
DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

1

AXMEDIS

Automating Production of Cross Media Content
for Multi-channel Distribution

www.AXMEDIS.org
DE3.1.2.2.4

Specification of
AXMEDIS Editors and Viewers,

first update of DE3.1.2 part B
Version: 2.0
Date: 15-05-2006
Responsible: DSI (revised and approved by coordinator)
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: report
Visible to User Groups: yes
Visible to Affiliated: yes
Visible to the Public: yes
Deliverable Number: DE3.1.2.2.4
Contractual Date of Delivery: M18
Actual Date of Delivery: 17/05/2006
Title of Deliverable: Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 partB
Work-Package contributing to the Deliverable: WP3.1
Task contributing to the Deliverable: WP3, WP2
Nature of the Deliverable: report
Author(s): DSI, FUPF, EPFL, UNIVLEEDS, FHGIGD, SEJER

Abstract: this part includes the specification of components, formats, databases and protocol related
to the AXMEDIS Framework area including AXMEDIS Editors and viewers.

Keyword List: AXMEDIS Editor, authoring, MPEG-21, AXMEDIS viewers, AXMEDIS player,
Active X, plug in.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

2

AXMEDIS Copyright Notice
The following terms (including future possible amendments) set out the rights and obligations licensee will be requested
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by
any other means.

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT.

1. DEFINITIONS

i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the
document have been accepted.

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a
Document.

iii. "Licensor" is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in
terms of companies and/or associations, see www.axmedis.org

iv. "Document" means the information contained in any electronic file, which has been published by the
Licensor’s as AXMEDIS official document and listed in the web site mentioned above or available by any
other means.

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.

2. LICENCE

1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to
present terms and conditions (the Licence) for the parts that are own and proprietary property the of
AXMEDIS consortium or its members.

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and
conditions.

3. TERM AND TERMINATION

1. Granted Licence shall commence on Acceptance Date.

2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions
of this Licence.

3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of
termination.

4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the
accessed Copyright.

5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or
obligations, shall survive termination of this Licence and shall continue in full force and effect.

6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it
as stated in the document itself will remain in force for a period of 5 years after license issue date or the
period stated in the document whichever is the longer.

4. USE

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:

i. remove this Copyright Notice on a Document or any of its reproduction in any form in which those
may be achieved;

ii. change or remove the title of a Document;

iii. use all or any part of a Document as part of a specification or standard not emanating from the
Licensor without the prior written consent of the Licensor; or

iv. do or permit others to do any act or omission in relation to a Document which is contrary to the
rights and obligations as stated in the present license and agreed with the Licensor

5. COPYRIGHT NOTICES

1. All Works shall bear a clear notice asserting the Licensor’s Copyright. The notice shall use the wording
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

3

6. WARRANTY

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.

2. For the avoidance of doubt the licensee should be aware that although the Copyright in the
documents is given under warranty this warranty does not extend to the content of any document
which may contain references or specifications or technologies that are covered by patents (also
of third parties) or that refer to other standards. AXMEDIS is not responsible and does not
guarantee that the information contained in the document is fully proprietary of AXMEDIS
consortium and/or partners.

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of
action which the Licensor may have, at all times keep the Licensor fully and effectively
indemnified against all and any liability (which liability shall include, without limitation, all
losses, costs, claims, expenses, demands, actions, damages, legal and other professional fees and
expenses on a full indemnity basis) which the Licensor may suffer or incur as a result of, or by
reason of, any breach or non-fulfillment of any of his obligations in respect of this License.

7. INFRINGEMENT

1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the
Copyright which comes to licensee notice and shall, at the Licensor’s request and expense, do all such
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.

8. GOVERNING LAW AND JURISDICTION

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.

2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.

Please note that:

• You can become affiliated with AXMEDIS. This will give you the access to a
huge amount of knowledge, information and source code related to the
AXMEDIS Framework. If you are interested please contact P. Nesi at
nesi@dsi.unifi.it. Once affiliated with AXMEDIS you will have the possibility
of using the AXMEDIS specification and technology for your business.

• You can contribute to the improvement of AXMEDIS documents and
specification by sending the contribution to P. Nesi at nesi@dsi.unifi.it

• You can attend AXMEDIS meetings that are open to public, for additional
information see WWW.axmedis.org or contact P. Nesi at nesi@dsi.unifi.it

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

4

Table of Content

1 EXECUTIVE SUMMARY AND REPORT SCOPE .. 8

1.1 THIS DOCUMENT CONCERNS ... 10
1.2 LIST OF MODULES OR EXECUTABLE TOOLS SPECIFIED IN THIS DOCUMENT .. 10
1.3 LIST OF FORMATS SPECIFIED IN THIS DOCUMENT... 10

2 GENERAL USE CASES AND SCENARIOS.. 12
2.1 USE CASE – CREATION OF A NEW AXMEDIS OBJECT .. 12
2.2 USE CASE - CREATION OF COMPOSITE AXMEDIS OBJECT... 12

3 GENERAL ARCHITECTURE AND RELATIONSHIPS AMONG THE MODULES PRODUCED (DSI) 13
3.1 VIEW MODULES (DRM EDIT/VIEW, HIERARCHY EDIT/VIEW, METADATA EDIT/VIEW, ETC…)....................... 13

4 EXECUTABLE TOOL - AXMEDIS EDITOR (DSI).. 15
4.1 GENERAL DESCRIPTION OF THE MODULE... 16

4.1.1 Software Architecture .. 19
4.2 MODULE DESIGN IN TERMS OF CLASSES .. 19
4.3 USER INTERFACE DESCRIPTION ... 22
4.4 TECHNICAL AND INSTALLATION INFORMATION ... 27
4.5 DRAFT USER MANUAL.. 27

4.5.1 Create a new AXMEDIS Object ... 27
4.5.2 Modifying an AXMEDIS Object stored on Database... 30

4.6 EXAMPLES OF USAGE .. 33
4.7 INTEGRATION AND COMPILATION ISSUES.. 33
4.8 CONFIGURATION PARAMETERS... 33
4.9 ERRORS REPORTED AND THAT MAY OCCUR .. 33

5 MODULE - HIERARCHY EDITOR AND VIEWER (DSI) ... 33
5.1 GENERAL DESCRIPTION OF THE MODULE... 35
5.2 MODULE DESIGN IN TERMS OF CLASSES .. 37
5.3 USER INTERFACE DESCRIPTION ... 37
5.4 TECHNICAL AND INSTALLATION INFORMATION ... 38
5.5 DRAFT USER MANUAL.. 38
5.6 EXAMPLES OF USAGE .. 38
5.7 INTEGRATION AND COMPILATION ISSUES.. 38
5.8 CONFIGURATION PARAMETERS... 38
5.9 ERRORS REPORTED AND THAT MAY OCCUR .. 38

6 MODULE DRM EDITOR AND VIEWER (FUPF).. 40
6.1 GENERAL DESCRIPTION OF THE MODULE... 41

6.1.1 Form of the DRM Editor & Viewer .. 41
6.1.2 Architecture.. 42
6.1.3 Functionalities .. 42
6.1.4 DRM Editor Business Logic.. 42

6.2 MODULE DESIGN IN TERMS OF CLASSES .. 42
6.3 USER INTERFACE DESCRIPTION ... 43

6.3.1 DRM Viewer.. 44
6.4 TECHNICAL AND INSTALLATION INFORMATION ... 45

7 MODULE - PROTECTION EDITOR AND VIEWER (FHGIGD) .. 45
7.1 GENERAL DESCRIPTION OF THE MODULE... 47
7.2 MODULE DESIGN IN TERMS OF CLASSES .. 48
7.3 USER INTERFACE DESCRIPTION ... 48
7.4 TECHNICAL AND INSTALLATION INFORMATION ... 49
7.5 DRAFT USER MANUAL AND EXAMPLE OF USAGE .. 50
7.6 INTEGRATION AND COMPILATION ISSUES.. 50

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

5

7.7 CONFIGURATION PARAMETERS... 50
7.8 ERRORS REPORTED AND THAT MAY OCCUR .. 50

8 MODULE VISUAL EDITOR AND VIEWER (EPFL)... 50
8.1 GENERAL DESCRIPTION OF THE MODULE... 52
8.2 MODULE DESIGN IN TERMS OF CLASSES .. 54
8.3 USER INTERFACE DESCRIPTION ... 54
8.4 TECHNICAL AND INSTALLATION INFORMATION ... 56
8.5 DRAFT USER MANUAL.. 57

8.5.1 Editing the visual scene for SMIL(create/delete, resize/move) .. 57
8.5.2 Association of media resources within an element of SMIL.. 57

8.6 EXAMPLES OF USAGE .. 58
8.7 INTEGRATION AND COMPILATION ISSUES.. 58
8.8 CONFIGURATION PARAMETERS... 58
8.9 ERRORS REPORTED AND THAT MAY OCCUR .. 58

9 MODULE BEHAVIOUR AND FUNCTIONAL EDITOR AND VIEWER (EPFL) 58
9.1 GENERAL DESCRIPTION OF THE MODULE... 60

9.1.1 Behaviour Business Logic ... 62
9.2 MODULE DESIGN IN TERMS OF CLASSES .. 65
9.3 USER INTERFACE DESCRIPTION ... 65
9.4 TECHNICAL AND INSTALLATION INFORMATION ... 67
9.5 DRAFT USER MANUAL.. 67

9.5.1 Editing the temporal information of media resources... 67
9.6 EXAMPLES OF USAGE .. 68
9.7 INTEGRATION AND COMPILATION ISSUES.. 68
9.8 CONFIGURATION PARAMETERS... 68
9.9 ERRORS REPORTED AND THAT MAY OCCUR .. 68

10 MODULE AXMEDIS OBJECT EDITOR AND VIEWER (DESCRIPTIONS AND COMMENTS)
(EPFL, DSI)... 69

10.1 GENERAL DESCRIPTION OF THE MODULE... 70
10.1.1 Business Logic... 71

10.2 MODULE DESIGN IN TERMS OF CLASSES .. 72
10.3 USER INTERFACE DESCRIPTION ... 72

10.3.1 Main GUI... 72
10.3.2 Configuration GUI... 72
10.3.3 Renderer GUIs... 73

10.4 DRAFT USER MANUAL.. 73
10.5 EXAMPLES OF USAGE .. 73
10.6 INTEGRATION AND COMPILATION ISSUES.. 73
10.7 CONFIGURATION PARAMETERS... 73
10.8 ERRORS REPORTED AND THAT MAY OCCUR .. 73

11 MODULE METADATA EDITOR AND VIEWER (UNIVLEEDS).. 73
11.1 GENERAL DESCRIPTION OF THE MODULE... 75

11.1.1 General Metadata Business Logic... 78
11.1.2 Metadata Manager ... 78
11.1.3 Metadata Schemas ... 78
11.1.4 Metadata Viewer and Renderer... 79

11.2 MODULE DESIGN IN TERMS OF CLASSES .. 79
11.3 USER INTERFACE DESCRIPTION ... 79
11.4 TECHNICAL AND INSTALLATION INFORMATION ... 81
11.5 DRAFT USER MANUAL.. 81
11.6 EXAMPLES OF USAGE .. 81
11.7 INTEGRATION AND COMPILATION ISSUES.. 81
11.8 CONFIGURATION PARAMETERS... 81
11.9 ERRORS REPORTED AND THAT MAY OCCUR .. 81

12 MODULE - METADATA MAPPER EDITOR AND VIEWER (UNIVLEEDS)....................................... 81

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

6

12.1.1 General Description of the Module... 83
12.1.2 Module Design in terms of Classes... 84
12.1.3 User interface description.. 84
12.1.4 Technical and Installation information ... 84
12.1.5 Draft User Manual ... 85
12.1.6 Examples of usage... 85
12.1.7 Integration and compilation issues.. 85
12.1.8 Configuration Parameters.. 85
12.1.9 Errors reported and that may occur... 85

13 MODULE WORKFLOW EDITOR AND VIEWER (DSI).. 85
13.1 GENERAL DESCRIPTION OF THE MODULE... 87
13.2 MODULE DESIGN IN TERMS OF CLASSES .. 87
13.3 USER INTERFACE DESCRIPTION ... 87
13.4 TECHNICAL AND INSTALLATION INFORMATION ... 88
13.5 DRAFT USER MANUAL.. 88
13.6 EXAMPLES OF USAGE .. 88
13.7 INTEGRATION AND COMPILATION ISSUES.. 88
13.8 CONFIGURATION PARAMETERS... 88
13.9 ERRORS REPORTED AND THAT MAY OCCUR .. 89

14 MODULE - AXMEDIS CONTENT TOOL ERROR MANAGER (DSI)... 89
14.1 GENERAL DESCRIPTION OF THE MODULE... 91
14.2 MODULE DESIGN IN TERMS OF CLASSES .. 91
14.3 USER INTERFACE DESCRIPTION ... 91
14.4 DRAFT USER MANUAL.. 92
14.5 EXAMPLES OF USAGE .. 92
14.6 CONFIGURATION PARAMETERS... 92
14.7 ERRORS REPORTED AND THAT MAY OCCUR .. 92

15 MODULE - AXMEDIS EDITOR CONFIGURATION MANAGER (DSI, EPFL) 93
15.1 GENERAL DESCRIPTION OF THE MODULE... 94
15.2 MODULE DESIGN IN TERMS OF CLASSES .. 94
15.3 USER INTERFACE DESCRIPTION ... 97
15.4 TECHNICAL AND INSTALLATION INFORMATION ... 98
15.5 EXAMPLES OF USAGE .. 98
15.6 INTEGRATION AND COMPILATION ISSUES.. 98
15.7 CONFIGURATION PARAMETERS... 98
15.8 ERRORS REPORTED AND THAT MAY OCCUR .. 99

16 MODULE - AXMEDIS EDITOR PLUG-IN MANAGER (DSI, EPFL).. 100
16.1 GENERAL DESCRIPTION OF THE MODULE... 101
16.2 MODULE DESIGN IN TERMS OF CLASSES .. 102

16.2.1 Fundamental classes overview.. 103
16.3 INTEGRATION AND COMPILATION ISSUES.. 103
16.4 CONFIGURATION PARAMETERS... 103
16.5 ERRORS REPORTED AND THAT MAY OCCUR .. 104

17 MODULE - AXOM CONTENT PROCESSING (DSI, EPFL) ... 105
17.1 GENERAL DESCRIPTION OF THE MODULE... 106
17.2 MODULE DESIGN IN TERMS OF CLASSES .. 107

17.2.1 Plug-in function parameters class hierarchy ... 108
17.3 ERRORS REPORTED AND THAT MAY OCCUR .. 109

18 MODULE - AXOM COMMANDS AND REPORTING (DSI, EPFL) ... 109
18.1 GENERAL DESCRIPTION OF THE MODULE... 111
18.2 MODULE DESIGN IN TERMS OF CLASSES .. 111

18.2.1 Different application dependent workflows interfaces... 113
18.3 TECHNICAL AND INSTALLATION INFORMATION ... 114
18.4 DRAFT USER MANUAL.. 114

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

7

18.5 EXAMPLES OF USAGE .. 114
18.6 INTEGRATION AND COMPILATION ISSUES.. 114
18.7 CONFIGURATION PARAMETERS... 114
18.8 ERRORS REPORTED AND THAT MAY OCCUR .. 115

19 MODULE - INTERNAL AUDIO PLAYER (DSI) ... 116
19.1 GENERAL DESCRIPTION OF THE MODULE... 117
19.2 MODULE DESIGN IN TERMS OF CLASSES .. 118
19.3 USER INTERFACE DESCRIPTION ... 118
19.4 TECHNICAL AND INSTALLATION INFORMATION ... 119
19.5 DRAFT USER MANUAL.. 119
19.6 EXAMPLES OF USAGE .. 119
19.7 INTEGRATION AND COMPILATION ISSUES.. 119
19.8 CONFIGURATION PARAMETERS... 119
19.9 ERRORS REPORTED AND THAT MAY OCCUR .. 120

20 MODULE - INTERNAL IMAGE VIEWER (DSI) ... 120
20.1 GENERAL DESCRIPTION OF THE MODULE... 121
20.2 MODULE DESIGN IN TERMS OF CLASSES .. 122
20.3 USER INTERFACE DESCRIPTION ... 123
20.4 TECHNICAL AND INSTALLATION INFORMATION ... 124
20.5 DRAFT USER MANUAL.. 124
20.6 EXAMPLES OF USAGE .. 124
20.7 INTEGRATION AND COMPILATION ISSUES.. 124
20.8 CONFIGURATION PARAMETERS... 124
20.9 ERRORS REPORTED AND THAT MAY OCCUR .. 124

21 MODULE - INTERNAL VIDEO PLAYER (DSI) .. 125
21.1 GENERAL DESCRIPTION OF THE MODULE... 126
21.2 MODULE DESIGN IN TERMS OF CLASSES .. 127
21.3 USER INTERFACE DESCRIPTION ... 127
21.4 TECHNICAL AND INSTALLATION INFORMATION ... 128
21.5 DRAFT USER MANUAL.. 128
21.6 EXAMPLES OF USAGE .. 128
21.7 INTEGRATION AND COMPILATION ISSUES.. 128
21.8 CONFIGURATION PARAMETERS... 128
21.9 ERRORS REPORTED AND THAT MAY OCCUR .. 128

22 MODULE - INTERNAL MPEG4 PLAYER (EPFL).. 130
22.1 GENERAL DESCRIPTION OF THE MODULE... 131
22.2 INTEGRATION OF MPEG-4 IPMP EXTENSIONS INTO THE MPEG-4 PLAYER... 133

22.2.1 Architectural elements of the IPMP-X framework... 134
The Message Router.. 134
The Tool Manager ... 135
IPMP Tools.. 135
Normative messages.. 136

THE AXMEDIS IPMP-X INTERFACE .. 137
22.2.2 Examples of scenarios to be demonstrated. .. 137

22.3 TRANSLATION OF MPEG-4 IPMPX BINARY DESCRIPTORS TO XML BASED MPEG-21 IPMP COMPONENTS 138
22.3.1 DMP Content Information overview .. 138
22.3.2 MPEG-4 IPMPX descriptors... 138
22.3.3 IPMPX translation to XML... 139

22.4 MODULE DESIGN IN TERMS OF CLASSES .. 145
23 MODULE - INTERNAL SMIL PLAYER (EPFL).. 148

23.1 GENERAL DESCRIPTION OF THE MODULE... 149
23.2 MODULE DESIGN IN TERMS OF CLASSES .. 150
23.3 USER INTERFACE DESCRIPTION ... 152
23.4 TECHNICAL AND INSTALLATION INFORMATION ... 152
23.5 DRAFT USER MANUAL.. 153

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

8

23.6 EXAMPLES OF USAGE .. 153
23.7 INTEGRATION AND COMPILATION ISSUES.. 153
23.8 CONFIGURATION PARAMETERS... 153
23.9 ERRORS REPORTED AND THAT MAY OCCUR .. 153

24 MODULE - INTERNAL DOCUMENT VIEWER (DSI) .. 154
24.1 GENERAL DESCRIPTION OF THE MODULE... 155

24.1.1 HTML .. 155
24.1.2 MSWord Documents ... 157
24.1.3 PDF .. 157
24.1.4 Postscript.. 157

24.2 MODULE DESIGN IN TERMS OF CLASSES .. 158
24.2.1 Protocol handlers ... 158
24.2.2 AxIEDocumentViewer and AxMozillaDocumentViewer.. 158

24.3 USER INTERFACE DESCRIPTION ... 159
24.4 TECHNICAL AND INSTALLATION INFORMATION ... 159
24.5 DRAFT USER MANUAL.. 159
24.6 EXAMPLES OF USAGE .. 159
24.7 INTEGRATION AND COMPILATION ISSUES.. 159
24.8 CONFIGURATION PARAMETERS... 159
24.9 ERRORS REPORTED AND THAT MAY OCCUR .. 160

25 TOOL – MPEG4 PLAYER (EPFL) ... 160
25.1 GENERAL DESCRIPTION OF THE MODULE... 161
25.2 USER INTERFACE DESCRIPTION ... 162
25.3 TECHNICAL AND INSTALLATION INFORMATION ... 164
25.4 DRAFT USER MANUAL.. 165
25.5 EXAMPLES OF USAGE .. 165
25.6 INTEGRATION AND COMPILATION ISSUES.. 165
25.7 CONFIGURATION PARAMETERS... 165
25.8 ERRORS REPORTED AND THAT MAY OCCUR .. 165

26 FORMAL DESCRIPTION OF FORMAT – ERROR CODING (DSI) ... 165

27 FORMAL DESCRIPTION OF FORMAT – ERROR LOG (DSI)... 166

28 FORMAL DESCRIPTION OF FORMAT – CONFIGURATION (DSI) .. 169

29 FORMAL DESCRIPTION OF FORMAT – PLUG-INS DESCRIPTION (DSI)....................................... 170

30 FORMAL DESCRIPTION OF FORMAT – CONTENT PROCESSING PLUG-INS SPECIFIC
DESCRIPTION (DSI).. 173

31 FORMAL DESCRIPTION OF FORMAT – PARAMETER DESCRIPTION .. 178

1 Executive Summary and Report Scope

The full AXMEDIS specification document has been decomposed in the following parts:

DE
number

Deliverable title respons
ible

DE3.1.2.2.1 Specification of General Aspects of AXMEDIS framework, first update of DE3.1.2 part A

AXMEDIS-DE3-1-2-2-1-Spec-of-AX-Gen-Asp-of-AXMEDIS-framework-upA-v1-0.doc

DSI

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

9

DE3.1.2.2.2 Specification of AXMEDIS Command Manager, first update of DE3.1.2 part B

AXMEDIS- DE3-1-2-2-2-Spec-of-AX-Cmd-Man-upB-v1-0.doc

DSI

DE3.1.2.2.3 Specification of AXMEDIS Object Manager and Protection Processor, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-3-Spec-of-AXOM-and-ProtProc-upB-v1-0.doc

DSI

DE3.1.2.2.4 Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-4-Spec-of-AX-Editors-and-Viewers-upB-v1-0.doc

DSI

DE3.1.2.2.5 Specification of External AXMEDIS Editors/Viewers and Players, first update of DE3.1.2 part B

AXMEDIS-DE3-1-2-2-5-Spec-of-External-Editors-Viewers-Players-upB-v1-0.doc

EPFL

DE3.1.2.2.6 Specification of AXMEDIS Content Processing, first update of DE3.1.2 part C

AXMEDIS-DE3-1-2-2-6-Spec-of-AX-Content-Processing-upC-v1-0.doc

DSI

DE3.1.2.2.7 Specification of AXMEDIS External Processing Algorithms

AXMEDIS-DE3-1-2-2-7-Spec-of-AX-External-Processing-Algorithms-v1-0.doc

FHGIGD

DE3.1.2.2.8 Specification of AXMEDIS CMS Crawling Capabilities, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-8-Spec-of-AX-CMS-Crawling-Capab-v1-0.doc

DSI

DE3.1.2.2.9 Specification of AXMEDIS database and query support, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-9-Spec-of-AX-database-and-query-support-v1-0.doc

EXITEC
H

DE3.1.2.2.10 Specification of AXMEDIS P2P tools, AXEPTool and AXMEDIS, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-10-Spec-of-AXEPTool-and-AXMEDIA-tools-v1-0.doc

CRS4

DE3.1.2.2.11 Specification of AXMEDIS Programme and Publication tools, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-11-Spec-of-AX-Progr-and-Pub-tool-v1-0.doc

UNIVLE
EDS

DE3.1.2.2.12 Specification of AXMEDIS Workflow Tools, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-12-Spec-of-AX-Workflow-Tools-v1-0.doc

IRC

DE3.1.2.2.13 Specification of AXMEDIS Certifier and Supervisor and networks of AXCS, first update of part of
DE3.1.2

AXMEDIS-DE3-1-2-2-13-Spec-of-AXCS-and-networks-v1-0.doc

DSI

DE3.1.2.2.14 Specification of AXMEDIS Protection Support, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-14-Spec-of-AX-Protection-Support-v1-0.doc

FUPF

DE3.1.2.2.15 Specification of AXMEDIS accounting and reporting, first update of part of DE3.1.2

AXMEDIS-DE3-1-2-2-15-Spec-of-AX-Accounting-and-Reporting-v1-0.doc

EXITEC
H

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

10

1.1 This document concerns
Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B of the above list

1.2 List of Modules or Executable Tools Specified in this document
A module is a component that can be or it is reused in other cases or points of the AXMEDIS framework or
of other AXMEDIS based solutions.
The modules/tools have to include effective components and/or tools and also testing components and tools.

Module/tool

Name
Module/Tool Description and purpose, state also in

which other AXMEDIS area is used
Standards exploited

if any
AXMEDIS Editor allows creating and manipulating AXMEDIS objects
Hierachy Editor
and Viewer

allows viewing and editing the AXMEDIS Object structure as AXMEDIS
structure or as MPEG 21 structure

MPEG21 DIDL

DRM Editor and
Viewer

allows viewing and updating DRM information

Visual Editor and
Viewer

allows editing the visual presentation of content in SMIL W3C SMIL 2.0

Behaviour and
Functional Editor
and Viewer

allows editing the behavioural presentation of content in SMIL W3C SMIL 2.0

AXMEDIS Object
Editor and Viewer

allows adding annotations to an axmedis object

Metadata Editor
and Viewer

allows viewing and updating generica XML metadata W3C XML

Metadata Mapper
Editor and Viewer

allows mapping XML metadata

Workflow Editor
and Viewer

allows viewing and updating workflow information of AXMEDIS object

AXMEDIS Content
Tool Error
Manager

allows to store errors happened in AXMEDIS Tools

AMEDIS Editor
Configuration
Manager

allows to manage configuration information related to AXMEDIS Tools

AXMEDIS Editor
Plug-in Manager

allows generic management of plug-ins

AXOM Content
Processing

allows to manage content processing plug-ins

AXOM Command
and Reporting

allows to manage command and reporting plug-ins

Internal Audio
Player

allows reproduction of audio resources

Internal Image
Viewer

allows rendering of image resources

Internal Video
Player

allows rendering of video resources

Internal MPEG-4
Player

allows the decoding of an MPEG-4 Systems compliant resource MPEG-4 Systems, MPEG-4
IPMPX

Internal SMIL
Player

allows the decoding of a SMIL presentation composed by synchronized
audiovisual resources

W3C SMIL 2.0

Internal Document
Viewer

allows to view document resources

1.3 List of Formats Specified in this document
A format can be (i) an XML content file for modeling some information, (ii) a file format for storing
information, (iii) a format that is manipulated by the tools described in this document, etc...

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

11

Format Name Format Description and purpose, state
also in which other modules is used

Standards exploited if any

Error Coding XML based format to code errors information
Error Log XML based format to represent the errors happened
Configuration XML based format to represent the configuration

information of AXMEDIS Tools

Plug-in
description

XML based format to represent functionalities
provided by plug-ins

Content
Processing Plug-in
specific
description

XML based format for content-processing plug-ins
functionalities

Parameter
description

XML based format for parameters of plug-ins

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

12

2 General Use Cases and scenarios

2.1 Use Case – Creation of a New AXMEDIS Object

2.2 Use Case - Creation of Composite AXMEDIS Object

Hierarchy
Editor

Visual
Editor

Behaviour
Editor

Metadata
Editor

AXMEDIS Editor
1. new
2.* add AXObj

3. edit visual

4. edit behav.

5. edit Metadata

Query UI 2.1. query

2.2. retrieve

6. upload on DB

AXMEDIS
Database

2.1.1. query

6.1. upload Internal
SMIL Player

3.1. preview

4.1. preview

Hierarchy
Editor

Metadata
Editor

DRM
Editor

Protection
Editor

AXMEDIS Editor
1. new
2. add image

4. edit metadata

5. edit DRM

6. edit Protection

Resource
Viewer 3. view resource

Internal Image
Viewer

3.1. open

3.1.1. open

7. upload on DB

AXMEDIS
Database

7.1. upload

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

13

3 General architecture and relationships among the modules produced
(DSI)

In this document everything concerning how to handle (play/edit) AXMEDIS content is detailed. Different
scenarios of utilization are considered in the following sections. The beginning part put the basis to the
construction of the AXMEDIS editor: all the editor/viewers that show different features of the structured
content inside an AXMEDIS object are specified. These AXMEDIS Viewer can browse structure
(hierarchy), multimedia feature (metadata, behaviour, visual, object), protection and DRM. Even workflow
aspects are manageable in a suitable user interface integrated with the AXMEDIS Editor.
Errors and configuration of the AXMEDIS Editor are considered in the specification of the Content Tool
Error Manager and Configuration Manager. The AXMEDIS Editor has to be extendable in order to add new
content processing capabilities and to interoperate with different already established workflow management
services. The AXMEDIS Editor Plug-in Manager has been specified in this document, providing methods to
plug-in new functions (profile description and dynamic linking).
All the needed modules to render the multimedia resources included in the AXMEDIS objects (audio, video,
images, documents, mpeg4, smil) are specified

3.1 View Modules (DRM Edit/View, Hierarchy Edit/View, Metadata Edit/View, etc…)
View modules are those parts of AXMEDIS Editor GUI which show some aspects of the actual AXMEDIS
object and parts thereof. In the following subsections will be analyzed the most important aspects (and the
corresponding views) thought about till this moment, i.e.:
• Hierarchy;
• DRM;
• Visual;
• Behavioural and Functional;
• Descriptions and comments;
• Metadata;
• Object editor
• Etc.

Actor

Editing via Editing via
internal internal

viewers/editorsviewers/editors

Editing via Editing via
external external

viewers/editorsviewers/editors

AXMEDIS AXMEDIS
Editor and its Editor and its

viewview

ActorActor

Editing via Editing via
internal internal

viewers/editorsviewers/editors

Editing via Editing via
external external

viewers/editorsviewers/editors

AXMEDIS AXMEDIS
Editor and its Editor and its

viewview

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

14

Hierarchy
Editor and

Viewer

AXMEDIS Object Manager

Metadata
Editor and

Viewer

DRM Editor
and Viewer

Protection
Informaiton
Editor and

Viewer

Workflow
Editor and

Viewer

Behaviour
Editor and

Viewer

Visual
Editor and

Viewer

Metadata
Mapper Editor

and Viewer

Object
Editor and

Viewer

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

15

4 Executable Tool - AXMEDIS Editor (DSI)

Module/Tool Profile
AXMEDIS Editor

Responsible Name Bellini
Responsible Partner DSI
Status (proposed/approved)
Implemented/not implemented Implemented
Status of the implementation 80%
Executable or Library/module
(Support)

Executable

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Microsoft Windows, Linux, MACOS X
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Applications/axeditor/source
https://cvs.axmedis.org/repos/Framework/source/axeditorlib

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/Applications/axeditor/bin

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

NA

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

yes

Usage of the AXMEDIS Error
Manager (yes/no)

no

Major Problems not solved --
--

Major pending requirements

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

16

Protocol Used Shared with Protocol name or reference to a
section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

4.1 General Description of the Module
AXMEDIS Editor will support MPEG-21 with related composition and the nesting of levels; it will support
the navigation in MPEG-21 objects. Drag and drop mechanisms will be used to create objects. Moreover,
plug-ins will be developed for enabling the MPEG-21 approach in other content editors. Vice versa,
AXMEDIS Editor shall use ActiveX to call and use players for proprietary media formats that will be
possible through MIME type interpretation.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

17

Hierarchy
Editor and

Viewer

AXMEDIS Object Manager

Metadata
Editor and

Viewer

DRM Editor
and Viewer

AXOM
Commands and

Reporting

AXMEDIS Editor
WorkFlow Plug In

Other Plug In

an object : AXMEDIS Object

Top
Package::File

System

AXMEDIS Editor
Configuration

Manager

Internal AXMEDIS
Resource Editor/

Viewer

ActiveX Manager
for Editor/Viewer

External Editor/
Viewer Activation

Manager

AXMEDIS
Object

Editor and
Viewer

AXOM
Content

Processing

AXMEDIS Editor

AXMEDIS Protection Tool
Area::Protection Manager

Support

«subsystem»
AXMEDIS Data Base Area::AXMEDIS Database Manager

Fingerprint/Descriptor Extractors
Area::Fingerprint/Descriptor

Estimation Tools as
Plugin for AXOM

AXMEDIS Content Production
Area::Adaptation Tools and

Algorithms

Workflow
Editor and

Viewer

Protection
Manager Support

Client

Behaviour
Editor and

Viewer

Visual
Editor and

Viewer

AXMEDIS Content
Tools Error

Manager

«uses»

«uses»

Plug In
Manager

Top Package::Object Builder

AXMEDIS Editor shall manipulate AXMEDIS object in respect of DRM which has been granted to the user
on that object, e.g. a user could hold an object on which he hold play/view grants while he has not copy,
move or other (manipulation) grants; in such a situation AXMEDIS Editor should stop every attempts of
modifying the object by the user.

AXMEDIS Editor includes (or use) the following modules:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

18

• AXMEDIS Object Manager – an AXMEDIS object model container wrapped for secure AXMEDIS
object content manipulation. See Section 9;

• A set of viewer/editor for rendering or manipulating the information contained into the AXMEDIS
Object Manager and model;

o AXMEDIS Object Editor and Viewer – a user interface capable of “playing” AXMEDIS
objects according to the structure and main MPEG21 controls. See Part B;

o DRM Editor and Viewer, a view for editing and verifying the DRM rules for the users. See
Part B

o Hierarchy Editor and Viewer – a view for visualizing and modifying the structure of a
document in terms of elements and their parent-child relationship. Hierarchy Editor/Viewer is
the main entry-point to interact with the object and parts thereof, to recall other kind of
editor/viewer, etc… See Part B;

o Metadata Editor and Viewer - a view to edit and view metadata associated with the object. See
Part B.

o Workflow Editor and Viewer - a view to see the status of the object with respect to workflow
management. See Part B.

o Behaviour Editor and Viewer – a view for editing the behaviour of the object. See Part B.
o Visual Editor and Viewer - a view for editing the visual rendering of the object. See Part B.

• Protection Manager Support Client – a set of functionalities to verify the protection and the rights
(DRM), for the content contained into the AXMEDIS Object Manager. It contacts Protection Manager
Support that in turn contacts AXCS, for certification, registration, accounting, etc. See Part H.

• External Editor/Viewer Activation Manager and relative external application plug-ins – gives, to
AXMEDIS Editor, the capability of viewing/modifying resources by using external application which
have not ActiveX/COM interface. It has a list of possible external applications which are compliant with
AXMEDIS protection model; See Part B.

• ActiveX Manager for Editor/Viewer and relative ActiveX application plug-ins – gives, to AXMEDIS
Editor, the capability of viewing/modifying resources by using external application which have
ActiveX/COM interface; See Part B.

• Internal AXMEDIS Resource Editor/Viewer – a set of editor/viewer built-in AXMEDIS Editor which
guarantees a range of basic behaviors, for example, audio player, video player, doc viewer, etc.; See Part
B.

• AXMEDIS Editor Configuration Manager – is the responsible for configuration storage and
maintaining of any AXMEDIS Editor or AXMEDIS client; See Part B.

• AXMEDIS Content Tools Error Manager – is a support for managing errors in the area of content
processing, editing, formatting, etc. See Part B.

• AXOM Content processing -- This plug in interface allows to demand content processing to external
algorithms. It has to allow the presentation of the some functionalities of the algorithms also to the user,
e.g. fingerprint extractors, for Digital Item Adaptation, etc.; This interface for plug in is mainly usable
for demanding content processing from out side. See Part B.

• AXOM Commands and Reporting – This plug in interface allows to control the action of the
AXMEDIS Object Manager and to send messages and controls outside. See Part B.

• Plug-in Manager – allows the use of external plug-in which can be used for accomplishing various tasks
(e.g., workflow plug-ins). These plug ins have to be certified in some manner to guarantee the safeness
of their environment. The communication on these plug-in has to be performed in some protected
manner since the content if going to be processed by them. See Part B.

Further AXMEDIS Editor specifications are certainly:
• Each configurable AXMEDIS Editor modules shall conform to AXMEDIS Editor Configuration

Manager requirements. Moreover, each configurable AXMEDIS Editor modules shall own a default
settings set in order to work also on AXMEDIS Editor Configuration Manager fault or absence;

• AXMEDIS Editor and all its sub-modules shall support multi-language. Multi-language option will be
managed through AXMEDIS Editor Configuration Manager User Interface;

In this section will be analyzed only those modules which belong to AXMEDIS Editor area, the others will
be analyzed in the respective sections.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

19

4.1.1 Software Architecture

AXMEDIS Editor Software Architecture

AXMEDIS Internal
Editors and Viewers

AXOM

 AXOM

External Procedures
Profile Manager

AXOM
Content

Processing

AXOM
Command

and
Reporting

Protection Manager
Support Client

Protection
Processor

AXMEDIS Data
Model Support

AXMEDIS
Error and

Configurat
ion

Manager

Error and Configuration Manager

Active X
Manager

External
Editor/
Viewer

Activation
Manager

External
Editors and Viewers

Plug In
Manager

Adaptation
Algorithms

Fingerprint
Algorithms

Descriptors
Algorithms

AXMEDIS Object
Loader and Saver

DLL API

AXMEDIS Database

Internet Connection

PMS
[Domain]

AXCS

DLL API DLL API DLL API

4.2 Module Design in terms of Classes
The following is the class diagram for the AXMEDIS Editor:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

20

where:

• class AxEditorApp is the AXMEDIS Editor application, it creates the first AxEditorFrame and it
receives the messages coming from the Workflow Manger using the workflow plugin.

• class AxEditorFrame is the main frame, it contains an AxEditorPanel
• class AxEditorFrameManager is a singleton class where each AxEditorFrame registers itself on

creation. It allows to know which frames are currently open.
• class AxOpenView is an interface called when an element of an AXMEDIS Object have to be opened
• class AxEditorPanel contains:

o an AxObjectManager used to manipulate the AXMEDIS object;
o an AxHierarchyEditor and an AxMPEG21HierarchyEditor, tree controls used to manipulate the

object structure
o a set of views open for the object contained in AxViewsNotebook
and it uses the AxViewFactory object to create the Views, it is derived from AxOpenView to open the
view requested from the two hierarchy editors

• class AxViewFactory is a singleton class used to create the different views
• class AxViewsNotebook is used to contain different views of the object that can be hosted inside a

Notebook, they can be: AxDRMView, AxProtectionView, AxMetadataView, AxWorkflowView,
AxVisualView, AxObjectView or AxBehaviourView.

• Abstract class AxGenericView represents a view on an AxObjectManager, it is derived from
MPEG21ElementListener, MPEG21StructureListener, AxElementListener, AxStructureListener to
receive events when the object is manipulated.

• Abstract class AxView represents a view on the whole object (like a hierarchy view) and
AxElementView is a view on a specific element of the object.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

21

• classes AxHierarchyViewer and AxMPEG21HierarchyViewer (derived from AxView) allow to view
the AXMEDIS object as AXMEDIS/MPEG21 tree structures, they reference an object implementing
the AxOpenView interface to open the view for an element of the object (e.g. via double click)

• classes AxHierarchyEditor and AxMPEG21HierarchyEditor are extensions of the viewers allowing
manipulation of the object structure

• classes AxDRMView, AxProtectionView, AxMetadataView, AxWorkflowView, AxVisualView,
AxObjectView and AxBehaviourView are specific views on an element

• class AxMediaPlayerPanel (detailed in another diagram) allow to view/manipulate digital resources

the following class diagram is on the Dialogs used:

where:

• class AxQueryDialog is used to make queries on the database, it is used from the AxEditorFrame to
open an object from DB or from the AxHierarchyEditor to embed an AXMEDIS object coming from
the DB.

• class AxPluginStatusDialog it is used from the AxEditorFrame to show the plugins installed
• class AxPropertiesDialog it is used by the AxView to show/edit the properties of the

MPEG21/AXMEDIS elements
• class AxPluginDialog is used from the AxView to use a content processing plugin on a resource, the

dialog shows the plugins that can be used and using the AxParameterDialog the plugin parameters
can be set and the plugin called.

• class AxConfigurationDlg is used form the AxEditorFrame to edit the configuration parameters
The following diagram details the relationships among the classes used to display/manipulates digital
resources:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

22

AxMediaPlayerPanel

1

1

AxVideoPlayer

AxAudioPlayer

AxImageViewer

AxDocumentViewer

AxSMILPlayer

AxMPEG4Player

+stop()
+pause()
+isPlaying() : bool
+jumpToTime(in t : unsigned long)
+getCurrentTime() : unsigned long
+getDuration() : unsigned long
+setStartTime(in timeStart : unsigned long)
+setEndTime(in timeEnd : unsigned long)
+getStartTime() : unsigned long
+getEndTime() : unsigned long
+getCurrentTimeFormatted() : wxString

AxMediaTimeControl

+getMediaClient() : wxWindow *
+fit(in width : double, in height : double)
+fitToWindow()
+isAutoFit() : bool
+setAutoFit(in value : bool)
+zoomIn(in ratio : double)
+zoomOut(in ratio : double)
+getZoom() : double
+setZoom(in ratio : double)
+fullScreen(in value : bool = true)
+isFullScreen() : bool
+setSelectRegionMode(in mode : bool)
+isSelectRegionMode() : bool
+hideSelection()
+getSelectionRect()
+print()

AxMediaVisualControl

AxMediaPlayerFactory

wxPanel

wxScrolledWindow

+AxMediaPlayer()
+bindTo(in value : AxObjectManager*)
+load(inout index : const AxIndex)
+load(inout stream : istream, in mimetype : wxString)
+load(in url : wxString)
+play()
+getCapabilities() : unsigned int
+getStatus() : wxArrayString
+getCount() : int
+goNext()
+goPrev()
+getMediaTimeControl() : AxMediaTimeControl *
+getMediaVisualControl() : AxMediaVisualControl *
+extractTo(in ostream)

AxMediaPlayer

+AxElementView(in axom : AxObjectManager*)
+getMenu() : wxMenu *
+open(inout index : const AxIndex)

AxElementView

+AxGenericView(in paxom : AxObjectManager*)
+setAxom(in paxom : AxObjectManager*)
+getAxom() : AxObjectManager *
+setModified(in value : bool = false)
+getModified() : bool

AxGenericView

where:

• abstract class AxMediaPlayer represents a media player, it is derived in the specific classes
AxDocumentViewer, AxImageViewer, AxAudioPlayer, AxVideoPlayer, AxSMILPlayer,
AxMPEG4Player used to show the specific resources.

• abstract class AxMediaVisualControl is used to control aspect related to the visual rendering
• abstract class AxMediaTimeControl is used to control the execution of resources dealing with time.
• class AxMediaPlayerPanel contains the UI controls (play/stop/pause buttons, status text, seek slider)

to control the object (derived from AxMediaPlayer) used to display a resource
• class AxMediaPlayerFactory creates the specific class for displaying a resource on the basis of the

mimetype

4.3 User interface description
The following is a possible user interface for the AXMEDIS Editor, a Frame is used for each object opened.
Inside the frame, on the left a tree view representing the object structure is presented (see part B for details
on the Hierarcy View) and on the right the different views of the object are hosted (see part B for the
different viewers/editors). The AXMEDIS Hierarchy can be shown also as it will be visible from the End
User by selecting the specific Combo Box.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

23

AXMEDIS Editor

The top-level menus are:

File Description
New creates a new AXMEDIS object in a new window
Open… loads an AXMEDIS object in a new window
Close closes the current window
Save saves the object to disk
Save as… saves the object
Notify workflow activity completion notifies an workflow activity completion
Open from database… opens an object from the database
Upload into database… uploads the object into the database
Configuration… opens the configuration editor
Plugins… shows which plugins have been found
Recent files allows to select a recently opened file
Exit closes the application

Edit Description
Undo to undo the last operation
Redo to redo the last operation undone
Cut cuts the element
Copy copy an element
Paste paste an element
Delete removes an element without putting it in the clipboard
Content processing Plugin… Shows the plugins that can be used on the selected element

View Description
… view specific menu… a menu used for the view currently selected

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

24

Editors/Viewers Description
Resource Editor & Viewer Opens the resource viewer
Metadata Editor & Viewer Opens the metadata editor & viewer
Annotation Editor & Viewer Opens the annotation editor & viewer
Visual Editor & Viewer Opens the visual view on the whole object
Behaviour Editor & Viewer Opens the behaviour editor & viewer on the whole object
DRM Editor & Viewer Opens the DRM editor & viewer
Workflow Editor & Viewer Opens the workflow editor & viewer
Show all Opens all views

Play Description
Start Starts playing the object
Pause Pause object palying
Stop Stop playing

Window Description
… contains the list of windows currently opened

Help Description
Guide to AXMEDIS Editor… Opens the guide to the AXMEDIS Editor
About AXMEDIS Editor… Opens a dialog showing information on the AXMEDIS Editor

Contextual menus are used in the AXMEDIS Hierarchy to perform specific operations on each element of
the hierarchy:

Open open a default view for the element
Open with… in case more choices are available let the user choose
Properties… show properties of the element
Cut cuts the element
Copy copies the element
Paste pastes an element after the selected one
Delete removes the element
Move up move the element up
Move down move the element down
Insert
 metadata… inserts a new metadata element
 resource… inserts a new resource element
 object… inserts a new object
Plugin… let the user select the operation to be performed on the element

On the MPEG21 Hierarchy specific contextual menus are used:

Open open a default view for the element
Open with… in case more choices are available let the user choose
Properties… show properties of the element
Cut cuts the element
Copy copies the element
Paste pastes an element after the selected one
Delete removes the element without putting it in the clipboard

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

25

Move up move the element up
Move down move the element down
Insert
 Descriptor inserts a new descriptor
 Statement inserts a new statement
 Item inserts a new item
 Component inserts a new component
 Resource inserts a new resource
 Container inserts a new container
 Reference inserts a new reference
 …
Plugin… let the user select the operation to be performed on the element

Drag and drop can be used to copy an element from one hierarchy to another hierarchy (of different objects)
or to move an element from one point to another (in the same object).
Files (images, video, documents, …) can be dropped inside an object from the file system to become
automatically resources belonging to the object.

The following are the dialog to edit properties of a resource, a metadata and an AXMEDIS Object:

The following is the dialog to select the content processing plugin to be used on a resource:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

26

The following is the dialog to provide parameters for the plugin:

The following is the dialog to query for an object into the AXMEDIS Database:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

27

4.4 Technical and Installation information
References to other major
components needed

• AXMEDIS Object Manger
• AXMEDIS Plugin Manager
• AXMEDIS Content Processing Plugins

Problems not solved
Configuration and execution
context

4.5 Draft User Manual

4.5.1 Create a new AXMEDIS Object
To create a new AXMEDIS object select File/New from the Menu or use the button on the toolbar

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

28

To add a resource from a file on the local hard disk select the button from the toolbar and select the file to
be added:

Which produces (by double clicking on the resource the ImageViewer is opened):

Double clicking on the Dublin Core metadata the metadata editor is opened:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

29

Right clicking on the Dublin core a new element can be added

using the following dialog, selecting the Title element and entering the value and the language the title is
added:

which produces:

Double clicking on the AXMEDIS Info the Metadata Viewer shows the AXMEDIS specific information
associated with the object:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

30

The Object Creator information is automatically added getting information from the configuration
(File/Configuration… from the menu)

The object can be uploaded on the AXMEDIS Database using the button on the toolbar or File/Upload
into Database… from the menu or the object can be saved on the local hard disk using File/Save or
File/Save As… from the menu.

4.5.2 Modifying an AXMEDIS Object stored on Database
To search for the AXMEDIS object on the Database select the button on the toolbar or using File/Open
from Database… in the menu, the query dialog is opened and it is searched for an object with the title
containing "portrait":

Pressing the Submit button the query is sent to the database and the results are shown:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

31

Pressing Ok the object is recovered from the database and opened:

The Properties of the Resource (and for any other element) can be edited right clicking on the element and
selecting Properties… from the contextual menu:

and the following dialog is opened and the properties can be modified:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

32

On a Resource the contextual menu enables to use content processing plugins, selecting the Content
processing plugins… menu option the plugin function list is provided with the list of applicable plugins
functions (based on resource mimetype):

Selecting a plugin function and pressing the Execute button a dialog is presented allowing to provide the
arguments for the function, clicking on the Execute button the plugin function is executed:

The result is the following:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

33

4.6 Examples of usage
see Draft User Manual

4.7 Integration and compilation issues
None

4.8 Configuration Parameters
Config

parameter
Possible values

4.9 Errors reported and that may occur
Error code Description and rationales

5 Module - Hierarchy Editor and Viewer (DSI)

Module/Tool Profile
Hierarchy Editor and Viewer

Responsible Name Bellini
Responsible Partner DSI
Status (proposed/approved)

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

34

Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

Library

Single Thread or Multithread
Language of Development C++
Platforms supported
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axeditor/hierarchy_view

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/Applications/axeditor/bin

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

yes

Usage of the AXMEDIS Error
Manager (yes/no)

no

Major Problems not solved --
--

Major pending requirements Synchronization of MPEG21 view and AXMEDIS view

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

35

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

AxHierarchyView C++ wxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets wxWidgets 2.4.2 LGPL

5.1 General Description of the Module

Hierarchy Editor and Viewer

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

Top Package::Object Builder

Top Package::Final user

Hierarchy Editor User
Interface

Hierarchy Business
Logic

AXMEDIS
Editor::AXMEDIS Object

Manager

Behaviour Editor and
Viewer::WxWidget

Hierarchy Viewer and
Renderer

«uses»

«uses»

AXMEDIS
Editor::AXOM Content

Processing

AXMEDIS
Editor::AXOM

Commands and
Reporting

Hierarchy View should show hierarchical relationship among object subparts. Because of linearity of
MPEG-21/AXMEDIS relationship among components (i.e. each component has one, and only one, father
component), tree-like view (similar to the one of explorer) is the most suitable solution. Such view should

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

36

permit cut and paste operation and, moreover, it should permit specific operations (through contextual-menu
usage) on showed elements.
• Hierarchy View shall allow cut and paste actions. Both drag-and-drop and keyboard functionalities

should be developed to make the user interface more friendly;
• Hierarchy View shall allow use of mouse right-click on showed objects to permit contextual menu usage.

Such menus could be customized upon object types in order to permit implementation of specific
(object-type determined) actions, e.g. right-clicking on a document should permit to open (in a readable
format) it as long as the same action upon a mp3 should permit value extraction of IDv3 tags.

• Hierarchy View shall expose a functions which permits to add functionalities on the base selected
element type.

• Hierarchy View shall represent each object by a specific icon. Some of such icons should be obtained by
OS file association and the others will be drawn by developers.

The AXMEDIS Hierarchy Editor and Viewer allows to:

• visualize the AXMEDIS hierarchy as tree structure
• add a new AXMEDIS resource, AXMEDIS metadata or AXMEDIS object to an AXMEDIS object
• remove any element inside the object
• move the elements up or down
• drag & drop elements to move elements inside the object or from an object to another one
• drag & drop a file on the hierarchy to automatically add a resource
• copy & paste

The MPEG-21 Hierarchy Editor and Viewer allows to:
• visualize the MPEG-21 hierarchy as tree structure
• add a new MPEG-21 element (container, item, descriptor, etc.)
• remove any element inside the object
• move the elements up or down
• drag & drop elements to move elements inside the object or from an object to another one

The business logic under the hierarchy interface will basically cover four action on the hierarchy element

• Add – Insert Before – Insert After
• Remove
• Cut
• Copy
• Paste
• Drag and drop
• Expand
• Collapse
• Activation of other view

All the commands will be mapped on several command instances:

• The Add – Insert Before – InsertAfter generates a new CommandAdd class in order to submit such
instance to the execute method exposed by AXOM, these actions will set differently the command
attribute which determine the addition target in the data model, once the command is processed by
the AXOM the needed rights are checked by the PMS client and the needed operation executed in
the model (i.e. adapt?, enhance?, enlarge).

• The Remove operates in a similar manner requesting the execution of CommandDelete.
• The functions Cut, Copy, Paste, Drag and Drop are managed by the application clipboard and after

the event processing end in a CommandMove or CommandCopy which will check their specific
rights (i.e. extract).

• The function Expand needs to retrieve data model information in order to show the list of the sub-
items in the hierarchy, this requests the execution of CommandGetChildren which after the right
check (explore) allows the view to retrieve children data.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

37

5.2 Module Design in terms of Classes

5.3 User interface description
The following is an example of AXMEDIS Hierarchy:

Figure 1 - Example of AXMEDIS hierarchy

The following is an example of MPEG-21 Hierarchy:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

38

Figure 2 - Example of MPEG-21 hierarchy

5.4 Technical and Installation information

References to other major
components needed

AXMEDIS Object Manager

Problems not solved •
Configuration and execution
context

5.5 Draft User Manual

5.6 Examples of usage
see Draft User Manual

5.7 Integration and compilation issues
None

5.8 Configuration Parameters
Config

parameter
Possible values

5.9 Errors reported and that may occur
Error code Description and rationales

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

39

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

40

6 Module DRM Editor and Viewer (FUPF)

Module/Tool Profile
DRM Editor and Viewer

Responsible Name Víctor Rodríguez
Responsible Partner FUPF
Status
(proposed/approved)

Approved

Implemented/not
implemented

Implemented

Status of the
implementation

First prototype

Executable or
Library/module
(Support)

Library

Single Thread or
Multithread

Single thread

Language of
Development

C++

Platforms supported PC (Windows)
Reference to the
AXFW location of
the source code
demonstrator

https://cvs.axmedis.org/repos/Applications/drmeditorviewer

Reference to the
AXFW location of
the demonstrator
executable tool for
internal download

Errore. Riferimento a collegamento ipertestuale non valido.
https://cvs.axmedis.org/repos/Applications/drmeditorviewer/bin/drm_editor_viewer/win32

Reference to the
AXFW location of
the demonstrator
executable tool for
public download

http://www.axmedis.org/documenti/view_documenti.php?doc_id=1601

Address for
accessing to
WebServices if any,
add accession
information (user
aNd Passwd) if any

Test cases
(present/absent)

Test cases location Errore. Riferimento a collegamento ipertestuale non valido.
https://cvs.axmedis.org/repos/Applications/drmeditorviewer/doc/test

Usage of the
AXMEDIS
configuration
manager (yes/no)

No

Usage of the
AXMEDIS Error
Manager (yes/no)

No

Major Problems not

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

41

solved
Major pending
requirements

Interfaces API with
other tools, named
as

Name of the communicating tools
References to other major components
needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a section
XML based
(MPEG-21 REL)

Protocol Used Shared with Protocol name or reference to a section

Used Database
name

User Interface Development model, language, etc. Library used for the development, platform,

etc.
DRMView C++ wxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
 WxWidgets
 OpenSSL
 Xerces-C

6.1 General Description of the Module

6.1.1 Form of the DRM Editor & Viewer

• Libraries. DRM Editor & Viewer are two different C++ libraries. They present a tree view where a
License can be viewed and eventually edited (this last feature, only in the Editor). The Editor is a
superset of the Viewer. Additionally, a panel on the right side of the window displays the
information in a different form.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

42

• Executables. They provide the stand-alone functionality to demonstrate their use.

6.1.2 Architecture

The DRM Editor and Viewer libraries are based in a important number of libraries, whose relationship are
shown here.

6.1.3 Functionalities
• (E,V). It permits to visualize the license, in a browsable tree structure.
• (E,V). The tree structure can be easily embedded in a wxWindows application.
• (E,V). Elements of the license are represented in the leaves of the tree, in a user readable way.
• (E,V). The tree to be visualized can be expanded or collapsed at once or individually.
• (E,V). Licenses can be open from a XML file.
• (E,V) A panel is displayed in the right side of the tree, showing partially or totally the information from

the tree in an alternative format
• (E,V) The right panel can be hidden, reverting the screen to the single tree.
• (E,V) An icon in the right bottom corner shows whether there is or there is not connection with the PMS

Server available. The refresh rate of this icon has been set in 10 seconds, so possible reconnections or
disconnections take a fe w seconds in being shown.

• (E,V) A button bar contains the different possible actions for the license. This button bar is not available
in the integrated version of the editor, but alternative access to the functionality is also offered.

• (E). A context menu can be displayed in order to show edit options.
• (E). Each of the leaves can be edited. (only valid values may be accepted).
• (E). Elements can be deleted. (with the restriction to those elements who cannot dissapear)
• (E). New elements can be added.
• (E). The license can be stored in a xml file and in the server.
• (E). The information in the right hand side panel can be changed. Upon the presh of a button, new

introduced information is transferred into the current license.
• (E). Creation of PAR from internal PAR associated to an AXMEDIS object.
• (E). Creation of new license from PAR associated to an AXMEDIS object.

E: Available only in the Editor
V: Available only in the Viewer

6.1.4 DRM Editor Business Logic
The business logic under the DRM viewer interface will cover the actions we can do over three kinds of
DRM information:

• Licenses
• License template
• Potential Available Rights (both internal and external)

This information will be generated in XML format following the MPEG-21 REL language. For this reason,
the editor will construct a tree, with some restrictions, mainly imposed by the structure of an REL license
(for instance, we always have to define a right but the rest of elements inside a grant are optional).

6.2 Module Design in terms of Classes

Dependencies of the DRM Editor and Viewer library.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

43

SecureCache

EncDecSup LicenseModel

ContentConsu

SecureCache

ProtectionInfo

KeyGen

PMS Client LicenseModel LicenseManag

LicenseModel

DRMEVLib

SecureCache

EncDecSup LicenseModelEncDecSup LicenseModel

Class diagram of DRM Editor and Viewer

The following class diagram shows the main classes of the DRM Editor and Viewer. Methods inside the
classes are not described in detail to facilitate hierarchy view.

-AxPanelManager manager
AxDRMView : wxPanel

AxElementView

AxDRMEditorFrame

-AxPanelManager manager
AxViewerFrame : wxFrame

-AxLicenseHierarchyView *left_tree
-wxPanel *right_panel

AxPanelManager : wxSplitterWindow

AxLicenseHierarchyView

AxLicenseHierarchyEditor

AxIntegratedHierarchyEditor

AxGenericView AxOpenView

AxGeneralPanel AxIssuerPanel AxXXXPanel

6.3 User interface description
The following figure shows the current user interface for the creation of DRM information. It follows a
tree-like structure, where the elements could be added following the MPEG-21 REL structure.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

44

Figure. DRM Editor and Viewer user interface

Figure. Check if license accomplishes conditions

6.3.1 DRM Viewer
The DRM viewer only shows the structure of DRM information in the shape of a tree. The editing
functionalities will be disabled, and only the possibility to ask for available actions based on DRM
information will be permitted.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

45

Figure: It shows the DRM Editor and Viewer integrated with the AXMEDIS Editor. In the viewer version,
nothing changes excepting that fields are non-editable.

6.4 Technical and Installation information

References to other major
components needed

License Model
PMS Client
PMS Server

Problems not solved
Configuration and execution
context

It is provided with an installable version for Windows OS

7 Module - Protection Editor and Viewer (FHGIGD)

Module/Tool Profile
Protection Editor and Viewer

Responsible Name Martin Schmucker
Responsible Partner FHGIGD
Status (proposed/approved) Approved
Implemented/not
implemented

Implemented

Status of the
implementation

First prototype

Executable or
Library/module (Support)

Library

Single Thread or Single thread

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

46

Multithread
Language of Development C++
Platforms supported Windows
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/include/protection_editor_viewer/
https://cvs.axmedis.org/repos/Framework/project/protection_editor_viewer/
https://cvs.axmedis.org/repos/Framework/source/protection_editor_viewer/

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/Applications/axeditor/bin

Reference to the AXFW
location of the demonstrator
executable tool for public
download

-

Address for accessing to
WebServices if any, add
accession information (user
and Passwd) if any

-

Test cases (present/absent) Absent
Test cases location -
Usage of the AXMEDIS
configuration manager
(yes/no)

No

Usage of the AXMEDIS
Error Manager (yes/no)

No

Major Problems not solved --
--

Major pending requirements Integration of additional protection functionality

Interfaces API with other
tools, named as

Name of the communicating
tools References to other major
components needed

Communication model and format
(protected or not, etc.)

yes Protection Processor

Formats Used Shared with format name or reference to a section

Protocol Used Shared with Protocol name or reference to a section

Used Database name

User Interface Development model, language, Library used for the development,

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

47

etc. platform, etc.
yes C++

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
yes WxWidgets wxWindows licence

(http://www.wxwidgets.org/newlicen.htm)

7.1 General Description of the Module

The Protection Information Editor and Viewer provides the functionalities to view and edit protection
information:

• The user can browse the protection information, the list of protection operations that were applied to
the selected part of an AXMEDIS object.

• The user can view detailed information about a specific protection operation including all parameters
and the protection target.

• The user can alter the order of different protection operations.
• The user can delete one of the protection operations from the list of protection steps.
• The user can select one of the available tools for protection, e.g. encryption, scrambling or

compression, and add an additional protection operation to a specific part of an AXMEDIS object.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

48

7.2 Module Design in terms of Classes

AxProtectionView

+AxElementView(in axom : AxObjectManager*)
+getMenu() : wxMenu *
+open(inout index : const AxIndex)

AxElementView

+AxGenericView(in paxom : AxObjectManager*)
+setAxom(in paxom : AxObjectManager*)
+getAxom() : AxObjectManager *
+setModified(in value : bool = false)
+getModified() : bool

-axom : AxObjectManager *
-modified : bool

AxGenericView

AxObjectManager

1

AxElementListener

wxPanel

MPEG21ElementListener

AxCommandGetProtInfo

ProtectionProcessor

«uses»

AxCommandSetProtInfo

AxCommand

«uses»

«uses»

7.3 User interface description

The following figure shows the current user interface for the protection of resources and the vieweing of
protection information. It follows a list structure where the elements represent the different protection steps.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

49

Figure. Protection Information Editor and Viewer user interface

Figure: Parameter setting for a specific Protection Operation

7.4 Technical and Installation information

References to other major
components needed

Protection Processor

Problems not solved

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

50

Configuration and execution
context

The AXMEDIS Protection Information Editor and Viewer is executed
within the AXMEDIS Editor.

7.5 Draft User Manual and Example of Usage
The draft user manual and the examples of usage are currently under development.

7.6 Integration and compilation issues
None

7.7 Configuration Parameters
Config

parameter
Possible values

7.8 Errors reported and that may occur
Error code Description and rationales

8 Module Visual Editor and Viewer (EPFL)

Module/Tool Profile
Visual Editor and Viewer

Responsible Name Claudio Alberti and Beilu Shao
Responsible Partner EPFL
Status (proposed/approved) proposed
Implemented/not implemented Implemented
Status of the implementation 80%
Executable or Library/module
(Support)

Library

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows and Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/visual_editor_viewer

Reference to the AXFW

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

51

location of the demonstrator
executable tool for internal
download
Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

N/A

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Yes

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --Loading media resources from the panel instead of the disk
--Navigation and hyperlinking with multiple SMIL Scenes

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

 C++ wxWidgets

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

52

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets wxWidgets 2.4.2 LGPL

8.1 General Description of the Module
8.1.1 Spatial Visual Authoring of SMIL
Spatial View shall show object placement in a 2-D (or possibly 3-D) environment. Moreover, Spatial View
shall permit managing (i.e. moving, deleting, adding, etc…) object subparts which have spatial properties or
constraints.
• Spatial View shall be able to proportionally represent components in all significant spatial directions;
• Spatial View shall permit to modify spatial properties and constraints by means of graphical actions such

as drag-and-drop, contextual menu, etc…
• Component spatial properties should be relative to the comprising container or to other items. Otherwise,

those properties should be absolute respects to the entire object;
• Position constraints should be represented as labeled solid line where the label contains the distance

measure between the components and the constraint reference, e.g. if the position of a component is
absolute, a line for each direction will show the distance from the reference visualization edge.

The Visual Editor will arrange the media objects (video, photo, text, etc) on the screen. The Visual Business
Logic will store and manage an XML document that will describe the placement and dimensions of the
media objects on the screen i.e. the layout. This XML document will be integrated inside the AXMEDIS
document enclosed inside a <Component> tag pair. The Business Logic will access the AXMEDIS
document through the Command Manager.
<?xml version="1.0" encoding="UTF-8"?><DIDL
xmlns:xi="http://www.w3.org/2001/XInclude" >
...
...
<Item>
 <Component id="Colline-azzurre">
 <Resource mimeType="image/jpeg"
encoding="base64">...</Resource>
 </Component>
 <Component id="smilcomponent">
 <Resource mimeType="application/smil"
encoding="base64">...</Resource>
 </Component>
 </Item>
 </Item>
</DIDL>

As the user interacts with the GUI, the Business Logic will update the underlying data representation of the
layout by editing the XML document. The layout description will be done according to the SMIL W3C
standard. SMIL stands for Synchronized Multimedia Integration Language; it is an HTML-like language for
describing audiovisual presentations in XML. A part of the SMIL language is devoted to describing the size
and location on the screen of the media objects. For this reason, the data architecture of the Visual Business
Logic will be that of SMIL. The Visual Business Logic will implement a subset of the SMIL layout features.
More SMIL features can be added as the project evolves if we deem it necessary.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

53

Below I will explain the list of SMIL XML elements and attributes that will allow the Visual Business Logic
to organize and store the layout of the presentation. The following is the basic skeleton of the SMIL
presentation that we will have to support:

<?xml version="1.0" encoding="UTF-8"?>
<smil>
<head>
 <layout>
 <!-- The Visual Editor will handle this part: 2D layout-->
 </layout>
</head>
<body>
 <!-- The Behavour Editor will handle this part: time scheduling-->
</body>
</smil>

The “smil” element is needed to be SMIL compatible. The “smil” element is the root element of any
presentation. It only has an identifier attribute. The “head” element is a child of the “smil” element and it will
be needed to be SMIL compatible. Like the “smile” element, it only has an identifier attribute. Inside the
“head” element, there is the “layout” element that, as the name states, contains the layout information. The
“layout” element has two attributes: an identifier attribute and a “type” attribute. The “type” attribute
specifies which layout language is used in the layout element. In our implementation, we intend to support
only one language for the layout description, the SMIL Basic Layout Language. Therefore, we will set the
“type” attribute to the fixed value “text/smil-basic-layout” or we will omit the attribute because the default
value is the one that we want. The “body” element is explained in the Behaviour Editor section since this
element deals with time synchronization issues. Finally, we have the two most important elements to
describe the spatial placing of the media objects; these are the “root-layout” and the “region” elements. Both
are children of the “layout” element. Their purpose is to define rectangular regions on the screen. Each
rectangular region serves as placeholder for one or more media objects. For instance, imagine defining a
single rectangle where three videos will be rendered one after the other. Every rectangular region has to have
an identifier. This identifier is very important because it will be used in the Behaviour Editor to associate the
rectangle with the media objects. See Behaviour editor for more details. The “root-layout” element is a little
bit special because it defines the rectangular region where the whole presentation will be displayed. See two
examples of usage:

• <root-layout>: to set the width and height for the window in which the presentation will be rendered.
E.g.: <root-layout width="300" height="200" background-color="white"/>

• <region>: to define a rectangular region of the display area where a media object will be placed.
E.g.: <region id = ”some_id” left = ”0” top = ”0” width = ”32” height = “32” />

8.1.2 Loading Media Resources From AXMEDIS Object

SMIL component is created by including media resources from the left panel for each visual rectangular. The
working process is described as follows: with one internal media resource selected, the visual business logic
will extract and return the reference or the ID from the AXMEDIS Object to the SMIL component. The final
result of the SMIL component is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<smil>

 <head>
 <layout>
 <root-layout background-color="red" height="600" id="rootlayout"
title="axmedis" width="800"/>
 <region height="143" id="RegionName1" left="105" top="124" width="104"/>
 <region height="145" id="RegionName2" left="295" top="125" width="235"/>
 <region height="147" id="RegionName3" left="234" top="287"

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

54

width="357"/></layout>
 </head>

 <body>
<par>
 <audio begin="2" end="16" region="RegionName1" src="Reference1"/>
 <video begin="6" end="21" region="RegionName2" src="Reference7"/>

<video begin="2" end="14" region="RegionName3" src="Reference5"/>
</par>
 </body>

</smil>

Reference N is referred to the N th media resource inside the AXMEDIS Object. After the creation
this SMIL component can be compressed and saved as other typical media components inside the
AXMEDIS Object.

8.2 Module Design in terms of Classes

8.3 User interface description
The Visual Editor GUI will allow the user to draw rectangles on the screen representing the regions where
media objects will be rendered. To draw a new rectangle it will suffice to click-and-hold a mouse button,
drag the mouse, and release the mouse button; this will define the upper left and lower right corners of the
rectangle. Every rectangle will represent the region where a media object will be rendered. Every rectangle
will be associated with a “region” element of the SMIL document managed by the Visual Business Logic.
The user will be able to draw, resize, move, copy, paste, and delete rectangles. Every of this operations will
be notified to the Visual Business Logic that in return will update the SMIL document. In this way, the SMIL
document will be a faithful representation of what the rectangles the user will place on the screen. By right
clicking on a rectangle the user will access a context menu (see picture below) to add media resources from
the list of on the left panel, change the rectangle properties. For instance if the user changes the “width”
attribute, the rectangle will be resized to accommodate to the new width; this “width” attribute will also be
updated in the SMIL document.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

55

By right clicking the rectangular on the canvas, the user will have a context manual with the options
“Loading Resources…”. With this option selected, the user will have a menu list of the media resources on
the left panel for selection as follows:

With one media resource selected, the visual business logic will extract its ID from the AXMEDIS Object,
return the reference or ID of this internal resource and store it inside the SMIL component.

The user right clicks on an area where there are not rectangles, another context menu will pop up. This
context menu will contain the “root-layout” attributes such as title, id, width and height, etc. These SMIL
attributes control the display area of the presentation.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

56

8.4 Technical and Installation information

References to other major
components needed

• Behaviour editor and viewer

Problems not solved • Root layout
• Loading media resources from list on the left instead of loading

from the disk.
Configuration and execution
context

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

57

8.5 Draft User Manual

8.5.1 Editing the visual scene for SMIL(create/delete, resize/move)
The user left clicks on the palette on the left of the Visual Editor. When the Square button is toggled, the user
can create an Element (e.g., rectangular shape) on the canvas of the visual editor. The user left clicks on the
canvas to create an element (e.g., rectangular shape) to represent the element area in the SMIL. Many of
them can be arranged on the same scene. Some of them may not have a visual rendering but only an audible
rendering.

8.5.2 Association of media resources within an element of SMIL
The user can click on the right button of the mouse (or choose the menu on the frame, in both cases) with the
options of “load resources…” to include media resources.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

58

8.6 Examples of usage
See the Draft User manual

8.7 Integration and compilation issues
None

8.8 Configuration Parameters
Config

parameter
Possible values

8.9 Errors reported and that may occur
Error code Description and rationales

9 Module Behaviour and Functional Editor and Viewer (EPFL)

Module/Tool Profile
Behaviour and Functional Editor and Viewer

Responsible Name Claudio Alberti and Beilu Shao
Responsible Partner EPFL
Status (proposed/approved) proposed
Implemented/not implemented Implemented
Status of the implementation 60%
Executable or Library/module
(Support)

Library

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows, Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/behaviour_editor_viewer

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

59

executable tool for public
download
Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

yes

Usage of the AXMEDIS Error
Manager (yes/no)

yes

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

 C++ wxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets wxWidgets 2.4.2 LGPL

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

60

9.1 General Description of the Module
The Behaviour Editor together with the Visual Editor will provide the user with the infrastructure to produce
multimedia presentations. A multimedia presentation can be composed of many media objects (text, audio,
video, vector graphics...). The user will use the Behaviour and Visual Editors to organize the media objects
in space and time. As explained in the section 8, the user will use the Visual Editor to place the media objects
in different positions of the screen. There is a timeline at the top of the GUI of behaviour editor and viewer
to indicate the time unit and entire length of demonstration. The author can modify the parameters of this
timeline by using the context menu.

The Behaviour Editor will complement the Visual Editor by adding time boundaries to the media objects.
This means that every media object will be visible only for a period defined by the user. The simplest
example for this is a slide show: the user specifies a group of slides and each slide is only visible during a
slot of time defined by the user.
The Behaviour Editor will use a subset of the SMIL language to describe the multimedia presentation. SMIL
(pronounced "smile") is defined as a set of XML modules which are used to describe the temporal, positional,
and interactive behavior of a multimedia presentation.

Behaviour and Functional View is intended first as a View where the main modalities and layers of the
Editor can be activated. The AXMEDIS Object can be a heterogeneous, multi-layer piece of information for
which different modalities of exploration/manipulation are possible and for which different layers may be
accessible according to preferences. In this sense the Functional View displays the available possibilities and
allows selecting a text view, other than composited media view (scene layer) or a media-by-media view. The
functional view may also allow displaying available modes of operation, like the selection between file /
broadcast (save later, transmit immediately) and related configuration.
Behaviour and Functional View is also an interfacing view to external editors affecting synchronization and
timing among different media objects. An AXMEDIS object may include multimedia and cross-media
scenes like those that can be produced by MPEG-4 BIFS, SMIL, etc. Through suitable plug-ins and
interfaces the AXMEDIS Editor may allow inserting and taking out portions or elements of these composited
elements. Direct internal editing through internal functions and menus could be limited to a minimum of
simple straightforward cases. Overall, the Behaviour and Functional View will:

• allow the production and modification of behavioural and functional parts of the AXMEDIS Objects.
These parts are the functional parts of the MPEG-21 object. They are used to describe the behaviour
of the object when it is open, played, etc. It is possible in this way to describe the execution sequence
and the buttons to activate them, etc. See Digital Item Processing, Digital Item Methods.

• allow switching by one touch tabs among different views such as text view (XML text view),
composite media scene view, single media view (video, audio, hyperlinks, animations, etc.), media
delivery view (embedded elements, streaming elements, etc.).

• for aggregated composite objects, allow activating different windows with different view modalities
for different subparts of the object.

• support plug-ins to show and manage specific composite media types that are to be reasonably
expected for these elements, given the complex nature that these elements may have. At least a few
of the major formats and tools for multimedia synchronization and timing (BIFS, SMIL), including
maybe also QT, avi (divx) and the like.

• permit the visualization of simple time diagrams and/or spatial layouts from AXMEDIS objects to
permit selection of some parts (on the base of annotations, etc.) to activate related editing tools for
the supported functionality and formats

be configurable, i.e. user should be able to select, for each kind of components, which view to activate by
default.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

61

Behaviour Editor and Viewer
This has to be taken as an example of any AXMEDIS Editor
and Viewer connected to the AXOM for working on its
details.

Behaviour Editor User
Interface

Behaviour Viewer and
Renderer

Behaviour Business
Logic

Behaviour Player/
Simulator

AXMEDIS Editor::AXMEDIS
Object Manager

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

Top Package::Final user
Top Package::Object Builder

WxWidget

«uses»

«uses»

AXMEDIS Editor::AXMEDIS
Content Tools Error Manager

AXMEDIS Editor::AXMEDIS
Editor Configuration Manager

«uses»

«uses»
«uses»

«uses»

«uses»

«uses»

AXMEDIS
Editor::AXOM Content

Processing

AXMEDIS
Editor::AXOM

Commands and
Reporting

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

62

Behaviour Editor and
Viewer::Behaviour Viewer

and Renderer

Behaviour Editor and
Viewer::Behaviour Player/

Simulator

Behaviour Editor and
Viewer::WxWidget

Behaviour Editor and
Viewer::Behaviour
Business Logic

Top Package::Final user

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

AXMEDIS Editor::AXMEDIS
Object Manager

«uses»

«uses»

Behaviour Viewer/Player
The structure of this component and tool could be taken as
an example of any Viewer/Player connected to the AXOM
for rendering its details in final players/viewers.

9.1.1 Behaviour Business Logic
The Behaviour Business Logic will maintain an XML document. This XML document will describe the
schedule of a group of media objects. It will be possible to specify when a media object will be displayed, for
how long, and when the media object will abandon the display area. The temporal description will also be
done according to the SMIL W3C (see Visual Editor section)
The user will interact with the Behaviour GUI to define, in a graphical way, the temporal information of the
media objects. The Behaviour Business Logic will receive notifications from the Behaviour GUI and it will
modify the SMIL document accordingly. In this way, the SMIL document will become a text description of
the temporal planning that the user will design in a graphical manner.
It is important to notice that the SMIL document edited by the Behaviour Business Logic is the same
document edited by the Visual Editor. However, there will be no conflict because the Behaviour Editor and
the Visual Editor will modify different parts of the same document. The Visual editor is concerned with the
spatial editing while the Behaviour Editor regards the temporal editing. Fortunately, a SMIL document keeps
in separate sections the schedule and the layout. The SMIL document will be held inside the AXMEDIS
document and will be treated as other components. This means that the SMIL document will be accessed via
the Command Manager.

9.1.1.1 Temporal Behavior of SMIL
The Behaviour Business Logic will be able to handle a subset of the SMIL language. To incorporate media
objects in the presentation we will need the following media tags:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

63

• audio: audio clips
• img: still images (jpg, gif, png, etc)
• text: plain text.
• video: a video (mpeg, avi, mov, etc) formally we can use any kind of video here. For instance,

mpeg-4 provided that we have a SMIL player that is able to instantiate an mpeg-4 player.
Three synchronization elements support common timing use-cases:

• par: the <par> element plays child elements as a group (allowing "parallel" playback).
• begin: defines when the element will be visible (start playing).
• end: defines when the element will be invisible (stop playing).

Some other advanced attributes like seq, excl, clip-begin, clip-end, fill, repeat, etc, will also be as the project
evolves if we deem it necessary.
Putting it all together, we could have something like this:

<par>
 <video region="video1_rectangle" begin="3s" end="59s" src="weather.mpg " />

 <video region ="video2_rectangle" begin="4s" end="10s" src="party1.mpg " />
 <video region ="video3_rectangle" begin="10s" end="20s" src="party2.mpg " />
</par>

The line above states that the video weather.mpg will stop at 59 seconds in the region on the screen named
“video1_rectangle” that must have been previously defined using the Visual Editor. Then it follows
party1.mpg, with starting point 4s and stops at 10s and the last is party2.mpg which starts at 10s and lasts 10s.

However this model is too restrictive especially when the SMIL resource should be used as a template for the
production of similar content since in this case the durations cannot be known in advance.
For this reason the Behaviour View will have to support any nesting of <par> and <seq> elements.

9.1.1.2 Navigation and hyperlinking with multiple SMIL scenes
The link elements allow the description of navigational links between objects. SMIL provides only for in-
line link elements. Links are limited to uni-directional single-headed links (i.e. all links have exactly one
source and one destination resource). All links in SMIL are actuated by the user. Navigation and
hyperlinking with multiple SMIL scenes is supported in the behavior editor. This function is supported by
<a> tag in the SMIL specification. This enables the user to connect another SMIL scene by clicking “link”
which is at the displaying scene. For the hyperlinking feature, the editor will support the following structure
of the SMIL:

<video src=" party1.mpg " >

href attribute contains the URI of the link’s destination. The second line will be replaced by a reference to a
new SMIL presentation with the URI "somewhereelse.smil". Therefore when a viewer clicks the video, a new
presentation will start up in presentation.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

64

After clicking “hyperlink…” the user will have a menu list of SMIL components on the left panel to choose
the target file for the presentation. And then the behaviour business logic will write the information into the
SMIL file as follows:

<video src=" party1.mpg " >

Once the SMIL is under execution for preview, it includes some buttons at which another SMIL scene is
connected via a link and thus the current presentation is replaced by another SMIL presentation. On the other
hand, if the user does not want to link to other resources, the user does not need to do anything and the
current SMIL presentation will repeat itself.

To make the SMIL repeat, the tag <repeat> is supported. The repeat="indefinite" attribute causes a clip or
group to repeat until another SMIL attribute or user event stops the playback loop. However, this attribute
works only with some of the SMIL player. In the following example, the audio clips repeats continuously
until the viewer clicks the Player Stop button:

 <audio src="music/newsong.rm" repeatCount="indefinite"/>

For Ambulant SMIL player (version 1.6.2), this attribute is partially supported for seq and par elements, for
these elemetes it is needed to specify the dur attribute like in the following example:

…
<par dur="9s" repeatCount="indefinite">

</par>

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

65

9.2 Module Design in terms of Classes

9.3 User interface description
The Behaviour GUI will display graphically the temporal boundaries of every media object. This GUI will
have a horizontal time line similar to a ruler (see next picture) with marks on it that will indicate the time.
The media objects will be represented as horizontal bars of different lengths according to the duration of the
media object. The bars will be drawn under the time line in such a way that the limits of a bar will be aligned
with the start and end times. This way, every bar will give a graphical impression of when a media object
will start playing and when will it stop.
To add, modify or remove bars in this GUI the user will use a contextual menu accessible via right click. To
associate a media object with a bar, the user will have to select a media object from the Hierarchical View
and drag it onto the bar. To define the region of the screen where the media object will be rendered, the user
will have to select a rectangle from the Visual Editor and drag it onto the bar.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

66

A draft contextual menu can be used to modify the parameters of the timeline in terms of the entire
demonstration time and the unit (second/minute/hour)

The following figure demonstrates the GUI to set the temporal attributes of the synchronization elements of
each media resource based on the timeline.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

67

9.4 Technical and Installation information

References to other major
components needed

• Visual editor and viewer

Problems not solved • Support of <par> tag for the simultaneous display of objects.
• Navigation and hyperlinking with multiple SMIL Scenes

Configuration and execution
context

9.5 Draft User Manual

9.5.1 Editing the temporal information of media resources
The user can modify the length and position of the rectangle on the time line to indicate the different starting
time and display duration

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

68

9.6 Examples of usage
See the Draft User Manual

9.7 Integration and compilation issues
None

9.8 Configuration Parameters
Config

parameter
Possible values

9.9 Errors reported and that may occur
Error code Description and rationales

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

69

10 Module AXMEDIS Object Editor and Viewer (Descriptions and
Comments) (EPFL, DSI)

Module/Tool Profile
AXMEDIS Object Editor and Viewer (Descriptions and Comments)

Responsible Name Claudio Alberti and Beilu Shao
Responsible Partner EPFL
Status (proposed/approved) proposed
Implemented/not implemented
Status of the implementation
Executable or Library/module
(Support)

Library

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows, Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/object_editor_viewer

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

yes

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

70

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

 C++ wxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets wxWidgets 2.4.2 LGPL

10.1 General Description of the Module
Annotations and Comments View will permit to display information including annotations and comments
within AXMEDIS objects or parts of them. Annotations and Comments will be logically included as
elements in AXMEDIS objects without actually modifying their contents. Such View will be user
customizable, i.e. users will be able to select which types of media have to be made accessible for each
component. Annotations and Comments View will:

• permit to add/edit/delete annotations and comments by means of graphical actions such as drag-and-
drop, contextual menus, etc

• be configurable, i.e. user should be able to select, for each kind of components, which annotations
and comments types (textual, audio, alternatives, etc…) have to be made accessible;

• support plug-ins to show and manage specific media types that are to be reasonably expected for
these elements, given the different nature that annotations and comments may have. Other than
normal text support, at least audio annotations/comments and possibly text-to-speech should be
included; still pictures should also be available in at least one common format.

• support for printing and visualising the metadata in a human understandable format.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

71

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

Annotations and Comments
Renderer

WxWidgets

AXMEDIS Editor::AXMEDIS
Editor Configuration Manager

Annotations and Comments
User Interface

Annotations and Comments
Business Logic

AXMEDIS Editor::AXMEDIS
Object Manager

AXMEDIS Editor::AXMEDIS
Content Tools Error Manager

10.1.1 Business Logic
Instead of “Annotations and Comments”, “Comments” will be used from now on. The Comments Business
Logic is the ‘brain’ of the Comments Editor. This is the list of characteristics of the Comments Business
Logic:

• This block is able to associate a set of Comments with an AXMEDIS object.
• This block does not need to ask permission to the AXMEDIS Object Manager to perform any action

because the Comment operations do not interfere with the DRM rules of the AXMEDIS object.
• This block does not need to report its activities to the AXOM Commands and Reporting because the

Comment operations do not affect the integrity of the AXMEDIS object.
• This block can ask to the AXMEDIS Object Manager information about the current AXMEDIS

Object: name, playing state, paused state...
• This block is able to read and write the file system where the Comments will be stored.
• This block is able to instantiate a simple text editor to display text Comments and to allow the user to

write text Comments.
• This block is able to instantiate a simple audio player/recorder to record or play audio Comments.
• This block is able to instantiate simple picture viewer/editor to allow the user to display graphic

Comments.
• This block is able to store the configuration of the Comments Editor.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

72

10.2 Module Design in terms of Classes

10.3 User interface description
The Annotations and Comments User Interface will be composed of several Graphical User Interfaces
(GUIs): one for each type of Comment, a main GUI that will group all the Comments belonging to the same
AXMEDIS object, and finally a Configuration GUI that will be displayed though the AXMEDIS Editor
Configuration Manager.

10.3.1 Main GUI
The main GUI will show the list of Comments associated with one AXMEDIS object. This GUI will permit
the following operations by means of a contextual menu (see next picture) :

1. Save all
2. Add a Comment
3. Remove a Comment
4. Open a Comment

10.3.2 Configuration GUI
The Configuration GUI will allow the customization of the Comments Editor. The user will be able to
configure the default type of comments e.g: plain text or the default directory where the comments will be
stored. This could be implemented as ActiveX Property pages (in PC platform). By using Property pages this
GUI can be driven and be made accessible from the AXMEDIS Editor Configuration Manger which is in
charge of centralizing the configuration information of the whole AXMEDIS Editor.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

73

10.3.3 Renderer GUIs
Different types of Comments need different GUIs. A simple text editor will be needed to have text
comments. For audio Comments a simple audio player/recorder will be needed. It is not necessary that this
player is able to play/record compressed formats like mp3; it suffices if it is capable of playing/recording in
non-compressed format. Finally a simple image/drawing editor will be provided.

The following picture shows how the Comments Audio Renderer could look like.

10.4 Draft User Manual

10.5 Examples of usage

10.6 Integration and compilation issues

10.7 Configuration Parameters
Config

parameter
Possible values

10.8 Errors reported and that may occur
Error code Description and rationales

11 Module Metadata Editor and Viewer (UNIVLEEDS)

Module/Tool Profile
Metadata Editor and Viewer

Responsible Name Kia Ng and Royce Neagle
Responsible Partner UNIVLEEDS

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

74

Status (proposed/approved)
Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

Library

Single Thread or Multithread Single thread
Language of Development C++
Platforms supported Windows, Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/metadata_editor_viewer

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/Applications/axeditor/bin

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

75

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWindows wxWindows, v-2.5.3 or v-2.4.2 LGPL
Xerces Xerces-c++ v-2.6.0 Apache Software Licence, v2.0
Xalan Xalan-c++ v-1.9 The Apache Software License, v1.1

11.1 General Description of the Module
Metadata Viewer provides functionality to display information contained within the metadata associated with
an AXMEDIS object. Due to the complex nature of AXMEDIS object, there may be one or more metadata
sections with different schema, including MPEG21, Dublin Core, AXInfo.
• Metadata Viewer shall be able to adapt itself (e.g. by analysing the data-related XML schema)

automatically to the metadata structure;
• Metadata Viewer shall be fully configurable, i.e. user shall be able to select, for each set of metadata and

for each kind of components, which metadata have to be displayed;
• Specific set of valuable metadata, such as authoring MPEG-7 metadata, should be included into

AXMEDIS Editor basic release;

Scenario for editing metadata

1. Receive metadata information in XML from WF
2. Parse XML data to obtain a list of metadata tag and value
3. Generate visualisation for metadata
4. Provide functionality for the actor to modify the metadata
5. Provide functionality to send back the revise metadata to the originator (via WF)

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

76

For Metadata visualisation, two possible approaches can be done:

1. Using the above editor without the manipulation and save functionality (4 & 5) activated
2. Generating a HTML file (with CSS) and use a browser to display the file

Metadata
Loader

MMeettaaddaattaa
VViieewweerr AXMEDIS Workflow

Manager

Metadata
Visualisation

Metadata
Parser

1

HTML and CSS
files

2

See previous
scenario

Metadata
Saver

Metadata
Loader

MMeettaaddaattaa
EEddiittoorr

2

5

AXMEDIS Workflow
Manager

1

Metadata
Visualisation

Metadata
Manipulator

4

5

Metadata
Parser

3

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

77

Metadata Editor and Viewer

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

Metadata Editor User
Interface

AXMEDIS
Editor::AXMEDIS Object

Manager

Behaviour Editor and
Viewer::WxWidget

«uses» «uses»

Metadata Viewer and
Renderer

Top Package::Object Builder

Top Package::Final user

Metadata Schemas

«uses»

Metadata Manager

«uses»

General Metadata
Business Logic

This architecture should allow to cope with different Metadata Sets simply by changing the Metadata
Schemas (also taken from the AXMEDIS object, and in particular from the AXInfo): The interested
test cases should be UNIMARC, Doublin Core, and all the AXInfo data. The Role of the Metadata
Manager is that of reading the schema and creating data structure and logic on the basis of the General
Metadata Business Logic. The Metadata Manager can have in the same AXMEDIS object different
sections with different Metadata differentiated for: Model, language, schema, etc. The Metadata
Viewer and Renderer can be a simple translator in HTML or XML and the real renderer can be the
HTML renderer inside the AXMEDIS Media Player.

AXMEDIS Editor::AXOM
Commands and

Reporting

AXMEDIS Editor::AXOM
Content Processing

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

78

Metadata Viewer

AXMEDIS Client Player::AXMEDIS Media
Player User Interface and Window

Support

Metadata Editor and
Viewer::General Metadata

Business Logic

Metadata Editor and
Viewer::Metadata Manager

Behaviour Editor and
Viewer::Behaviour Viewer and

Renderer

Metadata Schemas AXMEDIS Editor::AXMEDIS
Object Manager

«uses»

Behaviour Editor and
Viewer::WxWidget

«uses»

Top Package::Final user

11.1.1 General Metadata Business Logic
The General Metadata Business Logic provide the navigation functionalities to traverse a given XML
document based on the structure and relationships modelled by the Metadata manager using a schema. It is
particularly important for the Metadata editor to know what is the valid child for a particular nodes
depending on the context, where the user intended to add an elements. The Business Logic preserves the
structure integrity and ensure the correctness of the updated XML.

11.1.2 Metadata Manager
With a given schema, the Metadata Manager creates a representation of the structure and representation
which include all the valid nodes, elements, parent child relationships, and each individual type. At this level
the XML Document Object Model (DOM) is used to provide a way on how the XML document can be
accessed and manipulated. The structure of this structure is used by the General Metadata Business Logic
which navigates the structure. For the Metadata Editor, this structure, nodes, elements, etc are used to allow
the user to add new elements with validation.

Metadata structure can be complex with recursive references. The AXMEDIS Metadata Manager extracts
basic structure and apply a linearization to the structure in order to minimise unnecessary complexity
unrelated to metadata editing purposes, removing recursive references.

11.1.3 Metadata Schemas
In this case, for the Metadata Editor, the Metadata Schema is required as a means for defining the structure
and content of the XML documents. One or more metadata schema(s) is/are required for the AXMEDIS
metadata editor in order to validate the correctness of the structure and elements of the metadata description
of the AXMEDIS object. This is particularly important to allow the adding of a new element (which may be
optional and not included in the original description).

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

79

If no schema is available for the editor, the editor will still provide the functionality of modifying existing
elements and try to preserve the original type. However, no new elements can be added since there is a
potential danger of corrupting the original object description.

11.1.4 Metadata Viewer and Renderer
There are two approaches to achieve the metadata visualisation:

1. uses the metadata editor (as described above) with the editing functionalities disabled
2. to automatically generate HTML (with pre-defined or user-defined CSS) and uses standard

browser (e.g. IE) for visualization

The Metadata Editor (1) has been integrated into the AXEditor (see section User Interface for screenshots)
where editing functions are achieved through the use of an editing dialogue as presented in the User Interface
section.

The generation of HTML will be accomplished using the menu option to open a web browser and display the
XML with generated with either pre-defined or user-defined CSS.

11.2 Module Design in terms of Classes

AxMetadataView

AXMetadataTree

AxMetadataTreeData

1

*

1

1

DnDFile

AxDCElementDialog

AxInfoAddDialog

AxInfoElementDialog

11.3 User interface description

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

80

Figure: Screenshot of the AxEditor open in the Metadata View showing the tree view of the metadata
elements (right window). The metadata view can be selected by double clicking on the metadata
elements in AXMEDIS View of the AXMEDIS Object (left window).

Figure: Screenshot of the editing window of the metadata elements using the editing metadata
dialogue box to add and edit both the content and attributes.

Tree view area in the Metadata View
In this area the structure of the XML is displayed. It will be visualised using a Tree control that will permit to
show and browse components according to the generic XML inputted. This view will also permit the editing
of fields.

Metadata Editing Dialogue

Tree view XML Format
for searching Dublin Core
elements and editing fields

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

81

This view presents the element name, content editing window and element attribute drop down box to edit
the metadata element selected.

11.4 Technical and Installation information
The editor is integrated into the AXEditor, please see AxEditor technical and installation information for
more details.

References to other major
components needed

Problems not solved •
Configuration and execution
context

11.5 Draft User Manual

11.6 Examples of usage

11.7 Integration and compilation issues
none

11.8 Configuration Parameters
Config

parameter
Possible values

11.9 Errors reported and that may occur
Error code Description and rationales

12 Module - Metadata Mapper Editor and Viewer (UNIVLEEDS)

Module Profile
Metadata Mapper Editor and Viewer

Responsible Name Garry Quested and Royce Neagle
Responsible Partner UNIVLEEDS

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

82

Status
(proposed/approved)

Proposed

Implemented/not
implemented

Prototype with basic GUI implemented

Status of the
implementation

Prototype with basic GUI

Executable or
Library/module
(Support)

Executable

Single Thread or
Multithread

Multi Thread

Language of
Development

C++

Platforms supported Windows
Reference to the
AXFW location of
the source code
demonstrator

https://cvs.axmedis.org/repos/Applications/metadatamapperGUI
https://cvs.axmedis.org/repos/Framework/source/metadatamapper/
https://cvs.axmedis.org/repos/Framework/include/metadatamapper/

Reference to the
AXFW location of
the demonstrator
executable tool for
internal download

https://cvs.axmedis.org/repos/Applications/metadatamapperGUI/bin/
win32/metadatamapperGUI.exe

Reference to the
AXFW location of
the demonstrator
executable tool for
public download

Address for
accessing to
WebServices if any,
add accession
information (user
and Passwd) if any

Test cases
(present/absent)

Absent

Test cases location
Usage of the
AXMEDIS
configuration
manager (yes/no)

No

Usage of the
AXMEDIS Error
Manager (yes/no)

No

Major Problems not
solved

Major pending
requirements

GUI improvements

Interfaces API with
other tools, named
as

Name of the communicating tools References
to other major components needed

Communication model and format
(protected or not, etc.)

yes metadatamapper.lib
https://cvs.axmedis.org/repos/Framework/bin/

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

83

metadatamapper/win32/metadatamapper.lib

Formats Used Shared with format name or reference to a section
XSLT metadatamapper XSLT, Standard format

Protocol Used Shared with Protocol name or reference to a section

Used Database
name

User Interface Development model, language, etc. Library used for the development,

platform, etc.
yes C++ wxWidgets, Object Graphics Library, PC,

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
yes wxWidgets-2.4 wxWindows licence

(http://www.wxwidgets.org/newlicen.htm)
 Object Graphics Library of wxWidgets-2.4 wxWindows licence

(http://www.wxwidgets.org/newlicen.htm)

12.1.1 General Description of the Module
The MetaDataMapperGUI allows a user to generate metadata mappings from one XML language to another
using a graphical interface. A source and destination metadata file are loaded into the application and then
the user defines links with pair(s) of a source element to a destination element. The mappings can be saved to
file and this file can be used to convert a metadata file in the source language to a metadata file in the
destination language.

The Mapper comprises of two parts:

1) A GUI which provides a graphical tool for mapping between one metadata language to
another.

2) The metadatamapper library (see DE3-1-2-2-7) which builds the XSLT document from the
mapping information provided by the GUI

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

84

12.1.2 Module Design in terms of Classes

wxApp

wxFrame

MetaDataMapperApp

MetaDataMapperGUI

1
1

MetaDataMapperGUI

Xerces

MetaDataMapper

wxTreeCtrl

wxTreeItemData

MetaDataMapperTreeCtrl

MetaDataMapperTreeItemData

*

*

*

*

*

*

*

*

12.1.3 User interface description
The user interface consists of three components:
• the left component displays a tree view of the source metadata language
• the middle component is a canvas used to display connections between elements on either side
• the right component displays a tree view of the target metadata language
• The user creates connections between source and target elements and a connection line is drawn on the

canvas. These connections are converted to XSLT when the user generates a map file

12.1.4 Technical and Installation information
o Once compiled, the executable of the metadatamapperGUI can run provided the appropriate

DLLs are available. These can all be found in the metadatamapperGUI section of the repository

Problems not solved The metadatamapper is currently a prototype. Two main areas need

work:
1. The mapping of elements can be improved to handle more

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

85

complex mapping rules
2. The GUI can be improved to provide a better user experience
3. The prototype can only support one layer Metadata tree

structure at this stage

12.1.5 Draft User Manual
There is no user manual currently available

12.1.6 Examples of usage
First a user loads a source and target metadata file. Next they connect elements to create mapping
information. When the user has mapped all the elements they require, they save a map file by clicking the
save toolbar button. An XSLT file will be saved on the users system which can be used for metadata
adaption

12.1.7 Integration and compilation issues
None

12.1.8 Configuration Parameters
Config

parameter
Possible values

12.1.9 Errors reported and that may occur
Error code Description and rationales

5 out of memory exception when trying to create a new stylesheet
2 DOM Exception when trying to create a new stylesheet
error in
generate xsl
function

Undefined exception when trying to create a new stylesheet

13 Module Workflow Editor and Viewer (DSI)

Module/Tool Profile
Workflow User Interface

Responsible Name Bellini
Responsible Partner DSI
Status (proposed/approved) Approved
Implemented/not implemented Implemented
Status of the implementation First Prototype Completed
Executable or Library/module
(Support)

Library

Single Thread or Multithread Multithreaded
Language of Development C++
Platforms supported Windows
Reference to the AXFW
location of the source code

https://cvs.axmedis.org/repos/Framework/source/workflow_editor_viewer

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

86

demonstrator
Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/Applications/axeditor

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user aNd
Passwd) if any

Test cases (present/absent) Absent
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Yes

Usage of the AXMEDIS Error
Manager (yes/no)

No

Major Problems not solved
Major pending requirements

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

WorkFlow Engine Via Workflow Plugin

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

 C++ wxWidgets

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

87

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
 wxWidgets 2.4.2 LGPL

13.1 General Description of the Module
The workflow editor and viewer integrated inside the AXMEDIS Editor is the gateway interface for
accessing to the workflow management system.
The functionalities supported by the module are:

• view the status in the Workflow Management System of the currently opened object
• update inside the object the workflow status that is present in the AXInfo metadata
• give access to the workflow web interface

13.2 Module Design in terms of Classes

AxWorkflowView

AxElementView

AxGenericView AxObjectManager

1

AxOpenView

wxPanel

+getWFInfo(in axoid, in gatewayURL, out falutCode, out faultStr, out rqid, out title, out process, out activity, out status, out priority, out actor)
+notifyRequestCompletion(in axrqid, in uri, in endpoint, in result : bool, out errorCode, out errorMsg, in axoid)

AxEditorWorkflowPlugin

«uses»
CommandReporting

«uses»

13.3 User interface description
The User Interface integrated inside the AXMEDIS Editor is the following.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

88

When the user clicks on the "Request Workflow Information" Button, the server is contacted via the WF
plugin to obtain the information on the object that is currently opened
The information acquired is:

• Title
• Process
• Activity
• Priority
• Status
• Actor
• AXRQID

If needed the information stored inside the AxInfo on the workflow is updated.

On the bottom part of the view the Workflow Server web interface is provided.

13.4 Technical and Installation information
References to other major
components needed

Problems not solved •
Configuration and execution
context

13.5 Draft User Manual
See User Interface Description

13.6 Examples of usage
See User Interface Description

13.7 Integration and compilation issues
None

13.8 Configuration Parameters
Config parameter Possible values

WORKFLOW/workflowUrl the url of the workflow manager

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

89

WORKFLOW/gatewayUrl the url of the gateway

13.9 Errors reported and that may occur
Error code Description and rationales

14 Module - AXMEDIS Content Tool Error Manager (DSI)

Module/Tool Profile
<name of the module>

Responsible Name Vallotti
Responsible Partner DSI
Status (proposed/approved)
Implemented/not implemented not implemented
Status of the implementation
Executable or Library/module
(Support)

Library

Single Thread or Multithread Single thread
Language of Development C++
Platforms supported
Reference to the AXFW
location of the source code
demonstrator

NA

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

NA

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent) absent
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

no

Usage of the AXMEDIS Error no

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

90

Manager (yes/no)
Major Problems not solved --

--
Major pending requirements --

--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section
Error Coding Section 26
Error Log Section Errore. L'origine

riferimento non è stata trovata.

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
WxWIDGET wxWidgets 2.4.2 LGPL
log4cxx Apache License version 2.0

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

91

14.1 General Description of the Module
AXMEDIS Content Tool Error Manager is an interface through which all software modules are allowed to
log errors in an independent way w.r.t. to the language. Moreover, the error manager allow the user to
graphically visualize the error logs.
To achieve language independence errors have to be pre-defined and identified and, at runtime, they should
be handle through identifiers instead of using their text descriptor. Therefore, in AXMEDIS Framework
errors will be uniquely identified by the following information:

• the area name the error refers to, e.g. workflow, axeptool, editor, player, engine, scheduler, etc…
• the full class name of the class (i.e. the name comprehensive of containing namespace) the error is

raised by
• an error code

As stated after in this section, error identifiers (area name, full class name, error code) are someway
associated with other useful information such as a short description, recovery note, etc which are language
dependant.
The above data can be statically defined in the code or dynamically determined at runtime. To determine that
information at runtime an infrastructure for error management is needed. That infrastructure should consist
of one or more classes which has to be used by all modules of AXMEDIS Framework (see below).

14.2 Module Design in terms of Classes

ErrorManager class exposes the following static functions

• setToolName – has to be called at tool start-up time. In that way, every time an error is logged the
ErrorManager knows the tool name avoiding hardly readable and repetitive code.

• setAreaName – has to be called at tool start-up time. In that way, every time an error is logged the
ErrorManager knows the area name avoiding hardly readable and repetitive code.

• fatalError, error, warning, info – those functions work in the same way the unique differences is the
severity level of the logged error they produce. Using four different functions we avoid the need to use
an additional parameter for the functions and the code will result much more readable. The first
parameter of those functions is the error source, i.e. the instance which wants to raise the error, the
second parameter is the error code, which will be merged with other information to determine the error
identifier.

As depicted in the figure above, ErrorSource is an interface extending the interface Recognizable thus
ErrorManager is able to retrieve information on the class without boring the programmer with to much
code.

14.3 User interface description

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

92

The AXMEDIS Error Manager User Interface allows the user to visualize and manage the logged error and
to handle log-related options. The user interface reads data from error definition files and error log file
(whose format are specified in this section) and mixes that information to render the errors in a human-
readable format.
The GUI exposes the following functionalities:

• Menu File – it contains file-related actions:
o Load – loads an error log file and visualize it
o Save – saves the visualized logs on a given location

• Menu Error – it contains error-related actions:
o Flush – deletes all the logs in the opened error log file
o Delete – deletes the selected error from the opened error log file
o More info… - opens a dialog which shows detailed information on the error
o Order by… - the user the ordering criteria of the logged error table

• Menu Tools – allows to configure the Error Manager and the GUI. In particular, it allows to modify
the following options:

o Language – sets the language used for the description field and for the “More info…”
dialog

o Severity threshold level – only error whose severity level is greater than the threshold are
showed in the table. The severity level are those defined in the error log schema

o Redirection – the user can decide where error should be logged. He/She can choose among:
local redirection, remote redirection and both redirections

o Log activation – the user can activate/deactivate the log mechanism
Moreover, ordering action can be directly performed on the table as well as display of “More info” dialog.

14.4 Draft User Manual
See User Interface Description

14.5 Examples of usage
See User Interface Description

14.6 Configuration Parameters
Config parameter Possible values
ERROR_MANAGER –
LOG_FILE_PATH

Any valid path representing the directory containing the log file

ERROR_MANAGER –
LOG_FILE_NAME

Any valid name for the log file

ERROR_MANAGER –
LANGUAGE

Any valid language code as defined in the schema

ERROR_MANAGER –
SEVERITY_LEVEL

One of the following strings: info, warning, error, fatal

14.7 Errors reported and that may occur
Error code Description and rationales

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

93

15 Module - AXMEDIS Editor Configuration Manager (DSI, EPFL)

Module/Tool Profile
AXMEDIS Editor Configuration Manager

Responsible Name Vallotti
Responsible Partner DSI
Status (proposed/approved)
Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

Library

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/common

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent) absent
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

no

Usage of the AXMEDIS Error
Manager (yes/no)

no

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section
XML based for configuration
info

All the Editors tools, editors and
viewers written in C++ and
related AXOM tools

Section Errore. L'origine
riferimento non è stata trovata.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

94

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

For Error log C++ WxWIDGET

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
WxWIDGET wxWidgets 2.4.2 LGPL

15.1 General Description of the Module
AXMEDIS Editor Configuration Manager will be the unique access point to AXMEDIS Editor modules
configurations. Each configurable AXMEDIS Editor modules (and sub modules) will respect AXMEDIS
Editor Configuration Manager requirements.
AXMEDIS Editor Configuration Manager User Interface will be flexible enough to manage the widest range
of settings possible. That should be possible by means of plug-in support.
Further, AXMEDIS Editor Configuration Manager will manage and provide AXMEDIS Editor general
configurations, such as multi-language.
• AXMEDIS Editor Configuration Manager shall be the unique configuration access point;
• AXMEDIS Editor Configuration Manager shall provide an interface to allow configuration access and

modification (AXMEDIS Editor Configuration Manager User Interface);
• AXMEDIS Editor Configuration Manager shall include a default settings module which shall be

configurable by XML schema-like language. In such a way, every AXMEDIS Editor module shall
specify it’s own settings

15.2 Module Design in terms of Classes
In this sub-section, the structure of classes to manage the configuration file is presented. A stated in the
introduction, these classes has to allow to manage single parameters and set of parameters called module.
The class hierarchy reflect the structure of the XML file which contains the configuration parameters which
schema is described in the following sub-section.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

95

The Configuration Manager is composed of three main classes:

• AxConfigurationManager – it is the main class through which all modules and parameters are
reachable

• AxConfigurationModule – it represents a set of parameters related each others, e.g. all the parameters
related to a specific software module

• AxConfigurationParameter – it represent one parameter, it provides function to easily manage
different types of parameter.

AxConfigurationManager has been designed as a Singleton (see Design Patterns) in order to allow everyone
to reach it within an application. It exposes the following methods to allow management of a set of
configurations and parameters:

• AxConfigurationManager – it creates an instance of AxConfigurationManager, while doing that it
parses and loads a set of configurations from the given input stream. This constructor can be used to
create configuration manager other than the default one.

• initialize – it initializes the default configuration manager using the given input stream by calling the
provided constructor on a specific file. This function has to be called before any other.

• getDefaultManager – it returns the default manager, if it has been initialized.
• terminate – it deletes the default manager. This function has to be called after any other.
• serializeConfiguration – serializes the whole set of configurations on the given output stream

formatted as described in the following sub-section;
• addModule – creates a new module of parameters having the given name (newModuleId) and the

given category (category). The module name have to be unique than the function does not create two
modules with the same name. The module category could be a string like a file path. In this way,
categories and sub-categories can be easily created and managed.

• containsModule – checks if the configuration manager contains a module with the given name
(moduleId).

• deleteModule – if exists, removes the module with the given name from the configuration manager;
• getModule and [] operator – both functions allow to get an instance of AxConfigurationModule

which represent the module having the given name (moduleId). Acting on the obtained instance of
AxConfigurationModule, it is possible to manage the parameters contained in the corresponding
module of the configuration manager.

• getModuleIdList – it returns the id list of all modules contained in this manager.
• getmoduleList – it returns the list of all modules contained in this manager.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

96

+AxConfigurationModule(in element : DOMElement*)
+~AxConfigurationModule()
+operator [](inout paramName : const string) : AxConfigurationParameter &
+operator [](inout paramName : const string) : const AxConfigurationParameter &
+addParameter(inout newParamName : const string)
+deleteParameter(inout paramName : const string)
+getParameter(inout paramName : const string) : AxConfigurationParameter &
+getParameter(inout paramName : const string) : const AxConfigurationParameter &
+getParameterNameList() : vector<std :: string>
+getParameterList() : vector<AxConfigurationParameter *>
+setVisible(in visible : bool)
+getCategory() : string
+setCategory(inout newCategory : const string)
+getModuleId() : string
+setModuleId(inout newModuleId : const string)
+containsParameter(inout paramName : const string) : bool
+isVisible() : bool
-AxConfigurationModule(inout src : const AxConfigurationModule)
-FindParameterByName(inout paramName : const string) : DOMElement *

AxConfigurationModule

AxConfigurationModule exposes the following methods to allow management of a module of parameters
contained in the owner configuration manager:

• addParameter – creates a new parameter having the given name (newParamName). The parameter
name have to be unique within the module than the function does not create two parameter with the
same name.

• containsParameter – checks if the module contains a parameter with the given name (paramName).
• deleteParameter – if exists, removes the parameter with the given name from the module;
• getParameter and [] operator – both functions allow to get an instance of

AxConfigurationParameter which represent the parameter having the given name (paramName).
Acting on the obtained instance of AxConfigurationParameter, it is possible to manage the
parameter contained in the owner module.

• getParameterNameList – it returns the name list of all parameter contained in this module.
• getParameterNameList – it returns the list of all parameter contained in this module.
• setVisible – it sets the visible attribute of this module.
• isViisble – it tests whether the visible attribute of this module is true or not.
• setCategory – it sets the category attribute of this module with the given string.
• getCategory – it returns the value of the category attribute of this module.
• setModuleId – it sets the identifier of this module.
• getModuleId – it returns the identifier of this module.

+AxConfigurationParameter(in element : DOMElement*)
+~AxConfigurationParameter()
+operator =(in longValue : long) : AxConfigurationParameter &
+operator =(in doubleValue : double) : AxConfigurationParameter &
+operator =(inout stringValue : string) : AxConfigurationParameter &
+operator long() : int
+operator double() : int
+string() : int
+getName() : string
+setName(inout name : const string)
+getType() : string
+getLongValue() : long
+getDoubleValue() : double
+getStringValue() : string
+setValue(in longValue : long)
+setValue(in doubleValue : double)
+setValue(inout stringValue : string)
+isLong() : bool
+isDouble() : bool
+isString() : bool
-AxConfigurationParameter(inout src : const AxConfigurationParameter)

AxConfigurationParameter

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

97

AxConfigurationParameter exposes several functions to allow management of different type of parameter in
an easy manner. In particular, it exposes methods to set and get the value of a parameter and to obtain the
name and the type of the parameter itself.

15.3 User interface description

In the following, the class hierarchy for the user interface of the Configuration Manger is depicted.

-configurationManager : AxConfigurationManager *
-path : wxString
-listBox : wxListBox *
-grid : wxGrid *

AxConfigurationDlg
-textvalue : wxTextCtrl *
-comboBox : wxComboBox *
-textparam : wxTextCtrl *
-idModule : wxString
-isEdit : bool

AxCfgParameterDlg

wxDialog

«uses»

• AXMEDIS Editor Configuration Manager User Interface shall provide an interface to allow

development of plug-ins for specific kind (or set) of settings;
• AXMEDIS Editor Configuration Manager User Interface will be capable to correctly display module

settings;
• AXMEDIS Editor Configuration Manager shall show all configuration in an user friendly manner, e.g.

dived by categories;

In the above figure, the user interface of AXMEDIS Configuration Manager is depicted. It is composed of a
list box with the modules, and a grid where the parameters of the selected module are displayed.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

98

15.4 Technical and Installation information
References to other major
components needed

Problems not solved •
Configuration and execution
context

15.5 Examples of usage
The following piece of code shows how Configuration Manager can be used.

std::ifstream configuration;
configuration.open("in_configuration.xml");
AxConfigurationManager manager(configuration);
configuration.close();

std::vector<std::string> idList=manager.getModuleIdList();
if(idList[0]=="ID000000")
 std::cout << “Test 1 ok”;
AxConfigurationModule& module1=manager.getModule("ID000000");
if(module1.getModuleId()=="ID000000")
 std::cout << “Test 2 ok”;
if(((long) module1.getParameter("parameterLong"))==1977)
 std::cout << “Test 3 ok”;
if(((double) module1.getParameter("parameterDouble"))==108.5)
 std::cout << “Test 4 ok”;
if(((std::string) module1.getParameter("parameterString"))=="Andrea Vallotti")
 std::cout << “Test 5 ok”;
std::vector<std::string> nameList=module1.getParameterNameList();
if(nameList[0]==" parameterLong")
 std::cout << “Test 6 ok”;
manager.serializeConfiguration(std::cout);
manager.deleteModule("ID000000");
manager.serializeConfiguration(std::cout);
std::cout << std::endl;
manager.addModule("ID001000","foo/footwo");
manager.getModule("ID001000").addParameter("fooLong");
manager.getModule("ID001000")["fooLong"]=1945L;
manager.getModule("ID001000").addParameter("fooDouble");
manager.getModule("ID001000")["fooDouble"]=103.3;
std::ofstream outconf;
outconf.open("out_configuration.txt");
manager.serializeConfiguration(outconf);
outconf.close();

15.6 Integration and compilation issues
Currently the Configuration Manager uses the Xerces-C++ library. Therefore, it properly works on Windows
and Linux systems. Probably it should be changed in order to be used on system with lower resource, such as
Mobile and PDA.

15.7 Configuration Parameters
Config

parameter
Possible values

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

99

15.8 Errors reported and that may occur
Error code Description and rationales

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

100

16 Module - AXMEDIS Editor Plug-in Manager (DSI, EPFL)

Module/Tool Profile
AXMEDIS Editor Plug-in Manager

Responsible Name Vallotti
Responsible Partner DSI
Status (proposed/approved)
Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

Library

Single Thread or Multithread Single thread
Language of Development C++
Platforms supported Windows, Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/pluginmanager/

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section
Plugin Description Section Errore. L'origine

riferimento non è stata trovata.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

101

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

16.1 General Description of the Module
AXMEDIS Editor has been thought to be as versatile and flexible as possible. In order to achieve this goal,
various AXMEDIS Editor modules need to support plug-in technology. Hence, a AXMEDIS Editor Plug-in
Manager is needful, such manager will be able to support installation/registration of plug-ins, to load such
plug-ins for AXMEDIS Editor modules which request it and to maintain/manage relationship among plug-
ins and related entities or actions, e.g. AXMEDIS Editor Plug-in Manager shall maintain relation among a
specific set of metadata and the corresponding production or visualization plug-ins.

• AXMEDIS Editor Plug-in Manager shall provide general mechanisms in order to manage different
kind of plug-ins;

• Plug-in Manger shall provide standard interface definition which will be common among all the plug-
in families;

• Plug-in Manger shall provide an interface to allow interested AXMEDIS Editor modules to access to
associated plug-ins.

• AXMEDIS Editor Plug-in Manager shall store all those information needful to classify and sort plug-
ins, such as:
o Identifier;
o Provider;
o Category;
o Etc…

Each plug-in is described by a XML file (namely a profile) which contains the following common
information:

• the category of the plug-in, e.g. content processing;

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

102

• the unique identifier of the plug-ins, e.g. an URI like a XML namespace;
• the signature of the plug-in evaluated by an AXCS;
• data specific for the kind of plug-in (see below);
• the signature, estimated by the AXCS, of the whole XML file.

The profile shall provide a placeholder for custom information which can vary on the basis of plug-in
category. The definition of general plug-in profile schema is reported in section “Formal description of
format – Plugins description”.

16.2 Module Design in terms of Classes

In the above diagram the plug-in manager structure is depicted. That diagram provides base classes which
allows to construct more complicated architecture. In particular, fundamental element of that approach are
the following:

• AxPluginManager – it is the main class of the module which links plug-ins with their profiles.
Moreover, it allows to access to plug-ins and plug-ins profiles by category.

• AxPluginProfile – it allows to retrieve data contained in the plug-in common profile, such as identifier,
category, etc.;

• AxPluginInstance – it is the super-class of all specific plug-in instance classes. For example, content
processing plug-ins are modeled as class (AxCPPluginInstance) instances. This class derives from
AxPluginInstance. In this way, plug-ins instances can be transparently managed by Plug-in Manager

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

103

and new plug-in categories can be easily added. AxPluginInstance provides basic means to store
dynamic library handle and to retrieve methods exposed by the latter;

Moreover, the module contains other two utility classes, that is:
• AxProfileFinder – it crawls a given directory looking for available plug-in profiles;
• AxPluginProfileSAX2parser – given an XML file which complies the plug-in profile common schema,

it loads the data contained in it setting the attribute of an instance of AxPluginProfile class.
Plug-in certification functionalities are based on the services provided by the Protection Processor which
needs to access to profile of the plug-in.
It has to be pointed out that the functions exposed by a given plug-in depend by the category of the plug-in
itself.

16.2.1 Fundamental classes overview
AxPluginManager
It has been designed as a Singleton (see Design Patterns) in order to ensure its uniqueness in the application
scope. Moreover, it can be invoked from anywhere supposing it has been already initialized. This class
exposes the following methods:

• initialize – this static function initializes the Plug-in Manager. It has to be called before any other
method calls.

• terminate – this static function terminates the Plug-in Manager by deleting all stored data.
• getInstance – this static function allows to access to the unique instance of AxPluginManager.
• getPluginIdList – it returns the id list of all found plug-ins.
• getPluginCategoryList – it returns the list of all found plug-in categories.
• getPluginProfileById – it returns the general profile of the plug-in with the given identifier.
• getPluginByCategoryList – it returns the list of all plug-ins (if already loaded) and their profiles

belonging to the given category.
• setInstance – it allows to set the plug-in instance (AxPluginInstance) corresponding to the given

identifier. This functions should be called by who is able to load plug-ins of the appropriate category.
The others are utility functions.
AxPluginProfile
It provides getter and setter methods to access common profile data. The setter methods are used by the
profile loader during parsing, while getter methods are used by the rest of the application.
AxPluginInstance
The purpose of this class is twofold. From one side, as stated above, it allows to transparently manage
different classes representing plug-in instances. On the other side, it provides and indirection layer between
the platform-dependent mechanism for the management of dynamic libraries (e.g. library handle, function
retrieving methods, etc…) and the child classes of AxPluginInstance. In fact, it mainly provides two
methods:

• AxPluginInstance – this constructor allows to associate the given profile to this plug-in instance.
Moreover, using the profile and the given working directory, it loads the related dynamic library.

• getProcAddress – it is an utility function which allows to retrieve pointers to functions exposed by the
dynamic library the plug-in instance refers to. That function avoids the usage of platform-dependent
mechanism, i.e. it acts as an indirection layer.

16.3 Integration and compilation issues
This modules needs Xerces-C++ library in order to parse plug-in profiles. Moreover, it needs the common
library since it uses the Configuration Manager. These two libraries are platform independent, therefore they
can be used on Windows and Linux systems. Moreover, this module uses platform-dependant libraries in
order to manage dynamic libraries.

16.4 Configuration Parameters
Config parameter Possible values

AXMEDIS_PLUGIN_MANAGER
- PLUGINS_PATH

Any directory containing plug-ins and their profiles

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

104

16.5 Errors reported and that may occur
Error code Description and rationales

0 Unable to load the dynamic library related to the given plug-in profile
1 Unable to unload the dynamic library related to the given plug-in profile
2 Plug-in Manager has been already initialized
3 Plug-in Manager has not been initialized
4 Any plug-in belonging to this category has been found
5 Plug-in not found
6 Plug-in identifier already present
7 Any parsed profile: parseProfile has not been called, or an error occurred during parsing
8 next function has been called before begin function or the current search is invalid

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

105

17 Module - AXOM Content processing (DSI, EPFL)

Module/Tool Profile
AXOM Content processing

Responsible Name Vallotti
Responsible Partner DSI
Status (proposed/approved)
Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

Library

Single Thread or Multithread Single thread
Language of Development C++
Platforms supported Windows, Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/contentprocessing/

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section
Content Processing Plug-ins
specific description

 Section 30

Parameter description Section 31

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

106

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

17.1 General Description of the Module
AXOM Content Processing is the interface the AXOM uses to call dynamic functions for content processing.
Content processing function belongs to the following categories: Fingerprint estimation, Descriptor
estimation, Adaptation algorithm, etc…
AXOM Content Processing is in charge of managing plug-ins for processing resources. It uses the plug-in
manager in order to retrieve all plug-ins belonging to content processing category. In that way, content
processing can manage and arrange the content processing functions on the base of relevant information such
as, for example, MIME type of the resource to which the function applies, etc..
AXOM uses AXOM Content Processing function to access functions on the base of its needs and of the
requests it receives from the user.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

107

17.2 Module Design in terms of Classes

+~AxContentProcessing()
+init()
+terminate()
+getInstance() : AxContentProcessing &
+getPluginIdList() : list<std :: string>
+getPluginProfileById(in pluginId : string) : const AxCPPluginProfile &
+getFunction(inout pluginId : const string, inout functionName : const string) : AxCPFunction *
+getFunctionByMIMEType(in mimeType : string) : FunctionIdListType
+releaseFunction(in funcPtr : AxCPFunction*)
-AxContentProcessing()
-createPluginMap()

AxContentProcessing

AxPluginManager

«uses»

+AxCPPluginInstance(inout Parametro1 : const string, in Parametro2 : const AxCPPluginProfile*)
+~AxCPPluginInstance()
+releaseFunction(in Parametro1 : AxCPFunction*)
+hasBeenInstantiated(in Parametro1 : AxCPFunction*) : bool
+getFunction(inout Parametro1 : const string) : AxCPFunction *

AxCPPluginInstance

+AxCPPluginProfile(in profile : AxPluginProfile*)
+AxCPPluginProfile()
+~AxCPPluginProfile()
+getCategory() : string
+getIdentifier() : string
+getLibrary() : string
+getVersion() : string
+getVendor() : string
+getMainLibrary() : string
+getDescription() : string
+getPluginProfile() : AxPluginProfile *
+setPluginprofile(in profile : AxPluginProfile*)
+createFunctionsProfile()
+getSpecificDescriptor() : const DOMElement *
+addFunctionProfile(inout funcProf : const FPFunctionProfile)
+getFunctionProfile(inout id : const string) : const FPFunctionProfile &
+getFunctionProfileNameList() : const list<std :: string> &
+containsFunction(inout id : const string) : bool

AxCPPluginProfile

1

*

1

*

1
1

-getCLASS(inout parName : string) : AbstractClass &
+~AxCPFunction()
+AxCPFunction()
+execute() : AxCPParameter *
+execute(inout params : list<AxCPParameter *>) : AxCPParameter *
+setParams(inout params : const list<AxCPParameter *>)
+setParam(in parName : string, in param : AxCPParameter*)
+setParam(in pos : int, in param : AxCPParameter*)
+setProfile(in profile : const FPFunctionProfile*)

AxCPFunction

1
*

+FPFunctionProfile()
+~FPFunctionProfile()
+getName() : string
+getVersion() : string
+getDescription() : string
+getParameterList() : const ParameterListType &
+getResult() : const FPResult &

FPFunctionProfile 1

*

1

1

FPResult

FPParameter

11

1*

AxCPParameter

1
*

AxPluginInstance

1

*

As shown in the class diagram, the Content Processing module is composed by the following classes:

• AxContentProcessing – it is the main class of the module. It provides methods allowing to access
dynamic processing functions. In particular, it manages plug-ins belonging to “ContentProcessing”
category.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

108

• AxCPPluginInstance – it is an extension of AxPluginInstance. An instance of this class represents a
loaded content processing plug-in. This class allows exploiting specific functions of this kind of plug-
ins (e.g. create and release Content Processing functions).

• AxCPFunction – it represent Content Processing Function. It provides method: to set function
parameters; to execute the function; and to obtain the result. It checks the given parameter verifying
they respect what is stated in the relate function profile.

• AxCPParameter – it is the common class of all parameter classes which can be passed as argument to
Content Processing Functions (see next section).

• AxCPPluginProfile – it wraps AxPluginProfile in order to allow access to generic and specific data in
the plug-in description. In particular, it provides methods to get the name of contained functions and to
get the description of any of them (given the related name).

• FPFunctionProfile – it provides methods to access information about the related function, see section
30 for more details about function profile data.

17.2.1 Plug-in function parameters class hierarchy

+setStrValue(in value : string)
+getStrValue() : string
+getValueRef() : void *
+getValueSize() : size_t
+getType() : int

AxCPParameter

+setStrValue(in strValue : string)
AxCPParameterSTRING

AxCPParameterResource

+getStrValue() : string
+getValueRef() : void *
+getValueSize() : size_t
+getType() : int
+AxGenericParameter()
+AxGenericParameter(in value : T)
+getValue() : T &
+setStrValue(in strValue : string)
+setValue(inout value : const T)

+CLASS : ParamClass
+Type : int = type
#value : T

AxGenericParameter

T, type:int
AxCPParameterAxom

+setStrValue(in strValue : string)
AxCPParameterBOOLEA

«tipo di dati»
AxCPParameterCHAR

«tipo di dati»
AxCPParameterDOUBLE

«tipo di dati»
AxCPParameterFLOAT

«tipo di dati»
AxCPParameterINT16

«tipo di dati»
AxCPParameterINT32

«tipo di dati»
AxCPParameterUINT16

«tipo di dati»
AxCPParameterUINT32

«instance»

«instance»«instance»

«instance»
«instance»

«instance»

«instance»

«instance»

«instance»

Recognizable

For each parameter type defined in parameter description schema (see section 31), a specific class has to be
used in the programming language. Those classes derive from a common base class (AxCPParameter) which
provides a basic interface for all possible parameter types. Moreover AxCPParameter derives from
Recognizable which is an interface which allows to perform type-related operations on the objects (e.g.
something like reflection in Java and C#).
The associations among class and parameter types is depicted below:

• AxGenericParameter – it is a template class which have been used, through a set of typedef definition,
to wrap the basic data type, that is: UNIT16, INT16, UINT32, INT32, CHAR, BOOLEAN, FLOAT,
DOUBLE and STRING.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

109

• AxCPParameterResource – it represents a RESOURCE. It exposes functions to access the related
digital resource. By “access” is meant to read and write the resource by means of streams.

• AxCPParameterAxom – it represents a parameter of type AXOM.
It is worth to point out that a Content Processing Plug-in have to export the following functions:
extern "C" AxCPFunction* GetPluginFunction(std::string funcName)
extern "C" void releasePluginFunction(AxCPFunction* function)
GetPluginFunction allows creating Content Processing Function instances by providing the function
name (funcName).
releasePluginFunction releases the given function instance. This function has been introduced for
the function instances are created by the dynamic library and they have to be deleted by it.

17.3 Errors reported and that may occur
Error code Description and rationales

0 Content Processing has been already initialized
1 Content processing has not been initialized
2 Plug-in not found
3 The specified parameter is not present in function profile
4 Parameter is not of the right type
5 Unable to identify the requested type
6 Result has never been initialized
7 The parameter is mandatory therefore it cannot have a default value
8 The given function has not been instantiated by this plug-in

18 Module - AXOM Commands and Reporting (DSI, EPFL)

Module/Tool Profile
AXOM Commands and Reporting

Responsible Name Rogai
Responsible Partner DSI
Status (proposed/approved)
Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

Library

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows, linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/commandreporting

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

110

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

111

18.1 General Description of the Module
AXOM Commands and Reporting has the same role as AXOM Content Processing instead it is responsible
to manage dynamic functions related to workflow system. It is implemented in the same way of AXOM
Content Processing and it is the intermediate between AXOM and Plug-in Manager. In fact, it is a common
service module in order to hide low-level plug-in manager functionalities, while providing an easy
mechanism in order to allow different AXMEDIS tool (e.g. Editor, AXCP Rule Editor, AXCP Rule
Scheduler) to load the suitable plug-ins enabling a workflow-based control and notification.

18.2 Module Design in terms of Classes
The main class in terms of exposed APIs is CommandReporting. This class implements a singleton capable
of retrieving the workflow plug-in. This entity is responsible of connecting the workflow counter-parts
(application and plug-in side). When it is initialized, it uses the AxPluginManager services in order to
explore the available plug-ins finding to suitable one. After it has located the plug-in component it stores
informations needed for an on-demand instantiation.

Two classes for workflow counterparts have been designed:

• AppDependentWorkflow: it models a generic workflow handler in the application (i.e. who is
responsible of handling the request coming from the plug-in in the application context). It is an
abstract class to be inherited by any AXMEDIS application. It has a general dependency to the
general WorkflowPlugin.

• WorkflowPlugin: it models a generic workflow plug-in it exposes a unique link method that is
known by the CommandReporting. Any plug-in component can implement a factory method to
provide a WorkflowPlugin inherited istance.

Responsible of creating a WorkflowPlugin is a WFPluginInstance, which is obtained by AxPluginManager.
The information to retrieve such a plug-in module are expressed by an XML profile, parsed and readed by
AxPluginProfile.

For example, in the class diagram has been depicted the new classes for definining the AxEditor workflow.
A specific AxEditorWorkflow inherited class has to be created where the “actual” action to be performed in
the application context after a workflow request for the AXMEDIS Editore are implemented.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

112

+setWorkflowPlugin()
+editObject()
+getObjectAttribute()
+addObjectHistoryInfo()

AxEditorWorkflow

+setWorkflowPlugin(in plugin : WorkflowPlugin)

AppDependentWorkflow

+notifyRequestCompletion()
+getWFInfo()

AxEditorWorkflowPlugin

+AxWFPluginInstance(inout workingDir : const string, in profile : const AxPluginProfile*)
+~AxWFPluginInstance()
+getWFPluginObject() : WorkflowPlugin *
+releaseWFPluginObject(in obj : WorkflowPlugin*)

-FACTORY_METHOD_NAME : string = "getWFPluginInstance"
-FACTORY_RELEASE_NAME : string = "releaseWFPlugin"
-mCreatedPlugin : WorkflowPlugin *
-mFactoryMethod : WFPluginFactoryType
-mReleaseMethod : WFPluginReleaseType

AxWFPluginInstance

+setCommandReporting(in appDepWF : AppDependentWorkflow*)

WorkflowPlugin

PluginManager::AxPluginInstance

PluginManager::AxPluginProfile

«uses»«uses»

+initialize()
+getInstance() : CommandReporting &
+setAppDependentWorkflow(in adwf : AppDependentWorkflow*)
+isWorkflowPresent() : bool
+getWorkflowPlugin() : WorkflowPlugin *
-CommandReporting(in wfPlugin : WorkflowPlugin*)

+WF_CATEGORY : string
-mAppDepWF : AppDependentWorkflow *
-mPluginWF : WorkflowPlugin *
-theInstance : CommandReporting *

CommandReporting

-manages1

1

-retrieves

1

1

-contains 1

1

«uses»

AXMEDIS Editor example

In the following diagram the initialization sequence of CommandReporting has been depicted. Please note
that the AxPluginManager is invoked in order to have the list of the plugin which are present in the plugin
directory.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

113

CommandReporting

initialize

AxPluginManager

getPluginCategoryList

list

is there Workflow?

getPluginByCategoryList(Workflow)

list

create AxWFPluginInstance(profile)

AxWFPluginInstance

new

getWFPluginObject

workflow_plugin

It has to be
previously
initialized

18.2.1 Different application dependent workflows interfaces
For each AXMEDIS Content Production tool a workflow interface has been defined. Each interface has to
support the basic nature of AppDependentWorkflow adding to it several possible actions that can be invoked
through the corresponding plugin. AXMEDIS Editor implementation has to provide a suitable
AxEditorWorkflow inherited class with the desired implementation. On the other side a AXMEDIS Editor
Workflow plugin can be implemented by only considering the standard AxEditorWorkflow abstract class.

+setWorkflowPlugin(in pluginInstance : WorkflowPlugin*)

AppDependentWorkflow

+editObject()
+getObjectAttribute()
+addObjectHistoryInfo()

AxEditorWorkflow

+InstallAndActivate()
+RunRule()
+DeactivateRule()
+SuspendRule()
+PauseRule()
+KillRule()
+RemoveRule()
+ResumeRule()
+GetRuleStatus()
+GetRuleLog()
+GetListofRules()
+GetRule()
+StatusRequestPnP()
+SuspendPnPProgram()
+AbortPnPProgram()
+ResumePnPProgram()
+ActivatePnPProgram()
+WFNotification()
+GetListofPrograms()

AxEngineWorkflow

+editRule()
+PnPUI()
+getListofPrograms()
+activatePnP()

AxRuleEditorWorkflow

An abstract class for each different type of plug-in has been defined as well. In this case the Application
Workflow can use plug-in functionalities in order to output to workflow notification or other reports.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

114

18.3 Technical and Installation information

References to other major
components needed

Problems not solved •
Configuration and execution
context

18.4 Draft User Manual
see examples of usage

18.5 Examples of usage
In the following example it has been depicted an example of how to implement an editor initialization of
workflow infrastructure via CommandReporting. After initialization the singleton can be obtained and the
presence of a workflow plug.in can be checked.
In the last line the specific application workflow implementation is registered to the CommandReporting.
After this action the workflow is ready to operate in the running application.

 CommandReporting::initialize();
 CommandReporting& cr = CommandReporting::getInstance();

 if(!cr.isWorkflowPresent())
 printf("Plugin not present");
 AxEditorWorkflowImpl *editorWF = new AxEditorWorkflowImpl();
 cr.setAppDependentWorkflow(editorWF);

18.6 Integration and compilation issues
none

18.7 Configuration Parameters
Config

parameter
Possible values

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

115

18.8 Errors reported and that may occur
Error code Description and rationales

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

116

19 Module - Internal Audio Player (DSI)

Module/Tool Profile
Internal Audio Player

Responsible Name Bellini
Responsible Partner DSI
Status (proposed/approved)
Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

Library

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axeditor/resource_editor

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/Applications/axeditor/bin

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

117

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets wxWidgets 2.4.2 LGPL
MS- DIRECTX

19.1 General Description of the Module
The Internal Audio Player will allow to listen to audio files encoded in WAV, MP3 and possibly AAC and
WMA formats.
The functionalities supported will allow to:

• load a file directly from file system or from an AXMEDIS Object
• control the playback with play, pause, stop functions
• control the volume
• get status (current time, duration, information on the played resource, …)
• set the start/end time for playing and for extraction
• use content processing plugins

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

118

19.2 Module Design in terms of Classes

+load(in url : wxString)
+load(inout stream : istream, in mimetype : wxString)
+getCapabilities() : unsigned int
+getStatus() : wxArrayString
+play()
+stop()
+isPlaying() : bool
+pause()
+getCurrentTime() : unsigned long
+jumpToTime(in time : unsigned long)
+getDuration() : unsigned long
+goNext()
+goPrev()
+getStartTime() : unsigned long
+setStartTime(in timeStart : unsigned long)
+setEndTime(in timeEnd : unsigned long)
+getEndTime() : unsigned long
+getMediaVisualControl() : AxMediaVisualControl *
+getMediaTimeControl() : AxMediaTimeControl *

-startTime : unsigned long
-endTime : unsigned long
-player : DxPlayer *

AxAudioPlayer

External Classes::DxPlayer

DirectShow

«uses»1 1

+AxMediaPlayer()
+bindTo(in value : AxObjectManager*)
+load(inout index : const AxIndex)
+load(inout stream : istream, in mimetype : wxString)
+load(in url : wxString)
+play()
+getCapabilities() : unsigned int
+getStatus() : wxArrayString
+getCount() : int
+goNext()
+goPrev()
+getMediaTimeControl() : AxMediaTimeControl *
+getMediaVisualControl() : AxMediaVisualControl *
+extractTo(in ostream)

#axom : AxObjectManager *
#loadedAsset : DataSource *
#decoder : ResourceDecoder *

AxMediaPlayer

+stop()
+pause()
+isPlaying() : bool
+jumpToTime(in t : unsigned long)
+getCurrentTime() : unsigned long
+getDuration() : unsigned long
+setStartTime(in timeStart : unsigned long)
+setEndTime(in timeEnd : unsigned long)
+getStartTime() : unsigned long
+getEndTime() : unsigned long
+getCurrentTimeFormatted() : wxString

AxMediaTimeControl

AxMediaPlayerPanel

11
«uses»

Class AxMediaPlayerPanel is a panel containing the basic user interface for a media player allowing the
basic operations on media files (play/pause, stop, seek).
Class AxMediaPlayer is an abstract class containing the basic functionalities that should be implemented by
a media viewer, other functionalities for time control and for visual control are in two specific interfaces
(AxMedisTimeControl, AxMediaVisualControl) that the class derived from AxMediaPlayer may on may not
implement. Class AxMediaPlayer is specialized in AxAudioPlayer, AxVideoPlayer and AxImageViewer.
Class AxAudioPlayer implements the functionalities for audio using a library (splay) for MP3 and other
code developed in WEDELMUSIC for WAV files. Another library to support AAC audio can be used.
However this player may be substituted by the VideoPlayer since this one can also do audio playing only.

19.3 User interface description
The following is the Internal Audio Player used inside a MediaPlayerPanel as Resource View:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

119

19.4 Technical and Installation information

References to other major
components needed

Problems not solved •
Configuration and execution
context

19.5 Draft User Manual

19.6 Examples of usage

19.7 Integration and compilation issues
None

19.8 Configuration Parameters
Config

parameter
Possible values

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

120

19.9 Errors reported and that may occur
Error code Description and rationales

20 Module - Internal Image Viewer (DSI)

Module/Tool Profile
Internal Image Viewer

Responsible Name Bellini
Responsible Partner DSI
Status (proposed/approved) approved
Implemented/not implemented Implemented
Status of the implementation 90%
Executable or Library/module
(Support)

Library

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows/Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axeditor/resource_editor

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/Applications/axeditor/bin

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

yes

Usage of the AXMEDIS Error
Manager (yes/no)

no

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools, Name of the communicating tools Communication model and format

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

121

named as References to other major
components needed

(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

 C++ wxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets wxWidgets 2.4.2 LGPL
wxImagick LGPL
ImageMagick LGPL

20.1 General Description of the Module
The Internal Image Viewer will allow to display images and sequences of images (like multi image TIFF
format), it will support the image formats supported by the ImageMagick library.
Functionalities provided will allow to:

• zoom the image
• fit the image within a size
• select a region and save/copy it
• display the next/previous image in a sequence or display a specific one
• print an image

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

122

20.2 Module Design in terms of Classes

+load(inout index : const AxIndex)
+load(in url : wxString)
+load(inout stream : istream, in mimetype : wxString)
+getCapabilities() : unsigned int
+getStatus(inout index : const AxIndex) : wxArrayString
+getMediaVisualControl() : AxMediaVisualControl *
+getMediaTimeControl() : AxMediaTimeControl *
+getMediaClient() : wxWindow *
+getZoomIn() : double
+setZoomIn(in ratio : double)
+zoomIn(in ratio : double)
+zoomOut(in ratio : double)
+isAutoFit() : bool
+setAutoFit(in value : bool)
+fit(in width : double, in height : double)
+fitToWindow()
+fullScreen(in value : bool = true)
+isFullScreen() : bool
+onShowMenu(inout event : wxMouseEvent)
+getSelectionRect() : wxRect
+hideSelection()
+getSelectedImage() : AxImage
+rotateImage(in r : int)
+mirrorImage(in value : bool = true)
+goNext()
+goPrev()
+print()
+updateBitmap()
+getBitmap() : wxBitmap *
+OnDraw(inout event : wxEraseEvent)

-leftPressedPos : wxPoint
-image : AxImage
-bitmap : wxBitmap *
-zoom : double
-isClickedLeftButtonMouse : bool
-selection : wxRect
-imageDC : wxDC *
-panel : AxMediaPlayerPanel *

AxImageViewer

+AxMediaPlayer()
+bindTo(in value : AxObjectManager*)
+load(inout index : const AxIndex)
+load(inout stream : istream, in mimetype : wxString)
+load(in url : wxString)
+play()
+getCapabilities() : unsigned int
+getStatus() : wxArrayString
+getCount() : int
+goNext()
+goPrev()
+getMediaTimeControl() : AxMediaTimeControl *
+getMediaVisualControl() : AxMediaVisualControl *
+extractTo(in ostream)

#axom : AxObjectManager *
#loadedAsset : DataSource *
#decoder : ResourceDecoder *

AxMediaPlayer

+getMediaClient() : wxWindow *
+fit(in width : double, in height : double)
+fitToWindow()
+isAutoFit() : bool
+setAutoFit(in value : bool)
+zoomIn(in ratio : double)
+zoomOut(in ratio : double)
+getZoom() : double
+setZoom(in ratio : double)
+fullScreen(in value : bool = true)
+isFullScreen() : bool
+setSelectRegionMode(in mode : bool)
+isSelectRegionMode() : bool
+hideSelection()
+getSelectionRect()
+print()

#full_screen : bool
#click_autoScale : bool

AxMediaVisualControl

AxMediaPlayerPanel

1

1
«uses»

AxImage
1 1

wxImagik

wxScrolledWindow

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

123

Class AxImageViewer implements the functionalities of axMediaPlayer for viewing an image. It uses the
wxImagick library to view the images. wxImagick uses the ImageMagick library for encoding/decoding
images (multi platform) but the visualization works only under Windows.

20.3 User interface description

The following is the user interface to view images, the AxMediaPlayerPanel (inside the Resource View Tab)
contains the AxImageViewer

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

124

20.4 Technical and Installation information
References to other major
components needed

Problems not solved •
Configuration and execution
context

20.5 Draft User Manual

20.6 Examples of usage

20.7 Integration and compilation issues
None

20.8 Configuration Parameters
Config

parameter
Possible values

20.9 Errors reported and that may occur
Error code Description and rationales

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

125

21 Module - Internal Video Player (DSI)

Module/Tool Profile
Internal Video Player

Responsible Name Bellini
Responsible Partner DSI
Status (proposed/approved) approved
Implemented/not implemented Implemented
Status of the implementation 90%
Executable or Library/module
(Support)

Library

Single Thread or Multithread Single thread
Language of Development C++
Platforms supported windows
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axeditor/resource_editor

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/Applications/axeditor/bin

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

yes

Usage of the AXMEDIS Error
Manager (yes/no)

no

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

126

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

 C++ wxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets wxWidgets 2.4.2 LGPL
DirectX SDK DirectX v.9

21.1 General Description of the Module
The Internal Video Player will be used to display video resources. It will provide functionalities to:

• control execution play/stop/pause
• seek to a time position
• fit the video frame in a dimension,
• zoom in or out
• go in full screen mode

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

127

21.2 Module Design in terms of Classes

+jumpToTime(in time : unsigned long)
+onShowMenu(inout event : wxMouseEvent)
+onKey(inout event : wxKeyEvent)
+eraseVideoPlayer(inout event : wxEraseEvent)
+size(inout event : wxSizeEvent)
+setZoomFit()

-zoom : double
-zoomFit : float
-VideoPanel : AxMenuPanel *
-player : DxPlayer *
-startTime : unsigned long
-endTime : unsigned long
-panel : AxMediaPlayerPanel *

AxVideoPlayer

+AxMediaPlayer()
+bindTo(in value : AxObjectManager*)
+load(inout index : const AxIndex)
+load(inout stream : istream, in mimetype : wxString)
+load(in url : wxString)
+play()
+getCapabilities() : unsigned int
+getStatus() : wxArrayString
+getCount() : int
+goNext()
+goPrev()
+getMediaTimeControl() : AxMediaTimeControl *
+getMediaVisualControl() : AxMediaVisualControl *
+extractTo(in ostream)

#axom : AxObjectManager *
#loadedAsset : DataSource *
#decoder : ResourceDecoder *

AxMediaPlayer

+stop()
+pause()
+isPlaying() : bool
+jumpToTime(in t : unsigned long)
+getCurrentTime() : unsigned long
+getDuration() : unsigned long
+setStartTime(in timeStart : unsigned long)
+setEndTime(in timeEnd : unsigned long)
+getStartTime() : unsigned long
+getEndTime() : unsigned long
+getCurrentTimeFormatted() : wxString

#playing : bool
AxMediaTimeControl

+getMediaClient() : wxWindow *
+fit(in width : double, in height : double)
+fitToWindow()
+isAutoFit() : bool
+setAutoFit(in value : bool)
+zoomIn(in ratio : double)
+zoomOut(in ratio : double)
+getZoom() : double
+setZoom(in ratio : double)
+fullScreen(in value : bool = true)
+isFullScreen() : bool
+setSelectRegionMode(in mode : bool)
+isSelectRegionMode() : bool
+hideSelection()
+getSelectionRect()
+print()

#full_screen : bool
#click_autoScale : bool

AxMediaVisualControl

AxMediaPlayerPanel
11

«uses» «uses»

External Classes::DxPlayer

1 1

DirectShow

«uses»

wxPanel

Class AxVideoPlayer implements the functionalities of AxMediaPlayer, AxMediaTimeControl and
AxMediaVisualControl for playing a video.
Class AxVideoPlayer has been implemented using DirectShow under Windows. For other platforms
(Linux/MAC) the use of cross platform library will be investigated (like SDL – Simple DirectMedia Layer,
http://www.libsdl.org).
The main issue is on how to access a protected video without writing it in clear as file. In DirectX it can be
done writing a custom AsyncSource node to be used in the decoding Graph. Have to be noted that this node
should not to be deployed as DLL otherwise a malicious user can build a Graph allowing to save in clear the
whole video.

Note: The DxPlayer has been enhanced to work with C++ streams, however it work only for MP3 audio files
and MPEG video files.

21.3 User interface description
The following may be the user interface of the Internal Video Player:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

128

21.4 Technical and Installation information
References to other major
components needed

Problems not solved • works only getting data from C++ streams with MP3 and MPEG
video files

Configuration and execution
context

21.5 Draft User Manual

21.6 Examples of usage

21.7 Integration and compilation issues
None

21.8 Configuration Parameters
Config

parameter
Possible values

21.9 Errors reported and that may occur
Error code Description and rationales

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

129

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

130

22 Module - Internal MPEG4 Player (EPFL)

Module/Tool Profile
Internal MPEG4 Player

Responsible Name Antonio Romeo
Responsible Partner EPFL
Status (proposed/approved) Approved
Implemented/not implemented Partially implemented
Status of the implementation 50%
Executable or Library/module
(Support)

Library

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/.....................

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section
mp4 (MPEG-4 File Format)

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

131

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

DirectX / DirectSound MS Visual C++ (6, .NET 2002)
OpenGL
OpenAL

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
• faac (L-GPL)
• im1_dmif_mp4
• im1_dmif_trif
• im1_dmif_remote
• im1_dmifclientfilter
other players to be negotiated or
changed (see below)

MPEG-4 r.s.
MPEG-4 r.s.
MPEG-4 r.s.
MPEG-4 r.s.

L-GPL
ISO
ISO
ISO
ISO

 r.s. = reference software
MPEG-4 Player The OSMO player contained into

Gpac 0.4.0 has been chosen as
MPEG-4 Systems implementation.

22.1 General Description of the Module
The MPEG-4 internal player constitutes a slightly different case of Media Player for AXMEDIS. In fact
MPEG-4 itself not only support media content in terms of different media files or streams, but it satisfies a
much more relevant number of requirements providing tools to multiplex and synchronize all the elementary
media streams even in the wider context of a rich multimedia scene (including user navigation, user
interaction, inherent behavior of the scene and presentation of natural and synthetic sounds and media). All
this is included in a compliant MPEG-4 Player, so that any kind of control description or rule is normally
coded inside the mp4 file or systems specific stream. The overall architecture of the Player in accordance to
the MPEG-4 specification is reported in the following picture (control flow in dotted lines):

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

132

Management of specific protection rules is also possible in relevant points of the above diagram according to
the MPEG IPMPX specification.

For all these reasons including the MPEG-4 Player into the internal AXMEDIS resources may result rather
straightforward as only a very reduces number of commands are transmitted from the current Player user
interface to the underlying architecture (executive control).

The overall player interface can be based on the abstract class axMediaPlayer (see previous sections above),
through the specialized class axMPEG4Player. The functionality that is implemented by this class is rather
reduced in terms of operations, given the complex architecture of the player itself and associated content
described above.
Currently the MPEG-4 Player can allow two working modes:
• Network Channel (DMIF): in this modality the only possible command is open of a network address

After this is done by validation of the rights through the AXOM, all the streaming content is received
and rendered including audiovisual objects and scene/interaction. Connection is closed when a new one
is open or the Player is closed.

• File (MP4): in this modality and under the AXOM control load of a file is possible and content is
available as for the network modality. In any case this mode may allow the implementation of simple
axMedia functions like start/stop/pause since file is available and no indeterminate buffering is
necessary. All more than this may be really complex as it will interact with the decoding process of all
built-in MPEG-4 decoders. More complex behavior for multiple media in AXMEDIS can be
implemented in single objects linked through SMIL in the main AXMEDIS Player (and Editor).

Once open or load are allowed, user activity can be monitored by built-in tracing capabilities and possibly
reported: it is in any case MPEG-4 activity in terms of operation on the MPEG-4 content by built-in sensors
and controls.

control user
interact

scene

video

audio

nodes

pictures

frames

video
render

audio
render

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

133

22.2 Integration of MPEG-4 IPMP eXtensions into the MPEG-4 Player

The ENTHRONE terminal will be integrated with an implementation of ISO/IEC 14996 part 13 (IPMP
eXtensions – IPMP-X). Such extensions standardize a messaging interface for the insertion of IPMP tools at
each of the three MPEG-4 Systems control points.
To facilitate the cooperation of multiple tools in the protection and governance of content, a message based
architecture is provided in IPMP-X. IPMP Tools communicate with each other and with the terminal by
using the standard messages defined in the IPMP-X specifications. However, IPMP-X does not specify the
interface to transfer messages. Therefore such an interface will be defined in an implementation-specific
format.
By exchanging standard messages different IPMP-X tools can communicate and concurrently protect the
same MPEG stream. At the same time the MPEG Systems layer can use the messaging interface to interact
with the installed IPMP-X tools. This is mainly necessary to allow the exchange of information needed
during components’ authentication.
The MPEG-4 Systems architecture integrated with the IPMP-X is shown in Figure 3.

Figure 3 - Mapping of IPMP Extensions to MPEG-4 Systems Architecture

The components to be implemented or integrated in order to enable the MPEG-4 playerwith the IPMP-X will
be:

• The IPMP-X messaging library.
To facilitate the cooperation of multiple tools in the protection and governance of content, a message
based architecture is provided in IPMP-X. IPMP Tools communicate with each other and the
terminal by using the standard messages defined in IPMP-X specifications.

• The IPMP-X message router (MR) and the MR interface.
The MR is a conceptual entity within the Terminal that implements the Terminal-side behavior of
the Terminal-Tool interface.

• The IPMP-X tool manager (TM) and the TM interface.
The TM is a conceptual entity within the Terminal that processes IPMP Tool List(s) and retrieves the
Tools that are specified therein.

• The IPMP-X compliant tools to be plugged at the given control points.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

134

IPMP-X Tools are modules that perform (one or more) IPMP functions such as authentication,
decryption, watermarking, etc. It can range from being simple processors to coordinating a set of
IPMP modules.

22.2.1 Architectural elements of the IPMP-X framework

Figure 4 shows the main architectural conceptual entities in the IPMP Extension framework: the Message
Router and the Tool Manager, and describes the interfaces between these and the MPEG-4 Terminal, from
one side, and the IPMP Tools, from the other.

Tool Manager

MPEG-4
Terminal

Message
Router

SetTMPointer

Process/RemoveIPMPDescriptor

Process/RemoveESDescriptor

IPMP Tool
A

ReceiveMessage

Process/RemoveObjectDescriptor

SetUp/RemoveIPMPStream

ConnectTool

DisconnectTool

SetMRPointer

ReceiveToolES

ReceiveIPMPToolListDescriptor

Set/RemoveFilter

GoNoGo

IPMP-X System

IPMP Tool
B

ReceiveMessage

Tool Manager

MPEG-4
Terminal

Message
Router

SetTMPointer

Process/RemoveIPMPDescriptor

Process/RemoveESDescriptor

IPMP Tool
A

ReceiveMessage IPMP Tool
A

ReceiveMessage

Process/RemoveObjectDescriptor

SetUp/RemoveIPMPStream

ConnectTool

DisconnectTool

SetMRPointer

ReceiveToolES

ReceiveIPMPToolListDescriptor

Set/RemoveFilter

GoNoGo

IPMP-X System

IPMP Tool
B

ReceiveMessage IPMP Tool
B

ReceiveMessage

Figure 4 - MPEG-4 IPMP Extension Sample Architectural Diagram

The Message Router

The main interactions the Message Router has with the Terminal are the processing of Object Descriptors,
Elementary Stream Descriptors and IPMP Descriptors. If the Message Router notices that an ES is protected,
a request is sent to the Tool manager to instantiate an IPMP Tool in the specified Control Point. The MR
performs this operation by calling the SetFilter method of the protected ES, inserting the requested IPMP
Tool in the Control Point. The MR is also in charge of retrieving data from the IPMPStream in case this is
present, and send those data to the IPMP Tool specified as the recipient of such information.

From the IPMP Tool side, the Message Router is the core of the message-based architecture. Physical
routing of information and context resolution are handled by this conceptual entity, which enables the
abstraction from platform-dependent routing and delivery issues. The interface between the Message Router
and the IPMP Tools is non-normative, though a Registration Authority is in charge of defining the
implemented API for an IPMP Tool and Terminal communication on a given platform. Communication
between two IPMP Tools not performed through the Message Router is outside the scope of the standard.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

135

The delivery of both bit stream sourced IPMP information as well as IPMP Tool and Terminal generated
information is supported through the use of three separate messages exchanged between the Message Router
and IPMP Tools. These are: IPMP_MessageFromBitstream, which is used to deliver IPMP stream data to an
IPMP Tool, IPMP_DescriptorFromBitstream, which is used to deliver IPMP_Descriptors [1], and
IPMP_MessageFromTool, which is used to deliver messages from either other IPMP tools or the Terminal
itself. The latter, in particular, is a container of IPMP_Data_BaseClass messages. [2] Defines a set of
messages extending IPMP_Data_BaseClass, which allow a normative communication between IPMP Tools;
this is explained in more detail in section 0.

The Tool Manager

The Tool Manager is another conceptual entity within the IPMP-X Terminal which basically is responsible
for receiving the IPMP_ToolListDescriptor from the MPEG-4 content the user wants to render, instantiating
IPMP Tools and managing them during all their lifetime. Figure 5 shows the class IPMP_ToolListDescriptor
that contains up to 255 IPMP Tool classes (Figure 6).

Figure 5 - The class IPMP_ToolListDescriptor

The necessary information required to instantiate all the specified IPMP Tool is then extracted from each
class; the corresponding software module is then retrieved. The IPMP Tools (or their alternate, if any) if not
present yet on the Terminal, could be downloaded from a remote location. In the IPMP_Tool class, in fact, a
one of the fields may contain a location from which the Tool could be retrieved; however, the Tool
downloading functionality of the TM is not normatively defined in [2]. IPMP Tools can also be carried in a
particular Stream, the IPMPToolStream.

After the instantiation of a Tool, the TM assigns a unique 32-bit identifier (ContextID) to each instance of
IPMP Tool. Such ID may be used to indicate the Message Router the intended recipient of a message, and to
reference in an unambiguous way an instance of Tool.

IPMP Tools

Tools can range from being simple processors of content such as performers of decryption algorithms on
encrypted content, watermarking/fingerprinting inserters or detectors, rights managers; some may also have
co-ordinating functions over a set of other Tools.

The Tool Manager receives from the class IPMP_Tool (Figure 6) the required information to instantiate the
corresponding software module. Each Tool is characterized by the 128-bits IPMP_ToolID, and other
additional information: it may have alternates Tools to substitute it without any loss of functionality, it may
be configured to operate according to a parametric description, and may be downloaded from a remote
location which address is contained in the field ToolURL. Even though it is not normative, this functionality
may be provided to the Tool Manager module.

class IPMP_ToolListDescriptor extends BaseDescriptor :
 bit(8) tag= IPMP_ToolsListDescrTag
{
 IPMP_Tool ipmpTool[0 .. 255];
}

class IPMP_Tool extends BaseDescriptor :
 bit(8) tag= IPMP_ToolTag
{
 bit(128) IPMP_ToolID;
 bit(1) isAltGroup;
 bit(1) isParametric;
 const bit(6) reserved=0b0000.00;

 if(isAltGroup){

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

136

Figure 6 - The class IPMP_Tool

The IPMP-X specification [2] defines a set of messages by means of which the IPMP Tools can exchange
information among them or with the Terminal in a normative way, as described in the following chapter;
their delivery is performed by the Message Router, which handler must be supplied to each Tool during an
initialization phase. A Registration Authority is in charge of defining this process, as well as the
implemented API for the Tool-Message Router communication on a given platform. This allows the data
exchange between IPMP Tools, even if not developed by the same provider. Through a normative message
exchange, moreover, mutual authentication may occur among IPMP Tool or between them and the Terminal,
in order to increase the overall security of the system.

Normative messages
To facilitate the cooperation of multiple tools in the protection and governance of content, a set of messages
has been standardized, able to cover many scenarios in which IPMP Tools may be involved. Tools requiring
exchanging data with other entities need to have the capability to generate and interpret some of them.

By means of normative messages, a Tool may require, for instance, to be informed of all the others IPMP
Tools next to it (IPMP_GetTools message) or to be notified when a new IPMP Tool is instantiated
(IPMP_AddToolNotificationListener message). If a particular event occurs, this can be signalled by an
IPMP_NotifyToolEvent message; moreover, a Tool can require another Tool to be instantiated by the means
of an IPMP_ConnectTool message, while the IPMP_DisconnectTool triggers the dual action. Several
messages have been defined for common IPMP processing: IPMP_OpaqueData for the carriage of user
defined data, IPMP_RightsData for the carriage of rights expressions, IPMP_KeyData for the carriage of
decryption key data as well as timing information to determine the validity period of time varying keys. User
defined data can be delivered by means of an IPMP_OpaqueData message, while a set of messages can be
used to instruct a watermarking/fingerprinting Tool on the operation to perform, or receive from it the data
extracted from the content. Two other messages: IPMP_InitMutualAuthentication and
IPMP_MutualAuthentication are defined for requesting and carry on a mutual authentication message
protocol.

The actual implementation of the messages just briefly introduced in this document will be further specified
during the following development and integration of the IPMP-X in the MPEG-4 player.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

137

The AXMEDIS IPMP-X Interface
Table I provides a schematic of the interfaces between the MPEG-4 systems implementation running on the
OSMO MPEG-4 player and the IPMP-X classes and methods. Such an interface is defined here in terms of
C++ classes and methods with related inheritances, some modifications can be applied in course of
integration if technical constraints will require it.

Class Methods Inherits from

IPMPSystem CreateIPMPServices

RemoveIPMPServices

IPMPTool_Interface ReceiveMessage

MR_Interface SetTMPointer

ProcessObjectDescriptor
RemoveObjectDescriptor
ProcessIPMPToolDescriptor
RemoveIPMPToolDescriptor
ProcessESDescriptor
RemoveESDescriptor
SetUpIPMPStream
RemoveIPMPStream

IPMPTool_Interface

TM_Interface SetMRPointer

DisconnectTool
ConnectTool
ReceiveToolES
RemoveToolES
ReceiveIPMP_ToolListDescriptor

IPMPServices TM_Interface

MR_Interface

Table I – The AXMEDIS IPMP-X interface

22.2.2 Examples of scenarios to be demonstrated.

This section provides an example of the architecture of a possible scenario to be shown as demonstration of
an IPMP-X powered MPEG-4 player. It is provided here only by way of example and not by way of
limitation.

The demonstrators will have the ability to load, instantiate, insert, start and run multiple independent IPMP
tools. These tools can be at control points 1, 2 or 3 (the post CB control point does not appear to be
supported in the MPEG-4 reference software for Systems, but it should be supported in the MPEG-4 Systems
implementation provided by OSMO) and multiple trools can be used at each control point.
Some of the scenarios to be demonstrated can comprise:

G723 Simple audio
H263_G723 Audio and video
H263_G723PROT Audio, with post decoder IPMPTool, and video

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

138

H263_G723PROT2 Audio, with 2 pre decoder IPMPTools, and video
H263_G723PROT3 Audio, with 2 post decoder IPMPTools, and video, with pre decoder IPMPTool
AAC Audio
AACPROT Audio, with post decoder IPMPTool
AACPROTWM Watermarked Audio, with post decoder CRL Watermark decoder IPMPTool

Figure 7 below shows the positions of each IPMPTool for the example bitstream called above
H263_G723PROT3.

Figure 7 – Architecture of the Systems layer integrated with 3 IPMP-X tools. The audio stream is processed by 2

post decoder IPMP-X Tools, and the video by 1 pre-decoder IPMP-X Tool.

22.3 Translation of MPEG-4 IPMPX binary descriptors to XML based MPEG-21 IPMP
Components

22.3.1 DMP Content Information overview
In DMP content is a combination of resources, metadata, content and rights expressions. DMP calls
“Represent Content” the set of tools used to provide a digital representation that can be processed by a
compliant device. DMP calls such a content representation DMP Content Information (DCI). DCI provides
the means to convey identifiers, associate information and metadata and associate information with governed
content. DCI is an extended profile of MPEG-21 Digital Item Declaration (ISO/IEC 21000-2) and IPMP
Components (ISO/IEC 21000-4).
Concerning content governance representation, the DMP Rights Expression Language is an extended
combination of 3 MPEG-21 REL (ISO/IEC 21000-5) Profiles: Core, Standard Extension and Multimedia
Extensions.
DMP Content can be identified by means of Identifiers that conform to the Uniform Resource Names (URN)
scheme. This is based on MPEG-21 Digital Item Identification (ISO/IEC 21000-3).

22.3.2 MPEG-4 IPMPX descriptors
The IPMPX messages defined in ISO/IEC 14496-13:2004 specify a normative syntax for communication
between IPMP Tools (modules performing encryption, watermarking, key management, rights parsing, etc.)
and between them and the device on which they operate. There are several types of messages serving
different purposes:

• Mutual Authentication: messages used by two parties to agree on a specific algorithm to authenticate
each other and perform mutual authentication, as well as sharing a common secret for secure
communication

• IPMP tool acquisition: messages to convey an IPMP Tool and to signal its type

 Control Point2 Control Point1

Tool 3

Tool 1 Tool 2

Audio
 DB

Video
 DB

 G723
Decode

 H263
Decode

Audio
 CB

Video
 CB

Comp
osition Render

D
M

U

X

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

139

• IPMP Tool connection and disconnection: messages to request the list of tools available, to query a
given IPMP tool as to its capabilities and functionality, to request the connection of another IPMP
tool, etc...

• Notification of IPMP Tool events: like signalling the instantiation of an IPMP Tool, to notify IPMP

tools when other IPMP tools have either been connected, disconnected or processed watermark
information, etc;

• Common IPMP processing: messages for carriage of keys, rights expressions, watermarking data,

etc...

• IPMP tool to/from User interaction: to normatively specify the interaction between IPMP tools and

Users.

22.3.3 IPMPX translation to XML
The goal of the DMP proposal to translate binary IPMPX descriptors to XML is twofold. On one side it
provides a representation of IPMPX descriptors which is more easily readable, possibly extensible and
editable in an automatic or semi-automatic way through existent toolset for XML authoring, on the other side
it allows its adoption in MPEG-21 IPMP Components.
The conversion process performed by DMP has followed two main guidelines:

• Keeping the tightest possible relation between names/semantics of the variables and elements in the
two representations.

• Using well-known elements to replace ad-hoc syntax defined in IPMPX spec.
For example:

– bit(128) toolID was translated in xsd:anyURI
– ByteArray keyBody was translated in dsig:KeyInfo

In order to achieve interoperability when implementing IPMP System adopting MPEG-4 IPMPX it is very
important to know the characteristics of the involved devices. For this reason DMP has adopted and profiled
the mpeg4ipmp:TerminalID namespace as shown in the figure below.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

140

Figure 8 - The mpeg4ipmp:TerminalID namespace

In the mpeg4ipmp:TerminalID namespace profiled by DMP all elements are optional and it has been kept
extensible so as to support the largest extent of devices characteristics.

Thanks to the translation of the binary MPEG-4 IPMP Descriptors to XML their adoption in MPEG-21
IPMP Components will be possible. As it is shown in the figure below, the IPMP Tool List Descriptor, IPMP
Tool Descriptor and IPMP Descriptor used in MPEG-4 Streams to link the governed resources with the
governing tools, can be embedded in a MPEG-21 Digital Item in accordance with the MPEG-21 IPMP
Components schemas.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

141

Figure 9 - Mapping from an MPEG-4 IPMPX IOD to an MPEG-21 DI with governed MPEG-4 resources.

In AXMEDIS this can be implemented by extending the current specification of the AXMEDIS player for
the support of MPEG-21 IPMP Components and therefore MPEG-4 IPMPX resources carried in AXMEDIS
objects. With the integration of the IPMPX interfaces in OSMO the support of MPEG-4 IPMPX will be
present only at the level of pure MPEG-4 media, with this extension it would also be supported for resources
carried in MPEG-21 compliant AXMEDIS objects.

The following pictures better detail how the MPEG-4 IPMPX descriptors used to finely specify the
configuration of IPMPX tools and to let them communicate by means of a messaging infrastructure, can be
simply mapped to the schemes specified in the MPEG-21 IPMP Components specification.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

142

Figure 10 - The MPEG-21 IPMPInfoDescriptor and IPMPTool schemes

A typical set of IPMPX descriptors and messages to be supported in the process of governed MPEG-4
resources decoding is shown in the figure below. Messages used to exchange information among IPMPX
tools and between a given tool and the terminal are highlighted in blue.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

143

IPMP_Descriptor

IPMP_ToolID

ControlPointCode

SequenceCode

IPMPX_data

IPMP_KeyData

IPMP_RightsData

IPMP_AudioWatermarkingInit

.......

IPMP_Descriptor

IPMP_ToolID

ControlPointCode

SequenceCode

IPMPX_data

IPMP_KeyData

IPMP_RightsData

IPMP_AudioWatermarkingInit

.......

Figure 11 - Typical structure of an MPEG-4 IPMPX descriptor carrying IPMPX messages.

Starting from the already defined ipmpinfo:Tool schema, DMP has profiled the two elements highlighted in
the figure above: ipmpinfo:InitializationData and ipmpinfo:ConfigurationSettings.
Messages and descriptors used to specify the way in which a tool has to be plugged in the MPEG-4 Systems
architecture have been profiled in the ipmpinfo:InitializationData as depicted below. These descriptors
include the control point to which a given tool has to be connected, messages governing the connection and
disconnection of a tool and initialization parameter for content processing algorithms such as watermarking.

Figure 12 - Restriction to ipmpinfo:InitializationData

On the other hand, the restriction to ipmpinfo:ConfigurationSettings depicted in the figure below permitted
to specify the supported platforms by means of ipmpinfo:SupportedPlatform namespace. This can be
adopted in AXMEDIS to describe the characteristics of those terminals supporting the specified IPMP
system and to require content adaptation/transcoding in case the concerned terminal is not among the
supported platforms. This may be the case when a given cryptographic processor is not present and a
different encryption algorithm needs to be used to protect the selected resource.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

144

Figure 13 - Restriction to ipmpinfo:ConfigurationSettings

The figure below shows the restriction to the MPEG-21 ipmpinfo:SupportedPlatforms that can be used to
describe the AXMEDIS player in details. The optional children of dmpdr:DeviceInformation can be used
to finely profile the content to be delivered to the end device. In the AXMEDIS chain such information could
be used in order to allow the adaptation of the required content and possibly to periodically update it
according to (software and/or hardware) updates of the terminal platform.

Figure 14 - Restriction to ipmpinfo:SupportedPlatforms

An example of adoption of the schema represented above to describe the AXMEDIS player is given below.
Many can be the use of the defined namespaces in the framework of the AXMEDIS use cases. For example,
some of the values of children of ipmpinfo:TerminalID can be used by the license servers to calculate
access keys to be embedded into licenses. The variety of data carried by such namespaces will provide a high
complexity and flexibility to the license management mechanisms adopted.

<ipmpinfo:Tool>

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

145

 <ipmpinfo:ToolBaseDescription>

 <ipmpinfo:IPMPToolID>urn:mpegRA:mpeg21:IPMP:ABC002:56:79</ipmpinfo:IPMPToolID>

 <ipmpinfo:Remote ref="urn:AXMEDISIPMPToolsServer:ToolPartEnc002-9090-v.1.0"/>

 <ipmpinfo:ConfigurationSettings>

 <ipmpinfo: Configuration>...</ipmpinfo: Configuration>

 <ipmpinfo:Update>

 <ipmpinfo:Location ref="urn:IPMPToolsUpdatingServer1:ToolPartEnc002-9090-

NewVersion"/>

 <ipmpinfo:ScheduledUpdateTime period="P1D">2005-03-07T00:00:00

 </ipmpinfo:ScheduledUpdateTime>

 <ipmpinfo:SupportedPlatform xmlns:mpeg4ipmp="urn:mpeg:mpeg4:IPMPSchema:2002">

 <mpeg4ipmp:TerminalID>

 <mpeg4ipmp:TerminalType>

 <mpeg4ipmp:Vendor>EPFL</mpeg4ipmp:Vendor>

 <mpeg4ipmp:Model>OSMO0.4.0</mpeg4ipmp:Model>

 </mpeg4ipmp:TerminalType>

 <mpeg4ipmp:OperatingSystem>

 <mpeg4ipmp:Vendor>Microsoft Corporation</mpeg4ipmp:Vendor>

 <mpeg4ipmp:Model>Windows XP Professional</mpeg4ipmp:Model>

 <mpeg4ipmp:Version>XP SP2</mpeg4ipmp:Version>

 </mpeg4ipmp:OperatingSystem>

 <mpeg4ipmp:Vendor>Intel Corporation</mpeg4ipmp:Vendor>

 <mpeg4ipmp:Model>Intel® Pentium® M Processor</mpeg4ipmp:Model>

 <mpeg4ipmp:Speed>1060</mpeg4ipmp:Speed>

 </mpeg4ipmp:CPU>

 <mpeg4ipmp:Memory>

 <mpeg4ipmp:Vendor>Kingston</mpeg4ipmp:Vendor>

 <mpeg4ipmp:Model>DDR2 SDRAM</mpeg4ipmp:Model>

 <mpeg4ipmp:Size>512</mpeg4ipmp:Size>

 <mpeg4ipmp:Speed>800</mpeg4ipmp:Speed>

 </mpeg4ipmp:Memory>

 </mpeg4ipmp:TerminalID>

 </ipmpinfo:SupportedPlatform>

 </ipmpinfo:Update>

 </ipmpinfo:ConfigurationSettings>

 </ipmpinfo:ToolBaseDescription>

</ipmpinfo:Tool>

Figure 15 - Example of AXMEDIS player representation using the MPEG-21 ipmpinfo:Tool element

22.4 Module Design in terms of Classes

A preliminary study of IPMPX integration into the OSMO architecture has been performed. It may require
some adaptation due to the recent update of some of the OSMO features.
The diagram below provide the results of such preliminary study.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

146

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

147

References to other major
components needed

Problems not solved •
Configuration and execution
context

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

148

23 Module - Internal SMIL Player (EPFL)

Module/Tool Profile
Internal SMIL Player

Responsible Name Claudio Alberti and Beilu Shao
Responsible Partner EPFL
Status (proposed/approved) approved
Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

Library

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows,
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/.....................

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

no

Usage of the AXMEDIS Error
Manager (yes/no)

no

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

149

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

 C++ wxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets wxWidgets 2.4.2 LGPL
Ambulant Ambulant 1.6.2 LGPL

23.1 General Description of the Module
SMIL is an XML language for choreographing multimedia presentations where audio, video, text and
graphics are combined in real time. The language, the Synchronized Multimedia Integration Language
(SMIL, pronounced, "smile") is written as an XML application and is currently a W3C Recommendation.
Simply put, it enables authors to specify what should be presented when, enabling them to control the precise
time that a sentence is spoken and make it coincide with the display of a given image appearing on the
screen.

The SMIL player used in AXMEDIS will be based on the AMBULANT Player. The AMBULANT Open
SMIL Player is an open-source, full SMIL 2.0 media player. It is intended for researchers and developers
who want a source-code player upon which they can build higher-level systems solutions for authoring and
content integration, or within which they can add new or extended support for networking and media
transport components. The AMBULANT player may also be used as a complete, multi-platform media
player for applications that do not need support for closed, proprietary media formats. The AMBULANT
player written in C++, is distributed under a modified GPL license, and it is available for Windows, Linux,
and Macintosh.

When the user wants to display the SMIL component, the Player will extract it from the AXMEDIS Object,
uncompress it from binary to a media file and store it as a temporary file on the disk. The SMIL file is
described in section 8.1.2 as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<smil>

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

150

 <head>
 <layout>
 <root-layout background-color="red" height="600" id="rootlayout"
title="axmedis" width="800"/>
 <region height="143" id="RegionName1" left="105" top="124" width="104"/>
 <region height="145" id="RegionName2" left="295" top="125" width="235"/>
 <region height="147" id="RegionName3" left="234" top="287"
width="357"/></layout>
 </head>

 <body>
<par>
 <audio begin="2" end="16" region="RegionName1" src="Reference1"/>
 <video begin="6" end="21" region="RegionName2" src="Reference7"/>

<video begin="2" end="14" region="RegionName3" src="Reference5"/>
</par>
 </body>

</smil>

The src value refers to the resources contained in the AXMEDIS Object, the player extracts relevant media
resources from the AXMEDIS Object, stores them as temporary media files on the disk. After this, the
Player will replace the <body> part of the above file with these directories of temporary media files and
returns them to a new temporary SMIL file with the <body> part as follows:

<body>

 <audio begin="2" end="16" region="RegionName1" src="C:\Temp\Birthday.mp3"/>
 <video begin="6" end="21" region="RegionName2" src="C:\Temp\BPz3-g.mpg"/>
 <video begin="2" end="14" region="RegionName3" src="C:\Temp\Fz3s.mpg"/>
 </body>

However this is a temporary solution a way to get resources without saving them to disk have to be studied.

23.2 Module Design in terms of Classes
The AMBULANT player can be used to play SMIL-compatible documents from AXMEDIS objects. A
SMIL player has to be able to render different kinds of media objects (text, audio, images, video...).
Currently the AMBULANT player delegates the rendering of images, video, or audio to third-party
specialized libraries. In case we wanted the SMIL player to be able to use the AXMEDIS internal MPEG-4
player the MPEG-4 player would have to implement the playable interface (see UML diagram below). The
playable interface is used by the SMIL player to control the objects being scheduled (renderers, animations,
timelines, transitions. There is a corresponding interface playable_notification that implementations of
playable will use to communicate back: things like media end reached, user clicked the mouse, etc.

The AXMEDIS Editor would control the SMIL player through the player interface. The player interface –
see C++ abstract class below- is the one used by embedding programs that want to control the SMIL player.
In AXMEDIS, all the players have to implement the axMediaPlayer interface. The AMBULANT player
does not implement this interface but it implements the player interface instead. To use the AMBULANT
player in AXMEDIS the player interface will have to be extended until it matches the axMediaPlayer
interface.
Some functions of the axMediaPlayer interface and the SMIL player interface are the same and will not
need to be added. Some other functions of the SMIL Player will have to be slightly modified, for instance the
Play function will need, as input parameter, the index of the resource in the AXMEDIS document. Some
other functions are missing in the SMIL play interface and will need to be added. These are the most
important functions to be added to the AMBULANT player to use it, in AXMEDIS, as an internal player:

• bindTo(in axom: axObjectManager)
• load(in axoid)
• getMediaClient(): wxWindow

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

151

The bindTo function will be called on the SMIL player to attach it an AXMEDIS Object Manager. The
SMIL player needs a reference to an Object Manager because the player does not have direct access to the
AXMEDIS document. The SMIL player will use the reference to the Object Manager to read the AXMEDIS
document.
The load function will be used to load from the AXMEDIS document a resource with identifier axoid -the
parameter of the function.
The getMediaClient function returns a wxWindow reference. This poses a problem to the AMBULANT
player because, in its Windows version, it does not use wxWidgets but MFC. There is no easy conversion
from an MFC window object to a wxWidget window object. One solution could be adding another function
to the axMediaPlayer interface getMediaClientMM() which could return a reference to a custom object
axmedisWindow. The axmedisWindow object should implement the set of functions from wxWindow
that would be needed, for instance:

• SetSize(...)
• SetTitle(...)
• Show(...)
• Hide(...)

NB: the same problem occurs in the MPEG-4 Player above, since the management of windows is already
implemented either using MS API or OpenGL. Adapting in the proposed way may solve both.

/// This is the API an embedding program would use to control the
/// player, to implement things like the "Play" command in the GUI.
class player {
 public:
 virtual ~player() {};

 /// Return the timer this player uses.
 virtual lib::timer* get_timer() = 0;
 /// Return the event_processor this player uses.
 virtual lib::event_processor* get_evp() = 0;
 /// Start playback.
 virtual void start() = 0;
 /// Stop playback.
 virtual void stop() = 0;
 /// Pause playback.
 virtual void pause() = 0;
 /// Undo the effect of pause.
 virtual void resume() = 0;
 /// Return true if player is playing.
 virtual bool is_playing() const { return false;}
 /// Retirn true if player is paused.
 virtual bool is_pausing() const { return false;}
 /// Return true if player has finished.
 virtual bool is_done() const { return false;}
 /// Return index of desired cursor (arrow or hand).
 virtual int get_cursor() const { return 0; }
 /// Set desired cursor.
 virtual void set_cursor(int cursor) {}
// void set_speed(double speed);
// double get_speed() const;
};

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

152

23.3 User interface description

23.4 Technical and Installation information

References to other major
components needed

Problems not solved •
Configuration and execution
context

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

153

23.5 Draft User Manual

23.6 Examples of usage

23.7 Integration and compilation issues
None

23.8 Configuration Parameters
Config

parameter
Possible values

23.9 Errors reported and that may occur
Error code Description and rationales

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

154

24 Module - Internal Document Viewer (DSI)

Module/Tool Profile
Internal Document Viewer

Responsible Name Jacquet
Responsible Partner SEJER
Status (proposed/approved) approved
Implemented/not implemented Implemented
Status of the implementation 50%
Executable or Library/module
(Support)

Library

Single Thread or Multithread Single thread
Language of Development C++
Platforms supported Windows
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/Framework/source/axeditor/resourceeditor

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.axmedis.org/repos/Applications/axeditor/bin

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

yes

Usage of the AXMEDIS Error
Manager (yes/no)

no

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

155

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

 C++ wxWidgets

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
wxWidgets wxWidgets 2.4.2 LGPL
wxActiveX LGPL
wxMozilla

24.1 General Description of the Module
The document viewer will support the visualization of documents like:

• HTML
• PDF
• MSWord Documents
• Postscript

The functionalities provided will be:
• go to next page, go to previous page, go to page
• zoom the page
• fit the page in the view
• print
• scroll the page within the view

To realize these functionalities different approaches can be used for each type of document

24.1.1 HTML
To view HTML files two possibilities are available:

• use the Internet Explorer ActiveX (only under Windows)
• use mozilla embedded inside the application (multi platform)

On one hand, wxActiveX (http://sourceforge.net/projects/wxactivex) is a library providing a wrapper ckass
to host ActiveX controls inside wxWidgets applications.
This library also provides an interface to host the Internet Explorer’s ActiveX.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

156

The class wxIEHtmlWin can be hosted as a client of any other wx component (like wxFrame, wxNotebook,
etc.) it provides functionalities to:

• load from a URL, wxString, a stream object like wxInputStream or std::istream
• set the charset
• get/set the edit mode
• get the selected text inside the IE control (as HTML or not)
• get the text of the page shown in the IE control (as HTML or not)
• go back, go forward, go home
• go search
• refresh the window
• stop the page loading

Moreover it allows catching various events generated by the IE ActiveX like:

• when status text is changed
• before the connection to an URL
• when the title is changed
• when a new window is opened
• when progress during download changed

To access to protected content the use of streams will avoid saving the HTML files in clear on disk however
it is not clear how to provide content referred from the protected html (e.g. images).
Some restrictions could be put to avoid the possibility of copy to clipboard selected text or to view the
HTML. To avoid this some filters on events could be set to filter the Ctrl+C and to block the right click in
case of protected content.

On the other hand, wxMozilla (http://wxmozilla.sourceforge.net/) is a wrapper of mozilla for wxWidgets
applications. It does not use the ActiveX technology thus allowing using it also under other platforms
(Linux, MacOS).

In order to control the data displayed not only the HTML but also the images or the style sheets, both
browsers use a similar mechanism, called Asynchronous Pluggable Protocol for Internet Explorer and
Protocol Handler for Mozilla.

For instance, the following page should be displayed in the same manner in the document viewer:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

157

The splash screen image is declared in a tag, the color of the title and the url of the background
picture in the CSS file.

The basic principle is to register for a specific URL protocol, such as axmedis://, an object which
responsibility is to retrieve data for a certain URL.
Also, AXMEDIS object identifier are URN but we can map them to URL using the following conversion:
 urn:axmedis:<yyyyy>:obj:<uuid> => axmedis://<yyyyy>.obj.<uuid>/

For more information on Asynchronous Pluggable Protocols, see
http://msdn.microsoft.com/workshop/networking/pluggable/overview/overview.asp and for more
information on Protocol Handlers, see http://www.mozilla.org/projects/netlib/new-handler.html.

In terms of configuration, Internet Explorer will be associated by default to the mime-type text/html on PC,
while Mozilla will be associated to application/xhtml+xml. On other platforms, Mozilla would associate to
both mime-types.

24.1.2 MSWord Documents
To display MSWord Documents the Internet Explorer ActiveX can be used, however protection of such
content can be done only by filtering events (like Ctrl+C and right click).

24.1.3 PDF
To display PDF files the following possibilities are available:

1. use the InternetExplorer ActiveX to display PDF files (it uses the Acrobat ActiveX)
2. use directly the Acrobat ActiveX
3. use the embedded Mozilla to display PDF files (it uses the Acrobat ActiveX)
4. use ghostscript and Imagick libraries

The first three solution use directly on indirectly the Acrobat ActiveX control:
The wxActiveX library could used to host the Acrobat ActiveX inside a wx application.
The interface provided by the Actrobat ActiveX is very simple; basically it allows opening a file from the
file system. In case of protected content no way was found to load the PDF file from a stream object
avoiding to store the file in clear on the file system. However to protect pdf content the Acrobat DRM can be
used and customized for the AXMEDIS needs.
In particular Acrobat supports protection plug-in allowing defining the key to encrypt the PDF file. This key
may be generated and stored with the PDF file on the file system. When the PDF is put inside an AXMEDIS
object also this key is put inside and protected. When the protected PDF file is opened it is stored on disk
(unusable without the key) and the Acrobat ActiveX is used to open it, the AXMEDIS specific protection
plug-in for Acrobat will acquire the key from the AXEditor (e.g. via a protected channel) allowing it to
display the document. Note that the use of the protection plugin inside AcrobatReader is not free and it has a
not negligible cost.
Another solution is to use and adapt some free library for PDF rendering (Xpdf, ghostscript etc.) and to
handle protection mechanisms in a more effective way. However these libraries may not support all the
features of PDF files.

24.1.4 Postscript
Postscript documents may be visualized using ghostscript and the ImageMagick library (in the same way as
PDF files can be), regarding protection aspects the possibility of ghostscript to get content from a stream
object rather than from direct file access has to be investigated.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

158

24.2 Module Design in terms of Classes

AxDocumentViewer

+AxMediaPlayer()
+bindTo(in value : AxObjectManager*)
+load(inout index : const AxIndex)
+load(inout stream : istream, in mimetype : wxString)
+load(in url : wxString)
+play()
+getCapabilities() : unsigned int
+getStatus() : wxArrayString
+getCount() : int
+goNext()
+goPrev()
+getMediaTimeControl() : AxMediaTimeControl *
+getMediaVisualControl() : AxMediaVisualControl *
+extractTo(in ostream)

#axom : AxObjectManager *
#loadedAsset : DataSource *
#decoder : ResourceDecoder *

AxMediaPlayer

+getMediaClient() : wxWindow *
+fit(in width : double, in height : double)
+fitToWindow()
+isAutoFit() : bool
+setAutoFit(in value : bool)
+zoomIn(in ratio : double)
+zoomOut(in ratio : double)
+getZoom() : double
+setZoom(in ratio : double)
+fullScreen(in value : bool = true)
+isFullScreen() : bool
+setSelectRegionMode(in mode : bool)
+isSelectRegionMode() : bool
+hideSelection()
+getSelectionRect()
+print()

#full_screen : bool
#click_autoScale : bool

AxMediaVisualControl

AxIEDocumentViewer AxMozillaDocumentViewer

wxMozilla

1

1

wxIEHTMLWin

1

1

AxMediaPlayerPanel
1

1 «uses»

wxPanel

24.2.1 Protocol handlers

wxMozilla provide a set of classes and functions to ease the implementation and registering of protocol
handlers: wxProtocolHandler, wxProtocolChannel.
Mozilla separates the handling of the protocol handler and the retrieval of the data in two classes, while
Internet Explorer queries for two interfaces on the registered protocol handler.
Therefore, the logic will be implemented in AxProtocolHandler, which derived from wxProtocolHandler, for
all url management aspects, and AxProtocolChannel, which derived from wxProtocolChannel, for actual data
retrieval of the AXMEDIS resources.
The AxIEDocumentViewer will implement IInternetProtocolRoot, IInternetProtocol and
IInternetProtocolInfo and delegates the call to AxProtocolHandler and AxProtocolChannel.
For internet explorer, as the protocol handler is a COM Object, the AXIEDocumentViewer will implement
also a class factory (IClasFactory) in order to be able to instanciate the protocol handler without having to
register it in the windows registry.

24.2.2 AxIEDocumentViewer and AxMozillaDocumentViewer
As these two document viewer inherit from AxDocumentViewer, they must implement AxMediaPlayer and
AxMediaVisualControl interfaces but some of the function are meaningless for an HTML document:

- play
- getCount
- goNext
- goPrevious

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

159

- fit
- zoom
- getSelectionRect

The zoom can be emulated by changing the size of the base font.
Still, some of these functions are needed for other document’s type, such as PDF document in which you can
go to the next page, the previous page , fit the page to the screen, zoom in and out, etc.

24.3 User interface description

24.4 Technical and Installation information

References to other major
components needed

Problems not solved •
Configuration and execution
context

24.5 Draft User Manual

24.6 Examples of usage
The document viewer can be used to display protected HTML pages, with rich layout and including various
media, such pictures. It combines both the ease of creating HTML pages with the protection aspect of
AXMEDIS objects.

24.7 Integration and compilation issues
None

24.8 Configuration Parameters
Config

parameter
Possible values

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

160

24.9 Errors reported and that may occur
Error code Description and rationales

25 Tool – MPEG4 Player (EPFL)

Tool
MPEG4 Player

Responsible Name Antonio Romeo
Responsible Partner EPFL
Status (proposed/approved)
Implemented/not implemented Implemented
Status of the implementation
Executable or Library/module
(Support)

Executable

Single Thread or Multithread Multithread
Language of Development C/C++, assembly (optional)
Platforms supported MS Windows
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/.....................

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location
Usage of the AXMEDIS
configuration manager (yes/no)

Usage of the AXMEDIS Error
Manager (yes/no)

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

161

Major Problems not solved --
--

Major pending requirements --
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

Protocol Used Shared with Protocol name or reference to a

section

Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not

25.1 General Description of the Module
The MPEG-4 Tools and Services team at ENST has recently released version 0.4.0 of the GPAC multimedia
suite containing the last release of Osmo4, an MPEG-4 player with the following features:
• MPEG-4 Systems player based on new, smaller, C-only, portable code that is released under LGPL.
• Optimized 2D graphics renderer compliant with the Complete2D Scene Graph and Graphics profiles.
• Video and audio presentation achieved through plugins based on famous OpenSource packages:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

162

o Xvid for MPEG-4 Video Simple Profile.
o MAD for MP3 audio.
o JPEG and PNG for still images.
o A Decoder Development Kit (DDK) is available for developers to interface additional codecs; a

source code template for FAAD (MPEG-4 AAC audio) is included: the sources for the FAAD
decoder have been successfully compiled and interfaced with the player using the DDK.

• Multimedia player features:
o Timeline controls: play, pause, step.
o Graphics features: antialiasing, zoom and pan, scalable resizing of rendering area, basic full

screen support.
o Support for Advanced Text and Graphics extension of MPEG-4 Systems under standardization.
o Frame export to JPG, PNG, BMP.

• OSMO is currently being ported to PC Linux.

OSMO supports also subtitles and a very wide range of options such as:

• Rendering

o Variable frame rate
o Anti-aliasing level selection
o 2D rasterizer
o 3D renderer

• MPEG-4 Systems:
o Preferred language for streams selection
o Decoder threading selection

• Selection of preferred media decoders
• Selection of preferred media drivers
• Fine tuning of Real-Time streaming configuration
• Streaming Cache.

25.2 User interface description
OSMO comes with a user friendly interface allowing enhanced access to the decoded content both as locally
stored file and as streamed content. Together with very basic functionality such as “play”, “stop” and
“pause” it provides enhanced functionality such as frame resize (also full screen supported), deep inspection
of the MPEG-4 stream structure in terms of Elementary Streams and Object Descriptors. In addition OSMO
allows the creation of Playlists and stores an history of usage of the last decoded resources.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

163

Figure 16 - OSMO supports both offline playing and streaming

Figure 17 - OSMO supports frames resize

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

164

Figure 18 - OSMO GUI showing the available options to control content decoding.

Figure 19 - OSMO allows deep inspection of the mp4 streams characteristics.

25.3 Technical and Installation information

References to other major
components needed

Problems not solved •

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

165

Configuration and execution
context

25.4 Draft User Manual
see User Interface Description

25.5 Examples of usage
see User Interface Description.

25.6 Integration and compilation issues
none

25.7 Configuration Parameters
Config

parameter
Possible values

25.8 Errors reported and that may occur
Error code Description and rationales

26 Formal description of format – Error Coding (DSI)
Each AXMEDIS module can define its own errors. Each errors is defined by the following information:

• Error Identifier – area name, full class name, error code
• Language – the language used for description and recovery notes
• Error Description – the error description in a specific language
• Recovery notes – a language dependant description which describe in more details the error and the

causes which could have given rise to the error
Obviously, the same error (recognized by its identifier) can be defined several time with different languages.
Error definitions are coded in XML file with the following schema:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

166

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/error-definition" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.axmedis.org/error-definition" elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="ErrorList" type="ErrorListType"/>
 <xs:complexType name="ErrorListType">
 <xs:sequence>
 <xs:element ref="Error" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Error" type="ErrorType"/>
 <xs:complexType name="ErrorType">
 <xs:sequence>
 <xs:element ref="ErrorIdentifier"/>
 <xs:element name="Language" type="xs:language"/>
 <xs:element name="Description" type="xs:string"/>
 <xs:element name="RecoveryNotes">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="##any"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ErrorIdentifier" type="ErrorIdentifierType"/>
 <xs:complexType name="ErrorIdentifierType">
 <xs:sequence>
 <xs:element name="Area" type="xs:string"/>
 <xs:element name="ClassName" type="xs:string"/>
 <xs:element name="ErrorCode" type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

27 Formal description of format – Error Log (DSI)
Every time an error is raised through the error manager interface the error is logged somewhere. The location
of the log file can be configured using the AXMEDIS Configuration Manager. The log file is in XML format
and has the following schema:

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

167

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/error-log" xmlns="http://www.axmedis.org/error-log"
xmlns:errdef="http://www.axmedis.org/error-definition" xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import namespace="http://www.axmedis.org/error-definition" schemaLocation="error-def.xsd"/>
 <xs:element name="ErrorLog" type="ErrorLogType"/>
 <xs:complexType name="ErrorLogType">
 <xs:sequence>
 <xs:element ref="Error" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Error" type="ErrorType"/>
 <xs:complexType name="ErrorType">
 <xs:sequence>
 <xs:element name="ErrorIdentifier" type="errdef:ErrorIdentifierType"/>
 <xs:element name="Date" type="xs:date"/>
 <xs:element name="Time" type="xs:time"/>
 <xs:element name="Location" type="xs:string"/>
 <xs:element name="Level">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="FATAL"/>
 <xs:enumeration value="ERROR"/>
 <xs:enumeration value="WARNING"/>
 <xs:enumeration value="INFO"/>
 <xs:enumeration value="DEBUG"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

element ErrorLog

diagram

namespace http://www.axmedis.org/error-log

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

168

type ErrorLogType

children Error

source <xs:element name="ErrorLog" type="ErrorLogType"/>

description This is the root element of the log file. It can contain none or more Errors.

element Error

diagram

namespace http://www.axmedis.org/error-log

type ErrorType

children ErrorIdentifier Date Time Location Level

used by complexType ErrorLogType

source <xs:element name="Error" type="ErrorType"/>

description This element represent a logged error. It consist of the following information:

• ErrorIdentifier – this is the same element of the error definition schema and it identifies the logged error

• Date – the date when the error has been logged

• Time – the time when the error has been logged

• Location – represent the location where the error has been raised. It consist of an IP address (or something
equivalent) and of a process/thread identifier

• Level – the level of the error. It can assume the following values FATAL, ERROR, WARNING, INFO or DEBUG
on the base of the severity of the error

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

169

28 Formal description of format – Configuration (DSI)
The configurations managed by the previous described classes are stored in a specific format. The best way
to store that information is to use XML file. In the following, the choosen schema of the XML file is
reported and described.

<?xml version="1.0" encoding="UTF-8"?>
<Configuration xmlns="http://www.axmedis.org/configuration" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.axmedis.org/configuration configuration.xsd">
 <Module id="ID000000" category="category1/subcategory1" visible="true">
 <Parameter name="parameterLongLong" type="int32">1977</Parameter>
 <Parameter name="parameterString" type="string">Andrea Vallotti</Parameter>
 <Parameter name="parameterDouble" type="double">108.5</Parameter>
 </Module>
 <Module id="ID000001" category="category2/subcategory1/subsubcat3" visible="false">
 <Parameter name="name" type="string">Davide</Parameter>
 <Parameter name="surname" type="string">Rogai</Parameter>
 <Parameter name="age" type="int32">29</Parameter>
 </Module>
</Configuration>

In the previous example the modules and parameters are expressed in the needed format. The related XML
schema is reported below.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/configuration" xmlns="http://www.axmedis.org/configuration"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="Configuration" type="ConfigurationType"/>
 <xs:complexType name="ConfigurationType">
 <xs:sequence>
 <xs:element ref="Module" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Module" type="ModuleType"/>
 <xs:complexType name="ModuleType">
 <xs:sequence>
 <xs:element ref="Parameter" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="category" type="xs:string" use="optional"/>
 <xs:attribute name="visible" type="xs:boolean" use="optional" default="true"/>
 </xs:complexType>
 <xs:element name="Parameter" type="ParameterType"/>
 <xs:complexType name="ParameterType" mixed="false">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" use="optional" default="string">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="string"/>
 <xs:enumeration value="int32"/>
 <xs:enumeration value="double"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

170

29 Formal description of format – Plug-ins description (DSI)
Plug-in profiles have to respect the following XML schema.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/plugin-schema" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" xmlns:pin="http://www.axmedis.org/plugin-schema"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="0.1">
 <xs:import namespace="http://www.w3.org/2000/09/xmldsig#" schemaLocation="xmldsig-core-schema.xsd"/>
 <xs:element name="Plugin" type="pin:PluginType">
 <xs:annotation>
 <xs:documentation>This is the root element for XML file describing AXMEDIS plugins</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="PluginType">
 <xs:sequence>
 <xs:element ref="pin:GeneralDescriptor"/>
 <xs:element ref="pin:ComponentsSignature"/>
 <xs:element ref="pin:SpecificDescriptor"/>
 <xs:element ref="pin:Signature"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="GeneralDescriptor" type="pin:GeneralDescriptorType"/>
 <xs:complexType name="GeneralDescriptorType">
 <xs:sequence>
 <xs:element name="Category" type="xs:string"/>
 <xs:element name="Identifier" type="xs:anyURI"/>
 <xs:element name="Library" type="xs:string"/>
 <xs:element name="Version" type="xs:string"/>
 <xs:element name="Vendor" type="xs:string"/>
 <xs:element name="MainLibrary" type="xs:anyURI"/>
 <xs:element name="Description" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ComponentsSignature" type="dsig:SignatureType"/>
 <xs:element name="SpecificDescriptor" type="pin:SpecificDescriptorType" abstract="true"/>
 <xs:complexType name="SpecificDescriptorType" abstract="true"/>
 <xs:element name="Signature" type="dsig:SignatureType"/>
</xs:schema>
In the following the semantic and description of each XML element is reported.

element Plugin

diagram

namespace http://www.axmedis.org/plugin-schema

type pin:PluginType

children GeneralDescriptor ComponentsSignature SpecificDescriptor Signature

description This element is the root element of profiles for AXMEDIS plug-ins. It contains necessary information to manage and to
use the associated plug-in.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

171

element GeneralDescriptor

diagram

namespace http://www.axmedis.org/plugin-schema

type pin:GeneralDescriptorType

children Category Identifier Library Version Vendor MainLibrary Description

description This element contain general information on the plug-in the profile refers to. That information is mandatory and valid for
all kind of plug-in. The fields are:

• Category represents the type of functionalities the plug-in implements, e.g. content processing, protection tool,
etc…

• Identifier is the unique identifier of the plug-in in AXMEDIS framework

• Library the name of the specific library of the vendor

• Version is string representing the version of the software, it could be use for compatibility controls

• Vendor is the name/description of the plug-in maker

• MainLibrary is a relative URI referencing the dynamic library exposing the interface described in the
SpecificDescriptor element of the plug-in profile.

• Descriptor a human readable description text of the plug-in

element ComponentsSignature

diagram

namespace http://www.axmedis.org/plugin-schema

type dsig:SignatureType

children dsig:SignedInfo dsig:SignatureValue dsig:KeyInfo dsig:Object

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

172

attributes Name Type Use Default Fixed
Id ID optional

description This element is a dsign:SignatureType. It is the signature (estimated by an AXCS) of the entire plug-in. The signature
comprises all relevant resources which compose the plug-in. Those resources are listed as Reference elements of
ds:SignedInfo.

element SpecificDescriptor

diagram

namespace http://www.axmedis.org/plugin-schema

type pin:SpecificDescriptorType

description This is an abstract element which can be substituted with any element derived by SpecificDescriptorType. In that way,
Category-dependant XML schema can be used to describe specific features of the plug-in (see GeneralDescriptor).

element Signature

diagram

namespace http://www.axmedis.org/plugin-schema

type dsig:SignatureType

children dsig:SignedInfo dsig:SignatureValue dsig:KeyInfo dsig:Object

attributes Name Type Use Default Fixed
Id ID optional

description This is the signature of the whole profile except the Signature element itself. It has been introduced to guarantee the
dependability of the data contained in the manifest.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

173

30 Formal description of format – Content Processing Plug-ins specific
description (DSI)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/plugin-function-schema"
xmlns:prm="http://www.axmedis.org/parameter" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fd="http://www.axmedis.org/plugin-function-schema" xmlns:pin="http://www.axmedis.org/plugin-schema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import namespace="http://www.axmedis.org/plugin-schema" schemaLocation="plugin-schema.xsd"/>
 <xs:import namespace="http://www.axmedis.org/parameter" schemaLocation="param-schema.xsd"/>
 <xs:element name="FunctionList" type="fd:FunctionListType" substitutionGroup="pin:SpecificDescriptor"/>
 <xs:complexType name="FunctionListType">
 <xs:complexContent>
 <xs:extension base="pin:SpecificDescriptorType">
 <xs:sequence>
 <xs:element ref="fd:Function" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="Function" type="fd:FunctionType"/>
 <xs:complexType name="FunctionType">
 <xs:sequence>
 <xs:element name="Name" type="xs:ID"/>
 <xs:element name="Version" type="xs:string" minOccurs="0"/>
 <xs:element ref="fd:FunctionDescription"/>
 <xs:element ref="prm:ParameterList" minOccurs="0"/>
 <xs:element ref="fd:Result"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="FunctionDescription" type="xs:string"/>
 <xs:complexType name="DescriptionType">
 <xs:sequence>
 <xs:any namespace="##any"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Result" type="fd:ResultType"/>
 <xs:complexType name="ResultType">
 <xs:sequence>
 <xs:element name="Name" type="xs:ID" minOccurs="0"/>
 <xs:element ref="fd:ResultType"/>
 <xs:element ref="fd:ResultDescription" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ResultDescription" type="xs:string"/>
 <xs:element name="ResultType" type="fd:ResultTypeType"/>
 <xs:simpleType name="ResultTypeType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="UINT16"/>
 <xs:enumeration value="INT16"/>
 <xs:enumeration value="UINT32"/>
 <xs:enumeration value="INT32"/>
 <xs:enumeration value="FLOAT"/>
 <xs:enumeration value="DOUBLE"/>
 <xs:enumeration value="BOOLEAN"/>
 <xs:enumeration value="STRING"/>
 <xs:enumeration value="WSTRING"/>
 <xs:enumeration value="CHAR"/>
 <xs:enumeration value="RESOURCE"/>
 <xs:enumeration value="AXOM"/>
 <xs:enumeration value="AREA"/>
 <xs:enumeration value="VOID"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="Range" type="fd:RangeType" substitutionGroup="prm:Constraint"/>
 <xs:complexType name="RangeType">
 <xs:complexContent>
 <xs:restriction base="prm:ConstraintType">
 <xs:sequence>

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

174

 <xs:element name="From" type="fd:Limit"/>
 <xs:element name="To" type="fd:Limit"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="Limit">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="included" type="xs:boolean" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:element name="Resource" type="fd:ResourceType" substitutionGroup="prm:Constraint"/>
 <xs:complexType name="ResourceType">
 <xs:complexContent>
 <xs:restriction base="prm:ConstraintType">
 <xs:sequence>
 <xs:element name="ResourceType" type="xs:string"/>
 <xs:element name="ResourceFormat" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

element FunctionList

diagram

namespace http://www.axmedis.org/plugin-function-schema

type fd:FunctionListType

children fd:Function

source <xs:element name="FunctionList" type="fd:FunctionListType" substitutionGroup="pin:SpecificDescriptor"/>

description This element is the root element for the description of all function exposed by a content processing plug-in. It is a
substitution of the abstract element SpecificDescriptor described in the section 29

element Function

diagram

namespace http://www.axmedis.org/plugin-function-schema

type fd:FunctionType

children Name Version fd:FunctionDescription prm:ParameterList fd:Result

used by complexType FunctionListType

description This element represent a single function exposed by a plug-in. A function is characterized by a Name, which is used in

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

175

the script to call the function, and a version. The Name element is of type ID while the Version element is a string

element FunctionDescription

diagram

namespace http://www.axmedis.org/plugin-function-schema

type xs:string

used by complexType FunctionType

description This element can contain any string and represents the description of the function (e.g. the help for the function).

element Range

diagram

namespace http://www.axmedis.org/plugin-function-schema

type fd:RangeType

children From To

source <xs:element name="Range" type="fd:RangeType" substitutionGroup="prm:Constraint"/>

description This element represent an interval constraint of a parameter. It is composed by two values:

• From is the start point of the range

• To is the end point of the range
both extreme limits can be included or excluded. In fact, those elements have the included attribute which can be true
or false. This element is a substitution group of the Constrain element which is explained in the section 31.

complexType Limit

diagram

namespace http://www.axmedis.org/plugin-function-schema

type extension of xs:string

used by elements RangeType/From RangeType/To

attributes Name Type Use Default Fixed Annotation
included xs:boolean optional

source <xs:complexType name="Limit">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="included" type="xs:boolean" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

description This is the type of the From and To element contained in the Range element. It represents a bound of an interval of
values. It can be included or not in the interval itself.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

176

element Resource

diagram

namespace http://www.axmedis.org/plugin-function-schema

type fd:ResourceType

children ResourceType ResourceFormat

source <xs:element name="Resource" type="fd:ResourceType" substitutionGroup="prm:Constraint"/>

description This element represent a constraint on the type of resource which can be passed as parameter to a function. It has to be
used in conjunction to a parameter of type RESOURCE to determine the acceptable MIME Type for it. The Type
element corresponds to the MIME type while Format element corresponds to the MIME subtype. Information about the
MIME content-types can be found in the RFC 2045 [RCF2045], 2046 [RCF2046] and 2077 [RCF2077]. ResourceType
and ResourceFormat elements are of type string. This element is a substitution group of the Constrain element which is
explained in the section 31.

element Result

diagram

namespace http://www.axmedis.org/plugin-function-schema

type fd:ResultType

children Name fd:ResultType fd:ResultDescription

used by complexType FunctionType

description This element represents the return value of the function. It is mainly described by its type but it can also own a short
name and a description. The Name element is of type ID.

element ResultDescription

diagram

namespace http://www.axmedis.org/plugin-function-schema

type xs:string

used by complexType ResultType

description This element can contain any string and represents the description of the return value of the function

element ResultType

diagram

namespace http://www.axmedis.org/plugin-function-schema

type fd:ResultTypeType

used by complexType ResultType

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

177

facets enumeration UINT16
enumeration INT16
enumeration UINT32
enumeration INT32
enumeration FLOAT
enumeration DOUBLE
enumeration BOOLEAN
enumeration STRING
enumeration WSTRING
enumeration CHAR
enumeration RESOURCE
enumeration AXOM
enumeration AREA
enumeration VOID

description This element represents the type of the return value. It is almost the same of type of parameter (see section 31) but it
can be also VOID.

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

178

31 Formal description of format – Parameter description

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.axmedis.org/parameter" xmlns:prm="http://www.axmedis.org/parameter"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="ParameterList" type="prm:ParameterListType"/>
 <xs:complexType name="ParameterListType">
 <xs:sequence>
 <xs:element ref="prm:Param" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Param" type="prm:ParamType"/>
 <xs:complexType name="ParamType">
 <xs:sequence>
 <xs:element name="Name" type="xs:ID"/>
 <xs:element ref="prm:ParamType"/>
 <xs:choice minOccurs="0">
 <xs:element name="In"/>
 <xs:element name="Out"/>
 <xs:element name="InOut"/>
 </xs:choice>
 <xs:choice minOccurs="0">
 <xs:element name="Mandatory"/>
 <xs:element name="DefaultValue" type="xs:anySimpleType"/>
 </xs:choice>
 <xs:element ref="prm:ParamDescription" minOccurs="0"/>
 <xs:element ref="prm:Constraints" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ParamDescription" type="xs:string"/>
 <xs:element name="Constraint" type="prm:ConstraintType" abstract="true"/>
 <xs:complexType name="ConstraintType" abstract="true">
 <xs:sequence>
 <xs:any namespace="##any"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Constraints" type="prm:ConstraintsType"/>
 <xs:complexType name="ConstraintsType">
 <xs:sequence>
 <xs:element ref="prm:Constraint" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ParamType" type="prm:ParamTypeType"/>
 <xs:simpleType name="ParamTypeType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="UINT16"/>
 <xs:enumeration value="INT16"/>
 <xs:enumeration value="UINT32"/>
 <xs:enumeration value="INT32"/>
 <xs:enumeration value="FLOAT"/>
 <xs:enumeration value="DOUBLE"/>
 <xs:enumeration value="BOOLEAN"/>
 <xs:enumeration value="STRING"/>
 <xs:enumeration value="WSTRING"/>
 <xs:enumeration value="CHAR"/>
 <xs:enumeration value="RESOURCE"/>
 <xs:enumeration value="AXOM"/>
 <xs:enumeration value="AREA"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

179

element ParameterList
diagram

namespace http://www.axmedis.org/parameter

type prm:ParameterListType

children prm:Param

description This element represents a list of parameters.

element Param

diagram

namespace http://www.axmedis.org/parameter

type prm:ParamType

children Name prm:ParamType In Out InOut Mandatory DefaultValue prm:ParamDescription prm:Constraints

used by complexType ParameterListType

description This element represents a parameter of a plug-in function. Each parameter is characterized by the following field:

• Name – the name of the parameter. It is of type ID.
• ParamType – see below
• In, Out, InOut – only one of these field can be used for each parameter. They represent the direction of the

parameter:
o In – represents a parameter which will not be changed by the function
o Out – represents a parameter whose value is not used by the function and which will be modified by

it
o InOut – represents a parameter whose value is used by the function and which will be modified by it

by default the parameter will be considered of type InOut.
• Mandatory, DefaultValue – only one of these field can be used for each parameter. They represent the

mandatoryness of the parameter:
o Mandatory – it means that a value has to be given for this parameter
o DefaultValue – it is used to provide a default value for the parameter if it is not explicitly given. It is

of type anySympleType, i.e. it can contain any value which can be represented as a simple type
• ParamDescription – see below

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

180

• Constraints – see below

element ParamType

diagram

namespace http://www.axmedis.org/parameter

type prm:ParamTypeType

used by complexType ParamType

facets enumeration UINT16
enumeration INT16
enumeration UINT32
enumeration INT32
enumeration FLOAT
enumeration DOUBLE
enumeration BOOLEAN
enumeration STRING
enumeration WSTRING
enumeration CHAR
enumeration RESOURCE
enumeration AXOM
enumeration AREA

description This element represents the type of a parameter. The definition of this element fixes the set of parameter type which can
be exchanged among AXOM and plug-ins. A non-exhaustive list is reported above. Each type reported in the list
corresponds to a specific type in the programming language.

element ParamDescription

diagram

namespace http://www.axmedis.org/parameter

type xs:string

used by complexType ParamType

description This element contains a human-readable description of a parameter, e.g. an help for the user.

element Constraints

diagram

namespace http://www.axmedis.org/parameter

type prm:ConstraintsType

children prm:Constraint

used by complexType ParamType

description This element contains the constraints which the parameter is liable to. Constraints can contain several kind of
constraints, see below.

element Constraint

diagram

namespace http://www.axmedis.org/parameter

type prm:ConstraintType

DE3.1.2.2.4 – Specification of AXMEDIS Editors and Viewers, first update of DE3.1.2 part B

AXMEDIS Project

181

used by complexType ConstraintsType

source <xs:element name="Constraint" type="prm:ConstraintType" abstract="true"/>

description This is an abstract element which is the base for all those elements which represent a constrain for a given parameter
(see section 30 for some example of constraint).

