:mpeg21:2003:01-REL-MX-NS" schemaLocation="mpeg21xmlschemas\rel-mx.xsd"/>
<xs:import namespace="urn:mpeg:mpeg21:2003:01-REL-SX-NS" schemalocation="mpeg21xmlschemas\rel-sx.xsd"/>
<xs:import namespace="http://www.w3.0rg/2000/09/xmldsig#" schemalocation="mpeg21xmlschemas\xmldsig-core-
schema.xsd"/>
<xs:element name="AXInfo">
<xs:complexType>
<xs:sequence>
<xs:element name="0ObjectCreator">
<xs:complexType>
<xs:sequence>
<xs:element name="AXCID" type="xs:string"/>
<xs:element name="0ObjectCreatorName" type="xs:string" minOccurs="0"/>
<xs:element name="0ObjectCreatorURL" type="xs:anyURI" minOccurs="0"/>
<xs:element name="0ObjectCreatorCompany" type="xs:string" minOccurs="0"/>
<xs:element name="0ObjectCreatorCompanyURL" type="xs:anyURI" minOccurs="0"/>
<xs:element name="ObjectCreatorNationality" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ObjectContributor" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="AXCID" type="xs:string"/>
<xs:element name="ObjectContributorName" type="xs:string" minOccurs="0"/>
<xs:element name="0bjectContributorURL" type="xs:anyURI" minOccurs="0"/>
<xs:element name="0bjectContributorCompany" type="xs:string" minOccurs="0"/>
<xs:element name="0ObjectContributorCompanyURL" type="xs:anyURI" minOccurs="0"/>
<xs:element name="0ObjectContributorNationality" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Owner" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="OwnerID">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="coding" type="xs:string" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="OwnerName" type="xs:string" minOccurs="0"/>

AXMEDISProject 141

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

<xs:element name="OwnerURL" type="xs:anyURI" minOccurs="0"/>
<xs:element name="OwnerCompany" type="xs:string" minOccurs="0"/>
<xs:element name="OwnerCompanyURL" type="xs:string" minOccurs="0"/>
<xs:element name="OwnerNationality" type="xs:string"/>
<xs:element name="OwnerDescription" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="lang" type="xs:string" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Distributor" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="AXDID" type="xs:string"/>
<xs:element name="DistributorName" type="xs:string" minOccurs="0"/>
<xs:element name="DistributorURL" type="xs:anyURI" minOccurs="0"/>
<xs:element name="DistributorNationality" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="AccessMode" minOccurs="0">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="readOnly"/>
<xs:enumeration value="read_write"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="CreationDate" type="xs:dateTime"/>
<xs:element name="LastModificationDate" type="xs:dateTime"/>
<xs:element name="Version" type="xs:nonNegativelnteger"/>
<xs:element name="Revision" type="xs:nonNegativelnteger"/>
<xs:element name="ObjectStatus" type="xs:string"/>
<xs:element name="ObjectType">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="BASIC"/>
<xs:enumeration value="COMPOSITE"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="0ObjectIsGoverned" type=
<xs:element name="IsPromoOf" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="AXOID" type="xs:token" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element ref="ax:History" minOccurs="0"/>
<xs:element name="Workflow" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="WorkltemID" type="xs:string"/>
<xs:element name="WorkspacelnstancelD" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="InternalPotentialAvailableRights" type="ax:PotentialAvailableRightsType" minOccurs="0"/>
<xs:element name="PotentialAvailableRights" type="ax:PotentialAvailableRightsType" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Cmd">
<xs:complexType>
<xs:sequence>
<xs:element name="AXTID" type="xs:string"/>
<xs:element name="AXTTID" type="xs:string"/>
<xs:element name="AXRTID" type="xs:string"/>
<xs:element name="Operation">

AXMEDISProject 142

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

<xs:complexType>
<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Argument" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:any namespace="##any"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Revision" type="xs:nonNegativelnteger"/>
<xs:element name="Who" type="xs:string" minOccurs="0"/>
<xs:element name="When" type="xs:dateTime" minOccurs="0"/>
<xs:element name="Where" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="Organization" type="xs:string" minOccurs="0"/>
<xs:element name="Site" type="xs:string" minOccurs="0"/>
<xs:element name="Machine" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="History">
<xs:complexType>
<xs:sequence>
<xs:element name="0bjVersion" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="When" type="xs:dateTime"/>
<xs:element name="Who" type="xs:string"/>
<xs:element name="Where" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="Organization" type="xs:string" minOccurs="0"/>
<xs:element name="Site" type="xs:string" minOccurs="0"/>
<xs:element name="Machine" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="What">
<xs:complexType>
<xs:seguence>
<xs:element name="Description" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="lang" type="xs:string" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="Commands" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element ref="ax:Cmd" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="number" type="xs:nonNegativelnteger"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="PotentialAvailableRightsType">
<xs:sequence>

AXMEDISProject 143

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

<xs:element name="LicensingURL" type="xs:anyURI"/>
<xs:element name="PARStatus" type="xs:string" minOccurs="0"/>
<xs:element ref="r:license"/>
</xs:sequence>
</xs:complexType>
<xs:element name="0Objectldentification">
<xs:complexType>
<xs:sequence>
<xs:element ref="dii:ldentifier"/>
<xs:element ref="ax:FingerprintAlgID" minOccurs="0"/>
<xs:element ref="dsig:Signature" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="MetadataStatus" type="xs:string"/>
<xs:element name="MetadataVisibility">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="public"/>
<xs:enumeration value="private"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="FingerprintAlgID" type="xs:string"/>
</xs:schema>

AXMEDI S Project

144

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

18 AXMEDIS Tool Fingerprint (DSI, FUPF)

Tool fingerprint is decribed in the sections 8.1.1.1, it contains information on the hardware (i.e. the personal
computer) and on the software. It has been created to uniquely identify an installation of agiven AXMEDIS-
complaiant application on a given device and to allow detection of software/hardware changes. Fingerprint is
stored and transmitted as XML file/message with the following schema:

r
DeviceFingerprint Type

HardDiskList

[T 5 (=

Upgrade

|
| -

|
|
|

|

|

l__ ___________________________________J_ !
Toolfingerprint XML schema.

AXMEDISProject 145

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/tool-fp" xmins:dsig="http://www.w3.0rg/2000/09/xmldsig#"
xmins:xs="http://www.w3.0rg/2001/XMLSchema" xmIns="http://www.axmedis.org/tool-fp" elementFormDefault="qualified
attributeFormDefault="unqualified">
<xs:import namespace="http://www.w3.0rg/2000/09/xmldsig#" schemalocation="xmldsig-core-schema.xsd"/>
<xs:element name="ToolFingerprint" type="ToolFingerprintType"/>
<xs:complexType name="ToolFingerprintType">
<xs:sequence>
<xs:element ref="DeviceFingerprint"/>
<xs:element ref="SoftwareFingerprint"/>
</xs:sequence>
</xs:complexType>
<xs:element name="DeviceFingerprint" type="DeviceFingerprintType"/>
<xs:complexType name="DeviceFingerprintType">
<xs:.sequence>
<xs:element ref="HardDiskList"/>
<xs:element ref="ProcessorList"/>
<xs:element ref="BIOS"/>
<xs:element ref="NetworklInterfaceList" minOccurs="0"/>
<xs:element ref="OperativeSystem"/>
</xs:sequence>
</xs:complexType>
<xs:element name="HardDiskList" type="HardDiskListType"/>
<xs:complexType name="HardDiskListType">
<xs:sequence>
<xs:element ref="HardDisk" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="HardDisk" type="HardDiskType"/>
<xs:complexType name="HardDiskType">
<xs:.sequence>
<xs:element name="Serial" type="xs:string"/>
<xs:element name="Description" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:element name="ProcessorList" type="ProcessorListType"/>
<xs:complexType name="ProcessorListType">
<xs:.sequence>
<xs:element ref="Processor" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Processor">
<xs:complexType>
<xs:complexContent>
<xs:extension base="ProcessorType"/>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:complexType name="ProcessorType">
<xs:sequence>
<xs:element name="Serial" type="xs:string" minOccurs="0"/>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Description" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:element name="BIOS" type="BIOSType"/>
<xs:complexType name="BIOSType">
<xs:sequence>
<xs:element name="Serial" type="xs:string" minOccurs="0"/>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Version" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:element name="NetworkInterfaceList" type="NetwrokinterfaceListType"/>
<xs:complexType name="NetwrokinterfaceListType">
<xs:.sequence>
<xs:element ref="NetworklInterface” minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="NetworkInterface" type="NetworkinterfaceType"/>

AXMEDIS Project

146

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

<xs:complexType name="NetworkinterfaceType">
<xs:.sequence>
<xs:element name="Name"/>
<xs:element name="MACAddress"/>
</xs:sequence>
</xs:complexType>
<xs:element name="OperativeSystem" type="OperativeSystemType"/>
<xs:complexType name="OperativeSystemType">
<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Version" type="xs:string"/>
<xs:element name="Upgrade" type="xs:string"/>
<xs:element name="Serial" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:element name="SoftwareFingerprint" type="SoftwareFingerprintType"/>
<xs:complexType name="SoftwareFingerprintType">
<xs:.sequence>
<xs:element ref="FileFingerprint" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="FileFingerprint" type="FileFingerprintType"/>
<xs:complexType name="FileFingerprintType">
<xs:.sequence>
<xs:element name="Category">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="CONTAIN_AXOM"/>
<xs:enumeration value="PLUG_IN"/>
<xs:enumeration value="CONFIGURATION"/>
<xs:enumeration value="SECURE_CACHE"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="FullFileName" type="xs:anyURI"/>
<xs:element name="PhysicalPosition" type="xs:string"/>
<xs:element name="Signature" type="dsig:SighatureType"/>
<xs:element name="CreationDate" type="xs:dateTime"/>
<xs:element name="LastModificationDate" type="xs:dateTime" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

As stated before, the information contained in the fingerprint are mainly information for the identification of
the tool, however profile-related information can be estimated in asimila way and merged with those above
reported. Samples of profile information are the following:

Which kind of content it may manage or not, e.g. it cannot load PDF, it can load PS

Resolution of the screen device

Power of the device

Presence of some basic adaptation tools or their absence

Print capabilities or not

Audio capabilities or not

Video streaming capabilities or not

Burning ROM capabilities or not

Network connection speed

Network connection type, e.g. permanent or irregular

etc....

AXMEDISProject 147

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

19 AXMEDIS Protection Info (DSI, FHGIGD)
Protection information is formatted as stated in MPEG-21 Part 4 IPMP standard. The syntax and semanticsis
still under discussion, the actual state of the standard is contained in the output document w7717 of the 74™
MPEG meeting (see http://mpeg.nist.gov/).
MPEG-21 Part 4 divides protection information into two XML schemas:
e one is used to declare the list of needed protection tools (or commands as defined in this section) to
unprotect the whole digital item;
o the other is used to describe, for each protected element, how to use those tools (e.g. the execution
order, keys, initialization parameters, etc...) to unprotect a specific element.
The former part of protection information (i.e. the list of al needed tools) should not only contain the
necessary tools to unprotect the “first level” of protected element, it should contain aso the required tools to
correctly manage all nested levels of protected elements. In that way, looking at the tool list declaration it
will be possible to immediately decide whether an AXMEDIS Tool is capable to completely “consume” an
object.

AXMEDISProject 148

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

20 Protection Tool description (DSI)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/ipmp-tool-schema" xmlns:prm="http://www.axmedis.org/parameter"
xmins:ipmpinfo="urn:mpeg:mpeg21:2004:01-IPMPINFO-NS" xmIns:pp="http://www.axmedis.org/ipmp-tool-schema"
xmins:pin="http://www.axmedis.org/plugin-schema" xmins:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="0.1">
<xs:import namespace="http://www.axmedis.org/plugin-schema" schemal ocation="plugin-schema.xsd"/>
<xs:import namespace="urn:mpeg:mpeg21:2004:01-IPMPINFO-NS"
schemalocation="mpeg21xmlschemas/ipmpinfo.xsd"/>
<xs:import namespace="http://www.axmedis.org/parameter" schemal ocation="param-schema.xsd"/>
<xs:element name="IPMPToolList" type="pp:IPMPToolListType" substitutionGroup="pin:SpecificDescriptor"/>
<xs:complexType name="IPMPToolListType">
<xs:complexContent>
<xs:extension base="pin:SpecificDescriptorType">
<xs:sequence>
<xs:element ref="pp:Tool" maxOccurs="unbounded"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:element name="Tool" type="pp:ToolType"/>
<xs:complexType name="ToolType">
<xs:sequence>
<xs:element ref="ipmpinfo:IPMPToolID"/>
<xs:element ref="pp:Name"/>
<xs:element ref="pp:Description"/>
<xs:element ref="prm:ParameterList" minOccurs="0"/>
<I/xs:sequence>
<xs:attribute ref="pp:type" use="required"/>
</xs:complexType>
<xs:attribute name="type">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="authoring"/>
<xs:enumeration value="playing"/>
</xs:restriction>
<Ixs:simpleType>
</xs:attribute>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Description" type="xs:string"/>
<xs:element name="AllowedValues" type="pp:AllowedValuesType" substitutionGroup="prm:Constraint"/>
<xs:complexType name="AllowedValuesType">
<xs:complexContent>
<xs:restriction base="prm:ConstraintType">
<xs:sequence>
<xs:element ref="pp:Value"/>
</xs:sequence>
</xs:restriction>
</xs:complexContent>
</xs:complexType>
<xs:element name="Value" type="xs:anyType"/>
</xs:schema>

element IPMPToolList

diagram _______|
pp:IPMPToolListType |

i By
|

1.

L

r
|

|

|
2
|

|
—

namespace http://www.axmedis.org/ipmp-tool-schema

type pp:IPMPToolListType

children pp:Tool

source <xs:element name="IPMPToolList" type="pp:IPMPToolListType" substitutionGroup="pin:SpecificDescriptor"/>

description This element is the root element for the description of all protection tools exposed by an ipmp plug-in. It is a substitution
AXMEDIS Project 149

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

of the abstract element SpecificDescriptor described in the section “Formal description of format — Content Processing
Plug-ins specific description” in DE3.1.2.2.4

element Tool
diagram

namespace http://www.axmedis.org/ipmp-tool-schema

type pp:ToolType
children ipmpinfo:IPMPToollD pp:Name pp:Description prm:ParameterList
used by complexType |PMPToolListType

Name Type Use Default Fixed Annotation

attributes . .
pp:type xs:string required

description This element describes a Protection Tool contained in the plug-in. It mainly provides:
¢ the identifier of the tool using the element IPMPToolID which is defined in the MPEG-21 IPMP standard
e ashort name for the tool
e ahuman-readable description of the tool
e alist of parameters in order to initialize the tool

The attribute type can be: “authoring”,”playing”. It is “authoring” if both encoding and decoding capabilities are available.
Otherwise, it is “playing” in order to warn the only the decoding function is provided.

element Name

diagram

namespace http://www.axmedis.org/ipmp-tool-schema

type xs:string
used by complexType ToolType

description This element conatins a string representing the name of the tool.

element Description

diagram = —
Description

namespace http://www.axmedis.org/ipmp-tool-schema

type xs:string
used by complexType ToolType

description This element conatins a string representing the description of the tool.

element AllowedValues

diagl‘am r_______l

pp:AllowedVYaluesType

AllowedValues I == |

AXMEDISProject 150

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

namespace http://www.axmedis.org/ipmp-tool-schema

type pp:AllowedValuesType

children pp:Value

source <xs:element name="AllowedValues" type="pp:AllowedValuesType" substitutionGroup="prm:Constraint"/>

description This element represent a constraint on the values a given parameter can be set. This element is a substitution group of
the Constrain element which is explained in the section “Formal description of format — Parameter description” in
DE3.1.2.2.4

element Value

diagram ———————|

namespace http://www.axmedis.org/ipmp-tool-schema
type xs:anyType
used by complexType AllowedValuesType

description This element represents an allowed value for a given parameter. Please notice that it can contain any value type since
the value type dependes on the type of the parameter itself.

AXMEDISProject 151

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

21 Rights and Enforcement (FUPF, DSI, all)

Protection issues not only apply to modifications of the content in order to protect it against non-authorised
use, but also imply that, when a content is governed by means of a license, rights are enforced and only
authorised actions are allowed.

In this sense, there has been some discussion inside AXMEDIS consortium in order to enforce rights
governing a content from atechnical point of view.

The result of this discussion is shown in the rest of this section, together with other aspects regarding rights
and AXMEDIS.

21.1 Description of typical content manipulation

In this section a relevant selection of content manipulation examples are presented. The scenario based
approach has been chosen, for it has provoked the reasoning among action semantics, thus determining the
corresponding set of rights to be owned.

21.1.1 General issue on distinguish Adapt and Modify intents

It is worth to point out that, using the MPEG-21 REL standard, some actions can be authorized using
different rights. For example, the action of adding an element to a given DI can be authorized using either
enlarge or enhance rights. These two rights respectively differ on whether the original object is effectively
modified or a new modified object is derived from the origina one. The same problem arises with other
rights. In order to face this ambiguity, some technical issues have to be considered:

o Whether considering both adapt and modify rights or not. Both are needed, as their semantics are
different. Adapt means that an existing resource is changed transiently to derive a new resource and
Modify means the resource is altered, not deriving a new one from it, but maintaining modifications
inside the resource itself

o Which rights should be requested to the PMS in ambiguous cases

e How to enforce rights in ambiguous cases

A solution in order to verify the correct rights during content manipulation is to ask to the Consumer what he
wants to do with the Content, e.g. create a new Object or modify the original one. This question has to be
done when requesting a license for manipulating the content.

21.2 Examples of AXMEDIS Object manipulation

This section describes different manipulations done over AXMEDI S objects. These manipulations are related
to different MPEG-21 RDD rights. The rights associated are described in each manipulation shown. For
some of the scenarios, it is aso describe how a rights expression allowing each action should, indicating in
each case its structure and the rights granted.

21.2.1 Adding to root level

o[AX01 -3 AX04
(WJResA | -1 AX03
= AX04 =[5 AX01
5 AX02 | v + | AX03 E> % Res A
<) ResB =3 AX02
=} Res B

Adding resources at root level

To determine the rights expressions needed in this process, we will consider the use case sketched in the
above figure, where a user tries to aggregate two objects, AX01 and AXO02, to the digital object AX04. In
this scenario, the licenses governing these objects shall grant the user the right to modify or adapt the digital
object (AX04) embedding within it AX01 and AX02.

Then, the user shall obtain a license that grants him permissions to embed AX01 and AX02 and to adapt or
modify AX04 by adding to it. These licenses will be restricted to certain constraints usualy referred to the
aggregation process and to the resultant digital object.

Next figure shows the license issued by the owner or distributor of AX01 and AXO02 to the aggregator. This

license is formed by the following elements: the identification of the aggregator that is the principa of the
AXMEDISProject 152

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

license, the embed right, the resources Res A and Res B that will be used for aggregation and the conditions
that must be fulfilled to perform such aggregation. Finally, the issuer element identifies the manufacturer of
both resources.

License

Aggregator

embed

AX01

AX02

conditions

| issuer |

License for allowing objects embedding

This license uses the embed right specified in MPEG-21 RDD and defined as the right to put a Resource into
another Resource.

On the other hand, the user a'so must have permissions of modification or adaptation over the digital object
AXO04.

If the user chooses the adaptation option two different digital objects will exist as result of the addition
process, the original one in unchanged form and the newly made. MPEG-21 RDD defines the term enhance
as the right “to derive a new resource which is larger than its source”. This right permits the licensee to
change the original digital object by adding to it, for example embedding other resources. These changes are
made temporarily to the original object, but they are not saved in the original object at the end of the process.
Then, at the end of the process a new object is generated with such changes.

Next figure shows the MPEG-21 REL license that will grant to the aggregator permissions to enhance the
digital object identified as AX04 with some restrictions specified within the conditions element of this
license.

License

| Aggregator

| AX04

| enhance |

| conditions

| issuer |

Adaptation choice - AX04 enhancing license

If the user chooses the modification option, only the modified object will be preserved. For this purpose,
MPEG-21 RDD defines the term enlarge as the right “to Modify a Resource by adding to it”.

Next figure presents the MPEG-21 REL license that will grant to the aggregator permissions to enlarge the
digital object identified as AX04 with some restrictions specified within the conditions element of this
license. Then, he can add new material, including the embedding of other resources or elements, for example
AX01, but not the changing or removal of existing elements of the original digital object.

AXMEDISProject 153

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

License

| Aggregator

| enlarge

| AX 04 |

| conditions

| issuer |

Modification choice — AX04 enlarging license
21.2.2 Adding to nested level

=75 AX05 = AX04 =} AX04
) Res C +-{7) AX03 = AX03
B 3 AX01 =1 |3 AX05
=) Res A) Res C
=13 AX02) ResD
) Res B =[5 AX01
) Res A
=] AX02
) ResB

Adding resources at nested level

Standardized RDD terms associated:
Embed: To put a Resource into another Resource.

Scope of Embed

The Resource into which a Resource is Embedded can be pre-existing or can be created by the act of combining the
EmbeddedResour ce with one or more others. Embed refers only to the embedding of an existing Resource in another: if
a “copy” of an existing Resource is to be created and Embedded in ancther, then both Adapt and Embed would be
used.

In nested object scenario, protection processor has to request the authorization of modifying all the nested
objectsinvolved in the modification.
21.2.3 Transformation of basic objects
e.g. via plug-in
=3 AX02 =[] AX02
) Res B '.4)) Res B.2

Modifying aresource, maintaining the changes
Standardized RDD terms associated:
M odify: To Change a Resource, preserving the alterations made.
In this scenario the licensee shall issue a license to the user that grants him the right to transform the asset

Res B. MPEG-21 RDD defines the term modify as the right “to change a resource preserving the aterations
made”.

Then, the MPEG-21 license results as follows: the principal contains the identification of the user that can

modify (right element) the AX02 (resource element) if certain conditions are previously fulfilled. Next figure
shows the structure of the basic transformation license.

AXMEDISProject 154

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

License

AFC Members

| modify |

| Res B |

| conditions |

| issuer |

Basic transformation license example

In use cases where content is transformed, it is important to determine the restrictions that the licensee will
determine regarding to the transformation of its digital content. On the other hand, it is aso important to take

into account that if the original object will be preserved then the MPEG-21 RDD term used as right in the
transformation license shall be the adapt right.

MPEG-21 RDD defines the term adapt as the right “To ChangeTransiently an existing Resource to Derive a
new Resource”.

21.2.4 Transformation of objects in a composition

e.g. via plug-in

-1\ AX04 -] AX04
4] AX03 +] AX03
= AX01 = AX01
b Res A b Res A
= AX02 = AX02
<) Res B =) Res B.2

Modifying a composite object
Standardized RDD terms associated:
M odify: To Change a Resource, preserving the alterations made.

In order to modify a Resource the User has to have the rights related to the Resource and the Parent Objects.

21.2.5 Deletion of objects from a composition (from root level or nested)

=25 AX04 -1-[C53 AX04 o) AX04
=] AX03 =} AX03 =3 AX03
-} AX05 =} -|=3 AX05) ResD
) ResC) ResC
4 ResD i) ResD =) AX02
=[5 AX01) ResB
) Res A =1] AX02
= [C3 AX02) ResB
) Res B

Deleting resources from a composite object
Standardized RDD terms associated:
Reduce: To Modify a Resource by taking away from it.

Scope of Reduce

With Reduce, a single Resource is preserved at the end of the process. Changes can include only the removal of existing
elements of the original Resource.

AXMEDISProject 155

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

In this use case the user shall obtain a license (see next figure) that grants him permissions to delete digital
objects from a composition.

MPEG-21 RDD defines the term reduce as the right “to Modify a Resource by taking away from it”. The
change that can be performed when exercising reduce right is the remova of existing elements from the
original digital object. At the end of the process only the modified resource is preserved.

License

AFC

| reduce |

| AX04 |

| conditions |

| issuer |

Deletion license example

When granting reduce right, the licensee must consider if he gives permissions to remove all the el ements or
only a subset of them. If the licensee only grants permissions of deletion of specific elements from the
original digital object, these constraints must be specified within the license as conditions.

On the other hand, in some cases the user also wants to destroy the elements taken away from the original
digital object. Then, he must posses a license that grants him the right to delete these elements. MPEG-21
RDD defines delete term as the right “to Destroy a Digital Resource’. This right forms part of the MPEG-21
REL multimedia extension.

21.2.6 Copying of objects from a composition to another

=) AX04 =3 AX09 =}3 AX09
=} AX03 =l_) AXO7 =13 AXO7
—-|=3 AX05 -3 AX06 -3 AX06
i) ResC) ResE) ResE
=Jl Res D =0} ResF |:>) Res F
-~ AX01 =) AX08 =13 AX08
) Res A) Res G :ll Res G
] AX02 - AX02
) ResB copy .4 Res B

Copy resources from a composite object to another

Copy AX02 from Composition 1 and Enlarge Composition2 with AX02.
In this scenario, the user shall have a license that grants him to copy AX02 from Composition 1 and to
enlarge Composition2 with AX02.

Standardized RDD terms associated:

Copy is not defined in the RDD, and then a new term shall be added as a specialization of Adapt that is
defined in RDD as the action to ChangeTransiently an existing Resource to Derive a new Resource.
Enlargeis defined in the RDD as the action to Modify a Resource by adding to it.

Scope of Enlarge

With Enlarge, a single Resourceis preserved at the end of the process. Changes can include the addition of new
material, including the Embedding of other Resources, but not the changing or removal of existing elements of the
original Resource.

New REL Elements:

In the base profile the element bpx:governedCopy is specified. This element represents the right to copy the
resource and at the same time to result in certain rights being associated to the copied resource. The optional
AXMEDIS Project 156

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

attribute @bpx:governanceRule indicates the name of a governance rule that determines how exactly the
copy should be made and what rights should be associated and by whom for the copied resource. When the
attribute is not specified, this right allows to make a bit-wise identical copy of the resource and to result in an
identical copy of ther:license that thisright is specified being made to the copied resource. This right can be
used for copying the resource that is either locally available or received from a remote location (e.g., via
streaming or broadcasting) during the time thisright is being exercised.

In this use case we can use the governedCopy element of the REL base profile and the enlarge term defined
in the RDD. Note, that a new extension for the REL shall be defined and must contain the enlarge element, in
order to be further used in REL licenses.

Another option is to define the copy right in the RDD as a specidization of the Adapt right and add this
element to the REL extension where also is specified the enlarge element.

A third option is to specify a new RDD term that represents the action presented (enlarge with a copied
resource) in this section. This new term shall be a speciaization of Copy and Enlarge. Then, this term shall
be also defined in anew REL extension.

Nevertheless, MPEG-21 REL base profile is not currently supported in AXMEDIS, so the copy right will not
be implemented for the moment.

In this scenario, the user shall have a license that grants him to copy AX02 from Composition 1 and to
enlarge or enhance Composition2 with AX02.

MPEG-21 RDD does not define the copy right. Then, a new term shall be created under the governance of
the RDD Registration Authority. This term will be defined as a specialization of Adapt defined in the RDD
asthe action “to ChangeTransiently an existing Resource to Derive a new Resource’.

Nevertheless, in the base profile the element governedCopy is specified. This element represents the right to
copy a resource, in our use case the AX02 element, and at the same time to result in certain rights being
associated to the copied resource. The attribute governanceRule of this right indicates the name of a
governance rule that determines how exactly the copy should be made and what rights should be associated
and by whom for the copied resource.

License License

AFC
[copy |
[axo2 |
| conditions |
| issuer | | issuer |

Licenses for copying use case

If we choose the first option, that is to define the copy right, then the licenses that shall be granted to the user
in order to perform the copy from a governed composition to another are the presented in the figure.

Another option is the use of the adapt right in order to obtain a copy of AX02. Adapt is defined in the
MPEG-21 RDD as the right to change transiently an existing resource to derive a new resource. But, take
into account that the new resource can be modified, then it is necessary to define the copy right as an
specidization of the adapt right or to add the appropriate conditions in the adaptation license to avoid
modifications of the resultant object.

AXMEDISProject 157

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

L License

icense
[agapt] [entarge |

[axee] [axon |
[condiions |

| issuer | | issuer |

Licenses for copying use case — adapt option

21.2.7 Moving of objects from a composition to another

o) AX04 =3 AX09 o3 AX04 -3 AX09
=1 AX03 =5 AXO7 =5 AX03 =15 AXO7
=3 AX05 =13 AX06 =13 AX05 == AX06
=) ResC i ResE =l ResC) ResE
<) ResD) ResF |:>) ResD) ResF
=13 AX01 -} AX08 -3 AX01 =1 [-3 AX08
4 Res G) Res A) Res G
=] AX02
move) ResB

Move resources from a composite object to another

Standardized RDD terms associated:
Move: To relocate a Resource from one Place to another.

21.2.8 Playing/rendering of objects (basic, composite)

= AX04 =) AX04
+ |7 AXO03 + |7 AXO03
=3 AX01 =3 AX01
3 Res A) Res A

= AX =653 =3 AX02 w
i) ResB VE(@ éu@ ‘E@ D ResB

Playing resources
If auser hasthe right Play for the root object he has a so the rights of playing the child objects.

Standardized RDD terms associated:

Play: To Derive a Transient and directly Perceivable representation of a Resource.

Print: To Derive aFixed and directly Perceivable representation of a Resource.

Render: To Transform an existing Resource into a Perceivabl e representation of its contents.
Perform: To Express a Transient Resource.

Fix: To Express a Persistent Resource.

AXMEDISProject 158

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

21.2.9 Manipulation of object metadata

add edit
0 3 AX02 S AX02 o 3 AX02
.} Metadata X] Metadata X] Metadata X.2
) ResB) Metadata Y] Metadata Y
) Res B) Res B

Manipulating object metadata

Standardized RDD terms associated:

Enlarge: To Modify a Resource by adding to it.

Enlarge RDD term is equivalent to the add term of Figure above.

Trandate: To Transform an existing Resource by changing the Language of its Lexical elements without
changing their Meaning.

For this manipulation, it should be defined a new term Edit as a specialization of Transform RDD term.

21.3 Mapping Rights on User Action

The following table summarises the rights associated to each scenario described above. The semantics of the
operation is also described.

Action Right Semantics
Adding to root level Enmbed To put a Resource into another Resource
Enhance To derive a new resource which is larger than its
source
Enlarge To Modify a Resource by adding to it
Adding to nested level Embed To put a Resource into another Resource.
Enhance To derive a new resource which is larger than its
source
Enlarge To Modify a Resource by adding to it
Transformation of basic objects Modify To Change a Resource, preserving the aterations
made.
Transformation of objects in a| Modify To Change a Resource, preserving the dterations
composition made.
Deletion of objects from a| Reduce To Modify a Resource by taking away from it.
composition (from root level or
nested)
Copying of objects from a| Copy This right is not defined in the RDD, then a new
composition to another term shall be added as a specialization of Adapt that

is defined in RDD as the action to
ChangeTransiently an existing Resource to Derive a
new Resource.
Adapt To change transiently an existing resource to derive
anew resource

governedCopy | Element specified in the MPEG-21 REL base
profile. It represents the right to copy the resource
and at the same time to result in certain rights being
associated to the copied resource.

Enhance To derive a new resource which is larger than its
source
Enlarge Modify a Resource by adding to it.
Moving of objects from a| Move To relocate a Resource from one Place to another.

composition to another

AXMEDIS Project 159

DE3.1.2.2.3 — Specification of AXMEDIS Object Manager and Protection Processor

Playing/rendering of objects | Play To Derive a Transient and directly Perceivable
(basic, composite) representation of a Resource.
Print To Derive a Fixed and directly Perceivable
representation of a Resource.
Render To Transform an existing Resource into a
Perceivable representation of its contents.
Perform To Express a Transient Resource.
Fix To Express a Persistent Resource.
Manipulation of object metadata | Edit It is not defined in the RDD. Define the new term
Edit as a specialization of Transform RDD term.
To Modify a Resource by adding to it.
Trandate To Transform an existing Resource by changing the

Language of its Lexical elements without changing
their Meaning.

AXMEDI S Project

160

