
DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

1

AXMEDIS

Automating Production of Cross Media Content
for Multi-channel Distribution

www.AXMEDIS.org
DE3.1.2.2.3

Specification of AXMEDIS
Object Manager and Protection Processor,

first update of DE3.1.2 part B
Version: 2.0
Date: 08-05-2006
Responsible: DSI (Vallotti) (revised and approved by coordinator)
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: report
Visible to User Groups: yes
Visible to Affiliated: yes
Visible to the Public: yes
Deliverable Number: DE3.1.2.2.3
Contractual Date of Delivery: M18
Actual Date of Delivery: 17/5/2006
Title of Deliverable: Specification of AXMEDIS Object Manager and Protection Processor,
first update of DE3.1.2 part B
Work-Package contributing to the Deliverable: WP3.1
Task contributing to the Deliverable: WP3, WP2
Nature of the Deliverable: report
Author(s): DSI, EPFL (MISSING Contributions), FUPF, FHGIGD

Abstract: this part includes the specification of components, formats, databases and protocol related
to the AXMEDIS Framework area including AXOM, loading and saving MPEG-21 objects,
formats, protection processor.

Keyword List: AXOM, Object Model, MPEG-21, BIM, IPMP, Protection Information

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

2

AXMEDIS Copyright Notice
The following terms (including future possible amendments) set out the rights and obligations licensee will be requested
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by
any other means.

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT.

1. DEFINITIONS

i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the
document have been accepted.

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a
Document.

iii. "Licensor" is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in
terms of companies and/or associations, see www.axmedis.org

iv. "Document" means the information contained in any electronic file, which has been published by the
Licensor’s as AXMEDIS official document and listed in the web site mentioned above or available by any
other means.

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.

2. LICENCE

1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to
present terms and conditions (the Licence) for the parts that are own and proprietary property the of
AXMEDIS consortium or its members.

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and
conditions.

3. TERM AND TERMINATION

1. Granted Licence shall commence on Acceptance Date.

2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions
of this Licence.

3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of
termination.

4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the
accessed Copyright.

5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or
obligations, shall survive termination of this Licence and shall continue in full force and effect.

6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it
as stated in the document itself will remain in force for a period of 5 years after license issue date or the
period stated in the document whichever is the longer.

4. USE

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:

i. remove this Copyright Notice on a Document or any of its reproduction in any form in which those
may be achieved;

ii. change or remove the title of a Document;

iii. use all or any part of a Document as part of a specification or standard not emanating from the
Licensor without the prior written consent of the Licensor; or

iv. do or permit others to do any act or omission in relation to a Document which is contrary to the
rights and obligations as stated in the present license and agreed with the Licensor

5. COPYRIGHT NOTICES

1. All Works shall bear a clear notice asserting the Licensor’s Copyright. The notice shall use the wording
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

3

6. WARRANTY

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.

2. For the avoidance of doubt the licensee should be aware that although the Copyright in the
documents is given under warranty this warranty does not extend to the content of any document
which may contain references or specifications or technologies that are covered by patents (also
of third parties) or that refer to other standards. AXMEDIS is not responsible and does not
guarantee that the information contained in the document is fully proprietary of AXMEDIS
consortium and/or partners.

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of
action which the Licensor may have, at all times keep the Licensor fully and effectively
indemnified against all and any liability (which liability shall include, without limitation, all
losses, costs, claims, expenses, demands, actions, damages, legal and other professional fees and
expenses on a full indemnity basis) which the Licensor may suffer or incur as a result of, or by
reason of, any breach or non-fulfillment of any of his obligations in respect of this License.

7. INFRINGEMENT

1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the
Copyright which comes to licensee notice and shall, at the Licensor’s request and expense, do all such
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.

8. GOVERNING LAW AND JURISDICTION

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.

2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.

Please note that:

• You can become affiliated with AXMEDIS. This will give you the access to a
huge amount of knowledge, information and source code related to the
AXMEDIS Framework. If you are interested please contact P. Nesi at
nesi@dsi.unifi.it. Once affiliated with AXMEDIS you will have the possibility
of using the AXMEDIS specification and technology for your business.

• You can contribute to the improvement of AXMEDIS documents and
specification by sending the contribution to P. Nesi at nesi@dsi.unifi.it

• You can attend AXMEDIS meetings that are open to public, for additional
information see WWW.axmedis.org or contact P. Nesi at nesi@dsi.unifi.it

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

4

Table of Content

1 EXECUTIVE SUMMARY AND REPORT SCOPE .. 7

1.1 THIS DOCUMENT CONCERNS (DSI) ... 8
1.2 LIST OF MODULES OR EXECUTABLE TOOLS SPECIFIED IN THIS DOCUMENT (DSI) .. 8
1.3 LIST OF FORMATS SPECIFIED IN THIS DOCUMENT (DSI)... 9

2 GENERAL ARCHITECTURE AND RELATIONSHIPS AMONG THE MODULES PRODUCED (DSI,
ALL)... 10

3 MPEG-21 OBJECT MODEL (DSI).. 11
3.1 GENERAL DESCRIPTION OF THE MODULE... 12
3.2 MODULE DESIGN IN TERMS OF CLASSES .. 12

3.2.1 DI’s Object Model Capabilities Overview.. 14
3.2.2 Classes and Methods Overview... 16

3.3 EXAMPLES OF USAGE .. 20
3.4 INTEGRATION AND COMPILATION ISSUES.. 20
3.5 ERRORS REPORTED AND THAT MAY OCCUR .. 21

4 MPEG-21 LOADER (DSI) ... 22
4.1 GENERAL DESCRIPTION OF THE MODULE... 23
4.2 MODULE DESIGN IN TERMS OF CLASSES .. 24

4.2.2 Class Methods Overwiew .. 26
4.3 EXAMPLES OF USAGE .. 30
4.4 INTEGRATION AND COMPILATION ISSUES.. 30
4.5 CONFIGURATION PARAMETERS... 30
4.6 ERRORS REPORTED AND THAT MAY OCCUR .. 30

5 MPEG-21 SAVER (DSI)... 32
5.1 GENERAL DESCRIPTION OF THE MODULE... 33
5.2 MODULE DESIGN IN TERMS OF CLASSES .. 33

5.2.1 MPEG-21Saver Capabilities Overview... 34
5.2.2 Class and Methods Overview .. 35

5.3 EXAMPLES OF USAGE .. 37
5.4 INTEGRATION AND COMPILATION ISSUES.. 37
5.5 ERRORS REPORTED AND THAT MAY OCCUR .. 37

6 AXMEDIS OBJECT MODEL (DSI) .. 38
6.1 GENERAL DESCRIPTION OF THE MODULE... 39
6.2 MODULE DESIGN IN TERMS OF CLASSES .. 39

6.2.1 AxMetadata .. 41
6.2.2 AxInfo .. 41
6.2.3 AxDublinCore.. 45
6.2.4 AxOID.. 46
6.2.5 AxContent .. 46
6.2.6 AxObject .. 46
6.2.7 AxResource .. 47
6.2.8 AxPublicMetadataTree .. 48
6.2.9 AxLoader.. 50

7 AXMEDIS OBJECT PREPROCESSOR AND POSTPROCESSOR (EPFL)... 52
7.1 GENERAL DESCRIPTION OF THE MODULE... 53
7.2 MODULE DESIGN IN TERMS OF CLASSES .. 53

7.2.1 Reference Solver .. 53
7.2.2 MPEG-21 Binarization .. 55

7.3 TECHNICAL AND INSTALLATION INFORMATION ... 55
7.4 DRAFT USER MANUAL.. 55

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

5

7.5 EXAMPLES OF USAGE .. 55
7.6 INTEGRATION AND COMPILATION ISSUES.. 55
7.7 ERRORS REPORTED AND THAT MAY OCCUR .. 55
7.8 FORMAL DESCRIPTION OF ALGORITHM <……………>.. 55

8 PROTECTION PROCESSOR (DSI).. 57
8.1 GENERAL DESCRIPTION OF THE MODULE... 58

8.1.1 AXMEDIS tool registration and certification ... 58
8.1.1.1 Software and hardware fingerprint ...58
8.1.1.2 Tool certificate ..59
8.1.1.3 Tool Registration Certificate...60
8.1.1.4 User certificate ..61
8.1.1.5 User Identifier/Identification...61
8.1.1.6 Date and time...62
8.1.1.7 Action history ..62
8.1.1.8 Enabling code ..62
8.1.1.9 Trustiness of a tool ..62
8.1.1.10 Certified software ..63
8.1.1.11 Execution controls...63

8.1.2 Robustness against malicious user actions.. 63
8.2 MODULE DESIGN IN TERMS OF CLASSES .. 64

8.2.1 General Structure ... 64
8.2.2 ProtectionProcessor and CipherDataSourceManager ... 65
8.2.3 Cipher streams.. 67
8.2.4 Protection Information interpretation .. 68
8.2.5 Threads ... 69
8.2.6 Certificate Interface Module.. 69
8.2.7 Fingerprint Module .. 70
8.2.8 Tool certification.. 71
8.2.9 Grant Authorisation Requests.. 73
8.2.10 Tool recovery/recertification... 77
8.2.11 Protection Tools as AXMEDIS Plug-ins .. 77

8.3 INTEGRATION AND COMPILATION ISSUES.. 78
8.4 CONFIGURATION PARAMETERS... 78
8.5 ERRORS REPORTED AND THAT MAY OCCUR .. 78

9 ENCRYPTION/DECRYPTION SUPPORT (FUPF).. 80
9.1 GENERAL DESCRIPTION OF THE MODULE... 81
9.2 MODULE DESIGN IN TERMS OF CLASSES .. 81

9.2.1 Architecture for encryption / decryption support.. 81
9.3 IMPLEMENTATION OF THE ALGORITHMS ... 82
9.4 EXAMPLES OF USAGE .. 82
9.5 FORMAL DESCRIPTION OF ENCRYPTION / DECRYPTION SUPPORT OPERATIONS ... 83

10 COMPRESS/UNCOMPRESS SUPPORT (DSI) .. 85
10.1 GENERAL DESCRIPTION OF THE MODULE... 86
10.2 EXAMPLES OF USAGE .. 86

11 SCRAMBLE/DESCRAMBLE SUPPORT (EPFL) .. 88
11.1 GENERAL DESCRIPTION OF THE MODULE... 89
11.2 MODULE DESIGN IN TERMS OF CLASSES .. 90
11.3 TECHNICAL AND INSTALLATION INFORMATION ... 91

11.3.1 Initialisation ... 91
11.4 INTEGRATION AND COMPILATION ISSUES.. 92

12 MPEG-21 DIBO (EPFL).. 93
12.1 MPEG-21 DIP IN AXMEDIS... 94
12.2 GENERAL DESCRIPTION OF THE MODULE... 95
12.3 CLASSES .. 95

13 MPEG-21 DIM (EPFL).. 97

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

6

13.1 MPEG-21 DI METHODS IN AXMEDIS.. 98
13.1.1 Relationship between DIMs, DIBOs, and DIXOs.. 99

13.2 GENERAL DESCRIPTION OF THE MODULE .. 99
14 MPEG-21 DIA PROCESSING(EPFL) .. 100

14.1 GENERAL DESCRIPTION OF THE MODULE... 101
15 MPEG-21 DIA (EPFL)... 104

16 AXMEDIS DATA MODEL (DSI) .. 105
16.1 AXMEDIS OBJECTS AS MPEG21 OBJECTS... 105

16.1.1 MPEG21 Digital Items.. 105
16.1.2 AXMEDIS Objects.. 107
16.1.3 Basic AXMEDIS Object: .. 108
16.1.4 Protected Basic AXMEDIS Object:.. 109
16.1.5 Composite AXMEDIS Object:.. 110
16.1.6 Protected Composite AXMEDIS Object: ... 111
16.1.7 Referred AXMEDIS Object .. 112
16.1.8 Governed AXMEDIS Object: ... 112
16.1.9 AXMEDIS Metadata Model (DSI, EPFL, …..) ... 113

16.1.9.1 Dublin Core Metadata ...113
16.1.10 Examples of AXMEDIS Objects .. 119

17 AXINFO (DSI)... 126

18 AXMEDIS TOOL FINGERPRINT (DSI, FUPF)... 145

19 AXMEDIS PROTECTION INFO (DSI, FHGIGD) ... 148

20 PROTECTION TOOL DESCRIPTION (DSI) ... 149

21 RIGHTS AND ENFORCEMENT (FUPF, DSI, ALL) ... 152
21.1 DESCRIPTION OF TYPICAL CONTENT MANIPULATION.. 152

21.1.1 General issue on distinguish Adapt and Modify intents... 152
21.2 EXAMPLES OF AXMEDIS OBJECT MANIPULATION.. 152

21.2.1 Adding to root level... 152
21.2.2 Adding to nested level ... 154
21.2.3 Transformation of basic objects .. 154
21.2.4 Transformation of objects in a composition ... 155
21.2.5 Deletion of objects from a composition (from root level or nested) .. 155
21.2.6 Copying of objects from a composition to another .. 156
21.2.7 Moving of objects from a composition to another.. 158
21.2.8 Playing/rendering of objects (basic, composite)... 158
21.2.9 Manipulation of object metadata... 159

21.3 MAPPING RIGHTS ON USER ACTION ... 159

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

7

1 Executive Summary and Report Scope

The full AXMEDIS specification document has been decomposed in the following parts:

DE
number

Deliverable title respons
ible

DE3.1.2.2.1 Specification of General Aspects of AXMEDIS framework, first update of DE3.1.2 part A

AXMEDIS-DE3-1-2-2-1-Spec-of-AX-Gen-Asp-of-AXMEDIS-framework-upA-v1-0.doc

DSI

DE3.1.2.2.2 Specification of AXMEDIS Command Manager, first update of DE3.1.2 part B

AXMEDIS- DE3-1-2-2-2-Spec-of-AX-Cmd-Man-upB-v1-0.doc

DSI

DE3.1.2.2.3 Specification of AXMEDIS Object Manager and Protection Processor, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-3-Spec-of-AXOM-and-ProtProc-upB-v1-0.doc

DSI

DE3.1.2.2.4 Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-4-Spec-of-AX-Editors-and-Viewers-upB-v1-0.doc

DSI

DE3.1.2.2.5 Specification of External AXMEDIS Editors/Viewers and Players, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-5-Spec-of-External-Editors-Viewers-Players-upB-v1-0.doc

EPFL

DE3.1.2.2.6 Specification of AXMEDIS Content Processing, first update of DE3.1.2 part C

AXMEDIS-DE3-1-2-2-6-Spec-of-AX-Content-Processing-upC-v1-0.doc

DSI

DE3.1.2.2.7 Specification of AXMEDIS External Processing Algorithms

AXMEDIS-DE3-1-2-2-7-Spec-of-AX-External-Processing-Algorithms-v1-0.doc

FHGIGD

DE3.1.2.2.8 Specification of AXMEDIS CMS Crawling Capabilities, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-8-Spec-of-AX-CMS-Crawling-Capab-v1-0.doc

DSI

DE3.1.2.2.9 Specification of AXMEDIS database and query support, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-9-Spec-of-AX-database-and-query-support-v1-0.doc

EXITEC
H

DE3.1.2.2.10 Specification of AXMEDIS P2P tools, AXEPTool and AXMEDIS, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-10-Spec-of-AXEPTool-and-AXMEDIA-tools-v1-0.doc

CRS4

DE3.1.2.2.11 Specification of AXMEDIS Programme and Publication tools, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-11-Spec-of-AX-Progr-and-Pub-tool-v1-0.doc

UNIVLE
EDS

DE3.1.2.2.12 Specification of AXMEDIS Workflow Tools, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-12-Spec-of-AX-Workflow-Tools-v1-0.doc

IRC

DE3.1.2.2.13 Specification of AXMEDIS Certifier and Supervisor and networks of AXCS, first update of part of
DE3.1.2

AXMEDIS-DE3-1-2-2-13-Spec-of-AXCS-and-networks-v1-0.doc

DSI

DE3.1.2.2.14 Specification of AXMEDIS Protection Support, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-14-Spec-of-AX-Protection-Support-v1-0.doc

FUPF

DE3.1.2.2.15 Specification of AXMEDIS accounting and reporting, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-15-Spec-of-AX-Accounting-and-Reporting-v1-0.doc

EXITEC
H

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

8

1.1 This document concerns (DSI)
AXMEDIS Object Manager and Protection Processor.

AXMEDIS Object Manager, so called AXOM, is the coordinator of all other modules used by or built in
AXMEDIS Editor. Coordination activities it is important to permit development of others AXMEDIS Editor
modules almost independently each other. AXMEDIS Object Manager guarantees DRM rules respect on
AXMEDIS object manipulations.
AXMEDIS Object Manager works in respect of AXMEDIS Data Model Support and it fundamentally is
composed by three modules:
• AXMEDIS Command Manager which is the real interface for processing content models as the

AXMEDIS Data Model and protected according to the tools of the AXMEDIS Protection processor
• AXMEDIS Data Model Support to model the AXMEDIS objects according to MPEG-21 and

additional requirements identified
• AXMEDIS Protection Processor to protect and processing registration, certification, and to protected

and unprotect digital resources according to a dynamic mechanism similar to that of IPMP of MPEG21.
In particular, AXMEDIS Data Model Support can be decomposed in four modules and two formats:
• MPEG-21 Object Model allows to represent a MPEG-21 document as software object model
• MPEG-21 Loader allows to load an MPEG-21 document
• MPEG-21 Saver allows to save a software object model to a MPEG-21 document
• AXMEDIS Object Model allows to represent an AXMEDIS document as a software object model on

the basis of the MPEG-21 Object Model
• AXMEDIS Data Model defines the structure and the information of an AXMEDIS Object
• AXInfo defines the structure of the AXMEDIS B2B information

Protection Processor has mainly four tasks:

1. To register and certify an AXMEDIS tool containing the AXOM, e.g. editor, player, engine, etc.
2. To control software which uses sensible content and does not contain AXOM, e.g. plug-ins for

fingerprint
3. To reveal attacks during tool execution, e.g. code debugging
4. To protect and un-protect elements of AXMEDIS object

In the following those aspects will be described and solutions are proposed for them. After that, class
implementation and interaction will be described.

1.2 List of Modules or Executable Tools Specified in this document (DSI)
A module is a component that can be or it is reused in other cases or points of the AXMEDIS framework or
of other AXMEDIS based solutions.
The modules/tools have to include effective components and/or tools and also testing components and tools.

Module/tool

Name
Module/Tool Description and purpose, state also in

which other AXMEDIS area is used
Standards exploited

if any
MPEG-21 Object
Model

 MPEG-21 DIDL; MPEG-21
IPMP

MPEG-21 Loader MPEG-21 DIDL; MPEG-21
IPMP

MPEG-21 Saver MPEG-21 DIDL; MPEG-21
IPMP

AXMEDIS Object
Model

 Dublin Core

AXMEDIS Object
Pre-processor and
Post-processor

 W3C XInclude, MPEG-21
Binary Format

Protection
Processor

 MPEG-21 IPMP; X.509 v3

Encryption/Decrypt
ion Support

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

9

Compress/uncompr
ess Support

Scramble/Descram
ble Support

MPEG-21 DIBO ISO/IEC FDIS 21000-
10:2005(E) - MPEG-21 DIP

MPEG-21 DIM ISO/IEC FDIS 21000-
10:2005(E) - MPEG-21 DIP

MPEG-21 DIA
Processing

 ISO/IEC FDIS 21000-
7:2005(E) - MPEG-21 DIA

1.3 List of Formats Specified in this document (DSI)
A format can be (i) an XML content file for modelling some information, (ii) a file format for storing
information, (iii) a format that is manipulated by the tools described in this document, etc...

Format Name Format Description and purpose, state

also in which other modules is used
Standards exploited if any

MPEG-21 DIA MPEG-21 DIA
AXMEDIS Data
Model

 MPEG-21 DIDL; MPEG-21 IPMP

AXInfo
AXMEDIS Tool
Fingerprint

AXMEDIS
Protection Info

 MPEG-21 IPMP

Protection Tool
description

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

10

2 General architecture and relationships among the modules
produced (DSI, All)
The following figure sketch out the general architecture of the AXMEDIS Object Manager and Protection
Processor togethers

AXMEDIS Command Manager

AXMEDIS Object Manager

AXMEDIS Data Base Area::AXMEDIS Data
Model Support

Tool ID estimation

«uses»

AXMEDIS Editor::Protection
Manager Support Client

«uses»

«uses»

«uses»

Protection Processor

Scramble/
deScramble Support

«uses»

«uses»

Compress/
uncompress Support

«uses»

«uses»

unprot/prot procedure and information

Decryption Support

Encryption Support

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

11

3 MPEG-21 Object Model (DSI)

Module/Tool Profile
MPEG-21 Object Model

Responsible Name Andrea Vallotti, Davide Rogai
Responsible Partner DSI
Status (proposed/approved) Proposed
Implemented/not implemented Implemented
Status of the implementation In refinement
Executable or Library/module
(Support)

Library

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows XP; Linux; Windows Mobile
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/project/axom/dimodel
https://cvs.axmedis.org/repos/Framework/source/axom/dimodel
https://cvs.axmedis.org/repos/Framework/include/axom/dimodel

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/Framework/bin/axom/

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent) Present
Test cases location https://cvs.axmedis.org/repos/Framework/doc/test/axom/
Usage of the AXMEDIS
configuration manager (yes/no)

No

Usage of the AXMEDIS Error
Manager (yes/no)

Yes

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

12

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

3.1 General Description of the Module
The MPEG-21 Object Model provides the means to represent an MPEG-21 Digital Item as a software object
model. That is, a DI is represented as a tree of class instances. Each class represent one of the elements
defined in the MPEG-21 standard. In particular, the elements of MPEG-21 DID and IPMP has been
modelled since these parts of the standard are fundamental in order to represent protected and clear-text DIs.
This module provides all those features needed in order to completely handling and managing the DI model,
including:

• Insertion, deletion and modification of model, model elements, and model element’s attributes
• Modularity and expandability of model representation.
• Managing of inclusion functionalities and post parsing inclusions resolving and loading.
• Validation of model representation.

Items representation doesn’t stop to DI hierarchy but includes even DII hierarchy modelling.

3.2 Module Design in terms of Classes
The class diagram below gives an overview of the MPEG-21 Object Model. IPMP elements are fully
integrated in the representation tree of DI. This structure also allow insertion and managing of new
hierarchies, like DII hierarchy.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

13

virtual

virtual

virtual virtual virtual

virtual virtual

virtual

virtual

virtual

virtual
virtual

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

14

3.2.1 DI’s Object Model Capabilities Overview
A fundamental role in module architecture is carried out by MPEG21ElementCollection. This class manages
representation tree structure of DI, it implements type checking on elements, element ordered insertion,
deletion, retrieving and representation visit.
Next diagram shows a deepest look to type checking implementation. All element classes in the model
contains a static instance of Class element to specify their types. This instance provide type checking
methods needed by MPEG21ElementCollection to allow or deny insertion in a particular position of
representation tree, and then enabling it to find the right place in the tree for an incoming new element.

MPEG21ElementCollection could, using functionalities introduced by Class static element, determine if and
where a new element is inserted in the representation of DI as next figure shows.

If insertion is not allowed, e.g. in case where the given element is not allowed to be inserted as a child of the
target element, type checking allow rejection of insertion operation, granting consistency between
representation of DI and XML Schema defined in MPEG-21 specification.

MPEG21Element collection provide a flexible management of representation tree. A IPMPItem could easily
substitute a DIDLItem in a representation, e.g. by means of a protection operation. This is allowed since
IPMPItem and DIDLItem has the same AbstractItem static member inside.
To manage those crititcal elements which carries the content for the representation a special behaviour is
needed. We have to point out that those element are leaf elements for the representation, so we can easly
group them with a common class MPEG21LeafElement. Another distinction we could do is about content
these element carries: this may be text or metadata or may be some kind of multimedia content. Object
model has to separate managing of these two cases .Classes ContainsAny for metadata and ContainsAsset for
multimedia contents solve those problems and offers functionalities to maintain content information or
references multimedia data. The latter indeed has not to be loaded in memory in many use cases.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

15

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

16

3.2.2 Classes and Methods Overview
MPEG21Element
This class acts as interface for all hierarchy elements. All methods defined and implemented by this class are
virtual and could be overridden by inheriting elements.

MPEG21Element – class methods
addCild – insertChildBefore – insertChildAfter – removeChild – deleteChild
These methods are used to manage structure. All these methods match an appropriate method in
MPEG21ElementCollection and acts as an interface for functionalities implemented by this class.
getChildren – get ChildrenByClass getChildAfter – getChildBefore
These methods are used to retrive children elements linked in MPEG21ElementCollection. All these
methods uses MPEG21ElementCollection functionalities to retrive elements or groups of elements from
representation tree
clone , copyData, copyChildren
These virtual methods are implemented to provide element copy functionalities. These methods are
specialized by local elements implementation
MPEG21Element - ~MPEG21Element – MPEG21Element(MPEG21Element)
Constructor, destructor and copy constructor.
getNamespace
Retruns a string containing the element’s namespace.
getElementName
Returns a string containing the name of the element.
getParentElement setParentElement
Returns a pointer to element’s parent or set a parent for the elment
getNextSibiling – getPreviousSibiling
Returns a pointer to next or previous parent’s child element

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

17

getOwnerDocument – setOwnerDocument – protSetOwnerDocument
Returns or set a link to the document that contains the element.
getAllowedChildren
This method returns a vector containing the allowed children types for the element.
getTextDescription
Returns a textual description of the element
makeThisParentOf
Makes this element parent of the target element

+MPEG21Element(in ownerDocument : MPEG21Document* = 0)
+MPEG21Element(inout src : const MPEG21Element, in deep : bool = 0)
+~MPEG21Element()
+addChild(in newChild : MPEG21Element*)
+insertChildBefore(in newChild : MPEG21Element*, in refChild : MPEG21Element*)
+insertChildAfter(in newChild : MPEG21Element*, in refChild : MPEG21Element*)
+removeChild(in child : MPEG21Element*)
+deleteChild(in child : MPEG21Element*)
+clone(in deep : bool = false) : MPEG21Element *
+copyData(inout src : const MPEG21Element)
+getNamespace() : const string &
+getElementName() : const string &
+getOwnerDocument() : MPEG21Document *
+setOwnerDocument(in newOwnerDocument : MPEG21Document*)
+getChildren() : const MPEG21ElementList &
+getChildrenByClass(inout elementClass : AbstractClass) : MPEG21ElementList
+getChildAfter(in after : const MPEG21Element*) : MPEG21Element *
+getChildBefore(in before : const MPEG21Element*) : MPEG21Element *
+getAllowedChildren() : const vector<AbstractClass *> &
+getParentElement() : MPEG21Element *
+getPreviousSibling() : MPEG21Element *
+getNextSibling() : MPEG21Element *
+getTextDescription() : const string &
#setParentElement(in newParentElement : MPEG21Element*)
#makeThisParentOf(in newChild : MPEG21Element*)
#copyChildren(inout src : const MPEG21Element, in deep : bool = false)
#protSetOwnerDocument(in newOwnerDocument : MPEG21Document*)

+CLASS : Class<MPEG21Element>
#mChildrenCollection : MPEG21ElementCollection
-mParentElement : MPEG21Element *
-mChildren : MPEG21ElementList
-mOwnerDocument : MPEG21Document *

MPEG21Element

MPEG21ElementCollection
This class defines methods to manage Object Model representation tree
Any MPEG21Element include an instance of this class.

MPEG21ElementCollection – class methods

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

18

MPEG21ElementCollection - ~MPEG21ElementCollection
Class constructor and destructor
insertBefore – insertAfter
Insert an element in the element list in a position specified by the whereInsert element.. Throws an
exception if input position is not in accordance with inserted element or if input element is not allowed or
already present in the list
addElement
Retrive the right insertion position for input element and insert it as last element of his own type in the
elementList
removeElement
Removes target element from the elementList. Throws an exception if the element is not present in the
collection
addReferences – addCrossReferences
Initialize the collection adding allowed childrens entries to mSubLists and setting list pointers to represent a
children placement that satisfies Digital Item Schema definition of the element
getElementList – getElementListByClass
Returns entries contained in the elementList.
insertIncludeBefore – insertIncludeAfter – addInclude – removeInclude
Manages XInclude elements allowing insertion and removal from the collection

MPEG21Document and DIDLDocument
These classes acts as interface between object model and upper level applications. Methods implemented by
these classes allow communication about document structure or element modifications. These class acts even
as wrappers for object representation, providing access point to DI.

DIDLDocument – class methods
DIDLDocument - ~DIDLDocument
Class constructor and destructor
getRootElement – setRootElement
Get or set root representation element pointer in the document representation
addStructureListener – removeStructureListener
Set or remove the class Listener who has to manage structure changes events in the model for upper
communication
addElementListener – removElementListener
Set or remove the class Listener who has to manage elements changes events in the model for upper
communication
createMPEG21Element

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

19

Provide interface about element creation for upper level application – See factory classes in MPEG-21
Loader module in this document for further information
elementChanged – structureChanged – changingOwnerDocument
Communicate changes from model to MPEG21Document

MPEG21LeafElement
Offer a different interface for those classes who represents representation tree leafs.
Children managing methods are overridden and throws an exception if invoked.

MPEG21LeafElement – class methods
MPEG21LeafElement - ~MPEG21LeafElement
Class constructor and destructor
addChild – insertChildAfter – insertChildBefore – removeChild – deleteChild
Overrides MPEG21ElementCollection methods. These methods throws an exception when a child operation
is tried on a leaf element

+~ContainsAny()
+copyContent(inout from : const ContainsAny)
+addChild(in child : MPEG21Element*)
+setMPEG21Content(in element : MPEG21Element*)
+setXMLContent(in element : DOMElement*)
+setTextContent(in text : string)
+getMPEG21Content() : MPEG21Element &
+getMPEG21Content() : const MPEG21Element &
+getXMLContent() : DOMElement &
+getXMLContent() : const DOMElement &
+getTextContent() : const string &
+containsMPEG21() : bool
+containsXML() : bool
+containsText() : bool
+isEmpty() : bool
#ContainsAny()
#ContainsAny(inout src : const ContainsAny)
-fireContentChanged()

-mMPEG21Element : MPEG21Element *
-mDOMElement : DOMElement *
-mText : string

ContainsAny

ContainsAny – class methods
ContainsAny - ~ContainsAny
Class constructor copy constructor and destructor
addChild
Overrides MPEG21LeafElement::addChild.Check the content to be added. If is MPEG21Content and the
element contains no element of such type it calls setMPEG21Content method
getMPEG21Content – setMPEG21Content
Set or get the MPEG-21 content of this element pointed by mMPEG21Element
getXMLContent – setXMLContent
Set or get the generic XML content of this element pointed by mDOMElement
getTextContent – setTextContent
Set or get the generic Text content of this element pointed by mText
containsMPEG21 – containsText – containsXML
Returns true if the specified element is present.
copyContent
Copy the content of this element.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

20

isEmpty
Returns true if the element pointers are empty.
fireContentChanged
Communicate to owner document if the content of this element is changed

+~ContainsAsset()
+getAsset() : DataSource &
+setAsset(in asset : DataSource*)
+isEmpty() : bool
#ContainsAsset(in asset : DataSource*)
#ContainsAsset(inout src : const ContainsAsset)

-mAsset : DataSource *
ContainsAsset

DataSource

1

1

ContainsAsset – class methods
ContainsAsset - ~ContainsAsset
Class constructor, copy constructor, destructor
getAsset – setAsset
Get or set asset for this element. Asset will contain a pointer to a DataSource element
isEmpty
Returns true if the element has no Asset defined.

3.3 Examples of usage
Following code shows how the elements of the model are used. In the example an item is created and a
descriptor child is added. Then the item is set as root MPEG-21 Element of the new created document.

3.4 Integration and compilation issues
MPEG-21 Module itself depends from Xerces C++ in some data structure definitions used in MPEG-21
elements
The following table summarizes the needed library in order to use MPEG-21 module

OS/Platform Name
Windows/PC Linux/PC

Library file Description

Xerces C++ X X xerces-c_2.lib Provides data support structures for XML
parsing

Common X X common.lib

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

21

3.5 Errors reported and that may occur
Error signals through exceptions throwing.

Error code Description and rationales
0 A requested element is not found
1 A referred element is not found
2 An inserting element is already present
3 The given element has wrong type thus cannot be inserted
4 No element can be inserted as a child of selected element
5 Input element is not an element of specified type to clone

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

22

4 MPEG-21 Loader (DSI)

Module/Tool Profile
MPEG-21 Loader

Responsible Name Andrea Vallotti, Davide Rogai
Responsible Partner DSI
Status (proposed/approved)
Implemented/not implemented implemented
Status of the implementation
Executable or Library/module
(Support)

Static library

Single Thread or Multithread
Language of Development C++
Platforms supported Windows, Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/.....................

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

yes

Usage of the AXMEDIS Error
Manager (yes/no)

yes

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

23

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

4.1 General Description of the Module
The MPEG-21 Loader allows to load in memory an MPEG-21 DI. In particular, the Loader reads data from a
stream of bytes and it creates a software model of the DI (see MPEG-21 Object Model). In order to load a
DI, the first step is processing the XML or BIN format. The resources of the object could be too big in order
to be allocated as a whole in memory. A driven loading is the only useful mean in order to get the benefits of
a memory representation of the DI, without the occupation of (potentially) giga bytes of data (e.g. a MPEG2
video resource of a movie).
The DOM implementation expose a node filtering feature that can reject a node after the DOM builder has
loaded it; this is unacceptable for the loader purpose, because the resource could be only removed after it has
occupied the whole memory and the loader has caused a fatal error on the system.
The solution is to intercept the “resource” tags occurrences before they are loaded in memory; something
that the SAX2 interface can manage. In the object model the resource includes a way to retrieve the content
stream still located on the file system. The new resource element must redirect access to the effective content
location (stream to the file/storage position) during access functions (play, adapting, copying…).
It is even important to understand that, for the same reason of memory saving, an XInclude element,
introduced in MPEG-21 specification as a hook to insert references in a DI XML Document, must not be
loaded as a whole, but it has to be inserted in the object model structure as an equivalent entity. Since
MPEG-21 awaits the use of a pre-processor to resolve XInclude references and expand target content in the
document before parsing, MPEG-21 Loader has to skip these operations and provide a different behaviour to
manage this case.
The IPMP Content of an IPMPItem (it is used to protect content inside DIs) is treated in the same way; it
could be a big amount of data and it will be not loaded in the object model. The part in the object model that
refer to a stream on the file will be integrated if requested by the user actions.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

24

All these issues drives to a design that takes into account different implementations for different parsed
elements. The concept of factory is useful to work out all troubles.

4.2 Module Design in terms of Classes
Next picture shows design of loader module. DIDLDocumentLoader represents the interface through which
a user of the model (or a upper level application) may create an MPEG-21Object Model from an XML
representation of the same. Whether DIDLDocumentLoader attends initialization and coordination in parsing
activity and creation of a new DIDLDocument element to wrap information obtained, MPEG21Loader
implements parsing methods. The latter has been implemented as a content handler for a SAX2 parser, as
defined by the W3C. In order to create new elements, MPEG21Loader uses MPEG21ElementFactory
architecture. This group of classes implements the pattern Factory for each hierarchy foreseen by Object
Model, MPEG21ElementFactory coordinates creation calling the right factory instance on the base of
information received from MPEG21Loader. New elements are added as components of the tree and wrapped
in DIDLDocument..

LoaderChainElement

MPEG21Loader DIDLDocumentLoader

«protected»

DIIElementFactory XIElementFactoryDIDLElementFactory

MPEG21ElementFactory

NSMPEG21ElementFactory

IPMPElementFactory IPMPInfoElementFactory

DIDLDocument

MPEG21Element

«uses» «uses» «uses» «uses» «uses»

«instance»

DIDLElement DIIElement

«instance»

XIElement

«instance»

IPMPElement

«instance»

IPMPInfoElement

«instance»

0..1

1

«instance»

«uses»

«uses»

ContainsAssetLoader

«instance»

«uses»

«instance»

XILoader
«uses»

4.2.1 MPEG-21 Loader Capabilities Overview
Next sequence diagram shows deeply loading chain operations and how the module will come to a complete
object representation from an input XML document. file. SAX2XMLReader is a SAX2 parser complaining
with W3C directives.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

25

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

26

Loading operations follow a recursive pattern. All loading classes are supposed to be proficient in a specific
namespace or element managing. Transitions through different loaders and factories are established by a root
coordinating element (MPEG21ElementFactory for the factories and MPEG21Loader for the loaders) that
implements capabilities to select the proper class on the base of the inputs that comes from XML parser. In
the case of factories classes the architecture is composed by static elements, any loader will refer to static
MPEG21ElementFactory class to create a new element, this implementation issue is possible because
factories are stateless elements. Loader instead are not static, a proper loader instance is created when
required by loading flows. When a loader end his task is deleted freeing memory. Loader indeed needs a
inner state to work.

4.2.2 Class Methods Overwiew
LoaderChainElement:
This class represents loaders common interface. Methods defined here are virtual and could be overridden by
local implementations of the loader classes.

LoaderChainElement – class methods
LoaderChaiElement – ~LoaderChainElement
Class constructor and destructor
detachParsedElement
Returns root element of the representation tree parsed by the loader
takeControl
take the control of the parsing flow from another loader instance.
resumeControl
Resume the control of parsing flow from another loader instance. The loader adds as a child element of his
representation tree the root element contained by the other loader
getErrorMsg
Retrivie information about an occurred error from a bottom loader instance
propagateError
Send a message to a upper loader of an error occurrence.
warning – error
Rise a warning or an error during the parsing operations
Clean
Reset the loader

DIDLDocumentLoader
This class acts as access point and root element for all loading activities. It is responsible to create a new
DIDLDocument representation in memory and to instance a new MPEG21Loader that will be the real engine
of loading. At the end of his work DIDLDocumentLoader will collect parsed DI representation and will be
able to add the representation to the newly created DIDLDocument

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

27

+detachParsedElement() : MPEG21Element *
+takeControl(inout sax2Parser : SAX2XMLReader, inout ownerLoader : LoaderChainElement, inout dataSource : DataSource)
+resumeControl()
+propagateError()
#clean()
+DIDLDocumentLoader()
+~DIDLDocumentLoader()
+load(inout source : DataSource) : DIDLDocument *
+load(inout fileName : const string) : DIDLDocument *
+characters(in chars : const XMLCh*, in length : const unsigned int)
+endElement(in uri : const XMLCh*, in localname : const XMLCh*, in qname : const XMLCh*)
+startElement(in uri : const XMLCh*, in localname : const XMLCh*, in qname : const XMLCh*, inout attrs : const Attributes)
-setState(in newState : DIDLDocumentLoaderState*)

-mDocument : DIDLDocument *
-mState : DIDLDocumentLoaderState *

DIDLDocumentLoader

DIDLDocumentLoader derives from the abstract class LoaderChainElement, therefore the former
implements all the functions defined in the latter. These functions are not replicated in the table below.
DIDLDocumentLoader – class methods
DIDLDocumentLoader – ~DIDLDocumentLoader
Class constructor and destructor
detachParsedElement
Returns root element of the representation tree parsed by the loader
load
Load a representation from a data source or a file entry
characters
Skip useless characters in document
startElement
Called by the XML parser when a start element event occurs. Changes from state to state. It could lead to
state change, MPEG21Loader instantiation or exception rising. Depending from the state is even the
creation of a new document or a new element to be added to representation tree
endElement
Called by the XML parser when an end element event occurs. Add current parsed element to the
representation tree

MPEG21Loader
The real engine of loading, through an instance of this class the loading of target document is accomplished.
Loading operations are worked out in a recursive way, going down in pre-order visit . When the loader finds
an unmanageable element it instances a proper loader chosen between available loader factories and gives it
the loading control. Control will be returned ,along with the loading output, when unmanageable namespace
or elements ends.

MPEG21Loader derives from the abstract class LoaderChainElement, therefore the former implements all
the functions defined in the latter. These functions are not replicated in the table below.
MPEG21Loader – class methods
MPEG21Loader – ~ MPEG21Loader
Class constructor and destructor

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

28

load
Load a representation from a data source
addLoaderFactory
Adds to the loader a Factory for a specified element in a specified namespace
addDefaultNsLoaderFactory
Adds a Factory to manage a specified namespace’s elements creation
getLoaderFactory
Get the factory associated with input namespace
characters
Skip useless characters in document
ignorableWhitespace
Skip useless whitespace in document
startElement
Called by an XML parser when a start element event occurs. Changes from state to state. It could lead to
state change, MPEG21Loader instantiation or exception rising. Depending from the state is even the
creation of a new document or a new element to be added to representation tree
endElement
Called by an XML parser when an end element event occurs. Add current parsed element to the
representation tree

XILoader
This is a class for XI hierarchy elements loading . This class provides the needed functionalities to manage
the difference between XInclude and other elements. However the implementation is transparent and the
class provides the same methods of a common loader

MPEG21ElementFactory
This class coordinate automatic creation of elements on the base of element namespace and element name
inputs. Selecting the proper factories and maintains a ns/factory reference map are first tasks of this class.

MPEG21ElementFactory – class methods
createMPEG21Element
Call and delegate the proper namespace factory to instance a new element of the input element type .
Alternative method also pass attrs content to fills element’s proper attributes fields.
addNSMPEG12ElementFactory – removeNSMPEG21ElementFactory – deleteNSMPEG21ElementFactory
Adds removes or deletes named factory from the collection available in MPEG21ElementFactory

DIDLElementFactory
This class and the classes below are examples of specific NS factory classes. Main task of these classes is
selection of the right element to instance on the base of element name. A secondary task of this classes is
filling the new element with provided attributes value.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

29

DIDLElementFactory – class methods
createMPEG21Element
Create a new IPMPElement of the input element type . Alternative method also fills element’s proper
attributes fields in the created element
getNamespace
Returns the factory target namespace

IPMPElementFactory – class methods
createMPEG21Element
Create a new IPMPElement of the input element type . Alternative method also fills element’s proper
attributes fields in the created element
getNamespace
Returns the factory target namespace

DIIElementFactory – class methods
createMPEG21Element
Create a new IPMPElement of the input element type . Alternative method also fills element’s proper
attributes fields in the created element
getNamespace
Returns the factory target namespace

IPMPInfoElementFactory – class methods
createMPEG21Element
Create a new IPMPElement of the input element type . Alternative method also fills element’s proper
attributes fields in the created element
getNamespace
Returns the factory target namespace

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

30

XIElementFactory – class methods
createMPEG21Element
Create a new IPMPElement of the input element type . Alternative method also fills element’s proper
attributes fields in the created element
getNamespace
Returns the factory target namespace

4.3 Examples of usage
In the following code example use of DIDLDocumentLoader interface is showed. To point out the ease of
use of this interface. Only target input xml file is needed to completely parse an XML MPEG-21 Document

DIDLDocumentLoader loader;
DIDLDocumentWriter documentwri;
DIDLDocument*doc=loader.load("MPEG21XMLREPRESENTATION.xml");
std::ofstream filestr("MPEG21XMLOUTPUT.xml");
documentwri.writeDocument(*doc,&filestr);
filestr.close();

4.4 Integration and compilation issues
The following table summarizes the needed library in order to use MPEG-21 Loader.

OS/Platform Name
Windows/PC Linux/PC

Library file Description

Xerces C++ X X xerces-c_2.lib Provide parsing functionalities for the
module

Common X X common.lib
`

4.5 Configuration Parameters
Config parameter Possible values

AXOM_CONF_MODULE–
SCHEMA_LOCATION_PARAM

Any valid URL which points to schema file location for MPEG-21 Schema

4.6 Errors reported and that may occur
Error code Description and rationales

Class Loaders
0

This loader has already an Owner Loader

1 This loader has already a SAX2Parser instance
2 resumeControl not supported
3 No available Active loader. Propagate error call improper
4 Improper method call to this loader
5 Specified element expected
6 Element unexpected

Class Factories
7 Invalid input elment name is given to element factory
8 Namespace Factory already added in MPEG21ElementFactory

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

31

Class Documents
9 Document has not a root element
10 Invalid input element type

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

32

5 MPEG-21 Saver (DSI)

Module/Tool Profile
MPEG-21 Saver

Responsible Name Andrea Vallotti, Davide Rogai
Responsible Partner DSI
Status (proposed/approved)
Implemented/not implemented implemented
Status of the implementation
Executable or Library/module
(Support)

static library

Single Thread or Multithread
Language of Development C++
Platforms supported Windows, Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/.....................

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

33

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

5.1 General Description of the Module
The MPEG-21 Saver allows to obtain the XML representation of a software representation of a DI. In
particular, the Saver browses the object model of DI and writes the XML representation of the latter to a
stream of byte. In order to exploit this task, the Saver makes use of an XML writer which is in charge of
managing the issues related to the XML syntax.

5.2 Module Design in terms of Classes
As shown in next picture MPEG-21 writer top element is DIDLDocumentWriter. Through this element an
application or user could use module to write a DIDLDocument as DI XML representation. All elements in
the module uses an instance of XMLWriter class. This class is responsible for XML syntax of the produced
document. All issues that derives from data writing, data format, and data syntax from an XML point of view
(including namespaces, prefixes rules and XML Schema compliance) are resolved by means of this class.
Last elements included in this module MPEG21ElementWriter and related namespace writers (i.e.
NSWriters) navigates representation tree providing input data for XMLWriter, in the right order to allow a
correct output XML document.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

34

DIDLDocumentWriter

NSMPEG21ElementWriter

MPEG21ElementWriter

IPMPElementWriter XIElementWriterDIIElementWriterDIDLElementWriter IPMPInfoElementWriter

«uses» «uses»«uses» «uses»«uses»

«uses»

DIDLDocument

MPEG21Element

0..1

1..*
«uses»

XMLWriter

«uses» «uses» «uses» «uses» «uses»

«uses»

«uses»

5.2.1 MPEG-21Saver Capabilities Overview
Next sequence diagram deeply shows writing operation. DIDLDocumenWriter instances a new XMLWriter.

MPEG21ElementWriter DIDLElementWriter DIIElementWriter XMLWriterDIDLDocumentWriter

2: XMLWriter(output)1:writeDocument(source,output)

2: return new XMLWriter:writer

4: writeTo(source, writer)

5: writeTo

7: writeChildren(source, writer)

3: writeStartDocument()

retrun from 3

a + n: writeTo(source, writer)

b + n: writeChildren(source, writer)A recursive iteration will
lead program flow to write
all preoredered
representation tree.

6: writeStartElement

return from 6

c + n: writeEndElementb + n:children writed

a + n return

7: children writed

8: writeEndElement

return from 8return from 5return from 4

return from 1

return from c + n

~XMLWriter()

Messaggio1

Once the new XMLWriter is available DIDLDocumentWriter starts writing operations, asking XMLWriter to
write XML document header. Writing operations flow is given to MPEG21ElementWriter, this class will
decide the writer which will take control of writing for next element of representation tree. The chosen writer

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

35

(DIDLElementWriter in the picture) will send a startElement command to XMLWriter in order to write
element start tag and then, depending on the current element, ask MPEG21ElementWriter to check and write
children of current element. Here begins a recursive iteration that will lead to a complete pre-ordered visit of
representation tree, performing writing of any single element. In order to point out the role of XMLWriter,
this element maintains the state information useful for writing operations (open element tags, current
namespace domains and namespace/prefix parallelism).

5.2.2 Class and Methods Overview
DIDLDocumentWriter
Interface for writing operations.

+writeDocument(inout toWrite : DIDLDocument, in output : ostream*)
DIDLDocumentWriter

DIDLDocumentWriter – class methods
writeDocument
This method starts starts writing operations . In this method a new XMLWriter is created and is used to
write input document in output stream

MPEG21ElementWriter
This static class manage all writing flow choosing wich namespace writer is able to write current element

MPEG21ElementWriter – class methods
MPEG21ElementWriter - ~MPEG21ElementWriter
Contstructor and destructor
writeTo
Choose wich NSwriter will save current element. Namespace is taken from input element.
addNSMPEG21ElementWriter – removeNSMPEG21ElementWriter – deleteNSMPEG21ElementWriter
Add remove or delete from assoc a pair ns/writer
writeChildren
Write children of input element. Children are selected in preorder visit and for each child method writeTo is
called
writeContainsAny – writeContainsAsset
Special implementation for two element types of representation tree.
isDefined
Check if a pair ns/writer is defined in MPEG21ElementWriter

Namespace Writers
These classes implements methods to manage writng of elements related to a specific namespace.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

36

DIDLElementWriter – class methods
writeTo
Choose wich element writer will save current element. Element name is taken from input element.
anchorWriter – annotationWriter – assertionWriter – choiceWriter – componentWriter – containerWriter –
conditionWriter – declarationsWriter – descriptorWriter – fragmentWriter – itemWriter – resourceWriter –
selectionWriter – statementWriter
These methods manage writing of specific DIDL elements

DIIElementWriter – class methods
writeTo
Choose wich element writer will save current element. Element name is taken from input element.
writeIdentifier – writeRelIdentifier – writeType
These methods manage writing of specific DII elements

XIElementWriter – class methods
writeTo
Choose wich element writer will save current element. Element name is taken from input element.
writeXInclude – writeXIFallback
These methods manage writing of specific DII elements

IPMPElementWriter – class methods
writeTo
Writes IPMP element to output stream

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

37

IPMPInfoElementWriter – class methods
writeTo
Choose wich element writer will save current element. Element name is taken from input element.
licenseReferenceWriter – toolWriter – remotWriter – toolRefWriter -
These methods manage writing of specific DII elements
genericWriter
Writes a generic IPMPInfoElement

5.3 Examples of usage
The following example code shows how is used DIDLDocumentWriter interface to write a DIDLDocument
formerly loaded by DIDLDocumentLoader. To point out the use of a std::ofstream as target output stream.
All output streams are valid target of writeDocument method.

DIDLDocumentLoader loader;
DIDLDocumentWriter documentwri;
DIDLDocument*doc=loader.load("MPEG21XMLREPRESENTATION.xml");
std::ofstream filestr("MPEG21XMLOUTPUT.xml");
documentwri.writeDocument(*doc,&filestr);
filestr.close();

5.4 Integration and compilation issues
The following table summarizes the needed library in order to use MPEG-21 Loader.

OS/Platform Name
Windows/PC Linux/PC

Library file Description

Common X X common.lib Provide access to xmlwriter and support for
off-schema elements

5.5 Errors reported and that may occur
Error code Description and rationales

0 Namespace Factory already added in MPEG21ElementFactory
1 Invalid input element type

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

38

6 AXMEDIS Object Model (DSI)

Module/Tool Profile
AXMEDIS Object Model

Responsible Name Davide Rogai, Andrea Vallotti
Responsible Partner DSI
Status (proposed/approved) Approved
Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

Static librsy

Single Thread or Multithread
Language of Development C++
Platforms supported Windows, Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axom/axmodel/
https://cvs.axmedis.org/repos/Framework/include/axom/axmodel/

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

39

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

6.1 General Description of the Module
The AXMEDIS Object Model provides the means to represent an AXMEDIS Object as a software object
model on the basis of the MPEG-21 Object Model. In fact, an AXMEDIS Object is a particular kind of DI.
That is, an AXMEDIS Object is a DI with a given structure and providing mandatory information such as the
AXOID and AxInfo as explained in the following sections. Therefore, the object model of an AXMEDIS
object is a tree of class instances each of which refers to the corresponding class instance in the MPEG-21
Object Model.
Moreover, the AXMEDIS Object Model provides the means to create an object model on the basis of a
MPEG-21 object model and to synchronize the two models.

6.2 Module Design in terms of Classes
In this section the classes modelling AXMEDIS objects are reported.
Abstract class AxObjectElement represents any element that can be stored in an AXMEDIS Object. It refers
to an MPEG21Element that represents it in the corresponding MPEG21 Digital Item.
Class AxMetadata represents any XML metadata associated with content, it is further specialised in AxInfo,
xDublinCore and AxOID. The mPublic attribute indicates if the metadata has to visible even if the object is
protected.
Abstract class AxContent represents content to be stored in AXMEDIS objects, it can be AxObject or
AxResource. An AxResource represents any digital resource identified with a mime type, it can be an image,
a document, an audio. An AxObject can contain any number of metadata and of content.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

40

AxClearObject AxResource

AxMetadata

AxOID

-is described by 1

*

-contains

1

*

AxContent

AxInfo

AxDublinCore

AxObject

AxObjectElement

-is identified by

1

1

-is represented by

1 1

MPEG21Element

AxReferredObject

AxProtectedObject

DIDLComponent

«uses»

DIDLDescriptor

«uses»

DIDLItem

«uses»

XInclude

«uses»

IPMPItem

«uses»

-is described by1

1

AxPublicMetadataTree

1

*

1

*

AbstractItem

The following is the object diagram of a basic object:

While the following is the object diagram of a composite AXMEDIS object:

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

41

ax01 : AxClearObject

id1 : AxOID

rA : AxResource

info1 : AxInfo

dc1 : AxDublinCore

priv1 : AxMetadata

i01 : DIDLItem

d_id1 : DIDLDescriptor

cA : DIDLComponent

d_priv1 : DIDLDescriptor

d_dc1 : DIDLDescriptor

d_info1 : DIDLDescriptor

ax02 : AxClearObject

id2 : AxOID

rB : AxResource

info2 : AxInfo

dc2 : AxDublinCore

i02 : DIDLItem

d_id2 : DIDLDescriptor

d_dc2 : DIDLDescriptor

d_info2 : DIDLDescriptor

cB : DIDLComponent

pmt01 : AxPublicMetadataTree

pmt02 : AxPublicMetadataTree

6.2.1 AxMetadata
Class AxMetadata is a class to store any XML metadata.
The MPEG21Element it refers to should be a DIDLDescriptor, containing a DIDLStatement with the XML
content. XML content can be accessed trought a DOMNode object.

+isPublic() : bool
+setIsPublic(in public : bool = true)
+getMetadataID() : string
+setMetadataID(in value : string)
+getDOMNode() : <unspecified>

-mPublic : bool = true
AxMetadata

+getDIElement() : MPEG21Element
+setDIElelemt(in diElement : MPEG21Element)

AxObjectElement

6.2.2 AxInfo
Class AxInfo, derived from AxMetadata, provides access to the information related to the AXMEDIS object.
Methods available for this class are:
ObjectCreator Management

+getObjectCreatorAXCID() : string
+setObjectCreatorAXCID(in value : string)
allow to get and set the AXCID value for the ObjectCreator
+getObjectCreatorName() : string
+setObjectCreatorName(in value : string)

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

42

allow to get and set the Name value for the ObjectCreator
+getObjectCreatorURL() : string
+setObjectCreatorURL(in value : string)
allow to get and set the URL value for the ObjectCreator
+getObjectCreatorCompany() : string
+setObjectCreatorCompany(in value : string)
allow to get and set the Company value for the ObjectCreator
+getObjectCreatorCompanyURL() : string
+setObjectCreatorCompanyURL(in value : string)
allow to get and set the CompanyURL value for the ObjectCreator
+getObjectCreatorNationality() : string
+setObjectCreatorNationality(in value : string)
allow to get and set the Nationality value for the ObjectCreator

ObjectContributor Management
+addObjectContributor(in position : int = -1) : int
adds a new ObjectContributor in the position given (starting from 0), position -1 means to add at the
end.
the return value indicates the position in which it is added.
+removeObjectContributor (in position : int)
removes an ObjectContributorfrom the position specified
+getObjectContributorCount() : int
returns the number of ObjectContributor present
+findObjectContributorByAXCID(in axcid : string) : int
returns the position of an ObjectContributor with a specific AXCID. It returns -1 if not found.
+findObjectContributorByName(in name : string) : int
returns the position of an ObjectContributor with a specific Name. It returns -1 if not found.
+getObjectContributorAXCID(in refNum : int = 0) : string
+setObjectContributorAXCID(in refNum : int, in value : string)
allow to get and set the AXCID value for an ObjectContributor identified by position
+getObjectContributorName(in refNum : int = 0) : string
+setObjectContributorName(in refNum : int, in value : string)
allow to get and set the Name value for an ObjectContributor identified by position
+getObjectContributorURL(in refNum : int = 0) : string
+setObjectContributorURL(in refNum : int, in value : string)
allow to get and set the URL value for an ObjectContributor identified by position
+getObjectContributorCompany(in refNum : int = 0) : string
+setObjectContributorCompany(in refNum : int, in value : string)
allow to get and set the Company value for an ObjectContributor identified by position
+getObjectContributorCompanyURL(in refNum : int = 0) : string
+setObjectContributorCompanyURL(in refNum : int, in value : string)
allow to get and set the CompanyURL value for an ObjectContributor identified by position
+getObjectContributorNationality(in refNum : int = 0) : string
+setObjectContributorNationality(in refNum : int, in value : string)
allow to get and set the Nationality value for an ObjectContributor identified by position

Owner Management
+getOwnerID() : string
+setOwnerID(in value: string)
allow to get and set the code identifying the owner
+getOwnerIDCoding() : string
+setOwnerIDCoding(in value: string)
allow to get and set the coding used to identify the owner
+getOwnerName() : string
+setOwnerName(in value: string)

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

43

allow to get and set the name of the owner
+getOwnerURL() : string
+setOwnerURL(in value: string)
allow to get and set the URL of the owner
+getOwnerCompany() : string
+setOwnerCompany(in value: string)
allow to get and set the company of the owner
+getOwnerCompanyURL() : string
+setOwnerCompanyURL(in value: string)
allow to get and set the company URL of the owner
+getOwnerNationality() : string
+setOwnerNationality(in value: string)
allow to get and set the nationality of the owner
+addOwnerDescription(in position:int = -1) : int
adds a new description of the owner at the position specified or at the end if position is -1. The
return value indicates the position where it is added.
+removeOwnerDescription(in position:int)
removes the description specified
+getOwnerDescription(in position:int = 0) : string
+setOwnerDescription(in position:int, in value:string)
allow to get and set the value of the description
+getOwnerDescriptionLanguage(in position:int = 0) : string
+setOwnerDescriptionLanguage(in position:int, in value:string)
allow to get and set the value of the description language

Distributor Management
+addDistributor()
adds a Distributor if not present.
+removeDistributor()
removes the Distributor
+getDistributorCount() : int
returns the number of Distributors present
+getDistributorAXDID() : string
+setDistributorAXDID(in value : string)
allow to get and set the AXDID value for the Distributor
+getDistributorName() : string
+setDistributorName(in value : string)
allow to get and set the Name value for the Distributor
+getDistributorURL() : string
+setDistributorURL(in value : string)
allow to get and set the URL value for the Distributor
+getDistributorNationality() : string
+setDistributorNationality(in value : string)
allow to get and set the Nationality value for the Distributor

Object Status
+getAccessMode() : string
+setAccessMode(in value : string)
allow to get and set the Access the the object “READ_ONLY” or “READ_WRITE”. These strings
have been used instead of C++ enum in order to simply the interface with JavaScript applications
(e.g. AXMEDIS Content Processing)
+getCreationDate() : DateTime
get the local date and time of object creation
+getLastModificationDate() : DateTime
get the local date and time of object modification

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

44

+getVersion() : int
get the version of the object
+getRevision() : int
get the revision of the object
+getObjectStatus() : string
+setObjectStatus(in value : string)
allow to get and set the current status of the object, the status values are factory dependent and set by
the workflow therefore cannot be defined a priori.
+getObjectType() : string
allow to get object type (“BASIC” or “COMPOSITE”)
+getObjectIsProtected() : bool
+setObjectIsProtected(in value:bool)
allows to get and set if the object is protected or not
+getProtectionStamp() : string
+setProtectionStamp(in value:string)
allows to get and set the protection stamp
+getObjectIsGoverned() : bool
+setObjectIsGoverned(in value:bool)
allow to get and set if the object contains a licence or not. The license is not stored in the axinfo, the
setter should be used to update the axinfo when the licence is added/removed from the object

PromoOf Management
+addPromoOfAXOID(in axoid:string, in position:int=-1)
adds a new AXOID in the PromoOf section, the position indicates where to put the AXOID, -1
means at the end
+removePromoOfAXOID(in position:int)
removes the AXOID in the position specified
+getPromoOfAXOIDCount() : int
get the count of AXOID in the PromoOf section
+getPromoOfAXOID(in position:int) : string
+setPromoOfAXOID(in position:int, in value:string)
allow to get and set the AXOID in a specified position

Workflow Status
+getWorkflowWorkItemID() : string
+setWorkflowWorkItemID (in value : string)
allow to get and set the WorkflowWorkItemID
+getWorkflowWorkspaceInstanceID() : string
+setWorkflowWorkspaceInstanceID (in value : string)
allow to get and set the WorkflowWorkspaceInstanceID

Internal Potential Available Rights Management
+addInternalPotentialAvailableRights()
adds a new Internal PAR section
+removeInternalPotentialAvailableRights()
removes the Internal PAR section
+getInternalPotentialAvailableRightsCount()
gets how many Internal PAR sections are present (0 or 1)
+getInternalPotentialAvailableRightsStatus() : string
+setInternalPotentialAvailableRightsStatus(in value:string)
allow to get and set the internal PAR status
+getInternalPotentialAvailableRightsLicense() : DOMNode
gets the DOM node of the license

Potential Available Rights Management
+addPotentialAvailableRights()
adds a new PAR section if not present

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

45

+removePotentialAvailableRights()
removes the PAR section
+getPotentialAvailableRightsCount()
gets how many PAR sections are present (0 or 1)
+getPotentialAvailableRightsLicensingURL() : string
+setPotentialAvailableRightsLicensingURL (in value:string)
allow to get and set the licensing URL
+getPotentialAvailableRightsStatus() : string
+setPotentialAvailableRightsStatus(in value:string)
allow to get and set the PAR status
+getPotentialAvailableRightsLicense() : DOMNode
gets the DOM node of the license

Object History Management
+getHistoryOfVersion(in version:int) : DOMNode
gets the history of a version as a DOM Node

6.2.3 AxDublinCore
Class AxDublinCore allows to manage a Dublin Core descriptor:

+isPublic() : bool
+setIsPublic(in public : bool = true)
+getMetadataID() : string
+setMetadataID(in value : string)
+getDOMNode() : <unspecified>

-mPublic : bool = true
AxMetadata

+getDIElement() : MPEG21Element
+setDIElelemt(in diElement : MPEG21Element)

AxObjectElement

+addDCElement(in type : string, in value : string, in language : string = "")
+removeDCElement(in type : string, in refNum : int = 0)
+setDCElementValue(in type : string, in refNum : int, in value : string)
+getDCElementValue(in type : string, in refNum : int = 0) : string
+setDCElementLanguage(in type : string, in refNum : int, in language : string)
+getDCElementLanguage(in type : string, in refNum : int = 0) : string
+getDCElementCount(in type : string) : int

AxDublinCore

Example of use:
 AxDublinCore aDC;

 if(aDC.getDCElementCount(“creator”)==0)
 aDC.addDCElement(“creator”, “Mozart”);

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

46

 else
 aDC.setDCElement(“creator”, 0, “Mozart”);

 string creator=aDC.getDCElementValue(“creator”);

6.2.4 AxOID
Class AxOID embeds the AXOID identifier.

+isPublic() : bool
+setIsPublic(in public : bool = true)
+getMetadataID() : string
+setMetadataID(in value : string)
+getDOMNode() : <unspecified>

-mPublic : bool = true
AxMetadata

+getDIElement() : MPEG21Element
+setDIElelemt(in diElement : MPEG21Element)

AxObjectElement

+getID() : string
+setID(in value : string)

AxOID

6.2.5 AxContent
Abstract class AxContent represents content to be stored in AXMEDIS objects, it is specialized in AxObject
or AxResource.

+getContentID() : string
+setContentID(in value : string)

AxContent

+getDIElement() : AbstractDIElement
+setDIElelemt(in diElement : AbstractDIElement)
+isProtected() : bool
+getProtectionInfo() : ProtectionInfo
+setProtectionInfo(in protectionInfo : ProtectionInfo)

AxObjectElement

6.2.6 AxObject
Class AxObject represents an AXMEDIS Object, in its different forms. Generally, it models the basic
relations of an AXMEDIS object like identification (refers to an AXOID) and classification with metadata
that has to be always accessible (in any form) the so called “Public Metadata”.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

47

+getAxOID()
+setAxOID()
+getPublicMetadataTree()

AxObject

+setContentID(in id : string)
+getContentID() : string

AxContent

+getDIElement() : MPEG21Element
+setDIElelemt(in diElement : MPEG21Element)

AxObjectElement

+getAxOID() : AxOID
+getPublicMetadataTree()
+setAxOID()

AxProtectedObject

+getAxOID() : AxOID
+getPublicMetadataTree()

AxReferredObject

+getAxOID() : AxOID
+addMetadata(in metadata : AxMetadata, in position : int = -1)
+getPublicMetadataTree()
+removeMetadata(in position : int)
+getMetadataCount() : int
+getMetadata(in position : int) : AxMetadata
+addContent(in content : AxContent, in position : long = -1)
+removeContent(in position : int)
+getContentCount() : int
+getContent(in position : int) : AxContent

AxClearObject

Class AxClearObject represent a “clear-text” aggregation of content and metadata. It can contain any number
of metadata and any number of content. It exposes all the needed methods in order to manipulate the content
structure it represents.
Class AxProtectedObject represent a “protected” (i.e. not accessible without permission) AXMEDIS Object.
Since the classification have to be always possible methods to access Public metadata of the pretected object
are available. The AXOM it is in charge of obtaining the corresponding AxClearObject when an authorized
action has to be performed.
Class AxReferredObject models reference to external AXMEDIS Objects. In order to immediately perceive
which kind of object is referred public metadata are retrievable.

6.2.7 AxResource
Class AxResource represents any digital resource identified with a mime type, it can be an image, a
document, an audio etc.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

48

+getDIElement() : MPEG21Element
+setDIElelemt(in diElement : MPEG21Element)

AxObjectElement

+setContentID(in id : string)
+getContentID() : string

AxContent

+getMimeType() : string
+setMimeType(in value : string)
+getRef() : string
+setRef(in ref : string)
+embedFile(in fileName : string)
+removeEmbeddedResource()
+getInputStream()

AxResource

6.2.8 AxPublicMetadataTree
Class AxPublicMetadataTree represents a hierarchy of metadata associated to an AXMEDIS Object. This
class allows accessing public metadata of the owner AXMEDIS object and the public metadata tree of the
child objects. The AxPublicMetadataTree is designed to be a read-only information for the AxObject
consumer, since only AxClearObject, AxProtectedObject and AxReferredObject are entitled to update a
consistent metadata structure on the basis of the underlying content.

Please note that such a hierarchy does not duplicate the existing metadata elements, while it is simply a
shortcut to reach them in an uniform manner with respect to object forms (e.g. protected).
In the following diagram an object configuration has been depicted in order to understand the direct link in
order to access the metadata structure that describe the protected content.
Please note that the corresponding MPEG-21 element configuration has been depicted.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

49

ax01 : AxProtectedObject

id1 : AxOID

info1 : AxInfo

dc1 : AxDublinCore

i01 : IPMPItem

id : IPMPIdentifier

d_dc1 : DIDLDescriptor

d_info1 : DIDLDescriptor

m_tree2 : AxPublicMetadataTree

id2 : AxOID

info2 : AxInfo

dc2 : AxDublinCore

d_i02 : DIDLItem

d_id2 : DIDLDescriptor

d_dc2 : DIDLDescriptor

d_info2 : DIDLDescriptor

c_info : IPMPContentInfo

d_i01 : DIDLItem

d_id1 : DIDLDescriptor

contents : IPMPContents

m_tree1 : AxPublicMetadataTree

In the following diagram a clear-text object which contains a resource and referred object is presented.
Please note how transparently the PublicMetadataTree is able to access to the whole metadata hierarchy
without doubling the existing metadata elements of the clear-text object.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

50

ax02 : AxReferredObject

id2 : AxOID

info2 : AxInfo

dc2 : AxDublinCore

x02 : XInclude

d_dc2 : DIDLDescriptor

d_info2 : DIDLDescriptor

m_tree3 : AxPublicMetadataTree

id3 : AxOID

info3 : AxInfo

dc3 : AxDublinCore

d_i03 : DIDLItem

d_id3 : DIDLDescriptor

d_dc3 : DIDLDescriptor

d_info3 : DIDLDescriptor

c_info : Fallback

d_i02 : DIDLItem

d_id2 : DIDLDescriptor

m_tree2 : AxPublicMetadataTree

ax01 : AxClearObject

id1 : AxOID

rA : AxResource

info1 : AxInfo

dc1 : AxDublinCore

priv1 : AxMetadata

i01 : DIDLItem

d_id1 : DIDLDescriptor

cA : DIDLComponent

d_priv1 : DIDLDescriptor

d_dc1 : DIDLDescriptor

d_info1 : DIDLDescriptor

m_tree1 : AxPublicMetadataTree

6.2.9 AxLoader
Class AxLoader has been designed in order to obtain an AXMEDIS Object Model once the MPEG-21 Model
has been loaded by the suitable loader. In fact it is able to build AxObjectElement instances against
corresponding MPEG21Element instances.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

51

+createAxObjectElement(inout mpeg21Element : MPEG21Element) : AxObjectElement *
+createAxObject(inout document : DIDLDocument) : <non specificato> *
+createAxClearObject(in item : DIDLItem) : AxClearObject *
+createAxProtectedObject(in ipmpitem : IPMPItem) : AxProtectedObject *
+createAxReferredObject(inout xinclude : XInclude) : AxReferredObject *
+createAxResource(inout component : DIDLComponent) : AxResource *
+createAxMetadata(inout descriptor : DIDLDescriptor) : AxMetadata *
+createAxInfo(inout descriptor : DIDLDescriptor) : AxInfo *
+createAxDublinCore(inout descriptor : DIDLDescriptor) : AxDublinCore *
+createAxOID(inout descriptor : DIDLDescriptor) : AxOID *
#AxLoader()
#~AxLoader()

AxLoader

AxProtectedObject

AxReferredObject

AxClearObject

AxObject

«instance»

«instance»

«instance»

«instance»

AxMetadata

«instance»

AxResource

«instance»

AxInfo

«instance»

AxOID

«instance»

AxDublinCore

«instance»

It is a full static clas exposing all static functions to build any type of AxObjectElement. Any function is
responsible of containing the knowledge about how the AXMEDIS Model is mapped onto the MPEG-21 DI
(e.g. a AxClearTextObject expects an Item with a certain number of mandatory descriptors and some
components or items).
Please note that the main entry point for loading AXMEDIS Object is createAxObject that is able to examine
a whole DIDL Document representing the object. This function will use all the specific loading functions for
clear-text, protected or referred objects and for loading metadata and resources.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

52

7 AXMEDIS Object Preprocessor and Postprocessor (EPFL)

Module/Tool Profile
MPEG-21 Object Model

Responsible Name Beilu Shao
Responsible Partner EPFL
Status (proposed/approved) Proposed
Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

Library

Single Thread or Multithread
Language of Development C++
Platforms supported Windows, Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Applications/PreProcessor/xinclude/
[DSI] Why is this located in Application directory while, as stated
above, it should be a library?

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent) Present
Test cases location https://cvs.axmedis.org/repos/Applications/PreProcessor/testXinclude/
Usage of the AXMEDIS
configuration manager (yes/no)

Yes

Usage of the AXMEDIS Error
Manager (yes/no)

Yes

Major Problems not solved -- std::istream* resolveXInclude(const XInclude& xi) is needed
-- integration with loader--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

53

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
LibXML 2.0 LibXML 2.0 MIT License

7.1 General Description of the Module
MISSING

7.2 Module Design in terms of Classes

7.2.1 Reference Solver
The reference resolver works in the following situation: when an application wants to obtain a part of the
object which is referred but not present in the object, reference resolver will provide the resolved part as an
input. The function of the resolver like std::istream* resolveXInclude(const XInclude& xi) will be called to
do this.
Reference integrator is a module for the automatic integration of the XInclude elements at loading time. It
works in some way that the user never knows whether some parts of the object have been retrieved outside
the object or not. The processes of resolving and integration are performed together in the loading phase. For
instance, when the player loads an axmedis object, the loader will call the resolver to find referred elements
which are not present in this object but exist in some other objects. After obtaining these referred elements,
the integrator integrates these elements and transfers the original object with the new composite one.
The following diagram demonstrates an instance, e.g. a player, asks to resolve a reference. We assume that
the object referenced is a resource contained inside an AXMEDIS object located in the AXMEDIS database.
The resolver uses the Database Web Service to find and download the AXMEDIS object inside of which
there is the target resource. Once the AXMEDIS object is downloaded, the reference resolver uses the Object
Manager to extract the resource from the AXMEDIS Object. Finally, the resource is returned to the calling
instance by means of a pointer or reference to an outputStream interface. If the referenced object is not in the

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

54

local file system, the reference resolver uses the Axmedis Database Web Service to localize and download
the object.

Fig. the working process of reference resolver

[DSI] As we told you, Reference Resolver should be able to resolve several kind of protocols not only
AXMEDIS protocol. Did you have considered this? For example, http, ftp, etc…
What is the “outputStream” shown in the figure? Where does this stream write? Who uses it in order to
write? I do not understand. I supposed reference resolver should return an “inputStream”? Am I wrong?

The following diagram demonstrates the process of integration. We assume that some instance wants to
insert a resource which is located inside Object1 into Object2. The integrator first resolves Object1 with the
resolver and extracts the target resource from Object1 and then it adds the referred part into Object2.

Fig. the working process of reference integrator

[DSI] It is not really understandable where Object Manager 1 and 2 comes from?

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

55

7.2.2 MPEG-21 Binarization
MISSING

7.3 Technical and Installation information
References to other major
components needed

Axmedis loader

Problems not solved • Integration with the loader
• std::istream* resolveXInclude(const XInclude& xi) is needed

Configuration and execution
context

7.4 Draft User Manual
MISSING

7.5 Examples of usage
MISSING

7.6 Integration and compilation issues
MISSING

7.7 Errors reported and that may occur
MISSING

Error code Description and rationales

7.8 Formal description of algorithm <……………>
MISSING

name
Method
Description
Input
parameters

Output
parameters

name

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

56

Method
Description
Input
parameters

Output
parameters

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

57

8 Protection Processor (DSI)

Module/Tool Profile
Protection Processor

Responsible Name Andrea Vallotti, Leonardo Ortimini
Responsible Partner DSI
Status (proposed/approved)
Implemented/not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread
Language of Development C++
Platforms supported Windows/Linux
Reference to the AXFW
location of the source code
demonstrator

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

yes

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

58

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

8.1 General Description of the Module
Protection Processor has mainly four tasks:

1. To register and certify an AXMEDIS tool containing the AXOM, e.g. editor, player, engine, etc…
2. To control software which uses sensible content and does not contain AXOM, e.g. plug-ins for

fingerprint
3. To reveal attacks during tool execution, e.g. code debugging
4. To protect and un-protect elements of AXMEDIS object

In the following those aspects will be described and solutions are proposed for them. After that, class
implementation and interaction will be described.

8.1.1 AXMEDIS tool registration and certification
In the following the needed information to reach an adequate level of protection will be identified and
described. For each identified information, the responsible component is found out and the relationship to the
other is depicted. At the end, the interactions and operations among all involved components to guarantee
trustiness of a tool are described.

8.1.1.1 Software and hardware fingerprint
Given a device and an installation of an AXMEDIS compliant software on it, a fingerprint estimation of the
whole tool (software/installation and hardware/device together) is possible. In particular, this section refers
to software which embed an AXOM (and thus a Protection Processor), e.g. AXMEDIS editor,
compositional/formatting engine, plug-ins for external viewer/editor, etc. The certification of plug-ins for
AXOM (i.e. which do not contain an AXOM) is discussed later. By fingerprint estimation is intended an
extraction of relevant information regarding the device and the most important files of the application (i.e.
those files which are fundamental for the trustiness of the environment). The proposed fingerprint is
composed by the following data:

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

59

1. for each hard-disk in the device: serial, controller revision number
2. for each processor in the device: name (i.e. the standard description of its features), serial (if

reachable)
3. BIOS: name (comprehensive of the version), serial
4. optionally, for each network device: MAC address
5. operative system: name, version, installed upgrade (e.g. SP1), serial (e.g. product id)
6. manufacturer-defined name of all available components e.g. video device, audio device,

motherboard, etc…
7. For each of the following files:

a. executable file or library containing the AXOM
b. main file of each plug-ins
c. configuration files
d. secure cache files

the following features have to be collected:
i. full name (path and file name)
ii. physical position (e.g. if mass storage is an hard-disk it is the cluster index)
iii. digest (e.g. MD5)
iv. creation date and time
v. last modification date and time
vi. size

8. AXMEDIS Tool Type ID (AXTTID)
9. AXMEDIS Registration Tool ID (AXRTID) which is the digest of the main program executable file

Please, see “AXMEDIS Tool Fingerprint” section for fingerprint XML format details. All this information is
estimated by the Protection Processor. It is responsible of their estimation, they are stored on the AXMEDIS
Certifier and Supervisor and transmitted to it by means of the PMS Client. It is to point out that last
modification date and time (previous point 7-v) and size (previous point 7-vi) should not be considered as
parts of the fingerprint for those file which change during the lifetime of a tool, e.g. configuration file and
secure cache, otherwise information stored on the AXCS and those estimated at runtime will hardly
correspond.
The fingerprint is estimated and used for the following operation:

1. Tool certification – the tool has to transmit its complete fingerprint to the AXCS.
2. Tool re-certification – the tool has to transmit complete fingerprint to the AXCS in order to allow a

deep fingerprint verification and support decision about tool re-certification of a disabled tool.
3. Tool re-verification – the tool has to transmit complete fingerprint to the AXCS in order to allow a

deep fingerprint verification.
A digest of the fingerprint is used in other operations. Digests are generated by different algorithms in
different cases

1. Tool Verification – the tool has to re-estimate the fingerprint and to transmit a digest of it to the
AXCS. Calculation method: SHA1

2. Grant Authorisation – tool fingerprints digest is included in the new generated action log describing
the requesting action. Calculation method: SHA1

3. Offline Tool Verification – tool fingerprints digest is created to compare with the enabling code
received as a return of Tool Certification operation. The digest is created by means of SHA512
algorithm

8.1.1.2 Tool certificate
Tool certificate is issued by an AXCS to the tool itself when the latter certifies itself at the first activation.
The certificate is formatted in the X.509v3 format. It contains the following information:
Version 2 (that is X.509v3 is identified by this value)
SerialNumber The serial number of the certificate. It is defined by the issuer which is the AXCS
Signature The encryption algorithm used to encrypt the signature. In this case, the signature

algorithm is the RSA with SHA-1 which is identified by the following ASN.1
object identifier:
sha-1WithRSAEncryption OBJECT IDENTIFIER ::=
{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 }

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

60

Issuer The AXCS which issued the certificate expressed in the X.500 format
Validity The validity period of the certificate which for the AXMEDIS purposes could be

one/five year since the issuing time
Subject Identified who or what receives the certificate. In this case it is the AXTID which

identifies the tool
SubjectPublicKeyInfo The encryption algorithm used to generate the public key and the public key

itself. In this case, the used encryption algorithm is the RSA which is identified
by the following ASN.1 object identifier:
rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

Encrypted The encrypted digital signature of the certificate
Extensions Extension to the certificate. This field can contain the activation code for the tool

and other information. See DE3.1.2.2.13 regarding OIDs tree assigned by IANA
to AXMEDIS

Before generating the certificate, the AXCS requests to the Key Generator (component of the PMS Server) to
generate a key pair (public/private keys). As said above, the AXCS inserts the public key into the tool
certificate and sends certificate and private key to the tool. They are packed together as stated in PKCS #12.
The integrity of transmitted information is guaranteed by a signature using the private key of the AXCS (see
PKCS #12 – Public-key integrity mode). The privacy of that information is guaranteed because it is
encrypted using the public key of the user who is registering the tool (see PKCS #12 – Public-key privacy
mode).
The certificate and the private key are stored in the specific device certificate repository and in the PMS
Client secure cache. In that way, their consistence can be tested every time the tool is used, the Protection
Processor is in charge of doing that check.
The private key corresponding to the tool certificate is marked as un-extractable (see PKCS #11), i.e. it can
be used on the device where it have been stored on the first time but it cannot be exported on other devices,
not even by the device administrator. The tool certificate has to be accessible from all the user of a device to
avoid multiple registration of the same tool by different users.

8.1.1.3 Tool Registration Certificate
Tool Registration Certificate is issued by Tool Creator and included in tool installation. This certificate
provide evidence of tool authenticity and is used in certification operation of the tool

Version 2 (that is X.509v3 is identified by this value)
SerialNumber The serial number of the certificate. It is defined by the issuer which is the AXCS
Signature The encryption algorithm used to encrypt the signature. In this case, the signature

algorithm is the RSA with SHA-1 identified by the following ASN.1 object
identifier:
sha-1WithRSAEncryption OBJECT IDENTIFIER ::=
{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 }

Issuer The AXCS which issued the certificate expressed in the X.500 format
Validity The validity period of the certificate which indicates the expiration date of

validity of the tool
Subject The AXRTID of the tool used for the first certification
SubjectPublicKeyInfo The encryption algorithm used to generate the public key and the public key

itself. In this case, the used encryption algorithm is the RSA which is identified
by the following ASN.1 object identifier:
rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

Encrypted The encrypted digital signature of the certificate
Extensions Extension to the certificate.
This certificate is included in tool installation and contains tool information needed to certify the tool. It is
not stored in the system certificate repository nor in the secure cache. Its presence is bounded to a predefined
path in the installation folder. Removal of this certificate from the right path will be treated as a tampering
action, thus disabling the tool until a recovery action is performed. Security about replacement of this
certificate is granted by his signature validated through public key cryptography .

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

61

8.1.1.4 User certificate
User certificate is issued by an AXCS to the user at the registration time. It is useful to recognize who is
using a tool or is making action on an object. The certificate is formatted in the X.509v3 format. It contains
the following information:
Version 2 (that is X.509v3 is identified by this value)
SerialNumber The serial number of the certificate. It is defined by the issuer which is the AXCS
Signature The encryption algorithm used to encrypt the signature. In this case, the signature

algorithm is the RSA with SHA-1 identified by the following ASN.1 object
identifier:
sha-1WithRSAEncryption OBJECT IDENTIFIER ::=
{iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 }

Issuer The AXCS which issued the certificate expressed in the X.500 format
Validity The validity period of the certificate which for the AXMEDIS purposes could be

one/five year since the issuing time
Subject The AXUID of the registered user
SubjectPublicKeyInfo The encryption algorithm used to generate the public key and the public key

itself. In this case, the used encryption algorithm is the RSA which is identified
by the following ASN.1 object identifier:
rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

Encrypted The encrypted digital signature of the certificate
Extensions Extension to the certificate. This field can contain the email of the user and other

information
Before generating the certificate, the AXCS requests to the Key Generator (component of the PMS Server) to
generate a key pair (public/private keys). As said above, the AXCS inserts the public key into the user
certificate and sends certificate and private key to the user. They are packed together as stated in PKCS #12.
The integrity of transmitted information is guaranteed by a signature using the private key of the AXCS (see
PKCS #12 – Public-key integrity mode). The privacy of that information is guaranteed because it is
encrypted using something the user knows, e.g. a password given by the user during the registration (see
PKCS #12 – Password privacy mode).
The certificate can be delivered to the user using the email address he gave as reference during the
registration.
Another suitable solution is to send certificate and private key (possibly packed together) to the user at the
end of the registration through a secure channel, e.g. using secure protocol https (http on SSL) instead of the
un-secure http.
The certificate and the private key are stored in the specific device certificate repository and in the PMS
Client secure cache. In that way, their consistence can be tested every time the tool is used, the Protection
Processor is in charge of doing this check.
User certificate import and export have to be someway controlled, i.e. if a user tries to export a certificate the
system have to check if he/she is the subject the certificate was issued to. For example, the PKCS #12
formatted packet the user receives at registration time is protected by the password he/she gave at that time.
The main issue is to be sure that an user cannot extract a certificate installed on a device without proving
he/she is really the certificate owner.

8.1.1.5 User Identifier/Identification
As stated in the previous sub-section, the AXUID (AXMEDIS User Identifier) of a user is contained in
his/her certificate. On a multi-user device (e.g. a personal computer with MS Windows), several certificates
for different users can be stored. In that scenario, the main issue is how an AXMEDIS tool can get the right
certificate (thus the right AXUID) for the current user.
Usually a multi-user device manages one certificate repository for each system users. In that case, the
AXMEDIS tool can look for a certificate issued by the AXCS in the current user certificate repository and
use that certificate, if exists, as reference certificate for the current system user. Note that each user should
have only one personal certificate issued by the AXCS.
The Protection Processor is in charge of looking for the certificate in the system repository and to get the
contained AXUID which univocally identified the AXMEDIS user.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

62

8.1.1.6 Date and time
Since licenses can be based on date/time condition, date and time control is a fundamental issue to be
addressed.
Date and time have to be measured at the registration and every time an action is made. These measures (or
at least the last one) should be stored in a trusted place which can be suitably the AXCS.
In that way, during certification and authentication, the AXCS can verify if the nominal sequence of the
actions (i.e. the sequence according to which actions were stored) matches the timeline sequence (obtainable
using the measured date and time).
Each record of the history of actions (see below) have to be labelled with the date and time of execution.

8.1.1.7 Action history
Action history permits to control if the user made some not-allowed actions during off-line working. That is,
when the tool is used on-line (i.e. it can freely communicate with the PMS Server) every time the user
request to do an action on an object the request is processed and, if it is authorized, an action log (containing
the action type, the user id, the tool id, date and time, etc…) is sent to the AXCS. On the other hand, if for a
while the tool has been used off-line (i.e. without communication to and from the PMS Server), each
authorized action generates an action log which is cached on the device (within the a secure cache). As soon
as a connection to the PMS Server is available, the set of cached action logs is sent to it.
The information involved in this kind of control is:

1. the action logs which are stored on the device
2. a hash (e.g. MD5) of the past history of actions which is stored on the AXCS and on the device.

Every time the tool can communicate with the PMS Server, the former sends to the latter the cached action
logs (or a single action log if it is working on-line) and the updated hash of the history, i.e. a hash which is
function of the old hash and the cached action logs. Managing of action history and its verification is
complete responsibility of PMS (client and server) that implements internal methods used to store action logs
and calculate history. Protection processor is in charge of providing to the PMS all data PMS cannot recover
itself in order to fill action logs (see below). Data needed to create an action log are provided to the PMS
Client by the Protection Processor every time the latter receives a Grant Authorisation Request.

8.1.1.8 Enabling code
Enabling code is issued by the AXCS to the tool during the registration (it is stored in the tool certificate).
The code is function of the fingerprint of the device, and is used to compare current tool fingerprint vs
fingerprint registered at verification time. This check is done offline while enabling code is calculated at
certification time. The calculation is made using a one way hash function, SHA512, applied on the
fingerprints XML representation. With this method any changes in current tool fingerprint is detected,
enabling protection processor to perform further verify and recovery actions.

8.1.1.9 Trustiness of a tool
In this sub-section, a feasible mechanism to test the trustiness of a tool (the pair application/device) is
depicted. The information described above is involved in that check.
 Protection

Processor
PMS Client AXCS

registration estimates FP0; - stores FP0; Fingerprint time t estimates FPt; joins FPt to action logs; verifies FPt w.r.t. FP0;

Fingerprint digest calculate; - calculate; verifies FPt digest
w.r.t. FP0 digest;

Tool certificate verifies; store in
system repository; stores; generates keys; generates

certificate;

User certificate verifies; store in
system repository; stores; generates keys; generates

certificate;

User Identifier gets from user
certificate; joins to action logs; -

Tool Identifier gets from tool
certificate; joins to action logs; -

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

63

Date and time measures; joins to action logs; verifies; stores date and
time of the last action log;

Action history -

estimate new history
hash; manages action
logs;
stores history hash;

verifies action logs;
stores new history hash;

Enabling code tests; -
generates as function of
FP0; put into the tool
certificate

In the above table, all task of each involved component are reported with respect to the needed information,
i.e. which component generates/estimates an information and which other uses/verifies it.
If a tool have been successful registered by an user, at runtime the tool is considered trusted if, and only if,
all the following tests succeed:

1. The user certificate is valid, i.e. it is digitally signed by the certification authority (which is an
AXCS). Control performed by the Protection Processor;

2. The tool certificate is valid. Control performed by the Protection Processor;
3. The enabling code contained in the tool certificate and the re-estimated fingerprint are compatible

according to the test described above. Control performed by the Protection Processor;
4. The re-estimated fingerprint digest matches the registration-time fingerprint digest which is stored

on the AXCS. Control performed by the AXCS;
5. The history hash calculated by the PMS Client, using the old one and the action logs (both securely

stored by the PMS Client into the Secure Cache), coincides with the same hash estimated by the
AXCS using its own copy of the old history hash and the action logs received;

6. The execution date and time of all the action listed in the action logs are consistent each other (i.e.
the nominal order matches the timeline order) and with respect to the last action execution date and
time stored on the AXCS;

8.1.1.10 Certified software
AXMEDIS tool features can be enriched by means of plug-ins. Usually plug-ins are pieces of software
exposing functions for specific purposes. Thus it is not suitable to equip a (likely) simple piece of software
(as a plug-in can be) with the AXOM to ensure DRM respect. Nevertheless, a plug-in can be used to
manipulate DRM-liable data, e.g. a fingerprint extractor plug-in.
To tackle this lack of security, each pieces of software created to enrich AXOM functionalities via plug-in
and to manage content have to be previously registered by the AXCS (see DE3.1.2.2.13, AXCS Tool-Offline
Registration Web Application). Registration process results in the creation of a signed description of the
plug-in, from now on let call it “manifest”. For more details about the manifest see Plug-in description
format in DE3.1.2.2.4.
Every time a piece of protected content have to be passed to an external software, the Protection Processor
controls if the binary file containing the software corresponds to the signature contained in the manifest. The
latter has to be placed in the same directory where the plug-in is placed.

8.1.1.11 Execution controls
Protection Processor should inhibit AXMEDIS tool functioning as soon as it reveals that tool execution is
under tracking. That is, Protection Processor should test if execution is under debug. That control is useful to
avoid malicious user to disclose all security mechanism used within AXOM to guarantee trustiness of the
environment.
This feature is system-dependant and it will be specifically developed for each platform AXMEDIS Tool
should be capable to run on.

8.1.2 Robustness against malicious user actions
In the following table are listed several feasible actions which a malicious user can carry out to illegally use
DRM-controlled content. Each attack is shortly described and
Feasible attacks description System avoid/detect capabilities
Migrate an AXMEDIS tool
installation from the registered

The software and hardware fingerprints of the two devices are not
equal, even if the two device has been assembled with same

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

64

device to another components, thus enabling code will fail.
Software under debug during
execution

Protection processor monitors if the application embedding it is under
debug, if it is protection processor will clear all sensible data on the
device. Moreover, if this monitoring system is deactivated modifying
the appliacation file, the fingerprint of the tool will change and it will
stop working.

Change system time to use time-
constrained content out of DRM-
allowed period

This attack will work until the device works off-line. As soon as the
tool can communicate with an AXCS thus, if IPR infringement is
detected by the latter, the tool will be disabled and the sensible
information will be cleared.

Migration of tool certificate There are two countermeasurs against this action:
• The certificate is stored in two different places: the system

certificate repositorty and the secure cache of PMS Client. The
user can move the one stored in the system repository to
another device but a simple consistency control between the
two copies will defeat the attack

• The certificate contains the signed activation code used to
verify the tool integrity. Therefore, a certificate copied by
another device will never work

An user uses content by illegally
exposing the identity of another
user

If a user exposes all the credential of another user the attack will be
not detect. Nevertheless, this attack is similar to the usage of stolen
credit card and it cannot be considered solvable problem: the
privateness of the personal certificate is exclusive interest of the user
himself/herself

Change pieces of hardware Depending on the wideness of changes, the tool is disabled and a re-
certify action is required to restore the tool’s functionalities

Create a backup of the newly-
installed AXMEDIS tool. Illegally
use content off-line (i.e. without
external controls). Restore the
virgin version of the tool before re-
connect to the network.

If a ghost image of the hard disk is made before using the content and
then it is restored on the original hard-drive after content has been
illegally used off-line, the attack will not be revealed by the
protection processor or the AXCS. Nevertheless, this action requires
such technical support and knowledge that it is not applicable by the
common user and it do not allow a spread distribution of unprotected
content. Thus it is not of interest for us.

8.2 Module Design in terms of Classes

8.2.1 General Structure
The following figure sketch the general architecture of Protection Processor.
ProtectionProcessor is the main class of the Protection Processor package. It provides protection services to
the Data Model Support, the Command Manager and the PMS Client. As described in the previous sub-
sections, it is in charge of:

1. certifying and verifying an AXMEDIS tool
2. controlling software which uses sensible content and does not contain AXOM
3. revealing attacks during tool execution
4. protecting and un-protecting AXMEDIS elements

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

65

The above figure shows the general architecture of Protection Processor module. As depicted there,
ProtectionProcessor is the coordinator of all other classes. Moreover, it is the direct interface trough which
AXOM and AXMEDIS Tools can exploit all security features.
In the following subsections, each classes (or set of classes) will be described and their methods will be
explained.

8.2.2 ProtectionProcessor and CipherDataSourceManager
As depicted in the picture above, ProtectionProcessor class is the core of this package. It is the connection
point among all other utilities (fingerprint estimator, control thread, protection tools, etc…). It also
implements a private interface (CipherDataSourceManager) which is needed for an easy and transparent use
of CipherDataSource. Please notice that Protection Processor is a singleton, i.e. only one instance of
ProtectionProcessor can be instantiated for each tool.
In the following the relevant methods of ProtectionProcessor are described:

• initialize – it is a static function which initializes the unique ProtectionProcessor instance and part of
its related classes. An AXMEDIS compliant tool has to call this function after the initialization of
Configuration Manager and before any other action.

• initializeTools – it is a static function which initializes the list of available protection tools. It has to be
called after Protection Processor and Plug-in Manager initializations and before any other action.

• getInstance – it is a static function which allows retrieving the unique instance of ProtectionProcessor
(Singleton design pattern). If the method is invoked before Protection Processor has been initialized, it
throws an exeception.

• isInitialized – it test whether te Protection Processor has been already initialized or not.
• terminate – it is a static function which terminates the Protection Processor. It has to be called when

no more security features are needed.

CipherDataSourceManager

ToolRegInterface

DeviceFingerprintPMSClient
11

1

1

1

ProtectionProcessor

1

1 1

«private»

AuthorizationThread FingerprintEstimationThread

DebugDetectionThread

11 1

1

1

1

PPPluginInstance

PPPluginProfile

1

*

1

*

UsrCertInterface

ToolCertInterface

CertInterface

*

1

1
*

CipherDataSource

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

66

• unprotectElement – it unprotects the given IPMPElement returning the corresponding DIDLElement.

Needed Protection Information is retrieved from the protected element itself or from the Secure Cache
(on the base of AXOID, version and Protection Stamp).

• protectElement – it protects the given DIDLElement returning the corresponding IPMPElement. In
order to protect the clear-text element, Protection Processor uses:

o Protection Information previously set by the User (e.g. through the AXMEDIS Editor);
o the Protection Information previously used to unprotect the original IPMPElement, only if

the given DIDLElement derives from a previously unprotected IPMPElement
• hasPendingProtection – it test whether there is a list of Protection Tools associated with the given

DIDLElement
• getProtectionToolsOf – it returns the list of Protection Tools associated with a given DIDLElement.

This list is returned if and only if Protection Information has been set by the User or it was contained
in the original IPMPElement.

• setProtectionToolsOf – it allows associating a list of Protection Tools to a given DIDLElement. This
method overrides the old Protection Tool list.

• applyProtection – these two static functions recursively protect all those elements which have pending
Protection Information starting from the given root element (which can be a DIDLDocument or a
generic DIDLElement). These functions visit the model tree in a post-ordered way.

• getToolIDList – it returns the list of all available Protection Tool identifiers.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

67

• getIPMPToolProfile – if the required profile exists, this method retrieves the profile of the Protection
Tool given its identifier.

• certify – this function is called at first tool activation to certify it, sending the required information to
the AXCS.

• recertify – this function is called whenever a user needs to recover a disabled tool. The method try to
recertify the tool through a call to PMS, and if this operation give positive result, the tool is enabled
once again. Elsewhere the tool remains disabled (no other operation is possible)

• isGranted – this function has to be called before the execution of any action on an AXMEDIS object.
This function is called by the AXMEDIS Object Manager (see related section). This method receives
from upper levels information needed to check, through PMS Client interface, if the requested action
is performable in accordance with the licenses that user/tool pair owns. Calling this method starts a
chain of operations, leading to a complete tool, user and environment verification. Direct verification
functionalities are hidden by this public method.

The above methods are the public interface of ProtectionProcessor. It also implement the following functions
which are used internally:

• selfVerify – check tool fingerprint vs. enabling code comparing the SHA-512 of xml tool fingerprint
with the enabling code. If the test fails, the tool is blocked, all sensible data are removed and the tool
needs to be recertified.

• verify – interface between PMS Client verify method and Protection Processor. In this context the tool
fingerprint digest , used for verification, is calculated using SHA-1 on extracted tool fingerprint

• debugCheck – This method reveals if some debug application is active on the tool. If a positive result
happens, the tool is disabled.

• disableTool – Through a call at this method protection processor block the tool, deleting all sensible
data contained in secure cache of PMS Client and denies all further operations on the tool. The only
means to recover a disabled tool is to recertify it.

• Constructor and Destructor – they are private since ProtectionProcessor can be instantiated and
deleted only by static functions initialize and terminate respectively.

• createOCipherStream – this private functions creates an output cipher stream given an
IPMPInfoDescriptor. See next subsections for details.

• createICipherStream – this private functions creates an input de-cipher stream given an
IPMPInfoDescriptor. See next subsections for details.

Moreover, as stated before, ProtectionProcessor implements the interface CipherDataSourceManager in
order to be able to manage CipherDataSource obtained by protected elements. CipherDataSourceManager
declares the following methods:

• createDataSource – it creates a CipherDataSource given the Protection Information.
• createDataSourceLike – it creates a CipherDataSource starting from a given one. This method does

not make an exact copy of the passed data source. Instead it creates a cipher data source which
conforms to the Protection Information of the given one.

• deletingDataSource- this function is called in the destructor of CipherDataSource in order to warn the
related CipherDataSourceManager that it has been deleted.

The other private functions are simply utilities which are not explained here.

8.2.3 Cipher streams

In order to easily integrate the ciphering and de-ciphering mechanisms with the other modules (such as
MPEG-21 Loader and Saver, etc…), a stream-based approach has been adopted. That is, given a blob of

CipherDataSource ICipherStream
1 1

Alg

ICipherBuf

CipherChain

1 1

1
1

1*

OCipherBuf

OCipherStream
1 1

1
1

istream ostream streambuf

1

1

1

1

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

68

bytes representing a protected DIDL element, and the related Protection Information, ProtectionProcessor is
able to create an instance of ICipherStream class. As show in the figure above, ICipherStream is derived
from std::istream class of the STL thus exposing the same interface. An instance of this class allows reading,
using the common C++ stream functions, the clear-text version of the blob of bytes.
On the other hand, an instance of OcipherStream, which derives from std::ostream, protects data written
through it on the basis of given Protection Information. Therefore, an instance of OCipherStream could be
used as normal C++ stream but it also performs protection actions on the written data.
Both ciphering streams act as Decorator (see Design Pattern) for other C++ streams. For example, a standard
C++ file input stream (i.e. std::ifstream) is opened on a file containing protected blob of bytes. This stream is
wrapped by an instance of ICipherStream. Every time the user request some data, the cipher stream reads
(protected) data using the wrapped file stream and, on the basis of its settings, unprotect them thus returning
clear-text data to the user.

The main classes for the realization of cipher streams are Alg and CipherChain. Alg is an abstract class
which is the base class of all Protection Tools. That is, each Protection Tool has to expose the interface
provided by Alg. In particular, a given Protection Tool has to implement its own specific BlockProcess
function which, given a block of bytes, has to produce the clear-text version of this block w.r.t. the
implemented algorithm. In this way, different Protection Tools can be treated in a common manner.
CipherChain is the coordinator of a set of Protection Tools, i.e. it is in charge of providing to each tools the
appropriate amount of data and applying to each block of bytes the required tools in the correct order.
CipherChain can work in two different modalities: push and pop. The push mode is used by the
OCipherStream class since usually the user pushes the data to be protected into the stream. On the other
hand, the pop mode is used by the ICipherStream.
For the sake of completeness, it is worth to point out that ICipherBuf and OCipherBuf are the real owners of
CipherChain instances. In fact, due to the STL architecture, these are the classes which customize the
behaviour of streams.

8.2.4 Protection Information interpretation
In the AXMEDIS project, Protection Information is represented using the MPEG-21 IPMP standard as
explained in the section “AXMEDIS Protection Info”. This format can be easily interpreted using the
MPEG-21 Loader (see related section) since the MPEG-21 IPMP XML Schema has been integrated in the
MPEG21Element hierarchy. Once created the object model of a given piece of Protection Information, the
ProtectionProcessor can create cipher streams. In particular, it is able to retrieve Protection Tool instances
from loaded Plug-ins on the basis of their profiles, and to combine them together (see section 8.2.11). After
that, this list of tool instances will be used by the cipher streams in order to protect (or unprotect) content.
Protection Information may include:
• How each element of an AXMEDIS object has been protected, i.e. encrypted, encoded, compressed and

scrambled
• How each chunk of a resource has been protected, e.g. specifying that a given set of protection tools has

to be applied from byte X to byte Y of a given resource (and not to the whole resource). In that way,
different protection can be applied to a resource along its consumption.

• It is based on an XML schema which allows to describe sort of protection procedures
Different tools can be selected by means unique identifiers defined in the framework. The tools can on the
device, downloaded from some server or directly contained within the protection info.

- defaultInit()
+ CipherChain()
+ CipherChain(inout out : ostream)
+ CipherChain(inout in : istream)
+ CipherChain(inout out : ostream, inout in : istream)
+ ~CipherChain()
+ PushDataRequest(in from : unsigned char*, in howmany : unsigned long) : unsigned long
+ PopDataRequest(in to : unsigned char*, in howmany : unsigned long) : unsigned long
+ AddToolToChain(in element : Alg*)
+ TestEOD() : bool
+ SetEOD()
+ setDestination(inout out : ostream)
+ setSource(inout in : istream)

CipherChain

+Alg()
+~Alg()
+BlockProcess(in Parametro 1 : unsigned long) : unsigned long
+GetInSize() : unsigned long
+GetOutSize() : unsigned long
+GetInBuffer() : unsigned char *
+GetOutBuffer() : unsigned char *
+GetState() : int

Alg

1 *

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

69

The decomposition and the application of the dynamic IPMP can be performed at level of data segments and
blocks and may change over time if different coding protection models are enforced into the same resource.
This is quite different with respect to dynamically change the IPMP rules when the resource is streamed.
Note that the single resource may have different tools, different keys, different combination of tools, etc…

8.2.5 Threads
Protection Processor module contains three thread classes. These have been designed in order to do specific
functions in an asynchronous way w.r.t. the execution of the program. That is:

• DebugDetectionThread – at random time instants, it tests whether the application is under debug or
not. It simply calls the debugCheck method provided by ProtectionProcessor.

• FingerprintEstimationThread – at random time instants, it estimates the fingerprint and its hashes
which are needed for the control during program execution. This has been designed since fingerprint
estimation is a time consuming task which cannot be done every time an action is done

• AuthorizationThread – at random time instants, it calls the verify function provided by
ProtectionProcessor. In that way the tool is verified even when any action is done.

8.2.6 Certificate Interface Module

This module has the task to coordinate access to certificate data, meanwhile providing trustness, verification
and management of those structures. Methods for this module are described below.
initialize – This method provide loading data to the proper certificate interface. Meanwhile certificate
verification, management and validation checks are performed.

dismiss – This method delete all information stored in calling interface, resetting to a starting state. This
operation is useful to prevent tampering user to read and maybe change memory values for certificates data.

storeNewCertificate – is used in certify operation when the tool receives its certificate. This method
automatically store certificate instance in the proper system repository for future use.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

70

dropToolCertificate – is used in a recertify operation when the tool receives a new certificate. The old and
invalid certificate is dropped.

getUID getToolID getToolRegID… – those methods provide access to data loaded from the certificates. If
the certificate is not initialized the content is an empty string.

verifySysCert – Implements a validity check for certificate and certificate validation chain. If the verification
fails (due to expiration date reaching or for un-trusted certification chain or error in some certificate
signature) the certificate interface cannot be initialized. Used as private method for the specific certificate
interfaces.

8.2.7 Fingerprint Module

This module is in charge for tool fingerprint extraction and fingerprint hash calculation. The architecture of
the module is simple, a class DeviceFingerprint, provide coordination and interface to Protection Processor.
Instead, in CommandTranslator, methods to access system information are implemented.
systemProbing – This method recover system information and installation information from the local
machine using CommandTranslator functionalities. A call to this method is requested whenever a digest or
fingerprint creation operations are needed.

getDigest – Returns SHA1 digest of the ToolFingerprint retrived by means of systemProbing. The hash is
calculated on the chained fingerprint text.with no added xml tags.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

71

getXMLFingerprints – Returns XML Representation of ToolFingerprints stored in a std::string field. A call
to systemProbing is needed before this operation.

createSHA512Digest – this method implements SHA512 interface. It returns a 64 byte string that contains
the argument hash.

clear – Clear the device class deleting all stored contents. Needed to prevent fingerprint screening by
malicious user.

8.2.8 Tool certification
During tool certification, the protection processor checks:

• If some process is debugging the application. In that case operations ends.
• Certificate status. For each user and tool registration certificates ProtectionProcessor checks

existence, validity and authenticity. If checks fails operations ends
• Existence of a tool certificate. If this certificate exists this operation ends because only a certification

for each tool is permitted. To restore disabled tool and recover a new tool certificate the operation
recertify has to be exploited.

ProtectionProcessor call tool fingerprint module for fingerprint extraction and send obtained XML
fingerprint representation, along with tool registration id, deadline and user id to PMS client calling certify
method. PMS Client have to send those information to AXCV to evaluate certification request.
If certification succeeds a certificate for the tool containing tool id (TID), enabling code and the public key is
issued, along with the private key for the tool, in PKCS#12 format.
ProtectionProcessor store the new certificate through the ToolCertInterface module, completing certify
operation.
All sensible data is cleaned from memory, as soon as it is no more useful for method workflow.

The next sequence diagram depict a complete certification scenario.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

72

protectionProcessor

certify()
debugCheck()

true

msFPDevice msUserCert msToolCermsToolReg msPMSCli

initialize()

false

initialize()

true

initialize()

true

systemProbing()

fp:=createXMLFingerprints()

clear()

uId:=getUID()

trId:=getToolRegID()

deadLine:=getToolRegDDL()

cr:=certify(uid, rtid, fp, deadLine)

storeNewCertificate(cr.toolBase64PKCS12.ptr, cr.toolBase64PKCS12.size, psw)

initialize()

true

dismiss()

dismiss()

dismiss()

true

The figure above shows the case of successful certification. This can fail in several points. If this happens the
method ends in several ways (summarized below) and it returns false. The possible failure points are:

• debugCheck() return false – someone is debugging the tool. The latter is disabled by calling
disableTool() method;

• first initialize() called on msToolCert return true – this means the tool has been already certified;
• initialize() called on msUserCert or msToolReg return false – the tool misses user or tool registration

certificate. The already initialized certificate data are deleted calling dismiss();
• cr.certificationResult is false – the certification failed;
• last initialize() called on msToolCert return false – this means the tool certificate has not been

correctly stored;

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

73

8.2.9 Grant Authorisation Requests
The figures below depict the interaction among protection processor and PMS client during content
consumption and handling.

protectionProcessor msUserCert msToolCert msPMSCli

isGranted(obj, grant, details)
debugCheck()

true
initialize()

true

initialize()

true

selfVerify()

true

verify()

true

ret:=authorise(CID, DID, OID, tid, uid, WID, fpHash, timeStamp, objVer, opDetails, opID, owner, protStamp, true)

dismiss()

dismiss()

timeStamp:=getTime()

tid:=getToolID()

uid:=getUID()

msFPDevice

systemProbing()

fpHash:=getDigest()

ret

clear()

The figure above shows interactions among objects involved in an authorization request. In particular,
Protection Processor makes some controls in order to ensure the trustiness of the tool and, if these controls
succeed, invoke the authorise method of the PMS Client. In the above sequence diagram all the controls
succeed however, the are several point of failure. In all the following cases, the tool is disabled and the
method returns false:

• debugCheck() returns false – someone is debugging the tool;

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

74

• initialize() called on msUserCert or msToolCert return false – the tool misses user or tool certificate.
The already initialized certificate data are deleted calling dismiss();

• selfVerify returns false – the activation code has not been verified;
• verify returns false – the verification against data on the AXCS fails;

Once the tool has been disabled, recovering is allowed through recertify method.
As stated above and depicted in the figures, Protection Processor uses PMS Client to communicate the
verification information to the AXCS. That data consist of:

• TID – the tool identifier assigned to the tool at certification time by the AXCS
• Tool fingerprint hash – to make the communication lighter, the whole tool fingerprint is transmitted

only if its hash do not match the one stored on the AXCS. This operation is performed through
reverify method.

Communication between Protection Processor and AXCS works on a secure channel provided by the PMS
Client. It has to be pointed out that even if communication is established by the PMS client certificates for
communication are managed by the protection processor (as all the other security information) thus PMS
client has to request the communication certificates to the protection processor every time it has to open a
secure channel.
Disabling a tool include removal of all sensible information about tool/user from the device. All data stored
in the secure of PMS Client cache has to be removed in this context. In the sequence diagrams below some
key operation in certifying and verifying are explained and analyzed.

Next diagrams deeply explain tool verification in order to point out case where tool verification fails. In this
case, the tool is disabled since it means that the user has performed something which could be considered as
a tampering action. Reverify method is used in all the cases where fingerprint digest does not match the
server side counterpart. This situation occurs whenever some change on the device has been made. However,
minor changes are allowed by the system that can use recertify inputs to deeply analyze tool fingerprint and
decide to block or not the tool.

Please notice that the return value of reverify method is also the return value of the verify method. In fact, in
the case reverify returns true, the tool can be considered verified. On the other hand, if the former does not,
the tool will be considered tampered and therefore disabled.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

75

protectionProcessor msFPDevice msUserCert msToolCert msPMSCli

verify

systemProbing

getDigest

getToolID

getUID

verify

false

fp:=createXMLFingerprints()

clear()

reverify(uid, tid, fp)

ret

ret

Next diagrams explain self verification and actions taken to manage detection of changing in the fingerprints
of the module.

In an offline environment there are no chances to further verifications and the tool is automatically disabled.
Instead, in an online scenario, some actions are taken to recover the situation through calling reverify. If the
checks give positive result a new tool certificate along with a new enabling code is issued restoring a
consistent status of the tool. Otherwise, the tool is disabled and it has to be explicitly recertified.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

76

protectionProcessor msUserCert msFPDevice msToolCert msPMSCli

selfVerify

ec:=getEnablingCode()

systemProbing()

fp:=createXMLFingerprints()

fpHash:=createSHA512Digest(fp)

clear()

compare(ec, fpHash)

false

true

uid:=getUID()

tid:=getToolID()

reverify(uid, tid, fp)

true

recertify()

true

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

77

8.2.10 Tool recovery/recertification
protectionProcessor msPMSCli

recertify()

res:=recertify(uid, tid, fp)

msToolCertmsUsrCert msFPDevice

uid:=getUID()

tid:=getToolID()

systemProbing()

fp:=createXMLFingerprints()

storeNewCertificate(cr.toolBase64PKCS12.ptr, cr.toolBase64PKCS12.size, psw)

true

clear()

In order to recover a disabled tool recertify operation is provided. Protection Processor request a verification
of tool fingerprint at AXCV through PMS Client. If the operation succeeds a new tool certificate and a new
enabling code for the tool are issued by AXCV.

8.2.11 Protection Tools as AXMEDIS Plug-ins

Protection Tools used by the Protection Processor are distributed as AXMEDIS Plug-ins (see section
“Module - AXMEDIS Editor Plug-in Manager” in DE3.1.2.2.4). Each plug-ins contains a set of Protection
Tools. Moreover, the manifest of the plug-in contains a specific description which reports the identifiers of
the provided tools and their main features.
In particular, an AXMEDIS Plug-in containing some protection tools has to export the following functions:

extern "C" Alg* createIPMPTool(const std::string& toolID, bool encoding)
extern "C" void releaseIPMPTool(Alg* tool)

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

78

createIPMPTool allows creating Protection Tool instances by providing the tool identifier (toolID).
When the encoding parameter is true, the function has to return the encoding version of the tool itself.
Otherwise, the function has to return the decoding part of the required tool. That is, a tool identifier identifies
the couple of encoding and decoding algorithms.
realeaseIPMPTool releases the given tool instance. This function has been introduced for the tool
instances are created by the dynamic library and they have to be deleted by it.
The above figure shows the main classes involved in the management of protection plug-ins (i.e. AXMEDIS
Plug-ins containing Protection Tools). In particular:

• PPPluginInstance is an extension of AxPluginInstance. An instance of this class represents a
loaded protection plug-in. This class allows exploiting specific functions of this kind of plug-ins (e.g.
create and release Protection Tools).

• PPPluginProfile wraps AxPluginProfile in order to allow access to generic and specific data in
the plug-in description. In particular, it provides methods to get the identifiers of contained Protection
Tools and to get the description of any of them (given the related identifier).

• IPMPToolProfile allows accessing the data contained in the description of a Protection Tools (see
section 20).

Please refer to “Module - AXMEDIS Editor Plug-in Manager” in DE3.1.2.2.4 for more details about
AxPluginInstance and AxPluginProfile.
During ProtectionProcessor::initializeTools execution, Protection Processor gets all the plug-in
profiles belonging to “IPMPTool” category. For each profile, it creates a new PPPluginProfile instance
which wraps the generic profile and parses the specific descriptor contained in the latter.
When a Protection Plug-in is needed, a new instance of PPPluginInstance is allocated passing it the related
profile. In this way, the plug-in instance is able to retrieve all the data it needs directly from the profile. Once
created, the plug-in instance is registered to the Plug-in Manager.

8.3 Integration and compilation issues
Protection Processor relays on the PMS Client.
The following table summarizes the needed library in order to use the Protection Processor.

OS/Platform Name
Windows/PC Linux/PC

Library file Description

OpenSSL X X libeay32.lib
ssleay32.lib

Provides several functions for certificate
management and SSL connections.

Crypto++ X X cryptlib.lib Provides functions for exploiting SHA-512
Common X X common.lib
Crypto API X crypt32.lib
SNMP API X SnmpAPI.lib

8.4 Configuration Parameters
Config parameter Possible values
PMSCLIENT –
PMSClientEndpoint

Any valid URL which points to the reference PMS Server

PMSCLIENT –
PMSClientLocalDSN

Any valid DSN name for the secure cache database

PMSCLIENT –
PMSClientUser

Any valid user name for the secure cache database

PMSCLIENT –
PMSClientPsw

Any valid password for the secure cache database

8.5 Errors reported and that may occur
Error code Description and rationales

0 The protection processor has not been initialized

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

79

1 Tools has to be initialized after protection processor
initialization

2 Unable to unprotect an ipmp element which does not contain
protection info and it even is not an AXMEDIS object

3 Unable to parse protection information which are not MPEG21 IPMP
compliant

4 The given DIDL element has not pending protection information
5 IPMP Tool not available
6 A plugin with the given identifier has been already loaded
7 An IPMP tool with the given identifier has been already loaded
8 IPMP Tool profile not available
9 Key for retriving certificate not found

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

80

9 Encryption/Decryption Support (FUPF)

Module/Tool Profile
Encryption/Decryption Support

Responsible Name Victor Rodriguez
Responsible Partner FUPF
Status (proposed/approved) Approved
Implemented/not implemented Implemented
Status of the implementation Implemented
Executable or Library/module
(Support)

Static library

Single Thread or Multithread Multithread
Language of Development C and C++
Platforms supported Windows
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/encdecsup

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Errore. Riferimento a collegamento ipertestuale non valido.
N/A

Reference to the AXFW
location of the demonstrator
executable tool for public
download

N/A

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

N/A

Test cases (present/absent) Absent
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

No

Usage of the AXMEDIS Error
Manager (yes/no)

No

Major Problems not solved
Major pending requirements

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

81

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
Open SSL

9.1 General Description of the Module
This module provides the needed functionality for encrypting / decrypting AXMEDIS.
The functionalities of this module will also be available as an AXMEDIS plugin for the Protection Processor.
The form of the module in such a case will change from a static library (LIB) to a dynamic library (DLL), at
least for the Windows version (as specified).
The functionality offered by this module is "function-oriented" in nature, rather than "object-oriented",
therefore main functions are offered as static members. This will remain this way, as it was. However, while
for an static library the model was perfectly valid, in the case of a dynamic library; it has to be stressed that
the resulting DLL may not be multi-thread compliant.

9.2 Module Design in terms of Classes

9.2.1 Architecture for encryption / decryption support
Next figure shows the description of this module.
The algorithmic workload lies on OpenSSL, making thus this module as a simple adapter to the AXMEDIS
requirements. The front-end class is EncryptionDecryption, which provides two evident methods: cipher and
decipher.
Three classes are needed to deal with EncryptionDecryption, namely, Data, KeyAX and Algorithm whose use
is self-explaining.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

82

Data
data : byte []

Data(newData : byte) : Data
getData() : byte []
setData(newData : byte [])

KeyAX
key : byte []

KeyAX(newKey : byte []) : KeyAX
setKey(newKey : byte [])
getKeyByte() : byte []

EncryptionDecryption

cipher(sourceData : Data, cipherKey : KeyAX, cipherAlgorithm : Algorithm) : Data
decipher(cipheredData : Data, decipherKey : KeyAX, decipherAlgorithm : Algorithm) : Data

Algorithm
algorithm : int

Algorithm(newAlgorithm : int) : Algorithm
getAlgorithm() : int
setAlgorithm(newAlgorithm : int)

Class diagram for the Encryption / Decryption Support

The functionality of the classes inside the UML diagram is as follows:
EncryptionDecryption: Provides de basic functions for ciphering and deciphering of data, hiding to the
calling application the complexity derived of the use of the OpenSSL library.
Data: Represents the data (either in clear or ciphered) used by the EncryptionDecryption class.
KeyAX: Represents the key for ciphering / deciphering the data.
Algorithm: Represents the algorithm for ciphering / deciphering data. The list of supported algorithms will
be also implemented in this class by using constants in the corresponding programming language (C/C++).

9.3 Implementation of the algorithms
The implementation of the algorithms is carried out through the OpenSSL library. It defines itself as:
The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, full-featured, and
Open Source toolkit implementing the Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS
v1) protocols as well as a full-strength general purpose cryptography library.
OpenSSL license follows the Apache fashion, what allows its use freely both for commercial and non-
commercial application. Axmedis has already approved its use, and it is a robust, reliable library. It has been
ported into different platforms, and the ease of use and its completeness make from it the right choice.
The use of OpenSSL is transparent for the user of the EncryptionDecryption module: modules that use it
does not need to know how EncryptionDecryption is internally implemented and which libraries it rely on.
However, EncryptionDecryption is a static library, and as such, does not include itself the third parties code.
Therefore, at linking time of an executable tool that requires EncryptionDecryption module, not only the
encryptiondecryption.lib has to be linked, but also the corresponding OpenSSL libraries.

9.4 Examples of usage
It will be shown how to cipher a sample text.

Data cleardata(“this is a clear text”); //holds the clear text to be ciphered
Data ciphered; //will hold the ciphered data
Algorithm *cipher = new Algorithm(axeds::AES_128_CBC_ALGORITHM); //algorithm
axeds::byteType *cKey = new axeds::byteType[cipher->getSizeKey()]; //key
KeyAX clave(cKey,cipher->getSizeKey()); //key
clave.setKey(Data("abracadabra").getData(),12); //key is abracadabra

ciphered=EncryptionDecryption::encrypt(cleardata,clave,*cipher); //encrypt!

delete arr;
delete key;
delete cipher;

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

83

9.5 Formal description of Encryption / Decryption Support operations

EncryptionDecryption
Method cipher
Description This method ciphers the sourceData passed as parameter using the KeyAX ciphering key and

the algorithm indicated by the cipherAlgorithm. The returned information is the ciphered data.
This method makes use of the corresponding operations inside the OpenSSL library for the
different ciphering algorithms supported by it.

Input
parameters

sourceData : Data, the data to be ciphered
cipherKey : KeyAX, the key to be used to cipher data
cipherAlgorithm : Algorithm, the algorithm used to cipher data

Output
parameters

Data, the ciphered data

Method decipher
Description This method deciphers the cipheredData passed as parameter using the KeyAX deciphering

key and the algorithm indicated by the decipherAlgorithm. The returned information is the
data in clear.
This method makes use of the corresponding operations inside the OpenSSL library for the
different deciphering algorithms supported by it.

Input
parameters

cipheredData : Data, the data to be deciphered
decipherKey : KeyAX, the key for deciphering the data
decipherAlgorithm : Algorithm, the algorithm for the deciphering the data

Output
parameters

Data, the original data, in clear

Data
Method Data
Description Constructor of the class which receives as parameter the data to be ciphered / deciphered.
Input
parameters

NewData: byte[], an array of bytes containing the data either ciphered or in clear

Output
parameters

A new instance of the Data class

Method getData
Description This method requests the data stored inside this class.
Input
parameters

None

Output
parameters

byte[], the byte array representing the data contained inside this class

Method SetData
Description This method allows setting new data inside this class.

Input
parameters

byte[], the byte array representing the data contained inside this class

Output
parameters

None

KeyAX
Method KeyAX
Description Constructor of the class which receives as parameter the key for ciphering / deciphering data.
Input
parameters

NewKey: byte[], an array of bytes containing the key

Output
parameters

A new instance of the KeyAX class

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

84

Method getKey
Description This method requests the key stored inside this class.
Input
parameters

None

Output
parameters

byte[], the byte array representing the key contained inside this class

Method setKey
Description This method allows setting new key inside this class.

Input
parameters

byte[], the byte array representing the key contained inside this class

Output
parameters

None

Algorithm
Method Algorithm
Description Constructor of the class which receives as parameter the algorithm identifier
Input
parameters

NewAlgorithm:int, the identifier of the algorithm contained inside this class. It will depend on
the values

Output
parameters

A new instance of the Algorithm class

Method getAlgorithm
Description This method requests the algorithm stored inside this class.
Input
parameters

None

Output
parameters

int, the identifier of the algorithm contained inside this class. It will depend on the values
defined by OpenSSL

Method setAlgorithm
Description This method allows setting new algorithm inside this class.

Input
parameters

int, the identifier of the algorithm contained inside this class. It will depend on the values
defined by OpenSSL

Output
parameters

None

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

85

10 Compress/uncompress Support (DSI)

Module/Tool Profile
Compress/uncompress Support

Responsible Name
Responsible Partner
Status (proposed/approved)
Implemented/not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread
Language of Development
Platforms supported
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/.....................

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

86

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

10.1 General Description of the Module
Compress and uncompress support is provided by the wxWidgets library. It provides input stream to access
to ZIP files (wxZipInputStream) and input/output streams for gzip compression (wxZlibInputStream,
wxZlibOutputStream).

wxZlibInputStream and wxZlibOutputStream are filtering streams they get/send information from/to other
wxInput/OutputStream to uncompress/compress information.

10.2 Examples of usage
For example to compress a buffer of 1024 bytes to a file named “compressed.dat”:
char data[1024];

// fill the data buffer

wxFileOutputStream ofile(“compressed.dat”);
wxZlibOutputStream compress(ofile);

compress.Write(data, 1024);

While to uncompress it:

wxFileInputStream ifile(“compressed.dat”);
wxZlibInputStream uncompress(ifile);

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

87

char data[1024];

uncompress.Read(data,1024);
if(uncompress.LastRead()!=1024)
 …

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

88

11 Scramble/Descramble Support (EPFL)

Module/Tool Profile
Scramble/Descramble Support

Responsible Name Marco Mattavelli
Responsible Partner EPFL
Status (proposed/approved) Approved
Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread Multithread
Language of Development C
Platforms supported
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/ Software/Applications/Cryptlib/Crypt

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs. axmedis.org/repos/Software/Applications/Cryptlib/binaries

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

89

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

[DSI] Very nice description of Cryptlib library! I understand you would like to use Cryptlib in order to
provide Scramble and Descramble Support but I would like to have also a description of your module. Your
module should be integrated with Protection Processor using Protection Plug-in specification. Please,
provide something more than the trivial description of a third-party library.

11.1 General Description of the Module
The word “scrambling” is often mis-used as a synonym of cryptography.
The term cryptography refers to the tools and mechanisms enabling:

• Tamper detection allows the information receiver to verify that it has not been modified during
transmission. If there were any attempt to modify or substitute data, a false message would be
detected.

• Authentication allows the information receiver to determine who sent the message.
• Privacy/confidentiality ensures that no one can read the message except the intended receiver.

Integrity assures the receiver that the message that they received was not modified in any way since
it was sent from the origin.

• Non-repudiation is a mechanism that proves that the sender really sent the message.
Lastly, scrambling allows two communication parties to disguise information they send to each other. The
sender encrypts/scramble the information before sending it. The receiver decrypts/descramble the
information after receiving it.
In cryptographic terminology, the message is called plaintext or cleartext. Encryption is encoding the
contents of the message in such a way that hides its contents from outsiders. The encrypted message is called
the ciphertext. The process of retrieving the plaintext from the ciphertext is called decryption. Encryption
and decryption usually make use of a key, and the coding method is such that decryption can be performed
only by knowing the proper key.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

90

Scrambling / Descrambling algorithms are based on secret key algorithms.
In secret key cryptography, a single key is used for both encryption and decryption. The sender uses the key
to encrypt the plaintext and then sends the ciphertext to the receiver. The receiver applies the same key to
decrypt the message and recover the plaintext. There are several widely used secret key cryptography
schemes [Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output
Feedback (OFB) and Counter (CTR) modes] and they are generally categorized as being either block ciphers
or stream ciphers. A block cipher is so-called because it encrypts blocks of data at a time. The same plaintext
block will always be encrypted into the same ciphertext when using the same key. Stream ciphers operate on
a single bit, byte, or word at a time, and implements a feedback mechanism so that the same plaintext will
yield different ciphertext every time it is encrypted.
Usually, scrambling / descrambling algorithms refer to stream ciphers algorithms.
In the past, the scrambling process did not change the information with the content but it only “mix” it. In
this way the “preview” of the content could be done with low cost device.
Scrambling algorithms used to allow “content preview” functionality are strongly linked to proprietary and
“unknown” solutions and implementation. This is what in cryptography is called “security by obscurity” that
it is not an “open” approach.
Due to the evolution of the attacks and the openness of the approach, AXMEDIS should use more
sophisticated scrambling algorithms that use strong known secret key algorithms. A well-know library called
cryptlib provides many functions, including all what may be necessary in the project.

11.2 Module Design in terms of Classes
The cryptlib library consists of a set of layered security services and associated programming interfaces that
provide an integrated set of information and communications security capabilities. Much like the network
reference model, cryptlib contains a series of layers that provide each level of abstraction, with higher layers
building on the capabilities provided by the lower layers.
At the lowest level are basic components such as core encryption and authentication routines, which are
usually implemented in software but may also be implemented in hardware (due to the speed of the software
components used in cryptlib, the software is usually faster than dedicated hardware).
Scrambling can be supported by mixing the several available symmetric encryption mechanisms provided at
the lowest layer of the security stack.

The application programming interface (API) serves as an interface to a range of plug-in encryption modules
that allow encryption algorithms to be added in a fairly transparent manner, so that adding a new algorithm
or replacing an existing software implementation with custom encryption hardware can be done without any
trouble.
The standardised API allows any of the algorithms and modes supported by cryptlib to be used with a
minimum of coding effort. In addition the easy-to-use high-level routines allow for the exchange of
encrypted or signed messages or the establishment of secure communications channels with a minimum of
programming overhead.
Language bindings are available for C / C++, C# / .NET, Delphi, Java, Python, Tcl, and Visual Basic (VB).

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

91

cryptlib has been written to be as foolproof as possible. On initialisation it performs extensive self-testing
against test data from encryption standards documents, and the APIs check each parameter and function call
for errors before any actions are performed, with error reporting down to the level of individual parameters.
In addition logical errors such as, for example, a key exchange function being called in the wrong sequence,
are checked for and identified.

11.3 Technical and Installation information
All necessary constants, types, structures, and function prototypes are defined in a language-specific header
file as described below. You need to use these files for each module that makes use of cryptlib. Although
many of the examples given in this manual are for C/C++ (the more widely-used ones are given for other
languages as
well), they apply equally for the other languages. All language bindings for cryptlib are provided in the
bindings subdirectory. Before you can use a specific language interface, you may need to copy the file(s) for
the language that you’re using into the cryptlib main directory or the directory containing the application that
you’re building. Alternatively, you can refer to the file(s) in the bindings directory by the absolute pathname.

11.3.1 Initialisation
Before you can use any of the cryptlib functions, you need to call the cryptInit function to initialise cryptlib.
You also need to call its companion function cryptEnd at the end of your program after you’ve finished
using cryptlib. cryptInit initializes cryptlib for use, and cryptEnd performs various cleanup functions
including automatic garbage collection of any objects you may have forgotten to destroy. You don’t have to
worry about inadvertently calling cryptInit multiple times (for example if you’re calling it from multiple
threads), it will handle the initialisation correctly.
However you should only call cryptEnd once when you’ve finished using cryptlib. If you call cryptEnd and
there are still objects in existence, it will return CRYPT_- ERROR_INCOMPLETE to inform you that there
were leftover objects present.
cryptlib can tell this because it keeps track of each object so that it can erase any sensitive data that may be
present in the object (cryptEnd will return a CRYPT_- ERROR_INCOMPLETE error to warn you, but will
nevertheless clean up and free each object for you). To make the use of cryptEnd in a C or C++ program
easier, you may want to use the C atexit() function or add a call to cryptEnd to a C++ destructor in
order to have cryptEnd called automatically when your program exits. If you’re going to be doing
something that needs encryption keys (which is pretty much everything), you should also perform a
randomness poll fairly early on to give cryptlib enough random data to create keys:

cryptAddRandom(NULL, CRYPT_RANDOM_SLOWPOLL);

Randomness polls are described in more detail in “Random Numbers” on page 279. The randomness poll
executes asynchronously, so it won’t stall the rest of your code while it’s running. The one possible
exception to this polling on startup is when you’re using cryptlib as part of a larger application where you’re
not certain that cryptlib will actually be used. For example a PHP script that’s run repeatedly from the
command line may only use the encryption functionality on rare occasions (or not at all), so that it’s better to
perform the slow poll only when it’s actually needed rather than unconditionally every time the script is
invoked. This is a somewhat special case though, and normally it’s better practice to always perform the
slow poll on startup.
As the text above mentioned, you should initialize cryptlib when your program first starts and shut it down
when your program is about to exit, rather than repeatedly starting cryptlib up and shutting it down again
each time you use it. Since cryptlib consists of a complete crypto operating system with extensive
initialisation, internal
security self-tests, and full resource management, repeatedly starting and stopping it will unnecessarily
consume resources such as processor time during each initialisation and shutdown. It can also tie up host
operating system resources if the host contains subsystems that leak memory or handles (under Windows,
ODBC and LDAP are particularly bad, with ODBC leaking memory and LDAP leaking handles. DNS is also
rather leaky — this is one of the reasons why programs like web browsers and FTP clients consume memory
and handles without bounds). To avoid
this problem, you should avoid repeatedly starting up and shutting down cryptlib:

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

92

Right
cryptInit();
serverLoop:
process data;
cryptEnd();

Wrong
serverLoop:
cryptInit();
process data;
cryptEnd();

C / C++
To use cryptlib from your C or C++ application you would use:
#include "cryptlib.h"

cryptInit();

/* Calls to cryptlib routines */

cryptEnd()

11.4 Integration and compilation issues
Cryptlib is re-entrant and completely thread-safe, allowing it to be used with multithreaded applications on
systems that support threads. Because it is thread-safe, lengthy cryptlib operations can be run in the
background if required while other processing is performed in the foreground. In addition cryptlib itself is
multithreaded so that computationally intensive internal operations take place in the background without
impacting the performance of the calling application.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

93

12 MPEG-21 DIBO (EPFL)

Module/Tool Profile
Compress/uncompress Support

Responsible Name
Responsible Partner EPFL
Status (proposed/approved)
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread
Language of Development C++
Platforms supported Windows XP
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/.....................

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

94

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

12.1 MPEG-21 DIP in AXMEDIS
In the MPEG-21 Digital Item Processing standard, Digital Item Base Operations (DIBOs) are defined as the
functional building blocks utilized by a Digital Item Method (DIM). They can be considered somewhat
analogous to the standard library of functions of a programming language. Their implementation as a
software library of functions can be then derived quite straightforwardly from the MPEG-21 specification. In
fact, a DIBO is described by a normatively defined interface; and normatively defined semantics. The
module architecture shall then be structured as software implementation of the normative interfaces and shall
be compliant with the normatively defined semantics.
AXMEDIS will support only those Basic Operations needed for the implementation of interactivity at the
level of content consumption. Examples of DIBOs that may be supported:

Play(element, async)

This DIBO causes the DIDL element represented by the element parameter to be rendered into a transient
and directly perceivable representation. The element parameter shall be a DOM Element object representing
a COMPONENT or DESCRIPTOR to be played. It is an error to invoke this DIBO if the element parameter is
not a DOM Element object representing a COMPONENT or DESCRIPTOR, in which case an invalid parameter
exception is generated.
The manner of playing the element, appropriate to its content, is left as an implementation choice of the
DIBO implementer.

Release(PlayStatus)

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

95

This DIBO causes playing of the DIDL element associated with the specified playStatus to be stopped and
any state information to be released. The playStatus parameter shall be an object that was returned by a call
to the play DIBO to play the associated element which is to be stopped.

Adapt(element, metadata);

This DIBO allows a DIM author to explicitly request an adaptation of the DIDL element represented by the
element parameter.
The metadata parameter is an array of Element objects representing additional information the DIM author
suggests can be considered when adapting the resource. The metadata parameter may be null if the DIM
author does not wish to provide any such suggestions. If the metadata parameter is not null and is not an
array of DOM Element objects then an invalid parameter exception is generated.
If an adaptation of the element does take place and is successful, then an Element object representing the
DIDL element for the adapted element is returned. This can then be utilized as a parameter to other
appropriate DIBOs. The original element remains unchanged.
The MPEG-21 DIA specification provides the following tools related to resource adaptation which an
implementer of this DIBO can consider supporting.
• Usage Environment Descriptions;
• Bitstream Syntax Description based adaptation;
• Terminal and network quality of service;
• Usage Constraints Descriptions; and
• DIA Configuration.

If the available DIBOs standardized by MPEG, should not support the entire range of AXMEDIS use cases,
an extension to the provided functionality can be implemented by means of User defined Opraations called
DIXOs (Digital Item eXtensions Operation).

12.2 General Description of the Module
This module is in charge of implementing the MPEG-21 Digital Item Base Operations (DIBOs) relevant for
the purposes of AXMEDIS. It will be implemented as a library of processing functions to be called upon
requests coming from the Digital Item Method Engine (see following section).
Once the AXMEDIS Object Manager retrieves MPEG-21 DIP information in a managed AX Object it
dispatches the DIP excerpt to the DI Method Engine (DIME). This component is in charge of executing the
received DIP script either by calling the appropriate DIBOs implementation or, if present, by executing the
ECMA script embedded in the DIP description.

12.3 Classes
An implementation of the DIBO in terms of C++ classes shall include methods for

• getting an handle to the concerned resource to be processed (getHandle(…)) ;
• actually implement the required operation on the resource ((e.g. playDIBO(…));
• send back the control on the provided handle to the DIM engine (releaseHandle(…)).

A formalization of the concerned classes is provided below:

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

96

+getResourceHandle()
+playHandle()
+releaseResource()

PlayDIBO

+getResourceHandle()
+releaseHandle()
+releaseResource()

ReleaseDIBO

+getResourceHandle()
+AdaptHandle()
+releaseResource()

AdaptDIBO

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

97

13 MPEG-21 DIM (EPFL)

Module/Tool Profile
Compress/uncompress Support

Responsible Name
Responsible Partner
Status (proposed/approved)
Implemented/not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread
Language of Development
Platforms supported
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/.....................

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

98

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

13.1 MPEG-21 DI Methods in AXMEDIS
This module implements the execution of Digital Item Methods (DIMs) embedded into an AXMEDIS
object. Starting from a Digital Item Declaration (DID) describing the structure of the DI it is possible to add
interactivity to that DI using DIMs. A DIM expresses the interaction of an MPEG-21 User with a DI. It
contains calls to DIBOs and describes the possible interactions of an MPEG-21 User (e.g., a human
consumer) with the DI.
A DIM can be implemented either as a combination ECMAScript constructs (e.g. for and ++ operators) and
DIBOs or as a pure sequence of DIBOs. This module shall parse the received DID, retrieve the DIM to be
executed and call the appropriate DIBOs or ECMAScript interpreter in order to trigger the actual execution.

Examples of DIMs are shown below:

This is an example of DIM using both ECMAScript and DIBOs

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

99

This is an example of DIM implemented uniquely as a chian of DIBOs.
13.1.1 Relationship between DIMs, DIBOs, and DIXOs

The DIMs call the DIBOs and the DIXOs to delegate processing to keep the DIM script simple. DIMs may
choose to use DIBOs when they are available and DIXOs when the required functionality is not available as
a DIBO.
The invocation mechanisms for DIBOs and the DIXOs from DIMs are different. The DIBOs have a mapping
to DIML and this is used to call the DIBOs from within a DIM. The invocation mechanism for DIXOs is
unique to the DIXO Language used to write the DIXOs. The same call for a given DIXO Language is used to
invoke all the DIXOs in that DIXO Language from a DIM, where the name and the arguments of the DIXO
are all in turn arguments to that invocation call.
DIXOs while implementing the extended processing may call normatively defined DIBOs and other DIXOs.
The invocation mechanism of DIBOs and other DIXOs from any DIXO is direct using the bindings of
DIBOs in that particular DIXO Language.

13.2 General description of the module
This module is in charge of receiving MPEG-21 DIP scripts from the AX Object Manager, to parse the
received XML excerpt and coordinate the processing of the DIBOs implementation and the ECMAscript
engine. A received MPEG-21 DIP script can be either a mixture of ECMA scripts and DIBOs calls or a
simple chain of DIBOs. The DIM Module will be in charge of traducing the actions expressed MPEG-21
DIP descriptors in synchronous calls to the relevant libraries.

AXOM
extracts the MPEG-21 DIP information

DIM Engine

AX Object

PlayDIBO AdaptDIBO ReleaseDIBO

uses uses uses

uses

DIP Parseruses
ECMAscript Engine

uses

Once the AXMEDIS Object Manager retrieves MPEG-21 DIP information in a managed AX Object it
dispatches the DIP excerpt to the DI Method Engine (DIME). This component is in charge of executing the
received DIP script either by calling the appropriate DIBOs implementation (Play, Release, Adapt, etc.) or, if
present, by executing the ECMA script embedded in the DIP description.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

100

14 MPEG-21 DIA Processing(EPFL)

Module/Tool Profile
Compress/uncompress Support

Responsible Name Marco Mattavelli
Responsible Partner EPFL
Status (proposed/approved)
Implemented/not implemented Not implemented
Status of the implementation
Executable or Library/module
(Support)

Single Thread or Multithread
Language of Development C++
Platforms supported Windows XP
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/.....................

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

101

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

14.1 General Description of the Module
To achieve interoperable transparent access to (distributed) advanced multimedia content, the adaptation of
Digital Items is required. This concept is illustrated in the figure below. As shown in this conceptual
architecture, a Digital Item is subject to a resource adaptation engine, as well as a description adaptation
engine, which together produce the adapted Digital Item.

Digital Item Adapted
Digital Item

DIA Tools

Digital Item
Adaptation Engine

Resource
Adaptation Engine

Description
Adaptation Engine

DIA Descriptions

Scope of
standardization

Digital Item Adapted
Digital Item

DIA Tools

Digital Item
Adaptation Engine

Resource
Adaptation Engine

Description
Adaptation Engine

DIA Descriptions

Scope of
standardization

Scope of
standardization

Illustration of Digital Item Adaptation

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

102

The seventh part of ISO/IEC 21000 (MPEG-21) specifies descriptions and format-independent mechanisms
to provide support for Digital Item Adaptation in terms of resource adaptation, description adaptation, and/or
Quality of Service management and are collectively referred to as DIA Tools. It is important to emphasise
that the adaptation engines themselves are non-normative tools of Digital Item Adaptation.

In the context of AXMEDIS, the MPEG-21 DIA Tools of interest are the Usage Environment Description
Tools, which include User characteristics, Terminal capabilities, Network characteristics and Natural
environment characteristics. These tools provide descriptive information about the various properties of
the usage environment, which originate from Users, to accommodate, for example, the adaptation of Digital
Items for transmission, storage and consumption.

1. User characteristics: These are tools for describing various characteristics of Users, including
general User information, usage preferences and usage history, presentation preferences,
accessibility characteristics, mobility characteristics and destination.

2. Terminal capabilities: The description of a terminal's capabilities is primarily required to satisfy
consumption and processing constraints of a particular terminal. Terminal capabilities are defined by
a wide variety of attributes. Among them are codec capabilities, which include encoding and
decoding capabilities, device properties, which include power, storage and data I/O characteristics,
and input-output characteristics, which include display and audio output capabilities.

3. Network characteristics: These tools specify network characteristics in terms of network
capabilities and conditions, including available bandwidth, delay and error characteristics. These
descriptions could be used for efficient and robust transmission of resources.

4. Natural Environment Characteristics: These tools are used to describe natural environment
characteristics including location and time of usage of a Digital Item, as well as characteristics that
pertain to audio-visual aspects. For the visual aspects, illumination characteristics that may affect the
perceived display of visual information are specified. For the audio aspects, the description of the
noise levels and a noise frequency spectrum are specified.

As an example, an instantiation of the codec capabilities of a terminal is given below. In this description
instance, the terminal is capable of decoding MP3 and AMR audio formats, the JPEG image format, and the
MPEG-4 video format (Simple Profile @ Level 1). It is also able to encode audio in an AMR format and
encode video in the MPEG-4 format (Simple Profile @ Level 1).

<DIA>
 <Description xsi:type="UsageEnvironmentType">
 <UsageEnvironmentProperty xsi:type="TerminalsType">
 <Terminal>
 <TerminalCapability xsi:type="CodecCapabilitiesType">
 <Decoding xsi:type="AudioCapabilitiesType">
 <Format

 href="urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001:4.4">
 <mpeg7:Name xml:lang="en">MP3</mpeg7:Name>
 </Format>
 <Format
href="urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001:6">
 <mpeg7:Name xml:lang="en">AMR</mpeg7:Name>
 </Format>
 </Decoding>
 <Decoding xsi:type="ImageCapabilitiesType">
 <Format
href="urn:mpeg:mpeg7:cs:VisualCodingFormatCS:2001:4">
 <mpeg7:Name xml:lang="en">JPEG</mpeg7:Name>
 </Format>
 </Decoding>
 <Decoding xsi:type="VideoCapabilitiesType">
 <Format

 href="urn:mpeg:mpeg7:cs:VisualCodingFormatCS:2001:3.1.2">
 <mpeg7:Name xml:lang="en">

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

103

 MPEG-4 Visual Simple Profile @ Level
1
 </mpeg7:Name>
 </Format>
 </Decoding>
 <Encoding xsi:type="AudioCapabilitiesType">
 <Format
href="urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001:6">
 <mpeg7:Name xml:lang="en">AMR</mpeg7:Name>
 </Format>
 </Encoding>
 <Encoding xsi:type="VideoCapabilitiesType">
 <Format

 href="urn:mpeg:mpeg7:cs:VisualCodingFormatCS:2001:3.1.2">
 <mpeg7:Name xml:lang="en">
 MPEG-4 Visual Simple Profile @ Level
1
 </mpeg7:Name>
 </Format>
 </Encoding>
 </TerminalCapability>
 </Terminal>
 </UsageEnvironmentProperty>
 </Description>
</DIA>

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

104

15 MPEG-21 DIA (EPFL)

MISSING

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

105

16 AXMEDIS Data Model (DSI)
It also includes a description of the AXMEDIS details that make of AXMEDIS of a specialization of
MPEG21 format.

16.1 AXMEDIS Objects as MPEG21 Objects
An AXMEDIS Object has to be an MPEG21 digital item but any MPEG21 digital item is not an AXMEDIS
Object. This means that an AXMEDIS Object will have a specific structure and will not support all the
extremely flexible structuring capabilities of MPEG21 digital items.
In this section will be investigated how AXMEDIS Objects could be represented using the structuring
features of MPEG21.

16.1.1 MPEG21 Digital Items
The following figure describes how a MPEG21 Digital Item is structured.

For a complete description see part 2 of the MPEG21 standard describing the Digital Item Description
Language. This part of the standard is related to unprotected digital items only.

The elements contained in a MPEG21 digital items are:

• Container – is a container of items or of other containers;
• Item – represents a digital item, it contains Descriptors (metadata of the whole digital item)

Components (content that builds up the item), and it also contains other secondary elements;
• Descriptor – contains metadata thought a Statement element or a Component (e.g. for thumbnails)
• Component – contains Resources and Descriptors (metadata of the resource);
• Resource – contains an external reference to the resource (audio, video, text,…) or it can host it

inside the element using base64 encoding;
• Annotation – contains an annotation
• Anchor – is a link into the content
• Condition, Choice, Selection – are used to group sub parts of the item on the basis of end user

selections, this to avoid streaming of big items.
For references to other elements the xi:include elements can be used.

When considering protected MPEG21 digital items, the standardization process of this feature, is not
currently at level of International Standard but at level of Committee Draft.

Protected content in MPEG21 is obtained by substituting a sub tree of the original XML tree with an element
having the same name (but with different namespace) and containing the protected version of the sub tree in
binary form and the additional information needed to enable access to the content.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

106

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

107

16.1.2 AXMEDIS Objects
AXMEDIS Objects can be classified as:

Basic AXMEDIS Object: containing one or more digital resources (image, video, document, etc.) and

metadata related to the whole object. Resources can be stored inside the object or outside.
Protected Basic AXMEDIS Object: containing one or more protected digital resources and metadata of the

whole object (in clear but certified). Protected resources can be stored inside the object or outside.
Composite AXMEDIS Object: containing a set of AXMEDIS Objects (Basic or Composite, protected or

not). It has specific metadata for the whole object in addition to metadata related to sub-objects. The
sub-objects can be stored inside the object or referenced.

Protected Composite AXMEDIS Object: as the previous but the whole object is protected (the metadata of
the whole object and of the sub-objects has to be accessible in clear)

Referred AXMEDIS Object: refers to an AXMEDIS object using a url/urn, it may contain metadata of the
object.

Governed AXMEDIS Object: anyone of the previous containing the license to use the object

In the following possible mappings of AXMEDIS Objects as MPEG21 digital items are reported. A tree like
structure is used to represent the XML structure.

MPEG21 Descriptors are used to contain metadata related to the content. The Statement element inside the
Descriptor can contain any XML or text, MPEG21 does not fix its content.
The order where Descriptor elements are reported is not fixed, however some of them are required (have to
be present) and others are optional (may be missing). Some Descriptors are specified in the standard for
Digital Item Identification:

• Identifier, used to identify the object, MPEG21 does not provide a new identification scheme but it
allows to host any kind of identification code. A Registration Authority will be set up to register
identification schemes to be used in MPEG21 Digital Items. A URI is used as identifier, for
Example: <dii:Identifier>urn:mpegRA:mpeg21:dii:isrc:US-ZO3-99-32476</dii:Identifier> identifies an object
using a ISRC code. An Identifier can be used to store the AXMEDIS Object ID.

• RelatedIdentifier, used to identify the work with a uri. It can be used to store the AXMEDIS Work
ID. Example: <dii:RelatedIdentifier>urn:mpegRA:mpeg21:dii:iscw:T-034.524.680-1</dii:RelatedIdentifier>

The AXInfo element is used to contain information specific for AXMEDIS framework. Metadata like title,
author, etc. and mpeg7 metadata are not stored inside AXInfo to allow MPEG21 terminals to access to these
metadata even if they are not AXMEDIS compliant tools. Other AXMEDIS specific metadata related to the
content can be defined (e.g. for technical information), and hosted in specific Descriptor elements, if a
suitable standardized format is not available (e.g mpeg7).

The following example shows an example of an object with multiple descriptors:
<?xml version="1.0" encoding="UTF-8"?>
<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS" xmlns:ax="urn:axmedis:01" xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-
NS" xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
xmlns:mx="urn:mpeg:mpeg21:2003:01-REL-MX-NS" xmlns:sx="urn:mpeg:mpeg21:2003:01-REL-SX-NS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:axmedis:01 AXMEDIS.xsd">
 <Item>
 <!--
 Descriptor containing the AXOID to identify the object (REQUIRED)
 -->
 <Descriptor id="dsc_id">
 <Statement mimeType="text/xml">
 <ax:ObjectIdentifier>
 <dii:Identifier>urn:axmedis:axoid:A001AGSHDI</dii:Identifier>
 <Version>0</Version>
 </ax:ObjectIdentifier>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the AXInfo containing information regarding the object (REQUIRED)

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

108

 -->
 <Descriptor id="public_dsc_ax">
 <Statement mimeType="text/xml">
 <ax:AXInfo>
 …
 </ax:AXInfo>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the Dublin Core information regarding the object (REQUIRED)
 -->
 <Descriptor id="public_dsc_dc">
 <Statement mimeType="text/xml">
 <rdf:Description>
 <dc:title xml:lang="en">When the Thistle Blooms</dc:title>
 <dc:title xml:lang="it">Quando il Cardo Sboccia</dc:title>
 <dc:creator>Always Red</dc:creator>
 <dc:publisher>PDQ Records</dc:publisher>
 </rdf:Description>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the MPEG7 information regarding the object (OPTIONAL)
 -->
 <Descriptor id="public_dsc_mpeg7">
 <Statement mimeType="text/xml">
 <mpeg7:Mpeg7>
 …
 </mpeg7:Mpeg7>
 </Statement>
 </Descriptor>
 <!--
 Component elements containing the resource (REQUIRED for single object)
 -->
 <Component id="cmp">
 <Resource mimeType="video/mp4v-es" encoding="base64">
 aadsfadsfsyd647dgd78r85hfuv8nbr8fnf985nf9g9gm569gmty9ghmg90hdhd8fhfjd9d9
 dhd8f95mnfk9gfm59fgt95mkt0jhdf8fnj587fjd67n3jf84mf00eedjf8fj58tm58fm58emds9o
 ...
 </Resource>
 </Component>
 </Item>
</DIDL>

References in an object to other objects can be done using the AXOID. This allows to reconstruct objects
relations in any other place. An additional complexity is due to the use of temporary AXOIDs which are
forbidden to be used outside the AXMEDIS Factory.

References to resources (audio, document, video, … files) can be done using a path. However have to be
noted that a resource have not a unique ID this means that sharing a resource among objects is not possible.

16.1.3 Basic AXMEDIS Object:

DIDL
 Item
 Descriptor
 Statement
 dii:Identifier (contains the AXOID, REQUIRED)
 urn:axmedis:obj:id:AXOID1
 Descriptor
 Statement
 ax:FingerprintAlgID (contains the fingerprint algorithm id, REQUIRED for published obj)
 Descriptor
 Statement
 dsig:Signature (contains the object signature, REQUIRED for published obj)
 …
 Descriptor
 Statement

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

109

 dii:Identifier (contains any other identifier, OPTIONAL)
 Descriptor
 Statement
 dii:RelatedIdentifier (contains the WorkID, OPTIONAL)
 Descriptor
 Statement
 dii:Type (contains the type of object, OPTIONAL)
 Descriptor
 Statement
 ax:AXInfo (contains AXMEDIS specific information, REQUIRED)
 Descriptor
 Descriptor
 Statement
 ax:MetadataStatus (contains information on the status of the DC metadata, OPTIONAL)
 Descriptor
 Statement
 ax:MetadataVisibility (contains the visibility of the DC metadata, OPTIONAL, public if not

present)
 Descriptor
 Statement
 dsig:Signature (contains the signature of the DC metadata, OPTIONAL)
 Statement
 rdf:Description (contains Dublin Core metadata, REQUIRED)
 Descriptor
 Statement
 mpeg7:Mpeg7 (contains MPEG7 metadata, OPTIONAL)
 Descriptor
 Statement
 ???:XXX (contains any other metadata in XML, OPTIONAL)
 Component
 Resource (contains/refers the resource, REQUIRED)
 Component (another component, OPTIONAL)
 Resource (contains/refers the resource, REQUIRED)
 …

Thus a Basic AXMEDIS Object is structured in the following way:

DIDL
 Item

 OBJECT_AXOID
 OBJECT_METADATA
 CONTENT

where:
• OBJECT_AXOID is a Descriptor containing the ax:ObjectIdentifier element with the AXOID of the

basic object;
• OBJECT_METADATA is a sequence of Descriptors containing the metadata of the basic object;
• CONTENT is a sequence of Components
Each Descriptor element can have inside other Descriptor elements with information on the metadata itself.
This descriptors can contain:

• an ax:MetadataStatus element with information on the status of metadata
• an ax:MetadataVisisbility element with information on the visibility of the metadata when the object

is protected: public (the default one) when the metadata has to be accessible in clear, private when
the metadata has to be accessible only after unprotection.

Note: Multiple components will be used for HTML documents containing images inside. Normally only one
component is present.

16.1.4 Protected Basic AXMEDIS Object:
A Protected AXMEDIS Object is obtained by protecting the root Item.
The dii:Identifier with the AXOID, the ax:FingerprintAlgID and the dsig:Signature for the protected object
are stored in a AXMEDIS specific element (ax:ObjectIdentification) inside the ipmpdidl:Identifier.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

110

The descriptors of the protected object are accessible in clear in the ipmpdidl:ContentInfo element, it should
not contain another ax:FingerprintAlgID element or a different dsig:Signature element.

DIDL
 ipmpdidl:Item
 ipmpdidl:Identifier (contains the AXOID, REQUIRED)
 ax:ObjectIdentification
 dii:Identifier
 ax:FingerprintAlgID
 dsig:Signature
 ipmpdidl:Info (contains protection information)
 ipmpinfo:IPMPInfoDescriptor
 ipmpinfo:Tool
 …
 ipmpdidl:ContentInfo (contains metadata of the object in clear)
 didl:Item
 Descriptor
 Statement
 dii:Identifier (contains the AXOID, REQUIRED)
 Descriptor
 Statement
 dii:Identifier (contains any other identifier, OPTIONAL)
 Descriptor
 Statement
 dii:RelatedIdentifier (contains the WorkID, OPTIONAL)
 Descriptor
 Statement
 dii:Type (contains the type of object, OPTIONAL)
 Descriptor
 Statement
 ax:AXInfo (contains AXMEDIS specific information, REQUIRED)
 Descriptor
 Statement
 rdf:Description (contains Dublin Core metadata, REQUIRED)
 Descriptor
 Statement
 mpeg7:Mpeg7 (contains MPEG7 metadata, OPTIONAL)
 Descriptor
 Statement
 ???:XXX (contains any other metadata in XML, OPTIONAL)
 ipmpdidl:Contents
 XXXXXXXXXXXXXXXXXX
 …
 XXXXXXXXXXXXXXXXXX

16.1.5 Composite AXMEDIS Object:
A composite object obtained by composing objects O1, O2, … On is structured as follows:

DIDL
 Item

 OBJECT_AXOID
 OBJECT_METADATA
 FIRST_ITEM[O1]
 FIRST_ITEM[O2]
 …
 FIRST_ITEM[On]

where:
• OBJECT_AXOID is a Descriptor containing the AXOID of the composed object;
• OBJECT_METADATA is a sequence of Descriptors containing the metadata of the whole object
• FIRST_ITEM[O] is a function to get the first child item of the object, it is used to skip the DIDL tag.

the following is an example of double composition:

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

111

 AXOID1 = COMPOSE(AXOID2, AXOID3 = COMPOSE(AXOID4, AXOID5))

AXOID1 – a composite object
 AXOID2 – a basic object
 AXOID3 – a composite object
 AXOID4 – a basic object
 AXOID5 – a basic object

DIDL
 Item
 Descriptor (contains AXOID1)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Item
 Descriptor (contains AXOID2)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Component
 Item
 Descriptor (contains AXOID3)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Item
 Descriptor (contains AXOID4)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Component
 Item
 Descriptor (contains AXOID5)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Component

16.1.6 Protected Composite AXMEDIS Object:
A Protected Composite AXMEDIS Object is obtained, as for basic objects, protecting the root Item.

DIDL
 ipmpdidl:Item
 ipmpdidl:Identifier
 ax:ObjectIdentification
 dii:Identifier (contains AXOID1)
 FingerprintAlgID (contains the fingerprint algorithm used)
 dsig:Signature (contains the signature for the protected data)
 …
 ipmpdidl:Info (contains protection information)
 ipmpdidl:ContentInfo (contains metadata of the objectin clear)
 didl:Item (contains the metadata of the object)
 Descriptor (contains AXOID1)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Item
 Descriptor (contains AXOID2)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Item
 Descriptor (contains AXOID3)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Item
 Descriptor (contains AXOID4)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Item

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

112

 Descriptor (contains AXOID5)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 ipmpdidl:Contents
 XXXXXXXXXXXXXXXXXX
 …
 XXXXXXXXXXXXXXXXXX

16.1.7 Referred AXMEDIS Object
A referred object may contain metadata of the referred object and it references to the real AXMEDIS object.
A referred object my be used in places where should be any other kind of AXMEDIS object (basic,
composite, basic protected, composite protected)
Referred objects can be used to produce query/promotional objects.
The following is an example.

DIDL
 xi:include ref=…AXOID1…
 xi:fallback
 didl:Item
 Descriptor (contains AXOID1)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Item
 Descriptor (contains AXOID2)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Item
 Descriptor (contains AXOID3)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Item
 Descriptor (contains AXOID4)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)
 Item
 Descriptor (contains AXOID5)
 Descriptor (contains AXinfo)
 Descriptor (contains Dublin Core metadata)

16.1.8 Governed AXMEDIS Object:
A Governed AXMEDIS Object contains the licence inside a descriptor like in the following example:

DIDL
 Item
 Descriptor
 Statement
 dii:Identifier (contains the AXOID, REQUIRED)
 Descriptor
 Statement
 dii:RelatedIdentifier (contains the WorkID, OPTIONAL)
 Descriptor
 Statement
 ax:AXInfo (contains AXMEDIS specific information, REQUIRED)
 Descriptor
 Statement
 rdf:Description (contains Dublin Core metadata, REQUIRED)
 Descriptor
 Statement
 mpeg7:Mpeg7 (contains MPEG7 metadata, OPTIONAL)
 Descriptor
 Statement
 r:license (contains the license for the object, OPTIONAL)
 … (any other of the previous structures)

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

113

16.1.9 AXMEDIS Metadata Model (DSI, EPFL, …..)
Metadata information related to an object, as seen in previous section, is split among various Descriptors.
These Descriptors can contain:

• identification information (as standardized by MPEG21) for AXOID, AXWID and Type
• AXMEDIS specific information regarding object life-cycle (in AXInfo)
• Dublin Core metadata
• MPEG 7 metadata
• any other metadata represented in XML

These descriptors may contain other Descriptors with information on the metadata itself like:
• metadata status explaining the current status of the metadata provided (e.g. "to be revised",

"minimal");
• metadata visibility (public/private) telling if the metadata should be provided in clear when the

object is protected (default if not stated) or should be accessible only after deprotection;
• metadata certification containing a signature for the statement contained in the descriptor.

Thus the structure for a descriptor is:
Descriptor
 Descriptor
 Statement
 ax:MetadataStatus
 "to be revised"
 Descriptor
 Statement
 ax:MetadataVisibility
 "private"
 Descriptor
 Statement
 dsig:Signature
 Statement
 mpeg7:Mpeg7
The descriptors can be found in any order and are all optional.

16.1.9.1 Dublin Core Metadata
The Dublin Core Metadata Initiative produced RDF schemas and XML schemas to allow the representation
of Dublin Core metadata (for details see http://dublincore.org/) AXMEDIS will use this schemas to represent
basic metadata.

The 15 basic metadata terms defined in Dublin Core are:

• contributor
• coverage
• creator
• date
• description
• format
• identifier
• language
• publisher
• relation
• rights
• source
• subject
• title
• type

each term may be repeated more than one time meaning that all of them applies to the resource described.
Terms may be written in a different language and the language used is identified by a xml:lang attribute.
A resource with:

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

114

 <dc:creator>J. Doe<dc:creator>
 <dc:creator>M. White<dc:creator>
 <dc:title xml:lang=”en”>A title<dc:title>
 <dc:title xml:lang=”it”>Un titolo<dc:title>

has two authors (J. Doe and M. White) and a title expressed in English and Italian.

In the following table is reported the definition for the DC terms as found in
(http://dublincore.org/documents/dcmi-terms/).

contributor

URI: http://purl.org/dc/elements/1.1/contributor

Definition: An entity responsible for making contributions to the content of the resource.

Comment: Examples of a Contributor include a person, an organisation, or a service. Typically, the name of a Contributor should
be used to indicate the entity.

coverage

URI: http://purl.org/dc/elements/1.1/coverage

Definition: The extent or scope of the content of the resource.

Comment: Coverage will typically include spatial location (a place name or geographic coordinates), temporal period (a period
label, date, or date range) or jurisdiction (such as a named administrative entity). Recommended best practice is to
select a value from a controlled vocabulary (for example, the Thesaurus of Geographic Names [TGN]) and that, where
appropriate, named places or time periods be used in preference to numeric identifiers such as sets of coordinates or
date ranges.

References: [TGN] http://www.getty.edu/research/tools/vocabulary/tgn/index.html

creator

URI: http://purl.org/dc/elements/1.1/creator

Definition: An entity primarily responsible for making the content of the resource.

Comment: Examples of a Creator include a person, an organisation, or a service. Typically, the name of a Creator should be used
to indicate the entity.

date

URI: http://purl.org/dc/elements/1.1/date

Definition: A date associated with an event in the life cycle of the resource.

Comment: Typically, Date will be associated with the creation or availability of the resource. Recommended best practice for
encoding the date value is defined in a profile of ISO 8601 [W3CDTF] and follows the YYYY-MM-DD format.

References: [W3CDTF] http://www.w3.org/TR/NOTE-datetime

description

URI: http://purl.org/dc/elements/1.1/description

Definition: An account of the content of the resource.

Comment: Description may include but is not limited to: an abstract, table of contents, reference to a graphical representation of
content or a free-text account of the content.

format

URI: http://purl.org/dc/elements/1.1/format

Definition: The physical or digital manifestation of the resource.

Comment: Typically, Format may include the media-type or dimensions of the resource. Format may be used to determine the
software, hardware or other equipment needed to display or operate the resource. Examples of dimensions include size
and duration. Recommended best practice is to select a value from a controlled vocabulary (for example, the list of
Internet Media Types [MIME] defining computer media formats).

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

115

References: [MIME] http://www.isi.edu/in-notes/iana/assignments/media-types/media-types

identifier

URI: http://purl.org/dc/elements/1.1/identifier

Definition: An unambiguous reference to the resource within a given context.

Comment: Recommended best practice is to identify the resource by means of a string or number conforming to a formal
identification system. Example formal identification systems include the Uniform Resource Identifier (URI) (including
the Uniform Resource Locator (URL)), the Digital Object Identifier (DOI) and the International Standard Book
Number (ISBN).

language

URI: http://purl.org/dc/elements/1.1/language

Definition: A language of the intellectual content of the resource.

Comment: Recommended best practice is to use RFC 3066 [RFC3066], which, in conjunction with ISO 639 [ISO639], defines
two- and three-letter primary language tags with optional subtags. Examples include "en" or "eng" for English, "akk"
for Akkadian, and "en-GB" for English used in the United Kingdom.

References: [RFC3066] http://www.ietf.org/rfc/rfc3066.txt

References: [ISO639] http://www.loc.gov/standards/iso639-2/

publisher

URI: http://purl.org/dc/elements/1.1/publisher

Definition: An entity responsible for making the resource available

Comment: Examples of a Publisher include a person, an organisation, or a service. Typically, the name of a Publisher should be
used to indicate the entity.

relation

URI: http://purl.org/dc/elements/1.1/relation

Definition: A reference to a related resource.

Comment: Recommended best practice is to reference the resource by means of a string or number conforming to a formal
identification system.

rights

URI: http://purl.org/dc/elements/1.1/rights

Definition: Information about rights held in and over the resource.

Comment: Typically, a Rights element will contain a rights management statement for the resource, or reference a service
providing such information. Rights information often encompasses Intellectual Property Rights (IPR), Copyright, and
various Property Rights. If the Rights element is absent, no assumptions can be made about the status of these and other
rights with respect to the resource.

source

URI: http://purl.org/dc/elements/1.1/source

Definition: A reference to a resource from which the present resource is derived.

Comment: The present resource may be derived from the Source resource in whole or in part. Recommended best practice is to
reference the resource by means of a string or number conforming to a formal identification system.

subject

URI: http://purl.org/dc/elements/1.1/subject

Definition: The topic of the content of the resource.

Comment: Typically, a Subject will be expressed as keywords, key phrases or classification codes that describe a topic of the
resource. Recommended best practice is to select a value from a controlled vocabulary or formal classification scheme.

title

URI: http://purl.org/dc/elements/1.1/title

Definition: A name given to the resource.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

116

Comment: Typically, a Title will be a name by which the resource is formally known.

Multiplicity: 0..many (title in many languages)

type

URI: http://purl.org/dc/elements/1.1/type

Definition: The nature or genre of the content of the resource.

Comment: Type includes terms describing general categories, functions, genres, or aggregation levels for content. Recommended
best practice is to select a value from a controlled vocabulary (for example, the DCMI Type Vocabulary
[DCMITYPE]). To describe the physical or digital manifestation of the resource, use the Format element.

References: [DCMITYPE] http://dublincore.org/documents/dcmi-type-vocabulary/

Many other terms has been introduced as refinements of these basic terms like:

• abstract as refinement of description
• alternative as refinement of title
• comformsTo as refinemet of relation
• etc.

The full list is reported in the following and additional information can be found in
(http://dublincore.org/documents/dcmi-terms/).

abstract

Definition: A summary of the content of the resource.

Refines: http://purl.org/dc/elements/1.1/description

accessRights

Definition: Information about who can access the resource or an indication of its security status.

Comment: Access Rights may include information regarding access or restrictions based on privacy, security or other regulations.

Refines: http://purl.org/dc/elements/1.1/rights

alternative

Definition: Any form of the title used as a substitute or alternative to the formal title of the resource.

Comment: This qualifier can include Title abbreviations as well as translations.

Refines: http://purl.org/dc/elements/1.1/title

audience

Definition: A class of entity for whom the resource is intended or useful.

Comment: A class of entity may be determined by the creator or the publisher or by a third party.

available

Definition: Date (often a range) that the resource will become or did become available.

Refines: http://purl.org/dc/elements/1.1/date

bibliographicCitation

Definition: A bibliographic reference for the resource.

Comment: Recommended practice is to include sufficient bibliographic detail to identify the resource as unambiguously as
possible, whether or not the citation is in a standard form.

Refines: http://purl.org/dc/elements/1.1/identifier

conformsTo

Definition: A reference to an established standard to which the resource conforms.

Refines: http://purl.org/dc/elements/1.1/relation

created

Definition: Date of creation of the resource.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

117

Refines: http://purl.org/dc/elements/1.1/date

dateAccepted

Definition: Date of acceptance of the resource (e.g. of thesis by university department, of article by journal, etc.).

Refines: http://purl.org/dc/elements/1.1/date

dateCopyrighted

Definition: Date of a statement of copyright.

Refines: http://purl.org/dc/elements/1.1/date

dateSubmitted

Definition: Date of submission of the resource (e.g. thesis, articles, etc.).

Refines: http://purl.org/dc/elements/1.1/date

educationLevel

Definition: A general statement describing the education or training context. Alternatively, a more specific statement of the location
of the audience in terms of its progression through an education or training context.

Refines: http://purl.org/dc/terms/audience

extent

Definition: The size or duration of the resource.

Refines: http://purl.org/dc/elements/1.1/format

hasFormat

Definition: The described resource pre-existed the referenced resource, which is essentially the same intellectual content presented
in another format.

Refines: http://purl.org/dc/elements/1.1/relation

hasPart

Definition: The described resource includes the referenced resource either physically or logically.

Refines: http://purl.org/dc/elements/1.1/relation

hasVersion

Definition: The described resource has a version, edition, or adaptation, namely, the referenced resource.

Refines: http://purl.org/dc/elements/1.1/relation

isFormatOf

Definition: The described resource is the same intellectual content of the referenced resource, but presented in another format.

Refines: http://purl.org/dc/elements/1.1/relation

isPartOf

Definition: The described resource is a physical or logical part of the referenced resource.

Refines: http://purl.org/dc/elements/1.1/relation

isReferencedBy

Definition: The described resource is referenced, cited, or otherwise pointed to by the referenced resource.

Refines: http://purl.org/dc/elements/1.1/relation

isReplacedBy

Definition: The described resource is supplanted, displaced, or superseded by the referenced resource.

Refines: http://purl.org/dc/elements/1.1/relation

isRequiredBy

Definition: The described resource is required by the referenced resource, either physically or logically.

Refines: http://purl.org/dc/elements/1.1/relation

issued

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

118

Definition: Date of formal issuance (e.g., publication) of the resource.

Refines: http://purl.org/dc/elements/1.1/date

isVersionOf

Definition: The described resource is a version, edition, or adaptation of the referenced resource. Changes in version imply
substantive changes in content rather than differences in format.

Refines: http://purl.org/dc/elements/1.1/relation

license

Definition: A legal document giving official permission to do something with the resource.

Comment: Recommended best practice is to identify the license using a URI. Examples of such licenses can be found at
http://creativecommons.org/licenses/.

Refines: http://purl.org/dc/elements/1.1/rights

mediator

Definition: A class of entity that mediates access to the resource and for whom the resource is intended or useful.

Comment: The audiences for a resource are of two basic classes: (1) an ultimate beneficiary of the resource, and (2) frequently, an
entity that mediates access to the resource. The mediator element refinement represents the second of these two classes.

Refines: http://purl.org/dc/terms/audience

medium

Definition: The material or physical carrier of the resource.

Refines: http://purl.org/dc/elements/1.1/format

modified

Definition: Date on which the resource was changed.

Refines: http://purl.org/dc/elements/1.1/date

provenance

Definition: A statement of any changes in ownership and custody of the resource since its creation that are significant for its
authenticity, integrity and interpretation.

Comment: The statement may include a description of any changes successive custodians made to the resource.

references

Definition: The described resource references, cites, or otherwise points to the referenced resource.

Refines: http://purl.org/dc/elements/1.1/relation

replaces

Definition: The described resource supplants, displaces, or supersedes the referenced resource.

Refines: http://purl.org/dc/elements/1.1/relation

requires

Definition: The described resource requires the referenced resource to support its function, delivery, or coherence of content.

Refines: http://purl.org/dc/elements/1.1/relation

rightsHolder

Definition: A person or organization owning or managing rights over the resource.

Comment: Recommended best practice is to use the URI or name of the Rights Holder to indicate the entity.

spatial

Definition: Spatial characteristics of the intellectual content of the resource.

Refines: http://purl.org/dc/elements/1.1/coverage

tableOfContents

Definition: A list of subunits of the content of the resource.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

119

Refines: http://purl.org/dc/elements/1.1/description

temporal

Definition: Temporal characteristics of the intellectual content of the resource.

Refines: http://purl.org/dc/elements/1.1/coverage

valid

Definition: Date (often a range) of validity of a resource.

Refines: http://purl.org/dc/elements/1.1/date

AXMEDIS will support all these metadata (basic and refined), however in case of collision with information
stored in other descriptors like in AXInfo or Identifiers, these ones are considered valid and the DC ones are
dependent. Meaning that in case of inconsistency between these information the AXInfo and the Identifiers
have a higher priority and can be used to fix the DC values (under user control).

Have to be noted that not all refined elements may have sense in the AXMEDIS context, thus some of them
may be not considered by some applications (e.g. DB may not index some metadata).

16.1.10 Examples of AXMEDIS Objects

Basic AXMEDIS Object
The following is an example of a Basic AXMEDIS Object

<?xml version="1.0" encoding="UTF-8"?>
<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS" xmlns:ax="urn:axmedis:01" xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS"
xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS" xmlns:mx="urn:mpeg:mpeg21:2003:01-
REL-MX-NS" xmlns:sx="urn:mpeg:mpeg21:2003:01-REL-SX-NS" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:axmedis:01 AXMEDIS-new.xsd">
 <Item>
 <!--
 Descriptor containing the AXOID to identify the object (REQUIRED)
 -->
 <Descriptor id="dsc_id">
 <Statement mimeType="text/xml">
 <dii:Identifier>urn:axmedis:axoid:OBJ_A001AGSHDI</dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="dsc_fingprt">
 <Statement mimeType="text/xml">
 <ax:FingerprintAlgID>axobjFingerprint</ax:FingerprintAlgID>
 </Statement>
 </Descriptor>
 <Descriptor id="dsc_sign">
 <Statement mimeType="text/xml">
 <dsig:Signature>
 <dsig:SignedInfo>
 <dsig:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/WD-xml-c14n-20000710"/>
 <dsig:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa"/>
 <dsig:Reference>
 <dsig:Transforms>
 <dsig:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#base64"/>
 <dsig:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#null"/>
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <dsig:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</dsig:DigestValue>
 </dsig:Reference>
 </dsig:SignedInfo>

 <dsig:SignatureValue>MC0CFFrVLtRlkMc3Daon4BqqnkhCOlEaAhUAk8pH1iRNK+q1I+sisDTz2TFEALE=</dsig:SignatureValue>
 </dsig:Signature>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the RelatedIdentifier to identify the work (OPTIONAL)
 -->
 <Descriptor id="dsc_rel_id">

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

120

 <Statement mimeType="text/xml">
 <dii:RelatedIdentifier>urn:mpegRA:mpeg21:dii:iscw:T-034.524.680-1</dii:RelatedIdentifier>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the Type to identify the type of object (OPTIONAL)
 -->
 <Descriptor id="dsc_type">
 <Statement mimeType="text/xml">
 <dii:Type>Music</dii:Type>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the AXInfo containing information regarding the object (REQUIRED)
 -->
 <Descriptor id="dsc_axinfo">
 <Statement mimeType="text/xml">
 <ax:AXInfo>
 <ax:ObjectCreator>
 <ax:AXCID>... a creator ID ...</ax:AXCID>
 <ax:ObjectCreatorName>J. Doe</ax:ObjectCreatorName>
 <ax:ObjectCreatorURL>mailto:jdoe@invideo.com</ax:ObjectCreatorURL>
 <ax:ObjectCreatorCompany>InVideo</ax:ObjectCreatorCompany>
 <ax:ObjectCreatorCompanyURL>http://www.invideo.com</ax:ObjectCreatorCompanyURL>
 <ax:ObjectCreatorNationality>US</ax:ObjectCreatorNationality>
 </ax:ObjectCreator>
 <ax:AccessMode>read_write</ax:AccessMode>
 <ax:CreationDate>2004-12-27T15:00:00</ax:CreationDate>
 <ax:LastModificationDate>2004-12-27T16:43:00</ax:LastModificationDate>
 <ax:Version>1</ax:Version>
 <ax:Revision>1</ax:Revision>
 <ax:ObjectStatus>production</ax:ObjectStatus>
 <ax:ObjectType>BASIC</ax:ObjectType>
 <!--
 History of the object
 -->
 <ax:History>
 <ax:ObjVersion number="1">
 <ax:When>2004-12-27T16:27:00</ax:When>
 <ax:Who>J. Doe</ax:Who>
 <ax:Where>
 <ax:Organization>InVideo</ax:Organization>
 <ax:Site>Atlanta</ax:Site>
 <ax:Machine>JDOE_01</ax:Machine>
 </ax:Where>
 <ax:What>
 <ax:Description>First version</ax:Description>
 </ax:What>
 </ax:ObjVersion>
 <ax:ObjVersion number="2">
 <ax:When>2004-12-27T16:27:00</ax:When>
 <ax:Who>J. Doe</ax:Who>
 <ax:Where>
 <ax:Organization>InVideo</ax:Organization>
 <ax:Site>Atlanta</ax:Site>
 <ax:Machine>JDOE_05</ax:Machine>
 </ax:Where>
 <ax:What>
 <ax:Commands>
 <ax:Cmd>
 <ax:AXTID>.... a Tool ID ...</ax:AXTID>
 <ax:AXTTID>... a Tool Type ID...</ax:AXTTID>
 <ax:AXRTID>... a Real Tool ID ...</ax:AXRTID>
 <ax:Operation>
 <ax:Name>Add</ax:Name>
 </ax:Operation>
 <ax:Revision>1</ax:Revision>
 </ax:Cmd>
 <!-- To be completed -->
 </ax:Commands>
 </ax:What>
 </ax:ObjVersion>
 </ax:History>
 <!--
 Workflow information
 -->

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

121

 <ax:Workflow>
 <ax:WorkItemID>... a work item ID... </ax:WorkItemID>
 <ax:WorkspaceInstanceID>.... a workspace instance ID ...</ax:WorkspaceInstanceID>
 </ax:Workflow>
 <!--
 Rights potentially available on the object
 -->
 <ax:PotentialAvailableRights>
 <ax:LicensingURL>http://www.axmedis.org</ax:LicensingURL>
 <ax:PARStatus/>
 <r:license>
 <r:grantGroup>
 <r:grant>
 <mx:play/>
 <r:allConditions>
 <sx:validityIntervalFloating>
 <sx:duration>P1M</sx:duration>
 </sx:validityIntervalFloating>
 <r:validityInterval>
 <r:notAfter>2010-01-01T00:00:00</r:notAfter>
 </r:validityInterval>
 </r:allConditions>
 </r:grant>
 <r:grant>
 <mx:move/>
 </r:grant>
 <r:grant>
 <mx:delete/>
 </r:grant>
 </r:grantGroup>
 </r:license>
 </ax:PotentialAvailableRights>
 </ax:AXInfo>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the Dublin Core information regarding the object (REQUIRED)
 -->
 <Descriptor id="dsc_dc">
 <Descriptor>
 <Statement mimeType="text/xml">
 <ax:MetadataStatus>to be revised</ax:MetadataStatus>
 </Statement>
 </Descriptor>
 <Statement mimeType="text/xml">
 <rdf:Description>
 <dc:title xml:lang="en">When the Thistle Blooms</dc:title>
 <dc:title xml:lang="it">Quando il Cardo Sboccia</dc:title>
 <dc:creator>Always Red</dc:creator>
 <dc:publisher>PDQ Records</dc:publisher>
 </rdf:Description>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the MPEG7 information regarding the object (OPTIONAL)
 -->
 <Descriptor id="dsc_mpeg7">
 <Descriptor>
 <Statement mimeType="text/xml">
 <ax:MetadataVisibility>private</ax:MetadataVisibility>
 </Statement>
 </Descriptor>
 <Statement mimeType="text/xml">
 <mpeg7:Mpeg7>
 <mpeg7:DescriptionUnit xsi:type="MediaProfileType">
 <mpeg7:MediaFormat>
 <mpeg7:VisualCodingFormat href="urn:mpeg:mpeg7:cs:MPEG7VisualCodingFormatCS:3.1.2"/>
 <mpeg7:BitRate>64000</mpeg7:BitRate>
 </mpeg7:MediaFormat>
 <mpeg7:MediaQuality>
 <mpeg7:QualityRating ratingType="objective">
 <mpeg7:RatingValue>35.6</mpeg7:RatingValue>
 <mpeg7:RatingMetric>
 <mpeg7:QualityRatingScheme href="urn:mpeg:mpeg7:cs:MPEG-
7QualityRatingSchemeCS:2.3"/>
 <mpeg7:RatingStyle>higherBetter</mpeg7:RatingStyle>

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

122

 </mpeg7:RatingMetric>
 </mpeg7:QualityRating>
 </mpeg7:MediaQuality>
 </mpeg7:DescriptionUnit>
 </mpeg7:Mpeg7>
 </Statement>
 </Descriptor>
 <!--
 Component elements containing the resource (REQUIRED for single object)
 -->
 <Component id="cmp">
 <Resource mimeType="video/mp4v-es" encoding="base64">
 aadsfadsfsyd647dgd78r85hfuv8nbr8fnf985nf9g9gm569gmty9ghmg90hdhd8fhfjd9d9
 dhd8f95mnfk9gfm59fgt95mkt0jhdf8fnj587fjd67n3jf84mf00eedjf8fj58tm58fm58emds9o
 ...
 </Resource>
 </Component>
 </Item>
</DIDL>

Protected Basic AXMEDIS Object

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS" xmlns:ipmpdidl="urn:mpeg:mpeg21:2004:01-IPMPDIDL-NS"
xmlns:ipmp="urn:mpeg:mpeg21:2004:01-IPMP-NS" xmlns:ax="urn:axmedis:01" xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS"
xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS" xmlns:mx="urn:mpeg:mpeg21:2003:01-
REL-MX-NS" xmlns:sx="urn:mpeg:mpeg21:2003:01-REL-SX-NS" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:axmedis:01 AXMEDIS-new.xsd">
 <ipmpdidl:Item>
 <ipmpdidl:Identifier>
 <ax:ObjectIdentification>
 <dii:Identifier>urn:axmedis:obj:id:9d00eda5-cb23-48c3-8675-972fce3e0a22</dii:Identifier>
 <ax:FingerprintAlgID>axobjFingerprint</ax:FingerprintAlgID>
 <dsig:Signature>
 <dsig:SignedInfo>
 <dsig:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/WD-xml-c14n-20000710"/>
 <dsig:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa"/>
 <dsig:Reference>
 <dsig:Transforms>
 <dsig:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#base64"/>
 <dsig:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#null"/>
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <dsig:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</dsig:DigestValue>
 </dsig:Reference>
 </dsig:SignedInfo>

 <dsig:SignatureValue>MC0CFFrVLtRlkMc3Daon4BqqnkhCOlEaAhUAk8pH1iRNK+q1I+sisDTz2TFEALE=</dsig:SignatureValue>
 </dsig:Signature>
 </ax:ObjectIdentification>
 </ipmpdidl:Identifier>
 <ipmpdidl:Info>
 <ipmp:IPMPInfoDescriptor>
 <ipmp:Tool>
 <ipmp:ToolBaseDescription>
 <ipmp:IPMPToolID>urn:mpegRA:mpeg21:IPMP:ABC005:77:29</ipmp:IPMPToolID>
 <ipmp:Remote ref="urn:IPMPToolsServer:ToolEnc005-3484"/>
 </ipmp:ToolBaseDescription>
 </ipmp:Tool>
 <ipmp:Tool>
 <ipmp:ToolBaseDescription>
 <ipmp:IPMPToolID>urn:mpegRA:mpeg21:IPMP:ABC064:55:86</ipmp:IPMPToolID>
 <ipmp:Remote ref="urn:IPMPToolsServer:ToolWat005-6393"/>
 </ipmp:ToolBaseDescription>
 </ipmp:Tool>
 </ipmp:IPMPInfoDescriptor>
 </ipmpdidl:Info>
 <ipmpdidl:ContentInfo>
 <Item>
 <!--
 Descriptor containing the AXOID to identify the object (REQUIRED)
 -->
 <Descriptor id="dsc_id">

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

123

 <Statement mimeType="text/xml">
 <dii:Identifier>urn:axmedis:obj:id:9d00eda5-cb23-48c3-8675-972fce3e0a22</dii:Identifier>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the RelatedIdentifier to identify the work (OPTIONAL)
 -->
 <Descriptor id="dsc_rel_id">
 <Statement mimeType="text/xml">
 <dii:RelatedIdentifier>urn:mpegRA:mpeg21:dii:iscw:T-034.524.680-1</dii:RelatedIdentifier>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the Type to identify the type of object (OPTIONAL)
 -->
 <Descriptor id="dsc_type">
 <Statement mimeType="text/xml">
 <dii:Type>Music</dii:Type>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the AXInfo containing information regarding the object (REQUIRED)
 -->
 <Descriptor id="dsc_axinfo">
 <Statement mimeType="text/xml">
 <ax:AXInfo>
 <ax:ObjectCreator>
 <ax:AXCID>... a creator ID ...</ax:AXCID>
 <ax:ObjectCreatorName>J. Doe</ax:ObjectCreatorName>
 <ax:ObjectCreatorURL>mailto:jdoe@invideo.com</ax:ObjectCreatorURL>
 <ax:ObjectCreatorCompany>InVideo</ax:ObjectCreatorCompany>
 <ax:ObjectCreatorCompanyURL>http://www.invideo.com</ax:ObjectCreatorCompanyURL>
 <ax:ObjectCreatorNationality>US</ax:ObjectCreatorNationality>
 </ax:ObjectCreator>
 <ax:AccessMode>read_write</ax:AccessMode>
 <ax:CreationDate>2004-12-27T15:00:00</ax:CreationDate>
 <ax:LastModificationDate>2004-12-27T16:43:00</ax:LastModificationDate>
 <ax:Version>1</ax:Version>
 <ax:Revision>1</ax:Revision>
 <ax:ObjectStatus>production</ax:ObjectStatus>
 <ax:ObjectType>BASIC</ax:ObjectType>
 <!--
 History of the object
 -->
 <ax:History>
 <ax:ObjVersion number="1">
 <ax:When>2004-12-27T16:27:00</ax:When>
 <ax:Who>J. Doe</ax:Who>
 <ax:Where>
 <ax:Organization>InVideo</ax:Organization>
 <ax:Site>Atlanta</ax:Site>
 <ax:Machine>JDOE_01</ax:Machine>
 </ax:Where>
 <ax:What>
 <ax:Description>First version</ax:Description>
 </ax:What>
 </ax:ObjVersion>
 <ax:ObjVersion number="2">
 <ax:When>2004-12-27T16:27:00</ax:When>
 <ax:Who>J. Doe</ax:Who>
 <ax:Where>
 <ax:Organization>InVideo</ax:Organization>
 <ax:Site>Atlanta</ax:Site>
 <ax:Machine>JDOE_05</ax:Machine>
 </ax:Where>
 <ax:What>
 <ax:Commands>
 <ax:Cmd>
 <ax:AXTID>.... a Tool ID ...</ax:AXTID>
 <ax:AXTTID>... a Tool Type ID...</ax:AXTTID>
 <ax:AXRTID>... a Real Tool ID ...</ax:AXRTID>
 <ax:Operation>
 <ax:Name>Add</ax:Name>
 </ax:Operation>
 <ax:Revision>1</ax:Revision>
 </ax:Cmd>

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

124

 <!-- To be completed -->
 </ax:Commands>
 </ax:What>
 </ax:ObjVersion>
 </ax:History>
 <!--
 Workflow information
 -->
 <ax:Workflow>
 <ax:WorkItemID>... a work item ID... </ax:WorkItemID>
 <ax:WorkspaceInstanceID>.... a workspace instance ID ...</ax:WorkspaceInstanceID>
 </ax:Workflow>
 <!--
 Rights potentially available on the object
 -->
 <ax:PotentialAvailableRights>
 <ax:LicensingURL>http://www.axmedis.org</ax:LicensingURL>
 <ax:PARStatus/>
 <r:license>
 <r:grantGroup>
 <r:grant>
 <mx:play/>
 <r:allConditions>
 <sx:validityIntervalFloating>
 <sx:duration>P1M</sx:duration>
 </sx:validityIntervalFloating>
 <r:validityInterval>
 <r:notAfter>2010-01-01T00:00:00</r:notAfter>
 </r:validityInterval>
 </r:allConditions>
 </r:grant>
 <r:grant>
 <mx:move/>
 </r:grant>
 <r:grant>
 <mx:delete/>
 </r:grant>
 </r:grantGroup>
 </r:license>
 </ax:PotentialAvailableRights>
 </ax:AXInfo>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the Dublin Core information regarding the object (REQUIRED)
 -->
 <Descriptor id="dsc_dc">
 <Descriptor>
 <Statement mimeType="text/xml">
 <ax:MetadataStatus>to be revised</ax:MetadataStatus>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dsig:Signature>
 <dsig:SignedInfo>
 <dsig:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/WD-xml-c14n-
20000710"/>
 <dsig:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa"/>
 <dsig:Reference>
 <dsig:Transforms>
 <dsig:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#base64"/>
 <dsig:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#null"/>
 </dsig:Transforms>
 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <dsig:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</dsig:DigestValue>
 </dsig:Reference>
 </dsig:SignedInfo>

 <dsig:SignatureValue>MC0CFFrVLtRlkMc3Daon4BqqnkhCOlEaAhUAk8pH1iRNK+q1I+sisDTz2TFEALE=</dsig:SignatureValue>
 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Statement mimeType="text/xml">
 <rdf:Description>
 <dc:title xml:lang="en">When the Thistle Blooms</dc:title>

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

125

 <dc:title xml:lang="it">Quando il Cardo Sboccia</dc:title>
 <dc:creator>Always Red</dc:creator>
 <dc:publisher>PDQ Records</dc:publisher>
 </rdf:Description>
 </Statement>
 </Descriptor>
 <!--
 Descriptor containing the MPEG7 information regarding the object removed because it is private
 -->
 </Item>
 </ipmpdidl:ContentInfo>
 <ipmpdidl:Contents>agsdhsjdddjfhf945734md9v784nf.... 7283udfhjdf94jdbnhcysd8e</ipmpdidl:Contents>
 </ipmpdidl:Item>
</DIDL>

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

126

17 AXInfo (DSI)
The AXInfo contains information to manage the object in its entire life-cycle, it contains

• Creator information (AXCID, Name, Company, URLs, …)
• Contributor information (AXCID, Name, Company, URLs, …)
• Distributor information (AXDID, Name, URLs, …)
• Access information (read only or read/write)
• Creation and modification times
• The History of the object (version/revision, commands performed on the object)
• The Workflow information, etc.
• Potential Available Rights (PAR) for the object and licensing information

In the following documentation of AXInfo schema is reported.

element AXInfo

diagram

namespace urn:axmedis:01

children ObjectCreator ObjectContributor Owner Distributor AccessMode CreationDate LastModificationDate Version
Revision ObjectStatus ObjectType ObjectIsGoverned IsPromoOf ax:History Workflow
InternalPotentialAvailableRights PotentialAvailableRights

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

127

description

constraints if the AccessMode is missing it should be considered as readOnly

element AXInfo/ObjectCreator

diagram

namespace urn:axmedis:01

children AXCID ObjectCreatorName ObjectCreatorURL ObjectCreatorCompany ObjectCreatorCompanyURL
ObjectCreatorNationality

description It contains information regarding the person who created the object

example <ObjectCreator>
 <AXCID>9383726716152748549594873723</AXCID>
 <ObjectCreatorName>John Doe</ObjectCreatorName>
 <ObjectCreatorURL>mailto:j.doe@video2.org</ObjectCreatorURL>
 <ObjectCreatorCompany>VIDEO2</ObjectCreatorCompany>
 <ObjectCreatorCompanyURL>http://www.video2.com</ObjectCreatorCompanyURL>
 <ObjectCreatorNationality>US</ObjectCreatorNationality>
</ObjectCreator>

element AXInfo/ObjectCreator/AXCID

diagram

namespace urn:axmedis:01

type xs:string

description It contains the AXMEDIS Creator Identifier

element AXInfo/ObjectCreator/ObjectCreatorName

diagram

namespace urn:axmedis:01

type xs:string

description personal name of the creator

constraints This tag should be removed when published on the P2P or on B2C

element AXInfo/ObjectCreator/ObjectCreatorURL

diagram

namespace urn:axmedis:01

type xs:anyURI

description URL associated to the object creator, it could be the email address

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

128

constraints This tag should be removed when published on the P2P or on B2C

element AXInfo/ObjectCreator/ObjectCreatorCompany

diagram

namespace urn:axmedis:01

type xs:string

description name of the company of the creator

element AXInfo/ObjectCreator/ObjectCreatorCompanyURL

diagram

namespace urn:axmedis:01

type xs:anyURI

description URL of the company of the creator

element AXInfo/ObjectCreator/ObjectCreatorNationality

diagram

namespace urn:axmedis:01

type xs:string

description nationality of the creator company using the ISO 3166 two letters code

element AXInfo/ObjectContributor

diagram

namespace urn:axmedis:01

children AXCID ObjectContributorName ObjectContributorURL ObjectContributorCompany
ObjectContributorCompanyURL ObjectContributorNationality

description It contains information regarding the person contributing to the object realization

element AXInfo/ObjectContributor/AXCID

diagram

namespace urn:axmedis:01

type xs:string

description It contains the AXMEDIS Creator Identifier

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

129

element AXInfo/ObjectContributor/ObjectContributorName

diagram

namespace urn:axmedis:01

type xs:string

description personal name of the contributor

constraints This tag should be removed when published on the P2P or on B2C

element AXInfo/ObjectContributor/ObjectContributorURL

diagram

namespace urn:axmedis:01

type xs:anyURI

description URL associated to the object contributor, it could be the email address

constraints This tag should be removed when published on the P2P or on B2C

element AXInfo/ObjectContributor/ObjectContributorCompany

diagram

namespace urn:axmedis:01

type xs:string

description name of the company of the contributor

element AXInfo/ObjectContributor/ObjectContributorCompanyURL

diagram

namespace urn:axmedis:01

type xs:anyURI

description URL of the company of the creator

element AXInfo/ObjectContributor/ObjectContributorNationality

diagram

namespace urn:axmedis:01

type xs:string

description nationality of the contributor company using the ISO 3166 two letters code

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

130

element AXInfo/Owner

diagram

namespace urn:axmedis:01

children OwnerID OwnerName OwnerURL OwnerCompany OwnerCompanyURL OwnerNationality OwnerDescription

description It contains information regarding the owner of the content, if not present the creator is the owner

example <Owner>
 <OwnerID coding=”SIAE”>0038367292-292893-202383</OwnerID>
 <OwnerCompany>VIDEO Production</OwnerCompany>
 <OwnerCompanyURL>http://www.videoproduction.com</OwnerCompanyURL>
 <OwnerNationality>US</OwnerNationality>
</Owner>

element AXInfo/Owner/OwnerID

diagram

namespace urn:axmedis:01

type extension of xs:string

attributes Name Type Use Default Fixed
coding xs:string required

description identification code to identify the content owner, the coding attribute is used to state which coding scheme is used

example <OwnerID coding=”SIAE”>10293834-236272-353</OwnerID>

element AXInfo/Owner/OwnerName

diagram

namespace urn:axmedis:01

type xs:string

description name of the content owner

element AXInfo/Owner/OwnerURL

diagram

namespace urn:axmedis:01

type xs:anyURI

description the URL of the owner (website or email)

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

131

element AXInfo/Owner/OwnerCompany

diagram

namespace urn:axmedis:01

type xs:string

description company name owning the content

element AXInfo/Owner/OwnerCompanyURL

diagram

namespace urn:axmedis:01

type xs:string

description URL of the company owning the content (web site)

element AXInfo/Owner/OwnerNationality

diagram

namespace urn:axmedis:01

type xs:string

description Nationality of the content owner encoded using ISO 3166 two letters code

element AXInfo/Owner/OwnerDescription

diagram

namespace urn:axmedis:01

type extension of xs:string

attributes Name Type Use Default Fixed
lang xs:string required

description A description of the owner, the lang attribute states the language used for the description

element AXInfo/Distributor

diagram

namespace urn:axmedis:01

children AXDID DistributorName DistributorURL DistributorNationality

description It contains information about the Distributor that distributed the object, it will be present only in the B2C phase

element AXInfo/Distributor/AXDID

diagram

namespace urn:axmedis:01

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

132

type xs:string

description is the AXMEDIS Distributor Identifier

element AXInfo/Distributor/DistributorName

diagram

namespace urn:axmedis:01

type xs:string

description name of the distributor

element AXInfo/Distributor/DistributorURL

diagram

namespace urn:axmedis:01

type xs:anyURI

description URL of the distributor (web site)

element AXInfo/Distributor/DistributorNationality

diagram

namespace urn:axmedis:01

type xs:string

description Nationality of the distributor encoded using ISO 3166 two letters code

element AXInfo/AccessMode

diagram

namespace urn:axmedis:01

type restriction of xs:string

facets enumeration readOnly
enumeration read_write

description states if the object can be changed (read_write) or not (readOnly)

constraints The AccessMode should be the same in all the AXInfos of a composite object, however in case they are missing or
contradictory the one at the top level should be considered valid.

element AXInfo/CreationDate

diagram

namespace urn:axmedis:01

type xs:dateTime

description date and time of object creation

element AXInfo/LastModificationDate

diagram

namespace urn:axmedis:01

type xs:dateTime

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

133

description date and time of object modification

element AXInfo/Version

diagram

namespace urn:axmedis:01

type xs:nonNegativeInteger

description number of version of the object, it should be incremented each time the object is uploaded in the AXDB

element AXInfo/Revision

diagram

namespace urn:axmedis:01

type xs:nonNegativeInteger

description number of revision of the object, it should be incremented each time the object is saved to disk and it should return to 0
when uploaded in the AXDB

element AXInfo/ObjectStatus

diagram

namespace urn:axmedis:01

type xs:string

description status of the object (e.g. in production, published, …)

element AXInfo/ObjectType

diagram

namespace urn:axmedis:01

type restriction of xs:string

facets enumeration BASIC
enumeration COMPOSITE

description it states if the object is BASIC or COMPOSITE

constraints in case the object is BASIC it should have the structure of an AXMEDIS Basic Object, and the structure of an AXMEDIS
Composite Object for a COMPOSITE one. The value for this tag can be also derived from the object structure.

element AXInfo/ObjectIsGoverned

diagram

namespace urn:axmedis:01

type xs:boolean

description states if the object has a licence inside (true) or not (false)/

element AXInfo/IsPromoOf

diagram

namespace urn:axmedis:01

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

134

children AXOID

description contains a sequence of AXOIDs referring to objects for which this object is a promotional version

element AXInfo/IsPromoOf/AXOID

diagram

namespace urn:axmedis:01

type xs:token

description an identifier of an AXMEDIS object for which the whole object is a promotional version

element AXInfo/Workflow

diagram

namespace urn:axmedis:01

children WorkItemID WorkspaceInstanceID

description it contains information for the workflow management of the object

element AXInfo/Workflow/WorkItemID

diagram

namespace urn:axmedis:01

type xs:string

description the identifier of the workitem

element AXInfo/Workflow/WorkspaceInstanceID

diagram

namespace urn:axmedis:01

type xs:string

description Identifies the workspace instance

element AXInfo/InternalPotentialAvailableRights

diagram

namespace urn:axmedis:01

type ax:PotentialAvailableRightsType

children LicensingURL PARStatus r:license

description contains all the rights really available on the object, not all these rights can be exploited by end users or distributors.

the LicensingURL contains the URL to acquire a license for the object and PARStatus contains the status like to be

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

135

verified, verified, …

constraints the license is not a complete licence, it is used to contain only the grants but without the principal and the resource
elements.

element AXInfo/PotentialAvailableRights

diagram

namespace urn:axmedis:01

type ax:PotentialAvailableRightsType

children LicensingURL PARStatus r:license

description contains the rights available outside the AXMEDIS Factory usually it is a subset of the InternalPotentialAvailableRights.

the LicensingURL contains the URL to acquire a license for the object and PARStatus contains the status like to be
verified, verified, …

constraints the license is not a complete licence, it is used to contain only the grants but without the principal and the resource
elements.

complexType PotentialAvailableRightsType

diagram

namespace urn:axmedis:01

children LicensingURL PARStatus r:license

description this type contains the information on the rights potentially available on the object, its status and the url to be used to
acquire a real license

element PotentialAvailableRightsType/LicensingURL

diagram

namespace urn:axmedis:01

type xs:anyURI

description contains the URL to be used to acquire a licence for the object

element PotentialAvailableRightsType/PARStatus

diagram

namespace urn:axmedis:01

type xs:string

description contains the current status of the PAR like: to be verified, verified, …

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

136

element History

diagram

namespace urn:axmedis:01

children ObjVersion

description contains the history of the object

element History/ObjVersion

diagram

namespace urn:axmedis:01

children When Who Where What

attributes Name Type Use Default Fixed
number xs:nonNegativeIntege

r

description contains information on the history of a specific version of the object, the number attribute indicates the version number

element History/ObjVersion/When

diagram

namespace urn:axmedis:01

type xs:dateTime

description contains the date & time when the version was uploaded on the AXDB

element History/ObjVersion/Who

diagram

namespace urn:axmedis:01

type xs:string

description contains the name of the person who uploaded he object on the AXDB

element History/ObjVersion/Where

diagram

namespace urn:axmedis:01

children Organization Site Machine

description contains the indication of the location where the upload was performed

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

137

element History/ObjVersion/Where/Organization

diagram

namespace urn:axmedis:01

type xs:string

description contains the indication of the Organization where the upload was performed

element History/ObjVersion/Where/Site

diagram

namespace urn:axmedis:01

type xs:string

description contains the indication of the site where the upload was performed

element History/ObjVersion/Where/Machine

diagram

namespace urn:axmedis:01

type xs:string

description contains the indication of the machine where the upload was performed

element History/ObjVersion/What

diagram

namespace urn:axmedis:01

children Description Commands

description contains what have been performed on the object as a textual description and as the list of commands performed.

element History/ObjVersion/What/Description

diagram

namespace urn:axmedis:01

type extension of xs:string

attributes Name Type Use Default Fixed
lang xs:string optional

description contains textual description of what have been done on the object for the specific object version

element History/ObjVersion/What/Commands

diagram

namespace urn:axmedis:01

children ax:Cmd

description contains the commands performed on the object.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

138

element Cmd

diagram

namespace urn:axmedis:01

children AXTID AXTTID AXRTID Operation Revision Who When Where

description contains information regarding a command performed on the object

element Cmd/AXTID

diagram

namespace urn:axmedis:01

type xs:string

description contains the AXMEDIS Tool ID identifying the tool used to perform the command

element Cmd/AXTTID

diagram

namespace urn:axmedis:01

type xs:string

description contains the AXMEDIS Tool Type ID identifying the type of tool used to perform the command

element Cmd/AXRTID

diagram

namespace urn:axmedis:01

type xs:string

description contains the AXMEDIS Real Tool ID identifying the tool instance used to produce the object

element Cmd/Operation

diagram

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

139

namespace urn:axmedis:01

children Name Argument

description contains the operation performed to the object

element Cmd/Operation/Name

diagram

namespace urn:axmedis:01

type xs:string

description contains the name of the operation performed on the object

element Cmd/Operation/Argument

diagram

namespace urn:axmedis:01

description contains an argument for the operation, it can be any xml tag.

element Cmd/Revision

diagram

namespace urn:axmedis:01

type xs:nonNegativeInteger

description contains the revision number to which the command contributes

element Cmd/Who

diagram

namespace urn:axmedis:01

type xs:string

description contains information regarding who performed the operation

element Cmd/When

diagram

namespace urn:axmedis:01

type xs:dateTime

description contains when (date & time) the operation was performed

element Cmd/Where

diagram

namespace urn:axmedis:01

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

140

children Organization Site Machine

description contains the location where the operation was performed

element Cmd/Where/Organization

diagram

namespace urn:axmedis:01

type xs:string

description contains the Organization where the operation was performed

element Cmd/Where/Site

diagram

namespace urn:axmedis:01

type xs:string

description contains the site where the operation was performed

element Cmd/Where/Machine

diagram

namespace urn:axmedis:01

type xs:string

description contains the identifier of the machine where the operation was performed

element MetadataStatus
diagram

namespace urn:axmedis:01

type xs:string

description contains the editorial status of the metadata descriptor (e.g. to be completed, verified, …)

element MetadataVisibility

diagram

namespace urn:axmedis:01

type restriction of xs:string

facets enumeration public
enumeration private

desciption contains the visibility of metadata when the object is protected, private means that the metadata should not be
accessible in clear, public otherwise.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

141

element ObjectIdentification

diagram

namespace urn:axmedis:01

children dii:Identifier ax:FingerprintAlgID dsig:Signature

description contains the Identifier element with the AXOID, the fingerprint algorithm to be used for object recognition and the
signature for the whole object (protected)

The following is the complete textual description of the AXInfo Schema:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:axmedis:01" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS" xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ax="urn:axmedis:01" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:import namespace="urn:mpeg:mpeg21:2002:02-DIDL-NS" schemaLocation="mpeg21xmlschemas\DIDL.xsd"/>
 <xs:import namespace="urn:mpeg:mpeg21:2004:01-IPMPDIDL-NS" schemaLocation="mpeg21xmlschemas\ipmpDIDL.xsd"/>
 <xs:import namespace="urn:mpeg:mpeg21:2002:01-DII-NS" schemaLocation="mpeg21xmlschemas\dii.xsd"/>
 <xs:import namespace="urn:mpeg:mpeg21:2003:01-REL-R-NS" schemaLocation="mpeg21xmlschemas\rel-r.xsd"/>
 <xs:import namespace="urn:mpeg:mpeg21:2003:01-REL-MX-NS" schemaLocation="mpeg21xmlschemas\rel-mx.xsd"/>
 <xs:import namespace="urn:mpeg:mpeg21:2003:01-REL-SX-NS" schemaLocation="mpeg21xmlschemas\rel-sx.xsd"/>
 <xs:import namespace="http://www.w3.org/2000/09/xmldsig#" schemaLocation="mpeg21xmlschemas\xmldsig-core-
schema.xsd"/>
 <xs:element name="AXInfo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ObjectCreator">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AXCID" type="xs:string"/>
 <xs:element name="ObjectCreatorName" type="xs:string" minOccurs="0"/>
 <xs:element name="ObjectCreatorURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="ObjectCreatorCompany" type="xs:string" minOccurs="0"/>
 <xs:element name="ObjectCreatorCompanyURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="ObjectCreatorNationality" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ObjectContributor" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AXCID" type="xs:string"/>
 <xs:element name="ObjectContributorName" type="xs:string" minOccurs="0"/>
 <xs:element name="ObjectContributorURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="ObjectContributorCompany" type="xs:string" minOccurs="0"/>
 <xs:element name="ObjectContributorCompanyURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="ObjectContributorNationality" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Owner" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="OwnerID">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="coding" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="OwnerName" type="xs:string" minOccurs="0"/>

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

142

 <xs:element name="OwnerURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="OwnerCompany" type="xs:string" minOccurs="0"/>
 <xs:element name="OwnerCompanyURL" type="xs:string" minOccurs="0"/>
 <xs:element name="OwnerNationality" type="xs:string"/>
 <xs:element name="OwnerDescription" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="lang" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Distributor" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AXDID" type="xs:string"/>
 <xs:element name="DistributorName" type="xs:string" minOccurs="0"/>
 <xs:element name="DistributorURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="DistributorNationality" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="AccessMode" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="readOnly"/>
 <xs:enumeration value="read_write"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="CreationDate" type="xs:dateTime"/>
 <xs:element name="LastModificationDate" type="xs:dateTime"/>
 <xs:element name="Version" type="xs:nonNegativeInteger"/>
 <xs:element name="Revision" type="xs:nonNegativeInteger"/>
 <xs:element name="ObjectStatus" type="xs:string"/>
 <xs:element name="ObjectType">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="BASIC"/>
 <xs:enumeration value="COMPOSITE"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="ObjectIsGoverned" type="xs:boolean" minOccurs="0"/>
 <xs:element name="IsPromoOf" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AXOID" type="xs:token" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element ref="ax:History" minOccurs="0"/>
 <xs:element name="Workflow" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="WorkItemID" type="xs:string"/>
 <xs:element name="WorkspaceInstanceID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="InternalPotentialAvailableRights" type="ax:PotentialAvailableRightsType" minOccurs="0"/>
 <xs:element name="PotentialAvailableRights" type="ax:PotentialAvailableRightsType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Cmd">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AXTID" type="xs:string"/>
 <xs:element name="AXTTID" type="xs:string"/>
 <xs:element name="AXRTID" type="xs:string"/>
 <xs:element name="Operation">

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

143

 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Argument" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="##any"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Revision" type="xs:nonNegativeInteger"/>
 <xs:element name="Who" type="xs:string" minOccurs="0"/>
 <xs:element name="When" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="Where" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Organization" type="xs:string" minOccurs="0"/>
 <xs:element name="Site" type="xs:string" minOccurs="0"/>
 <xs:element name="Machine" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="History">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ObjVersion" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="When" type="xs:dateTime"/>
 <xs:element name="Who" type="xs:string"/>
 <xs:element name="Where" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Organization" type="xs:string" minOccurs="0"/>
 <xs:element name="Site" type="xs:string" minOccurs="0"/>
 <xs:element name="Machine" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="What">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Description" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="lang" type="xs:string" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="Commands" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ax:Cmd" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="number" type="xs:nonNegativeInteger"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="PotentialAvailableRightsType">
 <xs:sequence>

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

144

 <xs:element name="LicensingURL" type="xs:anyURI"/>
 <xs:element name="PARStatus" type="xs:string" minOccurs="0"/>
 <xs:element ref="r:license"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ObjectIdentification">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="dii:Identifier"/>
 <xs:element ref="ax:FingerprintAlgID" minOccurs="0"/>
 <xs:element ref="dsig:Signature" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="MetadataStatus" type="xs:string"/>
 <xs:element name="MetadataVisibility">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="public"/>
 <xs:enumeration value="private"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="FingerprintAlgID" type="xs:string"/>
</xs:schema>

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

145

18 AXMEDIS Tool Fingerprint (DSI, FUPF)
Tool fingerprint is decribed in the sections 8.1.1.1, it contains information on the hardware (i.e. the personal
computer) and on the software. It has been created to uniquely identify an installation of a given AXMEDIS-
complaiant application on a given device and to allow detection of software/hardware changes. Fingerprint is
stored and transmitted as XML file/message with the following schema:

Toolfingerprint XML schema.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

146

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/tool-fp" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.axmedis.org/tool-fp" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:import namespace="http://www.w3.org/2000/09/xmldsig#" schemaLocation="xmldsig-core-schema.xsd"/>
 <xs:element name="ToolFingerprint" type="ToolFingerprintType"/>
 <xs:complexType name="ToolFingerprintType">
 <xs:sequence>
 <xs:element ref="DeviceFingerprint"/>
 <xs:element ref="SoftwareFingerprint"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="DeviceFingerprint" type="DeviceFingerprintType"/>
 <xs:complexType name="DeviceFingerprintType">
 <xs:sequence>
 <xs:element ref="HardDiskList"/>
 <xs:element ref="ProcessorList"/>
 <xs:element ref="BIOS"/>
 <xs:element ref="NetworkInterfaceList" minOccurs="0"/>
 <xs:element ref="OperativeSystem"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="HardDiskList" type="HardDiskListType"/>
 <xs:complexType name="HardDiskListType">
 <xs:sequence>
 <xs:element ref="HardDisk" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="HardDisk" type="HardDiskType"/>
 <xs:complexType name="HardDiskType">
 <xs:sequence>
 <xs:element name="Serial" type="xs:string"/>
 <xs:element name="Description" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ProcessorList" type="ProcessorListType"/>
 <xs:complexType name="ProcessorListType">
 <xs:sequence>
 <xs:element ref="Processor" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Processor">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="ProcessorType"/>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="ProcessorType">
 <xs:sequence>
 <xs:element name="Serial" type="xs:string" minOccurs="0"/>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Description" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="BIOS" type="BIOSType"/>
 <xs:complexType name="BIOSType">
 <xs:sequence>
 <xs:element name="Serial" type="xs:string" minOccurs="0"/>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Version" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="NetworkInterfaceList" type="NetwrokInterfaceListType"/>
 <xs:complexType name="NetwrokInterfaceListType">
 <xs:sequence>
 <xs:element ref="NetworkInterface" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="NetworkInterface" type="NetworkInterfaceType"/>

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

147

 <xs:complexType name="NetworkInterfaceType">
 <xs:sequence>
 <xs:element name="Name"/>
 <xs:element name="MACAddress"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="OperativeSystem" type="OperativeSystemType"/>
 <xs:complexType name="OperativeSystemType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Version" type="xs:string"/>
 <xs:element name="Upgrade" type="xs:string"/>
 <xs:element name="Serial" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="SoftwareFingerprint" type="SoftwareFingerprintType"/>
 <xs:complexType name="SoftwareFingerprintType">
 <xs:sequence>
 <xs:element ref="FileFingerprint" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="FileFingerprint" type="FileFingerprintType"/>
 <xs:complexType name="FileFingerprintType">
 <xs:sequence>
 <xs:element name="Category">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="CONTAIN_AXOM"/>
 <xs:enumeration value="PLUG_IN"/>
 <xs:enumeration value="CONFIGURATION"/>
 <xs:enumeration value="SECURE_CACHE"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="FullFileName" type="xs:anyURI"/>
 <xs:element name="PhysicalPosition" type="xs:string"/>
 <xs:element name="Signature" type="dsig:SignatureType"/>
 <xs:element name="CreationDate" type="xs:dateTime"/>
 <xs:element name="LastModificationDate" type="xs:dateTime" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

As stated before, the information contained in the fingerprint are mainly information for the identification of
the tool, however profile-related information can be estimated in asimila way and merged with those above
reported. Samples of profile information are the following:
• Which kind of content it may manage or not, e.g. it cannot load PDF, it can load PS
• Resolution of the screen device
• Power of the device
• Presence of some basic adaptation tools or their absence
• Print capabilities or not
• Audio capabilities or not
• Video streaming capabilities or not
• Burning ROM capabilities or not
• Network connection speed
• Network connection type, e.g. permanent or irregular
• etc….

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

148

19 AXMEDIS Protection Info (DSI, FHGIGD)
Protection information is formatted as stated in MPEG-21 Part 4 IPMP standard. The syntax and semantics is
still under discussion, the actual state of the standard is contained in the output document w7717 of the 74th
MPEG meeting (see http://mpeg.nist.gov/).
MPEG-21 Part 4 divides protection information into two XML schemas:

• one is used to declare the list of needed protection tools (or commands as defined in this section) to
unprotect the whole digital item;

• the other is used to describe, for each protected element, how to use those tools (e.g. the execution
order, keys, initialization parameters, etc…) to unprotect a specific element.

The former part of protection information (i.e. the list of all needed tools) should not only contain the
necessary tools to unprotect the “first level” of protected element, it should contain also the required tools to
correctly manage all nested levels of protected elements. In that way, looking at the tool list declaration it
will be possible to immediately decide whether an AXMEDIS Tool is capable to completely “consume” an
object.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

149

20 Protection Tool description (DSI)
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/ipmp-tool-schema" xmlns:prm="http://www.axmedis.org/parameter"
xmlns:ipmpinfo="urn:mpeg:mpeg21:2004:01-IPMPINFO-NS" xmlns:pp="http://www.axmedis.org/ipmp-tool-schema"
xmlns:pin="http://www.axmedis.org/plugin-schema" xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="0.1">
 <xs:import namespace="http://www.axmedis.org/plugin-schema" schemaLocation="plugin-schema.xsd"/>
 <xs:import namespace="urn:mpeg:mpeg21:2004:01-IPMPINFO-NS"
schemaLocation="mpeg21xmlschemas/ipmpinfo.xsd"/>
 <xs:import namespace="http://www.axmedis.org/parameter" schemaLocation="param-schema.xsd"/>
 <xs:element name="IPMPToolList" type="pp:IPMPToolListType" substitutionGroup="pin:SpecificDescriptor"/>
 <xs:complexType name="IPMPToolListType">
 <xs:complexContent>
 <xs:extension base="pin:SpecificDescriptorType">
 <xs:sequence>
 <xs:element ref="pp:Tool" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="Tool" type="pp:ToolType"/>
 <xs:complexType name="ToolType">
 <xs:sequence>
 <xs:element ref="ipmpinfo:IPMPToolID"/>
 <xs:element ref="pp:Name"/>
 <xs:element ref="pp:Description"/>
 <xs:element ref="prm:ParameterList" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute ref="pp:type" use="required"/>
 </xs:complexType>
 <xs:attribute name="type">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="authoring"/>
 <xs:enumeration value="playing"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Description" type="xs:string"/>
 <xs:element name="AllowedValues" type="pp:AllowedValuesType" substitutionGroup="prm:Constraint"/>
 <xs:complexType name="AllowedValuesType">
 <xs:complexContent>
 <xs:restriction base="prm:ConstraintType">
 <xs:sequence>
 <xs:element ref="pp:Value"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="Value" type="xs:anyType"/>
</xs:schema>

element IPMPToolList

diagram

namespace http://www.axmedis.org/ipmp-tool-schema

type pp:IPMPToolListType

children pp:Tool

source <xs:element name="IPMPToolList" type="pp:IPMPToolListType" substitutionGroup="pin:SpecificDescriptor"/>

description This element is the root element for the description of all protection tools exposed by an ipmp plug-in. It is a substitution

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

150

of the abstract element SpecificDescriptor described in the section “Formal description of format – Content Processing
Plug-ins specific description” in DE3.1.2.2.4

element Tool

diagram

namespace http://www.axmedis.org/ipmp-tool-schema

type pp:ToolType

children ipmpinfo:IPMPToolID pp:Name pp:Description prm:ParameterList

used by complexType IPMPToolListType

attributes Name Type Use Default Fixed Annotation
pp:type xs:string required

description This element describes a Protection Tool contained in the plug-in. It mainly provides:

• the identifier of the tool using the element IPMPToolID which is defined in the MPEG-21 IPMP standard

• a short name for the tool

• a human-readable description of the tool

• a list of parameters in order to initialize the tool
The attribute type can be: “authoring”,”playing”. It is “authoring” if both encoding and decoding capabilities are available.
Otherwise, it is “playing” in order to warn the only the decoding function is provided.

element Name

diagram

namespace http://www.axmedis.org/ipmp-tool-schema

type xs:string

used by complexType ToolType

description This element conatins a string representing the name of the tool.

element Description

diagram

namespace http://www.axmedis.org/ipmp-tool-schema

type xs:string

used by complexType ToolType

description This element conatins a string representing the description of the tool.

element AllowedValues

diagram

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

151

namespace http://www.axmedis.org/ipmp-tool-schema

type pp:AllowedValuesType

children pp:Value

source <xs:element name="AllowedValues" type="pp:AllowedValuesType" substitutionGroup="prm:Constraint"/>

description This element represent a constraint on the values a given parameter can be set. This element is a substitution group of
the Constrain element which is explained in the section “Formal description of format – Parameter description” in
DE3.1.2.2.4

element Value

diagram

namespace http://www.axmedis.org/ipmp-tool-schema

type xs:anyType

used by complexType AllowedValuesType

description This element represents an allowed value for a given parameter. Please notice that it can contain any value type since
the value type dependes on the type of the parameter itself.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

152

21 Rights and Enforcement (FUPF, DSI, all)
Protection issues not only apply to modifications of the content in order to protect it against non-authorised
use, but also imply that, when a content is governed by means of a license, rights are enforced and only
authorised actions are allowed.
In this sense, there has been some discussion inside AXMEDIS consortium in order to enforce rights
governing a content from a technical point of view.
The result of this discussion is shown in the rest of this section, together with other aspects regarding rights
and AXMEDIS.

21.1 Description of typical content manipulation
In this section a relevant selection of content manipulation examples are presented. The scenario based
approach has been chosen, for it has provoked the reasoning among action semantics, thus determining the
corresponding set of rights to be owned.

21.1.1 General issue on distinguish Adapt and Modify intents
It is worth to point out that, using the MPEG-21 REL standard, some actions can be authorized using
different rights. For example, the action of adding an element to a given DI can be authorized using either
enlarge or enhance rights. These two rights respectively differ on whether the original object is effectively
modified or a new modified object is derived from the original one. The same problem arises with other
rights. In order to face this ambiguity, some technical issues have to be considered:

• Whether considering both adapt and modify rights or not. Both are needed, as their semantics are
different. Adapt means that an existing resource is changed transiently to derive a new resource and
Modify means the resource is altered, not deriving a new one from it, but maintaining modifications
inside the resource itself

• Which rights should be requested to the PMS in ambiguous cases
• How to enforce rights in ambiguous cases

A solution in order to verify the correct rights during content manipulation is to ask to the Consumer what he
wants to do with the Content, e.g. create a new Object or modify the original one. This question has to be
done when requesting a license for manipulating the content.

21.2 Examples of AXMEDIS Object manipulation
This section describes different manipulations done over AXMEDIS objects. These manipulations are related
to different MPEG-21 RDD rights. The rights associated are described in each manipulation shown. For
some of the scenarios, it is also describe how a rights expression allowing each action should, indicating in
each case its structure and the rights granted.

21.2.1 Adding to root level

Adding resources at root level

To determine the rights expressions needed in this process, we will consider the use case sketched in the
above figure, where a user tries to aggregate two objects, AX01 and AX02, to the digital object AX04. In
this scenario, the licenses governing these objects shall grant the user the right to modify or adapt the digital
object (AX04) embedding within it AX01 and AX02.
Then, the user shall obtain a license that grants him permissions to embed AX01 and AX02 and to adapt or
modify AX04 by adding to it. These licenses will be restricted to certain constraints usually referred to the
aggregation process and to the resultant digital object.
Next figure shows the license issued by the owner or distributor of AX01 and AX02 to the aggregator. This
license is formed by the following elements: the identification of the aggregator that is the principal of the

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

153

license, the embed right, the resources Res A and Res B that will be used for aggregation and the conditions
that must be fulfilled to perform such aggregation. Finally, the issuer element identifies the manufacturer of
both resources.

License

Aggregator

AX01

AX02

embed

conditions

issuer

License

Aggregator

AX01

AX02

embed

conditions

issuer

License for allowing objects embedding

This license uses the embed right specified in MPEG-21 RDD and defined as the right to put a Resource into
another Resource.
On the other hand, the user also must have permissions of modification or adaptation over the digital object
AX04.
If the user chooses the adaptation option two different digital objects will exist as result of the addition
process, the original one in unchanged form and the newly made. MPEG-21 RDD defines the term enhance
as the right “to derive a new resource which is larger than its source”. This right permits the licensee to
change the original digital object by adding to it, for example embedding other resources. These changes are
made temporarily to the original object, but they are not saved in the original object at the end of the process.
Then, at the end of the process a new object is generated with such changes.
Next figure shows the MPEG-21 REL license that will grant to the aggregator permissions to enhance the
digital object identified as AX04 with some restrictions specified within the conditions element of this
license.

License

Aggregator

enhance

AX 04

issuer

conditions

License

Aggregator

enhance

AX 04

issuer

conditions

Adaptation choice - AX04 enhancing license

If the user chooses the modification option, only the modified object will be preserved. For this purpose,
MPEG-21 RDD defines the term enlarge as the right “to Modify a Resource by adding to it”.
Next figure presents the MPEG-21 REL license that will grant to the aggregator permissions to enlarge the
digital object identified as AX04 with some restrictions specified within the conditions element of this
license. Then, he can add new material, including the embedding of other resources or elements, for example
AX01, but not the changing or removal of existing elements of the original digital object.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

154

License

Aggregator

enlarge

AX 04

issuer

conditions

License

Aggregator

enlarge

AX 04

issuer

conditions

Modification choice – AX04 enlarging license

21.2.2 Adding to nested level

Adding resources at nested level

Standardized RDD terms associated:
Embed: To put a Resource into another Resource.
Scope of Embed
The Resource into which a Resource is Embedded can be pre-existing or can be created by the act of combining the
EmbeddedResource with one or more others. Embed refers only to the embedding of an existing Resource in another: if
a “copy” of an existing Resource is to be created and Embedded in another, then both Adapt and Embed would be
used.

In nested object scenario, protection processor has to request the authorization of modifying all the nested
objects involved in the modification.

21.2.3 Transformation of basic objects

Modifying a resource, maintaining the changes

Standardized RDD terms associated:
Modify: To Change a Resource, preserving the alterations made.
In this scenario the licensee shall issue a license to the user that grants him the right to transform the asset
Res B. MPEG-21 RDD defines the term modify as the right “to change a resource preserving the alterations
made”.

Then, the MPEG-21 license results as follows: the principal contains the identification of the user that can
modify (right element) the AX02 (resource element) if certain conditions are previously fulfilled. Next figure
shows the structure of the basic transformation license.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

155

License

AFC Members

modify

Res B

issuer

conditions

License

issuer

conditions

License

AFC Members

modify

Res B

issuer

conditions

License

issuer

conditions

Basic transformation license example

In use cases where content is transformed, it is important to determine the restrictions that the licensee will
determine regarding to the transformation of its digital content. On the other hand, it is also important to take
into account that if the original object will be preserved then the MPEG-21 RDD term used as right in the
transformation license shall be the adapt right.
MPEG-21 RDD defines the term adapt as the right “To ChangeTransiently an existing Resource to Derive a
new Resource”.

21.2.4 Transformation of objects in a composition

Modifying a composite object

Standardized RDD terms associated:
Modify: To Change a Resource, preserving the alterations made.

In order to modify a Resource the User has to have the rights related to the Resource and the Parent Objects.

21.2.5 Deletion of objects from a composition (from root level or nested)
AX04

AX03

Res A

AX01

Res B

AX02

Res C

AX05

Res D

AX04

AX03

Res B

AX02

Res C

AX05

Res D

AX04

AX03

Res B

AX02

Res D

Deleting resources from a composite object

Standardized RDD terms associated:
Reduce: To Modify a Resource by taking away from it.

Scope of Reduce
With Reduce, a single Resource is preserved at the end of the process. Changes can include only the removal of existing
elements of the original Resource.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

156

In this use case the user shall obtain a license (see next figure) that grants him permissions to delete digital
objects from a composition.
MPEG-21 RDD defines the term reduce as the right “to Modify a Resource by taking away from it”. The
change that can be performed when exercising reduce right is the removal of existing elements from the
original digital object. At the end of the process only the modified resource is preserved.

License

AFC

reduce

AX04

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

reduce

AX04

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

Deletion license example

When granting reduce right, the licensee must consider if he gives permissions to remove all the elements or
only a subset of them. If the licensee only grants permissions of deletion of specific elements from the
original digital object, these constraints must be specified within the license as conditions.
On the other hand, in some cases the user also wants to destroy the elements taken away from the original
digital object. Then, he must posses a license that grants him the right to delete these elements. MPEG-21
RDD defines delete term as the right “to Destroy a Digital Resource”. This right forms part of the MPEG-21
REL multimedia extension.

21.2.6 Copying of objects from a composition to another
AX04

AX03

Res A

AX01

Res B

AX02

Res C

AX05

Res D

AX09

AX07

Res G

AX08

Res E

AX06

Res F

AX09

AX07

Res G

AX08

Res E

AX06

Res F

Res B

AX02

copy

Copy resources from a composite object to another

Copy AX02 from Composition 1 and Enlarge Composition2 with AX02.
In this scenario, the user shall have a license that grants him to copy AX02 from Composition 1 and to
enlarge Composition2 with AX02.

Standardized RDD terms associated:
Copy is not defined in the RDD, and then a new term shall be added as a specialization of Adapt that is
defined in RDD as the action to ChangeTransiently an existing Resource to Derive a new Resource.
Enlarge is defined in the RDD as the action to Modify a Resource by adding to it.
Scope of Enlarge
With Enlarge, a single Resource is preserved at the end of the process. Changes can include the addition of new
material, including the Embedding of other Resources, but not the changing or removal of existing elements of the
original Resource.

New REL Elements:
In the base profile the element bpx:governedCopy is specified. This element represents the right to copy the
resource and at the same time to result in certain rights being associated to the copied resource. The optional

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

157

attribute @bpx:governanceRule indicates the name of a governance rule that determines how exactly the
copy should be made and what rights should be associated and by whom for the copied resource. When the
attribute is not specified, this right allows to make a bit-wise identical copy of the resource and to result in an
identical copy of the r:license that this right is specified being made to the copied resource. This right can be
used for copying the resource that is either locally available or received from a remote location (e.g., via
streaming or broadcasting) during the time this right is being exercised.
In this use case we can use the governedCopy element of the REL base profile and the enlarge term defined
in the RDD. Note, that a new extension for the REL shall be defined and must contain the enlarge element, in
order to be further used in REL licenses.
Another option is to define the copy right in the RDD as a specialization of the Adapt right and add this
element to the REL extension where also is specified the enlarge element.
A third option is to specify a new RDD term that represents the action presented (enlarge with a copied
resource) in this section. This new term shall be a specialization of Copy and Enlarge. Then, this term shall
be also defined in a new REL extension.
Nevertheless, MPEG-21 REL base profile is not currently supported in AXMEDIS, so the copy right will not
be implemented for the moment.
In this scenario, the user shall have a license that grants him to copy AX02 from Composition 1 and to
enlarge or enhance Composition2 with AX02.
MPEG-21 RDD does not define the copy right. Then, a new term shall be created under the governance of
the RDD Registration Authority. This term will be defined as a specialization of Adapt defined in the RDD
as the action “to ChangeTransiently an existing Resource to Derive a new Resource”.
Nevertheless, in the base profile the element governedCopy is specified. This element represents the right to
copy a resource, in our use case the AX02 element, and at the same time to result in certain rights being
associated to the copied resource. The attribute governanceRule of this right indicates the name of a
governance rule that determines how exactly the copy should be made and what rights should be associated
and by whom for the copied resource.

License

AFC

copy

AX02

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

copy

AX02

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

enlarge

AX02

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

enlarge

AX09

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

copy

AX02

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

copy

AX02

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

enlarge

AX02

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

enlarge

AX09

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

Licenses for copying use case
If we choose the first option, that is to define the copy right, then the licenses that shall be granted to the user
in order to perform the copy from a governed composition to another are the presented in the figure.
Another option is the use of the adapt right in order to obtain a copy of AX02. Adapt is defined in the
MPEG-21 RDD as the right to change transiently an existing resource to derive a new resource. But, take
into account that the new resource can be modified, then it is necessary to define the copy right as an
specialization of the adapt right or to add the appropriate conditions in the adaptation license to avoid
modifications of the resultant object.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

158

License

AFC

adapt

AX02

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

AX02

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

enlarge

AX02

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

enlarge

AX09

issuer

conditions

License

issuer

conditions

License

AFC

enlarge

AX09

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

adapt

AX02

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

AX02

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

enlarge

AX02

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

AFC

enlarge

AX09

issuer

conditions

License

issuer

conditions

License

AFC

enlarge

AX09

issuer

conditions

License

issuer

conditions

License

issuer

conditions

License

issuer

conditions

Licenses for copying use case – adapt option

21.2.7 Moving of objects from a composition to another
AX04

AX03

Res A

AX01

Res B

AX02

Res C

AX05

Res D

AX09

AX07

Res G

AX08

Res E

AX06

Res F

AX09

AX07

Res G

AX08

Res E

AX06

Res F

Res B

AX02

move

AX04

AX03

Res A

AX01

Res C

AX05

Res D

Move resources from a composite object to another

Standardized RDD terms associated:
Move: To relocate a Resource from one Place to another.

21.2.8 Playing/rendering of objects (basic, composite)

Playing resources

If a user has the right Play for the root object he has also the rights of playing the child objects.

Standardized RDD terms associated:
Play: To Derive a Transient and directly Perceivable representation of a Resource.
Print: To Derive a Fixed and directly Perceivable representation of a Resource.
Render: To Transform an existing Resource into a Perceivable representation of its contents.
Perform: To Express a Transient Resource.
Fix: To Express a Persistent Resource.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

159

21.2.9 Manipulation of object metadata

Manipulating object metadata

Standardized RDD terms associated:
Enlarge: To Modify a Resource by adding to it.
Enlarge RDD term is equivalent to the add term of Figure above.
Translate: To Transform an existing Resource by changing the Language of its Lexical elements without
changing their Meaning.

For this manipulation, it should be defined a new term Edit as a specialization of Transform RDD term.

21.3 Mapping Rights on User Action

The following table summarises the rights associated to each scenario described above. The semantics of the
operation is also described.
Action Right Semantics
Adding to root level Enmbed To put a Resource into another Resource
 Enhance

Enlarge

To derive a new resource which is larger than its
source
To Modify a Resource by adding to it

Embed To put a Resource into another Resource. Adding to nested level
 Enhance

Enlarge

To derive a new resource which is larger than its
source
To Modify a Resource by adding to it

Transformation of basic objects Modify To Change a Resource, preserving the alterations
made.

Transformation of objects in a
composition

Modify To Change a Resource, preserving the alterations
made.

Deletion of objects from a
composition (from root level or
nested)

Reduce To Modify a Resource by taking away from it.

Copy This right is not defined in the RDD, then a new
term shall be added as a specialization of Adapt that
is defined in RDD as the action to
ChangeTransiently an existing Resource to Derive a
new Resource.

Adapt To change transiently an existing resource to derive
a new resource

governedCopy Element specified in the MPEG-21 REL base
profile. It represents the right to copy the resource
and at the same time to result in certain rights being
associated to the copied resource.

Copying of objects from a
composition to another

Enhance

Enlarge

To derive a new resource which is larger than its
source
Modify a Resource by adding to it.

Moving of objects from a
composition to another

Move To relocate a Resource from one Place to another.

DE3.1.2.2.3 – Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS Project

160

Play To Derive a Transient and directly Perceivable
representation of a Resource.

Print To Derive a Fixed and directly Perceivable
representation of a Resource.

Render To Transform an existing Resource into a
Perceivable representation of its contents.

Perform To Express a Transient Resource.

Playing/rendering of objects
(basic, composite)

Fix To Express a Persistent Resource.

Edit It is not defined in the RDD. Define the new term
Edit as a specialization of Transform RDD term.

 To Modify a Resource by adding to it.

Manipulation of object metadata

Translate To Transform an existing Resource by changing the
Language of its Lexical elements without changing
their Meaning.

