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AXMEDIS Copyright Notice 

The following terms (including future possible amendments) set out the rights and obligations licensee will be requested 
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by 
any other means.  

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS 
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT. 

1. DEFINITIONS 

i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the 
document have been accepted.  

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a 
Document.  

iii. "Licensor" is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in 
terms of companies and/or associations, see www.AXMEDIS.org 

iv. "Document" means the information contained in any electronic file, which has been published by the 
Licensor’s as AXMEDIS official document and listed in the web site mentioned above or available by any 
other means.  

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.  

2. LICENCE  

1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to 
present terms and conditions (the Licence) for the parts that are own and proprietary property the of 
AXMEDIS consortium or its members. 

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and 
conditions.  

3. TERM AND TERMINATION  

1. Granted Licence shall commence on Acceptance Date.  
2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions 

of this Licence.  
3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of 

termination.  
4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the 

accessed Copyright.  
5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or 

obligations, shall survive termination of this Licence and shall continue in full force and effect.  
6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it 

as stated in the document itself will remain in force for a period of 5 years after license issue date or the 
period stated in the document whichever is the longer. 

4. USE  

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:  
i. remove this Copyright Notice on a Document or any of its reproduction in any form in which those 

may be achieved;  
ii. change or remove the title of a Document;  
iii. use all or any part of a Document as part of a specification or standard not emanating from the 

Licensor without the prior written consent of the Licensor; or  
iv. do or permit others to do any act or omission in relation to a Document which is contrary to the 

rights and obligations as stated in the present license and agreed with the Licensor  

5. COPYRIGHT NOTICES  

1. All Works shall bear a clear notice asserting the Licensor’s Copyright. The notice shall use the wording 
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.  

6. WARRANTY  

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright 
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.  
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2. For the avoidance of doubt the licensee should be aware that although the Copyright in the 
documents is given under warranty this warranty does not extend to the content of any document 
which may contain references or specifications or technologies that are covered by patents (also 
of third parties) or that refer to other standards. AXMEDIS is not responsible and does not 
guarantee that the information contained in the document is fully proprietary of AXMEDIS 
consortium and/or partners.  

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of 
action which the Licensor may have, at all times keep the Licensor fully and effectively 
indemnified against all and any liability (which liability shall include, without limitation, all 
losses, costs, claims, expenses, demands, actions, damages, legal and other professional fees and 
expenses on a full indemnity basis) which the Licensor may suffer or incur as a result of, or by 
reason of, any breach or non-fulfilment of any of his obligations in respect of this Licence.  

7. INFRINGEMENT  

1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the 
Copyright which comes to licensee notice and shall, at the Licensor’s request and expense, do all such 
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.  

8. GOVERNING LAW AND JURISDICTION  

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.  
2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.  

 
Please note that: 

• You can become affiliated with AXMEDIS. This will give you the access to a huge amount of 
knowledge, information and source code related to the AXMEDIS Framework. If you are interested 
please contact P. Nesi at nesi@dsi.unifi.it. Once affiliated with AXMEDIS you will have the 
possibility of using the AXMEDIS specification and technology for your business.  

• You can contribute to the improvement of AXMEDIS documents and specification by sending the 
contribution to P. Nesi at nesi@dsi.unifi.it 

• You can attend AXMEDIS meetings that are open to public, for additional information see 
WWW.AXMEDIS.org or contact P. Nesi at nesi@dsi.unifi.it 
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1 Executive Summary and Report Scope 
 
The AXMEDIS consortium (producers, aggregators, distributors and researchers) aims at creating an 
efficient and complete framework to speed up and optimize content production and distribution with 
innovative methods and tools compliant with international standards - such as MPEG-21 - and de-facto 
standards. In the course of realization of such a platform for production-on-demand, content modeling and 
managing play a key-role since the heterogeneity of content formats and representations may create serious 
interoperability issues if not treated appropriately. In this sense, the AXMEDIS approach is based on the 
MPEG-21 concept of Digital Item which is the fundamental unit of distribution and transaction manipulated 
by the users of the framework [1]. 
Several are the technologies and the approaches currently adopted by the AXMEDIS partners according to 
their specific business sectors. This document provides then the state of the art of Content Managements 
Systems (CMS) which can range from simple software solutions to very complex architecture comprising 
multiple applications. 
Three are the main elements of a CMS: 

• Data model. 
In order to implement interoperable content manipulation, standard interfaces for content descriptions 
must be specified. In AXMEDIS such interfaces will be implemented using the XML language in 
accordance with the major trend of multimedia standard bodies, open initiatives and the industry. XML 
will be adopted as AXMEDIS file format and tools able to open, manipulate, save and possibly adapt 
such format will be implemented. 
• Authoring toolset. 
Several are the tools necessary to enable content manipulation from its creation to the final distribution 
passing through several steps of editing/modification. These tools include: 

• Viewers able to open content objects and display the carried resources is terms of hierarchy of 
elements and sub-elements, expected behavior in time once decoded and visual organization in 
virtual bi and tri-dimensional spaces. 

• Editors enabling content creation and modification in user-friendly graphical environment. 
These tools would provide a powerful environment to potential content creators without the need 
to directly edit XML files. Moreover, several multimedia objects may need to be organized in 
complex “scenes” where the relationships among them are coded in a standard format. Being 
SMIL (Synchronized Multimedia Integration Language) a very popular and widely adopted 
format, appropriate SMIL editors and decoders will be implemented. 

• Content (pre/post)processors. An optimal content distribution may require the binarization of 
multimedia content in order to fully exploit the available resources in terms of bandwidth and 
storage space. This implies the need of pre-processors able to convert binary XML to textual 
format (and possibly resolve external references) and post-processors producing binary content 
ready to be streamed or downloaded. 

• Decoding device (the player). 
In the MPEG-21 vision the end user may become content producer and distributor himself. The 
specification of the client terminal architecture and functionality is then part of the CMS specification. 
Differently from MPEG-2 and MPEG-4, in MPEG-21 a terminal architecture cannot be defined as an 
aggregation of functional blocks (decoders, buffers, demultiplexers, etc.) whose behaviors are driven by 
specified rules coded as standard descriptors. An MPEG-21 compliant terminal is rather a device able to 
correctly manipulate Digital Items by invoking a series of tools devoted to specific actions to be 
performed. These may include: content governance (DRM), adaptation and processing. The specification 
and implementation of an MPEG-21 compliant device requires then the specification and 
implementation of: (i) interfaces among the involved MPEG-21 components, (ii) mechanisms enabling 
the invocation of the required standard or proprietary decoders once the carried resources need to be 
accessed by the end user. 
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2 Introduction  
 
WP 4.1 addresses the problem of content modeling using an MPEG-21 approach, providing the suitable 
research, development and then overall enabling technology to demonstrate this approach. Compatibility 
with existing CMS tools of AXMEDIS partners will be considered. This introductory section recollects the 
specification of research for WP4.1. 
 

2.1 Specification of CMS Analysis for AXMEDIS Model definition and Content 
structure Mapping (DSI, UNIVLEEDS, EXITECH) 

Major partners involved  

DSI, EXITECH, UNIVLEEDS and all the content distributors in the Project 

State of the art 
Most content providers and distributors have their specific Content Management System (CMS), and larger 
companies even have multiple systems in place. Implementations are usually focused on Web content, 
documents, digital assets, or XML data. The state of the art of these large software systems is quite complex: 
it is rather difficult to compare them in terms of performance and data models since they are tuned for the 
specific needs of the company (publishers, distributors, aggregators, etc., have different needs in terms of 
metadata and files manipulated). 

Research and development plan 
In this task, the CMSs which are used by the project partners (content providers, aggregators and 
distributors) will be analyzed: XAURA of TISCALI, HP, XIM, etc. considering the several factors and 
aspects that have to be mapped to AXMEDIS objects and components. This activity will allow confirming 
and updating the structure of MPEG-21 digital item and DRM. The implementation of the 
Collector/Transcoder that will allow porting the content collected (crawled) from the CMSs into the 
AXMEDIS database will be addressed and realized into WP4.2.  
 
The aspects taken into account:  
• Content Formats  
• Content production Workflow  
• DRM models and interaction  
• Database structure and interfacing tools  
• Ingestion mechanisms  
• Compositional tools for combining content components  
• Communication capabilities  
• Administrative information availability such as licensing, etc.   
• Monitoring and versioning capabilities  
• Automatic production capabilities, etc.  
• Metadata added to content 
• Database model 
 

2.2 Specification of AXMEDIS Data Model (DSI, UNIVLEEDS, EXITECH and EPFL) 

Major partners involved  

DSI, EPFL, EXITECH, UNIVLEEDS and all the content distributors in the project 



DE4.1.1.2 – Content Modeling and Managing, 1st Update 
 
 

AXMEDIS project 
 
 
 
 

8

State of the art 
The work of standards bodies and especially MPEG is currently in progress, in particular on MPEG-21. If 
this new standard will constitute a complete set of specifications for multimedia frameworks, the same 
standard bodies are not going to provide an implementation of the recommended tools able to demonstrate 
their effectiveness and their capability to fit into an overall system that meets real business models and 
needs. This means that in terms of state of the art, being the MPEG-21 specification still in progress, only 
non efficient pieces of software are available, coming from different sources and only intended to 
demonstrate functionality based on the development of the different specifications. In many cases they are 
not usable for realizing a real application neither to make an effective experiment on the usage of MPEG-21 
since the authoring side is not addressed and the architecture is not defined.  
 
In this subWP, comparison with the state of the art will come during the research process through a 
continuous monitoring of the parallel activity of other research centers and consortiums working on the 
development of MPEG-21 and other equivalent systems. 
At the moment of writing this deliverable, it is known that another IP Project consortium active in the 6th 
European Framework, ENTHRONE [2], is specifying the architecture of an MPEG-21 system including the 
implementation of a compatible MPEG-21 terminal. Available documentation from this project will be used 
to improve the AXMEDIS specification, while possible synergies with that activity may be investigated. 

Research and development plan 
The activity performed in T4.1.1 will allow confirming and updating the structure of MPEG-21 Digital Item 
and DRM. The implementation of the Collector/Transcoder that will allow porting the content collected 
(crawled) from the CMSs into the AXMEDIS database will be addressed and realized into WP4.2 (see 
section 3.2.1 below).  
As from the AXMEDIS general requirements, the AXMEDIS Content Model has to remain compatible with 
MPEG-21 and at the same time will have to add features to facilitate content management and production, as 
well as other details. To this end, it is planned to add an informative structure called AXInfo to each 
resource.  
The main goals of this task are two: 
• definition/selection of the content model, which shall be flexible enough to allow content production on 

demand, creation of content by a) automatic formatting tools and b) on the basis of profiles, styles, 
context, and content structure available (complete objects and components) 

• definition/selection of a common format for modeling and representation of digital objects, both in 
binary form and (for some of the object’s attributes) in textual form; the format will have to take into 
account specific optimizations (and possibly variations) for data archival and transmission  

 
A loader and saver in XML will be implemented, since the XML language will be used to define the 
AXMEDIS file format for any digital content. The digital content will be identified by an XML (possibly 
binarized) file. The XML schema will be defined to fit the requirements of the project (DE 2.1.1) as 
described above. Standard (mainly MPEG) and proprietary content formats will coexist inside the 
AXMEDIS file format. 
The improvement of AXMEDIS Content Model as derived and improved with respect to MPEG-21 content 
approach will be performed. In the first period a quite strong but incomplete model and software have been 
developed and called AXOM. The paradigm used has been published and promoted in MPEG, DMP and 
IEEE arena. The aim of this WP for this period is to find a component model that is general enough to 
include MPEG-21 and may be also DMP model (a comparison of AXMEDIS, MPEG-21 and DMP has been 
performed during the first period) that can be profitably used for content production and distribution on 
multi-channel, and that may create interoperability among the models. The open problems are presently 
related to the protection aspects, to the protection processor, to the integration with the authoring tools 
(preserving protection), to the integration with the content processing tools again preserving protection 
(including external editors, and GRID developed in WP4.3). With ILABS: the integration of IMS and 
SCORM into the AXMEDIS model in terms of model and metadata 
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The aspects that taken into account include (but not limited to) the following issues:  
• realization of the XML-based interface between content management layer, terminal and authoring 
• Definition of the AXMEDIS data model and database model  
• Implementations of tools for AXMEDIS information editing and viewing into the AXMEDIS model as 

add on at the AXMEDIS Editor  
• Analysis of the state of the art of packing models and definition of an improved model to be assumed as 

AXOM model. 
• Formalization of the AXMEDIS Object Model, AXOM and verification of the consistency of the model 
• Production of the AXOM model.  
• production of the first version of the AXMEDIS database and management interface 
• production of the revised version of the AXMEDIS database and management interface  
• Implementations of revised version of tools for AXMEDIS information editing and viewing into the 

AXMEDIS model as add on at the AXMEDIS editor  
• production of the final version of the AXMEDIS database and management interface  
 

2.3 Specification of Design and development of an authoring tool for AXMEDIS 
content (DSI and EPFL) 

Major partners involved  

DSI, EPFL, FUPF, UNIVLEEDS 

State of the art 
Even more than for MPEG-21 tools in general, the state of the art in authoring tools for MPEG-21 format is 
very poor. A tool has been produced by ENIKOS [4] which partially covers the MPEG-21 features and 
standard. Other similar tools to edit wrapped multimedia files/resources are those derived from the 
WEDELMUSIC Project [5].  
In general, the necessary tools have to be easy to use and have to permit to the content producer the creation 
of AXMEDIS objects and the verification of the their consistency in terms of DRM, metadata, relationships, 
links, etc. In addition, the authoring tool has to be capable of guaranteeing the security of the digital 
resources when these are manipulated. For instance, if a digital resource can be accessed and modified only 
according to some rights, the editing has to be performed in a secure environment so that these rights can be 
guaranteed. To this end, it has to be possible to set up a mechanism to delegate the resource manipulation to 
external editors according to restrictions and verifications of their respect. On the other hand, the authoring 
of AXMEDIS objects has to be also possible by using other editors (such as widely used editors running in 
Windows OS, Acrobat Exchange, Photoshop, etc.) by supporting them with an AXMEDIS plug-in to 
guarantee the security of resources. All these aspects will be studied and prototypes will be implemented. 

Research and development plan 
This task will contribute the design and development of an authoring tool for AXMEDIS content (also called 
the AXMEDIS Editor in the main architecture), including a plug-in interface for using external editors and 
separate plug-ins to enable the MPEG-21 approach in other content editors.  
The AXMEDIS authoring tool (editor and associated viewer) will support the MPEG-21 standard with 
related composition and the nesting of levels; it will also support the navigation into MPEG-21 objects. 
Typical features such as drag and drop mechanisms will be available to manipulate and create objects, as 
well as scripting. As mentioned above, this task will also develop innovative plug-ins for other multi- and 
cross-media authoring tools. This development will be partly related to WP4.2 in regard to item indexing and 
annotation and to WP4.3 for what relates to lower level object type descriptors, composition and formatting 
of objects.  
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Making use of the first basic content tools and software supports developed above, an MPEG-21 compliant 
terminal interface (client tools and Player) will be implemented for validation of the approach mainly in task 
4.1.4 (see next section) reusing some of the blocks developed for the authoring tool. 
  
Of course the implementation of the tasks and extensive assessment by integration in the AXMEDIS 
Framework (WP5) will constitute a notable platform case set to address MPEG and the MPEG Industry 
Forum with useful contributions, possible amendment requests and test results. 
The AXMEDIS authoring tool needs to be improved adding additional editors for manipulating extended 
aspects such as metadata, behaviour with SMIL, formatting issues such as style, DRM, protection 
information, etc. The usability of the authoring tool will be assessed considering also a compromise with its 
robustness against the attack. Another aspect to be studied is the integration of the AXMEDIS authoring tool 
with content processing tools of third parties. This task includes the development of AXMEDIS plug-ins for 
other editors/players, and an additional study of the availability, integration, and security level of other 
editing and playing tools. With ILABS: the integration of IMS and SCORM into the AXMEDIS model in 
terms of editor for SCORM and IMS information. Integration of AXMEDIS players into the Authoring 
Environment. 
To summarize, research and development belonging to this subWP are related to the: 
• AXMEDIS Editor (the authoring tool) The design of the Editor for AXMEDIS has to be flexible to allow 

the addition of other tools characterized by different user interfaces, coming from other partners and 
from external companies such as: 

o DRM editor and viewer, with capabilities of verification and simulation (FUPF) 
o Hierarchy editor and viewer (DSI) 
o Behavior editor and viewer (EPFL) 
o Visual editor and viewer (EPFL) 
o Metadata editor, for instance the AXInfo editor and viewer, or the UNIMARC editor (DSI) 
o Workflow editor and viewer (DSI) 
o Metadata Mapper (UNIVLEEDS) 

• AXMEDIS players: 
• AXMEDIS plug-ins in other editors or viewers, such as: 
• AXMEDIS interfaces for communication to, and use of external players 
• AXMEDIS internal editors/players, for documents, video, audio, etc. 
 

2.4 Specification of Implementation of an MPEG-21 compliant client terminal (DSI, 
EPFL) 

Major partners involved  

DSI, EPFL, SEJER  

State of the art 
As for authoring tools, the state of the art of Player tools for MPEG-21 is poor. In the above section editors 
have been mainly presented. Typically the players are subset of the editor while in addition they have a nicer 
and more functional user interface, more sophisticated customization possibilities, and possibly support 
different user profiles. In the AXMEDIS multichannel architecture the project partners will have to 
demonstrate the usability of AXMEDIS model for PC, i-TV, PDA and mobile, also in accordance to the 
models of the demonstrators (WP9, please refer to the last sections of this document for details).  
State of the art will be continuously monitored by attending MPEG meetings and maintaining contacts with 
other parties active in MPEG-21 development. As said above, it is known that other European Projects are 
currently working on the development of MPEG-21 client/player terminals. Like for the definition of the 
data model, possible synergies with these other consortiums and research centers active in the same area, 
especially IST ENTHRONE, will be established and will be evaluated for development and data exchange 
purposes, with cross-platform validations and conformance tests. 
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Outside the MPEG scope, additional technology will be explored and monitored for multimedia and cross-
media composition and synchronization, like for instance SMIL that has a certain cross-compatibility with 
MPEG-4 systems.   

Research and development plan 
The first activity of this task will allow the development of the player interface and functionality on one 
selected test terminal (PC platform), while the porting to one or two additional cases will be achieved in the 
continuation of the project (for mobile and/or PDA, and MacOS, to be selected). In this context contributions 
to MPEG are foreseen. This task also includes the study and the integration analysis and design for the 
implementation of a viewer based on Mozilla development environment, according to SEJER needs. 
 
User-oriented interfaces and functionality will be implemented able to parse MPEG-21 and AXMEDIS 
information and to instruct the terminal to behave accordingly, possibly reusing blocks from task 4.1.3 
(including some plug-ins and players) and developing/adapting some new ones for non PC platforms. In 
particular, media players used and developed by AXMEDIS partners will be considered and a layer as 
portable as possible will be conceived and developed allowing different levels of complexity and 
sophistication.  
The client terminal functionality may be seen as a subset of the Editor functionality; this subset only allows 
playback according to DRM AXMEDIS rules and interaction according to the same rules and to the rules 
embedded in the multimedia composite scenes. The terminal/player may nevertheless allow, for his limited 
capabilities (in comparison to the Editor), a simpler porting to other platforms like, e.g., Linux OS. At the 
same time, it supports additional media formats for which playback-only code or libraries are available.  
 
The work performed in this task can be mainly subdivided in subtasks: 
• Short analysis of the state of the art and review of technologies and tools which may offer technology 

and tools for the AXMEDIS Player. This activity is also in relationship with authoring technology that 
may be adopted and further developed for behavioral and visual editors and viewers of the AXMEDIS 
Editor described in the previous section.  

• Reuse/adaptation of basic content tools and software supports developed in T4.1.3. 
• Implementation of an MPEG-21 compliant client tool for validation of the approach. This terminal will 

be initially developed on and for PC platforms, to port it later to one or two selected mobile platforms to 
allow full validation. The client tools will exploit the capabilities of other content player tools by means 
of suitable plug-ins and specific interfaces such as ACTIVE X for Windows, etc. User-oriented GUI and 
customization features will also be implemented. The first activity has been focused on the development 
of a terminal for one selected test platform (Windows PC), while the porting to additional one or two 
cases will be achieved in the continuation of the project. This subtask will also contribute the study, 
integration analysis and design for a viewer based on the Mozilla development environment.  

• Definition of the validation process for content distribution to terminals (see specification for WP 4.6, 
4.7, 4.8 later) in respect to AXMEDIS business models and requirements. This validation process 
performed with different distribution and terminal cases will constitute a core experiment for seamless 
and augmented use of multimedia resources across a wide range of devices. 

• use of SMIL as multimedia description language supporting media spatial-temporal synchronization. 
Starting from an available SMIL player, initial work has been performed to adapt it to libraries and APIs 
used in AXMEDIS. The activity in this task includes: integrate the player in the editors to allow content 
authors to preview their content; integrate the AMBULANT SMIL player with the several AXMEDIS 
internal players, in this way AMBULANT will take care of the synchronization of the several invoked 
players; implement the appropriate interfaces with the AXOM, the Configuration Manager, the Error 
Manager; the metadata and hierarchy viewers, the internal resource viewers;  

• porting of the player to MS Pocket PC 2003 on PDA; porting of AXOM, porting of Protection processor, 
porting of PMS client (reduced version), porting of OSMO mpeg-4 player, porting of SMIL player, etc.  

• support of content protection by means of the use of the Protection Processor and the Protection Manager 
Support Client;   

• integration of MPEG-4 Player and other players into the AXMEDIS terminal;  
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• some of the plug-ins for other players and viewers, test Player and terminal implementation, final 
selection of additional platforms for porting of the AXMEDIS Player, final version of the plug-ins for 
other players and viewers, implementation of additional test terminal interfaces, validation experiments 
for different content distribution test cases.  

 
Like in the case of the Editor and even more, the implementation of the above tasks and extensive 
assessment by integration in the AXMEDIS framework (WP5) will constitute a notable platform case set to 
address MPEG and the MPEG Industry Forum with contributions, possible amendment requests and test 
specification and results.  
 
To summarize, research and development of this WP are related to the: 
• AXMEDIS Player and end-user GUI 
• AXMEDIS players: 

o PC player (DSI) 
o PDA player (EPFL, then TISCALI and DSI) 
o Eventual mobile player 

• AXMEDIS plug-ins in other editors or viewers, such as: 
o Internet Explorer, as ACTIVE X (DSI) 
o Mozilla Browser, as plug in (SEJER) 
o And/or Windows Media,  
o And/or Acrobat Reader/Exchange, etc. 

• AXMEDIS interfaces for communication to, and use of external players 
o See EXEVAM module in the specification of AXFW (DSI) 

• AXMEDIS internal players, for documents, video, audio, etc. 
o Video player (DSI) 
o Audio player (DSI) 
o MPEG-4 player (EPFL) 
o SMIL player from Ambulant player (EPFL) 
o Document viewer based on IE and/or firefox (SEJER, DSI) 

 Includes Flash player 
 MS word player 
 PDF player 
 HTML player 
 Etc.  

o Image player (DSI) 
o Etc. 
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3 AXMEDIS Object Manager and Protection Processor (AXOM) (DSI) 
 
In this prototype the main features regarding the management of AXMEDIS objects are included. The 
demonstrator gives evidence of the production of the following sub-components: 

 AXMEDIS Data Model Schema definition 
 AXMEDIS/MPEG-21 Data Model implementation 
 Command manager 
 XML Loader and Saver 

 
The purpose is to show the typical way of programming an application which use the AXOM in order to 
manipulate objects. It shows the typical cycle load-manipulate-save. This test is intrinsically performed on 
the other demonstrators which perform this operation, but this specific demo is needed to understand how the 
applications are built against the object model which has been realized. 
 
The details regarding the implementation of the AXOM can be recovered into the following documents 
publicly accessible on the AXMEDIS web site:  
 

DE3.1.2.2.2 Specification of AXMEDIS Command Manager, first update of DE3.1.2 part B 
AXMEDIS-de3-1-2-2-2-spec-of-ax-cmd-man-upb-v1-6.pdf 

DE3.1.2.2.3 Specification of AXMEDIS Object Manager and Protection Processor, first update of DE3.1.2 part B 
AXMEDIS-de3-1-2-2-3-spec-of-axom-and-protproc-upb-v2-0.pdf 

 
The solutions for digital content distribution and e-commerce are mainly grounded on the state of the art of 
multimedia content modeling, packaging, protection and distribution. Presently, there exists a large number 
of content formats that ranges from basic digital resources (documents, video, images, audio, multimedia, 
etc.) to integrated content packages such as: MPEG-21 ISO (Motion Picture Group, International Standard 
Organization, www.chiariglione.org/mpeg, [Chiariglione, MPEG], [Burnett et al., 2005]), WEDELMUSIC 
(Web Delivering of Music, http://www.wedelmusic.org), [Bellini et al., 2003], SCORM (Sharable Content 
Object Reference Model, http://www.adlnet.org/, [Mourad et al., 2005]), OMA (Open Mobile Alliance, 
http://www.openmobilealliance.org/), TV-AnyTime Forum (http://www.tv-anytime.org/, [Hulsen et al., 
2004]),  etc. These integrated content formats try to wrap different kind of digital resources/files in a 
container/package with related information (e.g., content metadata and in general descriptors, and 
relationships among those resources), and making them ready for delivering (streaming and/or 
downloading), in plain (clear-text) and/or protected forms. In fact, some of the above mentioned solutions 
are enabling a large range of business and transaction models and provide some integrated DRM (Digital 
Rights Management) solution to cope with Intellectually Property Right (IPR) management, such as those 
based on  MPEG-21 REL (MPEG Rights Expression Language) [Wang., 2003], [Wang et al., 2005] and 
OMA ODRL (Open Digital Rights Language) [Iannella, 2001], [Iannella, 2002], and others [Lin et al., 
2005], [Lee et al., 2003]. 

The early definitions and usages of content packages have been mainly due to the needs of satisfying a 
set of requirements related to the e-commerce/distribution of digital content from distributors to consumers-
end-users (final users): the so called Business to Consumer (B2C) distribution. Among them, the most 
relevant requirements for B2C are the quality of service (that includes several features to be provided to the 
user’s side) and the security of content delivered to maintain in some measure the control of what the user is 
consuming in terms of rights. The typical B2C scenario, which synthesizes the lifecycle of the related 
packaged content, is shown in the following Figure. The content distributor embeds raw content (digital 
resources) in order to produce a package for the distribution (e.g., a photo collection, a set of videos, an 
educational training course, a simple digital resource with metadata, etc.). The distributor on the basis of the 
contract with the producer (that, in turn it is based with its contract with the content owner, the author) 
should protect the produced package to maintain a certain control on the rights exploitation. Thus, the 
content distributor may make business granting the access to consumers producing specific licenses, that 
describe a set of rights granted to the consumers (the rights are the actions that can be performed on the 
content, such as play, print, copy, etc.). Once the package has reached the consumer’s player, he/she may 
perform some action to exploit the acquired rights, for example he/she may decide to make a play. Thus, the 
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player, in order to allow performing only authorized actions, has to verify if it can be authorized on the basis 
of the license (the license can be on an authorization server and/or cashed/hidden into the player). Then, if 
authorized, specific information (typically called Protection Information or IPMP, Intellectually Property 
Management and Protection information, such as in MPEG-21 [Prados et al., 2005], [Lin et al, 2005]) have 
to be obtained to access the package (to unprotect the embedded digital resources) and, thus, to 
render/execute the multimedia content according to what has been specified in the license.  

 

 
Scenario on content package and its usage 

To cope with the B2C cases, the content packages have to satisfy a set of basic requirements of 
interoperability, flexibility and scalability, and thus with the possibility of working with different: 
• types of content (e.g., video, audio, documents, learning objects, images, games); 
• formats for the embedded resources (e.g., for audio: wav, AIF, MP3; for documents: DOC, PDF, PS, 

HTML; etc., and similarly for games, for video, for images, for data, etc.); 
• metadata for covering needs of the final users to make queries and indexing and technical descriptions 

(e.g., Dublin Core, MPEG-7); 
• models of distribution (e.g., streaming, downloading, progressive download); 
• distribution channels (e.g., broadcasting, internet, mobile, kiosk); 
• final user devices for resource rendering/playing/execution (e.g., PC, STB, PVR, PDA, mobiles); 
• business models (e.g., pay per play, all you can eat, renting, monthly rate). 
The above requirements have to be combined with the needs of content producers and distributors that would 
maintain under control the security of their content, the exploitation of their rights. Thus the final 
combination of requirements leads to the needs to provide different modalities of managing the package 
structure and organization of digital resources and metadata and digital rights management [Lin et al., 2005], 
[Koushanfar  et al., 2005], [Mourad et al., 2005]. Moreover, also the protection information to protect and 
unprotect the package and the licenses to grant the authorization to the users about the usage of digital 
resources and packages have to be managed accordingly.  
 
According to the B2C model, when the license is not placed in the package with the content it is also 
possible to produce it in a second phase, for example, when the rights are bought. This permits to produce 
the content in advance according to a large set of different packages (covering different resolutions and 
formats) for delivering it to the end user according to the needs/capabilities of the final user’s player and 
preferences. This approach can be used, for example, by producing the packages applying a large set of 
digital adaptation and formatting algorithms to the initial digital resources before their packaging [Vetro and 
Timmerer, 2005]. This allows making accessible a large number of different content types and formats for 
the same content. This approach is a sort of precooking paradigm for producing in advance a large set of 



DE4.1.1.2 – Content Modeling and Managing, 1st Update 
 
 

AXMEDIS project 
 
 
 
 

15

versions (e.g., different for type format and/or resolution) of the same digital resource, protected and ready to 
be used by the final users according to their requests.   

 
More recently, with the diffusion of content in digital formats along the whole value chain (from 

production, integration, to the distribution and usage) the usage of the digital packages is 
pervading/penetrating the business areas; thus producing the needs of associating with the digital content 
suitable protection models for Business to Business (B2B) transactions. These new needs are putting in 
evidence a large set of new requirements that need to be satisfied by the packaging formats discussed in this 
paper. This evolution is part of the natural migration from traditional to digital media of the whole value 
chain and it is bringing a large set of benefits to the whole area of digital content business. Among the most 
evident benefits of the adoption of these models for the B2B we can see the possibility of: 
• sharing content as protected packages (with some digital rights management) with other business actors 

for which the business transaction and agreement is formalized by means of a license per package and/or 
per resource. This allows to establish rules for the content usage according to some business model 
renting: pay per play, free access, combined with the user status: student, teacher, industry, etc., [Wang., 
2003]; 

• reducing promotion and business distribution costs since (according to the previous point) the content 
can be distributed in protected formats among the business users by means of the network and the same 
content package can be reused by others for creating more valuable packages (including the package in 
other content) without the possibility of hiding or reducing the evidence and rights of the initial content 
ownership according to the license; 

• authoring, manipulating and integrating protected and non protected content. This can be performed to 
(i) produce added value content and packages (e.g., creating a collection of audio files from other 
packages, using packaged content with audio segments into educational courses), (ii)  adapting content 
packages (which includes protected and/or non protected digital resources) in real-time for the 
production of content on demand, thus avoiding the production of any combination of precooked 
packages on the basis of all the possible combinations of user’s preferences and device capabilities; 

• tracking the origin/path of the digital content along the value chain, along the chain of who has 
created/nested packages. Thus increasing the control about exploited rights for the content 
owners/authors, producers and integrators with respect to the other actors of the value chain and to the 
distributors;  

• enabling the final users to produce content and considering them as effective producers/authors that may 
produce and provide licenses to other users and companies (thus, relaxing the difference from 
producer/distributor and the final users). This is, for instance, what is going to happen in (i) a very 
simple manner with Video Google (http://video.google.com/) in which the final user may post its home-
made video on which he/she may impose some licensing rules about its usage or can give it for free; or 
(ii) in many web sites in which content is licensed on the basis of a some Creative Commons License 
(http://creativecommons.org/). In the first case, the package model used by Google allows the 
management of simple single resource content and the whole solution permits the enforcement of some 
DRM rule into the corresponding player, while in the case of Creative Commons the license is only 
textual and thus the enforcement is not provided. This is only the begin of what is going to happen since 
the circulation of protected content is provoking the needs of reusing it for creating other products in the 
respect of the fixed rights. On the other hands, these models are not presently capable to cope with 
nested levels of protection and metadata. 

 
In order to access at the above mentioned features for B2B and B2C actors the development of a set of 
enabling technologies is needed, and among them: 
• the extension of the package model to cope with B2B requirements and in particular for addressing: 

o any kind of digital resources, including professional formats typically non delivered to the 
final users and not only audiovisual, but also cross media formats integrating different 
resources: audio, video, document, images, etc.;  

o metadata information for B2B and not restricted to any specific content and metadata 
formats, and maintaining them permanently associated with the content; 



DE4.1.1.2 – Content Modeling and Managing, 1st Update 
 
 

AXMEDIS project 
 
 
 
 

16

o structure of content/package including and integrating together protected and non protected 
content, organizing nesting levels, and maintaining visibility to the metadata; 

o indexing and querying of non protected and protected objects in a simple manner; 
o protection information, allowing the applications of multiple protection models to different 

resources into the same package; 
o distribution of content package in a safe and simple manner even when the content contains 

nesting levels of packaging;  
o licensing, allowing the formalization of business licenses that give the possibility of 

exploiting more complex features such as enhancing, adaptation, extraction, copy, 
excerpting, and to produce licenses for reselling; 

o maintaining the same content package structure and information from the instant or its 
production, along the value chain, in all cases in which it is reused, to its final usage on the 
end user player according to the licensed rights for each digital resource;  

• the support of a secure and efficient authoring/player tool architecture with a core module for 
supporting the above package and model according to the licensed rights (DRM rules formalized in 
the license) for digital resources, allowing  

o supporting the above mentioned features for the package model, which has to be portable on 
different devices and thus reusable in different contexts;  

o compounding packages in larger packages in an easy manner, considering digital resources 
together with their metadata for rendering/modifying: layouting content, adapting and 
processing digital resources and content, etc. The model has to be extensible in order to 
quickly accept new types/models of content (digital resources) and/or metadata and to be 
ready to evolve according to the standard updates and extensions;  

o protecting nested levels of packaging as well as the whole package, preventing unauthorized 
manipulation of packaged content/resources, and at the same time, leaving intact the 
possibility of accessing to visible metadata of nested included levels;  

o enforcing security into software applications (authoring tools and/or players), providing of 
an Application Program Interface to access at the functionalities preventing/controlling 
rights infringement; 

o manipulation of package structure and content (such as nested levels of packaging, 
hierarchies) during authoring in a safe manner without permitting at the developers to create 
non secure editors, players and devices; 

o supporting the production of specialized commands or custom commands for enforcing the 
rights corresponding to those imposed by the formal license model of the DRM and rights 
data dictionary and semantics. 

 
Due to the complexity of the requirements imposed by specific domains, in many cases, the above 

mentioned packaging models have been oriented on some specific area such OMA on mobiles, SCORM/IMS 
for educational content, Tv-AnyTime for video, WEDELMUSIC for multimedia music integration, etc., and 
none of them is capable to cope with B2B aspects. 

Among the mentioned packaging models, the MPEG-21 results to be the closer to the above mentioned 
needs and allows to be customized/extended. The MPEG-21 standard provides a unified standard to address 
packaging, adaptation profiles, protection and licensing formats [Burnett et al. 2003]. It is mainly based on 
the concept of Digital Item, DI, for the packaging [Burnett et al., 2005]. The relevance of the standard is 
growing while little has been done up to now about the modeling of tools for the production/consumption of 
MPEG-21 DIs. This is partially due to the fact that, the design of an MPEG-21 core module for 
authoring/playing is a very complex task since it presents several critical points. In fact, a core module has to 
guarantee at the same time (i) easy and fast access at the modeled information and digital resources; (ii) high 
security level enforcing the DRM on the digital resources usage; (iii) usability of the solution for designing 
and developing authoring tools and players; (iv) extensibility for accepting new commands and 
functionalities (enforcement of rights) for any type and new types of content formats. These requirements 
drive the design in opposite directions (accessibility vs. security) making difficult to cope with these aspects 
within a unique solution. Moreover, multimedia and cross-media authoring are complex tasks that involve 
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several aspects such as composition, layouting, adaptation, synchronization, performance [Bulterman and 
Hardman, 2005]. In addition, in a world in which the digital rights management is needed the accessibility of 
digital resources (that may be protected at nesting levels into the data structure), the packaging model and 
finally the protection models are also relevant. In fact, protecting a cross-media content means to protect the 
single elements and the resources connected to them (e.g., an HTML/XML page and related digital resources 
included/connected), this means that the player has to recover these resources not by following the initial 
(absolute or relative) links but by using specific links towards the protected object package.  

This paper presents the evolution of models for content packing with a formalization that allows us to 
reasoning and verifying the model validity against extended requirements of the B2B area. The study has 
produced the AXMEDIS package model as a specialization of MPEG-21 model. The paper explained also 
the rationales that recently have been applied to MPEG-21 model to cope with B2B requirements and that 
were identified by the AXMEDIS consortium. The work has been developed in AXMEDIS (Automating 
Production of Cross Media Content for Multi-channel Distribution) which is a large research and 
development Integrated Project FP6 of the European Commission (http://www.AXMEDIS.org), [Bellini and 
Nesi, 2005]. The produced package model is capable to cope with the above mentioned requirements and it 
is supported by a concrete architecture and tools based on a core module called AXMEDIS Object Model, 
AXOM. It can be used to develop MPEG-21 as well as AXMEDIS compliant tools coping with the 
mentioned problems and more specifically those about flexibility and security and B2B needs. In 
AXMEDIS, the MPEG-21 has been selected as the underlying packaging model with some extensions 
reported in this paper that are improving its usability in the scenarios in which content packages are protected 
for their usage in the B2B and B2C areas along the whole value chain (from the producer to the consumer 
passing for the integrators and distributors) to satisfy the above reported requirements. Many issues 
discussed and solved in AXMEDIS are not addressed at level of MPEG standard since the latter has a 
different purpose. In particular, aspects related to the definition of a specify software architecture that could 
support tool design for consuming digital goods are not in the precise scope of MPEG-21. The proposed 
model, architecture and solution presented in this paper are currently used by several AXMEDIS tools 
[Bellini at al, 2005]. 

The paper is organized as follows. In section 2, a short overview of MPEG-21 is given, recalling the 
main elements of the standard which are related to the work of this paper. A description of the AXMEDIS 
model including the features added to cope with B2B aspects, packing model for protected and protected 
objects, and relationships with MPEG-21 are provided in Section 3. In the same Section 3, the formal model 
for describing and reasoning about content packages and related operations (protection, extraction, etc.) is 
presented. Section 4 reports a description of the AXMEDIS Object Manager (AXOM) including data model, 
definition of the MPEG-21 model, expandability of the model, relationships from AXMEDIS and MPEG-21, 
MPEG-21 Load and Save, etc. In Section 5, an example of how the AXOM allows the access and the 
manipulation of content elements preserving the control about the authorization of grant and un-protection is 
presented. In the same Section, It also discusses the formalization of custom commands respecting the 
enforcement of rights, thus demonstrating how the AXOM can be used for creating content 
authoring/playing tools in a safe manner. Conclusions are drawn in Section 6. 

 

MPEG-21 Short Overview 

MPEG-21 is mainly focused on the standardization of the content packaging and other formats related to 
DRM aspects. In particular, MPEG-21 scope is mainly related with the content package formats leaving 
completely undefined system architectures, business models, authoring, etc. The standardization process of 
MPEG-21 is still under completion [Chiariglione, MPEG]; presently most of the parts are mature while 
others are under evolution. The two parts of the standard which are the most relevant for the work described 
in this paper are: Digital Item Declaration (DID) [MPEG-21 DID] and the Intellectual Property Management 
and Protection (IPMP) [MPEG-21 IPMP]. Regarding the DRM capability for granting access to content, 
other parts of the standard have to be considered, and in particular: Rights Expression Language (REL) and 
Right Data Dictionary (RDD) [MPEG-21 RDD]. These are only marginally relevant for the purpose of this 
paper. 

The DID defines how DIs (Digital Items) have to be represented. A DI is a structured digital object and it 
is the fundamental unit of distribution and transaction within the MPEG-21 framework. A DI is a package 
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for digital resources and related metadata. A DI is represented as an XML document which fulfils the DI 
Declaration Language (DIDL) schema. DIDL provides placeholders for metadata that can contain any other 
XML format. In particular, some metadata of general purpose (such as identification, rights description, 
format description, etc.) have been considered relevant and included in the standard.  

IPMP provides the means to include protected content elements inside a DI. Every DIDL element can be 
replaced by a protected version, its corresponding IPMP element. The latter contains the original DIDL 
element in a protected form together with some required information to perform un-protection (i.e., applied 
protection tools, related license services, etc.). Along with these two fundamental parts of MPEG-21 model, 
comes a set of features that involves collateral functionalities of the model, such as inclusion of components 
from external XML documents and composition of digital items through references. MPEG-21 model carries 
out this task through the use of XInclude paradigm acquired from XML W3C. 

Some other parts of the standard define XML schemas to represent important metadata. They are not 
relevant to the work presented in this paper, while they have been taken into account, for the sake of 
completeness, during core module design in order to guarantee extensibility and compliance with the 
standard.  

3.1 AXMEDIS Object Manager: Work performed 
 

3.1.1 AXMEDIS Package Model and the MPEG-21 standard 
The MPEG-21 standard has been defined to satisfy different application domains. It has been defined in 
order to address many B2B and B2C requirements to support the value chain from creators to consumers 
(end-users), on the other hand, it specifically does not provide an easy support for the detailed needs reported 
above. 
In this section, the AXMEDIS model is presented. It is an extension of MPEG-21 DIDL by following the 
spirit of the standard that leaves flexibility to expand the model. Thus, the expansion is in some how a 
natural operative method of applying/profiling the MPEG-21 formats. In AXMEDIS, some extensions to 
MPEG-21 model have been realized in order to obtain a specific kind of MPEG-21 Digital Item that can 
satisfy the above mentioned requirements in term of package structuring, managing and mandatory metadata. 
The authors of this paper, while trying to exploits MPEG-21 technology, have contributed to extend the 
standard to allow covering some of the above mentioned B2B requirements and in particular to remove a 
limitation that were present in the previous versions of MPEG-21, to allow the management of metadata for 
protected objects as described in this paper.   
Considering the above mentioned requirements, most of them are covered by the MPEG-21 package model 
and elements. In facts:  
• DIDL allows including any kind of digital resources, including professional formats typically non 

delivered to the final users and not only audiovisual;  
• IPMP allows the applications of multiple protection models to different resources into the same package; 
• REL/RDD allows the formalization of licenses that give the possibility of exploiting complex features 

such as adaptation, extraction, copy, excerpting, and to produce licenses for reselling. 
 
The other requirements mentioned above can be satisfied only if the package model is expanded and 
supported by additional tools for addressing: 
• metadata information for B2B and not restricted to any specific content and metadata formats. MPEG-21 

is not defining specific metadata for B2B but supports their insertion in the model; 
• structure of content/package including and integrating together protected and non protected content, 

organizing nesting levels, while maintaining visibility to the metadata. MPEG-21 DI and IPMP do not 
describe how to use the protection models and mechanisms to preserve the visibility of metadata; 

• indexing and querying of non-protected and protected objects in a simple manner. This requirement can 
be supported only if both protected (with nested levels of protection) and non protected objects present a 
uniform model for indexing the content into the database by using suitable B2B metadata structure for 
nested levels. The satisfaction of this requirement is possible only by the definition of a specific uniform 
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model of metadata organization for protected and not protected objects, even in the presence of nested 
levels; 

• distribution of content package in a safe manner. This requirement mainly depends on the distribution 
tools, and the package manipulation and the visibility of metadata; it is very relevant for indexing any 
kind of objects;  

• maintaining the same package model from the production in the business area to its final usage in the 
end-user player (or authoring tool in the case of business user) according to the licensed rights for each 
digital resource. The satisfactory of this requirement is possible only by the definition of specific 
methodology/semantics to cope with metadata when the object is protected and when is not protected; 

 
Therefore, the AXMEDIS model has been built on top of MPEG-21 to cope with the above mentioned issues 
for modeling: 
• B2B relevant metadata for improving content distribution and accessibility for B2B partners; 
• content structure, including aspect regarding the access to content description and metadata without the 

need of un-protecting the content package. This feature is described in the following. 
These features are concretized in the model with the MPEG-21 extensions described in the next subsections. 
Please note that none of the extensions applied in AXMEDIS to the MPEG-21 are transforming AXMEDIS 
objects in non MPEG-21 compliant objects. Moreover, any AXMEDIS object is an MPEG-21 compliant 
object, while the opposite is not true (not all the MPEG-21 objects are AXMEDIS objects).  
 

3.1.2 B2B Needs and AXMEDIS Information 
The B2B content distribution and trading requires the mandatory presence of certain information in order to 
have an immediate knowledge of the origin of the newly discovered content package and facilitate the 
trading of content without the needs to receive additional information. The description of the content with 
B2B metadata allows a better exploitation of content in a B2B community where new digital products are 
shared and promoted by Business parties even via P2P tools and mediations. To this end, in the AXMEDIS 
model, a set of metadata have been included such as: Dublin Core for the classification, a number of 
identifications IDs (among them the AXOID is mandatory and unique, AXMEDIS object ID, while others 
can be added such as ISRC, ISBN, ISMN, etc.), descriptors in MPEG-7 format and general XML, etc. In 
addition, other specific  information/metadata to cope with the object trading has been added and grouped in 
the so called AXInfo (AXMEDIS Information). The AXInfo defined a set of specific descriptors/metadata 
(formalized in XML) to cope with: 
• Identification of the Content Creator: who has produced the digital content, general information and a 

specific ID; 
• Identification of the Content Owner: who has the original right of the artistic work from which the 

content has been created, general information and a specific ID; 
• Version code, object status and object type, and other typical information for managing the evolution of 

the object state; 
• List of potentially available rights that can be acquired for that content object. They are the formalization 

(in terms of a simplified MPEG-21 REL) of the rights that potentially can be bought from the 
owner/creator for that content; 

• Workflow and historical information about changes. A set of data describing the evolution of the content 
along the value chain: creation, improvements, changes, integration, etc.  

 
This information is related to each digital item contained into the object. Each digital object may be 
organized according to linear or hierarchical model in which each object may contains other objects creating 
in this way several nesting levels. Thus, in general, the model is not linear and the metadata may be present 
at each level and the objects can be protected or not creating nesting levels of protection. This is what 
typically happen when a complex cross media content is produced for example to build a training course, a 
DVD, a multimedia collection, etc.  
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In the formalization of package models and functionalities the following notation is used: 

• data types are represented with capital letter and their definition is marked with the keyword “Type”; 
• Variables are defined with keyword “Var”; 
• a:Agg  represents variable a of Type Agg. Please note that, when the variable Type can be inferred 

by the context the Type is omitted to make the formalization lighter; 
• symbol “:=” represents a definition and/or an assignment to the left; 
• symbol “=” represents a production of a result on the right; 
• a type can be defined  providing the possible values of the type separated by | , each value may have 

associated, between [ ], a list of values of a specified type, for example an integer list can be 
specified as: 

Type list Int := int-list[int, IntList] | nil        and  
Var li:list Int :=int-list[0,int-list[1,nil] ]  

is a list variable li with values 0 and 1. A type may be also defined as the union of other types (e.g. 
Type A := B | C); 

• A list of elements is defined with the pre-fixed keyword “list” (e.g., list Int, is an integer list); 
• <a1, a2, a3> represents a constant list of three elements, a1, a2 and a3 and  < >  is an empty 

list. 
 

 

3.1.3 Basic Model for Composition of protected and unprotected objects 
The package models are typically structured as an aggregation of descriptors (including metadata and 
identification codes), and components (including digital resources and eventually nested packaged objects) 
according to a recursive structure. The package model has to allow protection of the included content and 
formally can be defined as: 
 
Package Model PM1: 

Type Pack := clear-obj[list Desc, list Comp] | prot-obj[Prot-info, Enc] 
Type Desc := …any descriptor… 
Type Comp := Res | Pack 
Type Res := …any digital resource… 
Type Prot-info := …a set of protection information… 
Type Enc := …any valid encoding for protection… 

 
Where: Enc is an encoded (e.g., encrypted) version of a Pack . The protection is a transformation of the 
clear object in the corresponding protected form, where the whole package is encoded (e.g., encrypted) 
according to the chosen protection technology [Lin et al., 2005].  This model is typically used for content 
distribution of single digital resources with conditional access and digital rights management even in its 
simpler non hierarchical version in which only single components are include into the package -- i.e., Comp 
:= Res . 
 
In MPEG-21, protecting content means to replace the readable DIDL element in “clear-text” containing the 
content and digital resources with an IPMP element which is encoded (e.g., encrypted) in some non readable 
manner. 
 
In some specific structures of content, when nested levels of content/item composition are present, non 
protected and protected objects may appear at different nesting levels (and the latter provoke the substitution 
of specific IPMP elements). This means that content element can be protected and included/collected in other 
items which in turn may be also protected as a whole, etc.  Thus, according to the model defined above, the 
protection of a package p is performed by transforming it into protected object prot-obj according to the 
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Protection Information model pi which produces the encoded chunk by using (in this case, for example) the 
function encrypt(). The opposite operation of unprotect() allow us to get back again the package p 
in the original format. 
 
protect(p:Pack, pi:Prot-info) = prot-obj[pi, encrypt(p)] 
unprotect(prot-obj[pi, encrypt(p)]) = p 
 
A fundamental feature for the B2B area of the content package is the accessibility of the metadata in the 
hierarchy of the content structure. The application of operations getmetadata() for extracting metadata 
and for taking the content and content element produce the following results: 
 
getmetadata(clear-obj[d:list Desc, c:list Comp]) = d 
getmetadata(prot-obj[pi:Prot-info, e:Enc]) = Ø 
getcontent(clear-obj[d, c], pos:Position) = getelementat(c, pos) 
getcontent(prot-obj[pi, e], pos) = Ø 
 
As a result, for package model PM1, content access is prevented by the protection, and the metadata are not 
accessible without a previous un-protection of the content package.  
 
Two examples are analyzed in the following for PM1: (i) a simple content package which embeds a single 
digital resource with its metadata, and (ii) a more complex package with a multi-level hierarchy. Both are 
defined as clear-text objects and then protection is applied.  
 
Let us now analyzing the first case for PM1 in which we start from producing a package: clear-pack1: 
 
Var clear-pack1:Pack := clear-obj[<d1:Desc, d2:Desc>, <res1:Res>] 
Var prot-pack1:Pack := protect(clear-pack1, pi1:Prot-info) =  

prot-obj[pi1, e1:Enc] 
Where: 

Var e1 := encrypt(clear-pack1);  
Thus: 
getmetadata(clear-pack1) = <d1, d2> 
getmetadata(prot-pack1) = Ø 
 
As a result, prot-pack1 does not present any accessible information about internal descriptors contained 
into the original object. Please note that the only way to retrieve content description is to unprotect the 
package. 
 
getmetadata(unprotect(prot-pack1)) = getmetadata(clear-pack1) = <d1,d2> 
 
Let us now analyzing a second case for PM1 in which we start from producing a complex package with some 
nesting levels: 
 
Var o2:Pack := clear-obj[<d3:Desc>, <o3:Pack, res3:Res>] 
Where: 

Var o3:Pack := clear-obj[<d4:Desc>, <clear-obj[<d5:Desc>, <res5:Res>],  
clear-obj[<d6:Desc>, <res6:Res>]>] 

Thus: 
getmetadata(o2) = <d3> 
getmetadata(getcontent(o2, 0)) = getmetadata(o3) = <d4> 
getmetadata(getcontent(getcontent(o2, 0)), 1)) = <d6> 
 
Then, o2-bis object is created by starting from o2 protecting the nested object o3:  
 
Var o2-bis:Pack := clear-obj[<d3>, <protect(o3, pi3:Prot-Info), res3>] 
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Obtaining: 
getmetadata(o2-bis) = <d3> 
getmetadata(getcontent(o2-bis, 0)) = getmetadata(prot-obj[pi3, e3]) = Ø 
 
Please note when protecting in a content sub-tree the metadata regarding the leaf of the composed content or 
those placed in the lower levels of the hierarchy are obviously included in the protected content (e.g., IPMP). 
This makes hard to make accessible the metadata information and could be avoided only by additional 
processing in copying those metadata while protecting, thus changing the object structure. 
For example, by using the MPEG-21 notation, there are no possibilities to access metadata of the content 
parts or of the components of protected objects. Only if IPMP elements are substituted with the 
corresponding DIDL elements (by means of IPMP tools to unprotect the object) the metadata may become 
accessible again. In the following, an MPEG-21 based example is reported for an object which contains two 
leafs resources. 
 
DIDL 
 Item 
  Descriptors 
   Metadata of the composed content 
  Item 
   Descriptors 
    Metadata of content part 1 
   Component 
    ... 
  Item 
   Descriptors 
    Metadata of content part 2 
   Component 

 
That becomes in its protected form: 

DIDL 
 IPMPDIDL:Item 
  IPMPDIDL:Info 
  IPMPDIDL:Content 
   Encrypted composed content 

 
In the following section, a different package model is proposed to solve the problem, enhancing the model. 
 

3.1.4 Extended Model for Composition of protected and unprotected objects 
In order to facilitate the B2B negotiation and transaction, content must provide always accessible metadata 
even when the content is protected. Any content producer, interested in producing, selling and/or reselling 
simple of complex content for distribution, should have the possibility of deciding which metadata have to be 
accessible (public) to other B2B customers/users and which of them have to be left protected without making 
complex their management and without leaving to other users of its content the possibility of hiding its 
public metadata. This is a requirement that cannot be satisfied by using the PM1 model presented above. In 
order to satisfy these needs, a more powerful model is needed. It has to be capable of (i) distinguishing from 
public and non public descriptors, and of (ii) automatically reporting at the higher levels the nested public 
information, in order to guarantee the consistency of structure when complex packaged objects are passed 
back and forward from non-protected and protected representation models.  
 
In order to cope with these aspects, two kinds of descriptors modeling respectively public and private content 
descriptions have to be present in the structure of the packaged objects. Public descriptors can contain 
descriptions associated with a whole sub-tree as protected content. Thus, when the object is protected a 
“public descriptor tree” structure has been defined in order to describe the content after its protection 
respecting the hierarchical tree of the internal nested levels. On this aim, the following extended package 
model has been defined and referred to in the sequel as PM2: 
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Package Model PM2: 

Type Pack := clear-obj[list Desc, list Comp] |  
prot-obj[Prot-info, Pub-desc-tree,  Enc] 

Type Desc := Pub-desc  | Priv-desc 
Type Pub-desc := …any public descriptor… 
Type Priv-desc := …any non public (private) descriptor… 
Type Comp := Res | Pack 
Type Res := …any digital resource… 
Type Prot-info := …a set of protection information… 
Type Pub-desc-tree := desc-tree[list Pub-desc, list Pub-desc-tree] 
Type Enc := …any valid encoding for protection… 

 
Where: Type Pub-desc-tree represents a tree structure of public descriptors according to the nested 
levels. According to this model, a set of functionalities is needed for extracting from content parts the entire 
set of related public descriptors: 
 
getpublicdesc(res:Res) = Ø 
getpublicdesc(clear-obj[d:list Desc, c:list Comp]) =  

desc-tree[<∀ds:Desc in d. ds is Pub-desc>,  
<∀cp:Pack in c. getpublicdesc(cp)>] 

 
Please note that getpublicdesc() produces a tree of public descriptors by recursively browsing inner 
components of the content into the package: 
 
getpublicdesc(prot-obj[pi:Prot-info, pdtree:Pub-desc-tree, e:Enc]) = pdtree 
 
In order to grant accessibility of content description the function for package protection has to use the 
descriptor extraction (getpublicdesc()) in order to add the hierarchical description in the protected 
element. This allows to retrieve metadata and identification from any protected object. 
 
protect(p:Pack, pi:Prot-info) = prot-obj[pi, getpublicdesc(p), encrypt(p)] 
Thus: 
unprotect(prot-obj[pi, pdtree:Pub-desc-tree, encrypt(p)] = p 
 
Function getpublicdesc() can now rely on the suitable element of the protected package to obtain the 
description that is related to what is protected. 
 
getmetadata(clear-obj[d, c]) = d 
getmetadata(prot-obj[pi, pdtree, e]) = pdtree 
getcontent(clear-obj[d, c], pos:Position) = getelementat(c, pos) 
getcontent(prot-obj[pi, pdtree, e], pos) = Ø 
 
In the following, two similar examples to what has been presented for the PM1 model are examined for the 
proposed PM2 model. In both of them, all the descriptors, even those related to the inner elements are 
accessible in a protected package without the need of using the unprotect function. 
 
Let us now analyzing the first case for PM2 mode in which we start from producing a package: clear-
pack1. From this example, the metadata can be easily accessed on the basis of the model proposed.  
 
Var clear-pack1:Pack := clear-obj[<d1:Pub-desc,d2:Priv-desc>, <res1:Res>] 
Var prot-pack1:Pack := protect(clear-pack1, pi1:Prot-info) =  

prot-obj[pi1,desc-tree[<d1>, Ø], e1] 
Where: 

Var e1:Enc := encrypt(clear-pack1);  
Thus: 
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getmetadata(clear-pack1) = <d1, d2> 
getmetadata(prot-pack1) = desc-tree[<d1>, Ø] 
 
Let us now analyze a second case for PM2 in which we start from producing a complex package with some 
nesting levels and it is shown that the model allow accessing to the public metadata even nesting objects into 
protection nesting layers: 
 
Var o2:Pack := clear-obj[<d3:Pub-desc>, <o3:Pub-desc, res3:Res>] 
Where: 

Var o3:Pack := clear-obj[ <d4:Pub-desc>,  
< clear-obj[<d5:Pub-Desc>, <res5:Res>],  
 clear-obj[<d6:Pub-Desc, d7:Priv-desc, d8:Pub-desc>,<res6:Res>] >] 

Thus: 
getmetadata(o2) = <d3> 
getpublicdesc(o3) = desc-tree[<d4>, < desc-tree[<d5>, < >], 

   desc-tree[<d6, d8>, < >] >] 
 
According to the PM2, the protection of object o3 into o2 is performed obtaining o2-bis. This action is 
performed by transforming the object into prot-obj according to the Protection Information model 
including the “public” descriptor and the coding of the whole o3: 
 
Var o2-bis:Pack := clear-obj[<d3>, <protect(o3, pi3:Prot-info), res3>] = 
 clear-obj[<d3>, <prot-obj[pi3, pdtree3, e3], res3>] 
Where: 

Var pdtree3:Pub-desc-tree :=  
desc-tree[<d4>, < desc-tree[<d5>, < >],  

desc-tree[<d6, d8>, < >] >] 
Var e3:Enc := encrypt(o3) 

 
As a result, o2-bis continues to present accessible descriptors of all the elements contained into the 
package and the public descriptor tree of the protected version of o3  is structurally identical to o3 
considering all its subcomponents. 
 
getmetadata(o2-bis) = <d3> 
getmetadata(getcontent(o2-bis, 0)) =  

getmetadata(prot-obj[pi3, pdtree3, e3]) =  
desc-tree[<d4>, < desc-tree[<d5>, < >], desc-tree[<d6, d8>, < >] >] 
 

3.1.5 Considerations on PM2 model 
Content needs to be protected in order to be safely distributed and exploited under DRM governance. 
AXMEDIS exploits MPEG-21 IPMP technology in order to produce protected content on the basis of PM2 
model. Since MPEG-21 IPMP has standardized how to protect MPEG-21 Digital Item parts, AXMEDIS has 
selected which content parts (represented as MPEG-21 DI parts) have to be protected. In such a way, 
protected AXMEDIS Objects remain valid MPEG-21 Digital Items. 
Furthermore, AXMEDIS model imposes the IPMP component to contain information which is specific for 
B2B application domain, as described above. The protected version of AXMEDIS object elements may  
expose additional protection information structured and defined in a proper XML Schema. As the DIDL 
model, the IPMP has been designed by considering flexibility to deal with any protection mechanism. Also 
in this case, AXMEDIS has refined the MPEG-21 standard in order to address B2B application domain 
problems. The above presented PM2 model of AXMEDIS has been partially included enhancing the MPEG-
21 IPMP standard by introducing the capability of adding a description to the protected content. 
In following Figure, the content transformation after a protection process in terms of MPEG-21 elements has 
been sketched. Only the relevant MPEG-21 elements have been considered from both DIDL and IPMP 
standards to make the figure simpler and immediate. The Descriptor element, as an example, is not a leaf 
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since it can contains a Statement as its child element. The diagram has been simplified to put in evidence 
which part of the content structure remain accessible even after the protection. 
 

 
AXMEDIS Object after protection in terms of MPEG-21 elements 

 
Please note that some Descriptor elements have been tagged with “public” attribute. The use of the “public” 
attribute has been introduced by AXMEDIS and it has to be used to be sure that some content information 
will be accessible without needing an un-protection after any protection process. The attribute “public” 
allows to define the Pub-desc of the formal model. The concept is that even the root level of the AXMEDIS 
Object hierarchy is protected, all the “public” metadata will be copied on the appropriate ContentInfo 
element, which has been designed to contain description about the protected content. Since the content 
structure its hierarchical, it has been decided to mimic the content structure and use MPEG-21 DIDL 
hierarchical element Item. In this way, the hierarchy of content composition is in somehow replicated to 
organize the corresponding public metadata when the content is protected. 
AXMEDIS authoring tool is capable to apply multiple protection algorithms on each content element, by 
specifying how many “protection tools” have to be used and in which order. These tools can target the whole 
content asset or just a subpart. A protection tool is practically a content processing algorithm which can be 
retrieve and installed as a plug-in at run-time by the playing/editing application [Nesi et al., 2006]. 
As in MPEG-21 IPMP, the protection procedure requires the encoding of a given portion of multimedia 
content on the basis of the chosen protection algorithm (protection tool). The result of the protection process 
is then embedded in a XML element. The protection procedure is reversible if the information on how 
content has been protected is retrieved at run-time when the authorization is obtained on the basis of the 
license.  
 

3.1.6 AXMEDIS Object Manager 
The AXMEDIS Object Manager (AXOM) is a module, which addresses MPEG-21 general modeling and 
other additional features which have been outlined in the previous sections. The AXOM can be used to 
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create software tools which handle DIs in the respect of the DRM rules. The AXOM is used in the 
AXMEDIS tools that have to cope with content objects and it is compliant with MPEG-21, extending it with 
additional features and data structures. Thus, it can be used as a basis to design and develop a large range of 
e-commerce applications which are able of manipulating both MPEG-21 DIs and AXMEDIS Objects, for 
both editing/authoring and playing content objects, covering the whole content life from production to 
consumption. 
One of the most important features of the AXOM is to provide the means to create a trusted environment. 
Moreover, it is capable to support: 
• MPEG-21 packaging model; 
• packaging model PM2 of AXMEDIS leaving intact the possibility of accessing to visible metadata of 

nested included levels; 
• manipulation/access of package structure and content (such as nested levels of packaging, hierarchies) in 

the respect of DRM licenses; 
• production of specialized commands or custom commands for enforcing the rights corresponding to 

those imposed by the formal license model of the DRM. 
The AXOM is capable to guarantee that a tool built on the basis of AXOM system is controllable with 
respect to the user actions on content object. Thus, different actions on the content model should require 
different grants (i.e., authorizations). Actions can target the content structure, the resources and the metadata. 
Thus a unique flow to handle verification of any action behavior performed on the content has been 
conceived.  

 
In order to build a reusable and flexible infrastructure, the AXOM has been decomposed in five parts as 
shown in the following Figure, separating responsibilities of the several elements.  
• MPEG-21 Object Model responsible of managing the MPEG-21 DI allowing content access and 

manipulation; 
• AXMEDIS Object Model a refinement and an extension of MPEG21 DI, targeting the mentioned  

requirements and realizing on top of the MPEG-21 the PM2 model and semantics. It also allows to 
access and manipulate high-level features in the underlying MPEG-21 structure; 

• AXMEDIS/MPEG-21 XML Loader to load MPEG-21 as well as AXMEDIS Objects from a given 
input source as a byte stream. The source can be textual XML or in a corresponding binary form. The 
Loader has the responsibility of validating the correct structure of the input source;  

• AXMEDIS/MPEG-21 XML Saver to write to an output destination an MPEG-21 DI, thus also a valid 
AXMEDIS Object. This module is optional since it is not needed to build a player; 

• AXMEDIS Command Manager to provide an Application Program Interface for accessing to the 
content package elements. The interface is used for both playing and authoring AXMEDIS, and MPEG-
21 content packages. The Command Manager allows transparent manipulation of content in respect to 
DRM rule and directly accessing to the Servers for the acquisition of the License and of Protection 
Information. It allows to access or to manipulate content with a built-in authorization check on the basis 
of MPEG-21 REL.  
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AXMEDIS Object Manager (AXOM) layers  

 
Layering these modules has been important to maintain compatibility with MPEG-21 standard. Defining 
features on object model that manage MPEG-21 content packages grants to the system the ability to deal 
with all kinds of MPEG-21 objects and not only with AXMEDIS content packages. It is indeed mandatory 
that the provided AXOM API has to cope with MPEG-21 object model directly (as shown in the diagram) to 
allow manipulation of MPEG-21 DIs. The commands are basically of two kinds depending on which object 
model they target. 
 
The AXOM architecture supports extendibility, new types of objects based on MPEG-21 model can be 
easily managed in MPEG-21 Object Model without changes in present layering. Moreover, only minor 
changes are needed to process content models that extend MPEG-21 or AXMEDIS elements definitions.  
Hooks to perform operations on content packages are provided by the upper level layer, by mean of 
AxObjectManager and AxCommand set.  
 
These classes offer: 
• a range of executable commands targeting the manipulation of both AXMEDIS and MPEG-21 object 

models  
• Coordination of functionalities of lower levels modules to organize a reliable and protected execution 

flow.  
The set of commands is easily extendable to manage future needs of upper level applications as shown in the 
sequel. Execution of defined commands is performed using class AxObjectManager as shown in the sequel. 
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AXOM class hierarchy 

 
As depicted in the above Figure, the Command pattern [Gamma et al., 1995] has been applied. The 

controller is the AxObjectManager which exposes the AXOM API. The AxObjectManager is an 
intermediate layer between the application views and the object models (i.e., the object/package model with 
resources and descriptors). A view cannot directly manipulate the object model, while it has to issue 
commands to the AxObjectManager class. The latter is in charge of performing the requested actions on the 
model. In particular, each conceivable command has been realized as a class which implements the interface 
AxCommand. It exposes two main methods: execute and getRequiredGrants. The execute method of 
AxCommand has to be implemented by each specialized class to actually perform the action on the object 
model. The command execution method is able to directly access to the data model without any restriction, 
since the command is executed only if the authorization is obtained. The getRequiredGrants method of 
AxCommand allows the verification of the requested grants. Thus, the AxObjectManager class is able to 
handle the request received by the user and the set of conceivable commands can be augmented without any 
impact on the current architecture.  

 
The AxObjectManager has few control points, the code to verify the commands can be easily inserted in. 

In fact, the AxObjectManager class is not in charge of verifying the grants, while it has been designed in 
order to provide hooks to easily create control mechanisms. The DRM enforcement is modeled by the 
declaration of the requested rights which has to be stated by each AxCommand inherited class. In fact, to 
each command is associated a list of AxGrant, which are the basic arguments for issuing the request to the 
authorization service. In that way, the AxObjectManager is able to generically handle any request issued by 
the user, respecting governance. Please note that the AxObjectManager is not in charge of verifying the 
grants, since it has been designed to provide hooks, by means of which it is possible to enforce control 
mechanisms. In fact, it delegates to an authorization service the task of determining if the user has been 
authorized or not on the basis of the license.  
The AxObjectManager exposes functionalities for: 
• creating new content; 
• opening existing content by indicating a URI; 
• browsing content structure; 
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• accessing metadata and resources embedded or referred to by the content; 
• manipulating content structure, metadata and resources; 
• saving the content; 
• adding/modifying protection information associated to any content element. 
 

By using model encapsulation, preventing direct manipulation from the view, a good level of security 
has been achieved in terms of robustness against developer’s malicious content handling. This feature cannot 
be guaranteed if the view obtains at any time references to content elements in the model. For such reasons, 
views are not allowed to target content elements by using pointers. Command targets have to be indicated 
using logical references that prevent the access to the physical addresses referring to the digital resources. 
This avoids accessing via pointer at the memory of the whole object model. Thus, the view interacts with the 
model using instances of the class AxIndex. These are used like pointers, while they can be actually resolved 
only by the AxObjectManager which generated them.  
 
All the security aspects are demanded to Protection Processor class. This class has two basic roles: (i) it 
autonomously performs verification on the component which is using AxObjectManager (i.e., the content 
manipulation application) to allow detecting typical tampering activities, thus to be confident on the software 
integrity; (ii) it exposes functionalities to protect/unprotect content elements and to query for authorization of 
requested manipulations in a transparent manner with respect to the connected services. 
 

When digital resources have to be accessed (e.g., for their rendering on a rendering component/module 
view) the chain of un-protection tools is activated, thus allowing to establish a direct stream from the 
encapsulated resource and the rendering component/module view. Command execution returns content 
elements information, providing a clone. When an action expects object elements as results, 
AxObjectManager provides clones of them to the view. Since the view does not obtain the direct reference to 
the content element contained in the package, the action targets, like the source and the destination of a move 
command, have to be indicated using indexes: i.e., logical references to the real content elements.  

 

3.1.7 MPEG-21 and AXMEDIS Data Models 
The MPEG-21 Object Model (reported in the following Figure) consists of a set of class hierarchies 

representing the standardized XML model of MPEG-21. The design has been modeled on the basis of the 
DIDL hierarchy, as it is the infrastructure on which the other hierarchies lean on (see for example IPMP and 
DII). The model has been designed to be expandable and flexible thus allowing to cope with standard 
metadata and to accept the introduction of new MPEG-21 standard parts as content elements. In particular, 
MPEG21Element class provides model expandability, since it exposes the basic functions to browse the 
model and for its manipulation at structural level. Moreover, MPEG21Element class presents virtual 
functions to allow identifying classes on the basis of the namespace and the name of the corresponding XML 
element. Some sub-hierarchies of MPEG21Element have been already produced. For example, DIDLElement 
sub-hierarchy to represent DIDL XML elements and IPMPElement sub-hierarchy to represent protected 
elements standardized in IPMP DIDL. 

MPEG21ElementCollection has been designed to provide a common mechanism to manage child 
elements. Since each XML element has structural constraints (as specified in the related XML schema, e.g., 
ordering), the MPEG21ElementCollection provides functions to manage children respecting the given 
constraints. This class is used by MPEG21Element to maintain references to its children. 

The MPEG-21 Object Model provides some listener interface -- i.e., interfaces which has to be 
implemented by those classes which want to be warned every time something change in the DI. In particular, 
the following events have been provided: structure event (remove, add, etc.); property event (attribute value 
changed); and content event (text content changed). 
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AXMEDIS and MPEG-21 Object Models relationships 

 
Since AXMEDIS Objects have specific features with respect to a generic DIs, AXMEDIS Object 

Model has been created. The AXMEDIS Data Model design represents only an instance of what can be 
performed by using the AXOM to realize a customized model to cope with a specific MPEG-21 profile.  

AXMEDIS Data Model presents a set of features: (i) realize the PM2 package model; (ii) present a 
recursive structure, i.e., an AXMEDIS Object could contain others AXMEDIS Object; (iii) may refer to one 
or more digital resources; (iv) each object has a unique identifier called AXOID; (v) each object contains 
Dublin Core metadata; (vi) each object contains business-level metadata, AXInfo; (vii) each object may 
contain any MPEG-7 metadata and other descriptors in the spirit of PM2 package model. 

The AXMEDIS Object Model leads on the MPEG-21 Object Model providing simpler and specific 
interfaces to manage AXMEDIS Objects. In fact, the AXMEDIS Object Model can also be seen as a 
“specific view” of a corresponding MPEG-21 Object Model, while structurally remain a full MPEG-21 
implementation. The AXMEDIS Object Model is composed by the following classes: 
• AxMetadata represents generic metadata. It mainly provides methods to access the related XML. AxInfo, 

AxDublinCore and AXOID are subclasses of it and they represent those metadata which are mandatory in 
AXMEDIS. Each class provides specific methods to manage the related metadata; 

• AxResource represents a digital resource; 
• AxObject class represents an AXMEDIS Object therefore it could contains other AxObject, AxResource 

and AxMetadata, it has to contain an AxInfo, an AxDublinCore and an AXOID. 
All these classes are in charge of synchronizing the underlying MPEG-21 Object Model every time any 
action is made on the AXMEDIS Object Model. 

While the AXMEDIS Object Model leads on the MPEG-21 one, the latter is independent from the 
former and could be reused in other applications. However, this choice brings a hard problem which is the 
synchronization of the AXMEDIS Object Model with respect to the modifications made on the MPEG-21 
Object Model. This problem has been solved using an event-driven approach. That is, exploiting the listener 
interfaces provided by the MPEG-21 Object Model, an AXMEDIS Object is able to coherently modify its 
structure with respect to the underlying DI. If the DI (e.g., after a modification) does not match the 
AXMEDIS Data Model, the AXMEDIS Object will try to fit the DI as much as possible discarding those 
parts which are not complaint to the model. 
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3.1.8 MPEG-21 Load and Save 
The MPEG-21 Loader is in charge of reading the XML document representing a DI and building the 

corresponding object model. Since the MPEG-21 Object Model is extendable, the MPEG-21 Loader has to 
be extendable as well. In fact, this approach opens to exploit a larger set of existing XML parsers (also for 
resource constrained devices), and it ensures a less time and memory consuming process than the DOM 
approach. SAX2 parsing procedure produces a straight forward sequence of events, that notify the 
occurrence of XML entities (i.e. elements, characters, etc.), which has to be managed by a unique handler. 
When loading a DI, that contains an extendable and heterogeneous set of elements, a general handler cannot 
cope with all the situations that can arise. In fact, the insertion of a single MPEG-21 element in the object 
model could outcome from handling more than one event. To solve this problem, the object loading has been 
realized by the collaboration of different loader classes: a loader, that finds an MPEG-21 element having a 
loading model which is not directly manageable, can delegate a suitable loader to handle it. An abstract base 
class for loading, which realizes the underlying collaboration mechanisms, has been defined. Concrete 
classes have been implemented, achieving different loading behaviors. The loading process leans on a 
factory mechanism. Abstract Factory pattern has been used in conjunction with Factory Method pattern in 
order to create elements given a namespace and an element name [Gamma et al., 1995]. In particular 
elements of MPEG-21 hierarchies, such as DIDL, IPMP DIDL, can be created. 

 
The MPEG-21 Saver has the responsibility of writing a correct XML document on the basis of the 

current object model. As the MPEG-21 Loader, it is extendable. Hence, a hierarchical approach, like that of 
factories, has been adopted. Specific classes (writers) are in charge of knowing how all the elements of the 
related namespace should be represented in XML. The stream concept has been exploited to model the 
destination of the writing process, allowing producing DIs to files, strings, network messages, etc. The 
writing process is generically managed by orchestrating all the namespace-dependant writers. It is worth to 
point out that the writers do not have to directly write elements in XML syntax. In order to avoid this 
triviality, XMLWriter class has been realised. This class exposes high level methods which allow 
representing elements in XML syntax. In that way, the real XML writing is hidden and transparent for the 
element writers. 

 

3.1.9 Using AXOM, AXMEDIS Object Manager 
As stated, the AXOM can be used to build a large set of content manipulation applications/systems 

obtaining trusted behavior encapsulated in a clear use of AXMEDIS/MPEG-21 Objects. The developer can 
use the API exposed by the AXOM for object loading, browsing and navigation in the object structure, 
obtaining streams for embedded digital resources according to the rights defined in the licenses. Every action 
performed on the content is related to a set of rights, which have to be owned at consumption time to enable 
the action. The result is a transparent DRM-including manipulation of the underlying content package. 

The API is organized in three main subsets: 
• Object Model Access – functionalities for browsing and reading content elements; i.e. getting metadata, 

components, reading content element attributes such as resource descriptors, technical information: 
MIME-type; 

• Object Model Manipulation – functionalities for modifying content package according to DRM rules by 
using a set of executable commands to add, remove, copy, move content elements such as metadata or 
resources, to change content elements attribute; 
 
The Object Model Access API covers the basic functionalities presented in Section 3.3 to explore and 

retrieve information from the content package; some of them are listed in the following: 
• AxObjectElement getAxObjectElement(AxIndex index) – to obtain information about a content element, it 

provides a clone of the element included in the package; 
• vector AxIndex getAxChildIndexes(AxIndex index) – to realize getcontent() of the PM2 model. It gets the 

list of indexes of the package component when applied to the root level or to an inner sub-package; 
• vector AxIndex getAxMetadataIndexes(AxIndex index) – to realize getmetadata()  of the PM2 model. It 

gets the list of indexes of the package descriptors; 
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• DataSource getResourceAsset(AxIndex index, string right, string details) – to realize the digital resource 
extraction, providing a byte stream that can be used for different purposes such as rendering, printing, 
content processing. This method can used for different purposes. The second and third parameters allow 
to impose of the action to be performed on the resource in terms of rights and related details —e.g., play 
for 15 minutes; 

• AxPublicMetdataTree getPublicMetadataTree(AxIndex index) – to realize extract-pub-desc() of PM2 
model from a given package (root or sub-tree).  

 
The Object Model Manipulation API has been kept minimal; while an extensible set of elementary 

command classes have been provided. Thus the content manipulation looks like a sequence of commands 
targeting the AXMEDIS Object. In the following, the functional model of some operations is presented. 

In the following example, the function add() changes the content package structure by adding a new 
content element in the proper list, on the basis of its type. The following two examples are for the addition of 
a new descriptor and of a new component: 
 
add(clear-obj[d:list Desc, c:Comp], new-desc:Desc) =  

clear-obj[addtolist(d, new-desc), c] 
add(clear-obj[d:list Desc, c:list Comp], new-comp:Comp) =  

clear-obj[d, addtolist(c, new-comp)] 
 
Then, a resource (res2) and a descriptor (d3) are added to package o1. 
 
Var o1:Pack := clear-obj[<d1, d2>, <res1>] 
Var o1 := add(o1, <res2>) = clear-obj[<d1, d2>, <res1, res2>] 
 
Thus: 
add(o1, <d3>) = clear-obj[<d1, d2, d3>, <res1, res2>] 
 
An operation that modifies the information inside content elements is the edit(). It gives the possibility of 
editing content element attributes, such as the metadata attributes of the content, or other details. The new 
attributes are given by means of a new content element, from which the attributes are copied. The following 
two examples are for the change of a descriptor and of a component: 
 
edit(clear-obj[d, c], old-desc, new-desc) =  

clear-obj[replace(d, old-desc, copyattributes(new-desc, old-desc)), c] 
 
edit(clear-obj[d, c], old-comp, new-comp) =  

clear-obj[d, replace(c, old-comp, copyattributes(old-comp, new-comp)) ] 
 
where copyattributes() is a function which substitutes attributes on the left element by copying them 
from the right and replace() function replaces an element in a list with another one. 
 
An important operation for creating content package is the function of embedding an existing digital resource 
into a content package. The embed function fills an empty resource/place with a given source (asset), this 
could be a byte stream or a file URL. As a result the inclusion of the resource inside the content package is 
obtained: 
 
embed(clear-obj[d, c], empty-res:Res, asset) =  

clear-obj[d, replace(c, empty-res, fillres(empty-res, asset)] 
 

3.1.10 AXOM Commands and usage 
In the following, a subset of the commands which are at disposal in the AXOM is presented. Each command 
models a specific manipulation on the content package. The important aspects of each class, inherited by 
AxCommand, are the constructors, which are needed for setting the operation parameters, and additional 
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methods defined in order to get the execution results. The results typically may contain additional 
information not directly accessible in the modified package. 
 
• AxCommandAdd– similarly to the definition of add in the functional model, this command class has been 

defined to allow augmenting the content package with descriptions, digital resources or inner packages. It 
presents constructors to impose the entry point of the addition: 

o AxCommandAdd(AxObjectElement newElement, AxIndex parentIndex)  to add an element at the 
end of the list of descriptors or components; 

o AxCommandAdd(AxObjectElement newElement, AxIndex parentIndex, AxIndex referenceIndex, 
bool insertBefore)  to insert a new content element before or after a given element in the list 

o AxIndex getIndexOfAddedElement() to obtain after the execution the logical reference of an 
added new element 

• AxCommandDelete  – command class defined to reduce the content package by deleting descriptions, 
digital resources or inner packages. A constructor is needed in order to select the target element to be 
removed:   

o AxCommandDelete(AxIndex deleteIndex)   
• AxCommandEdit – command class defined to edit the attributes included in the content elements of the 

package. It mainly implements the edit of the functional model, and has a constructor:   
o AxCommandEdit(AxObjectElement dataElement, AxIndex editIndex)  change the attributes of 

the target element by copying them from dataElement; 
 
The full list of available commands can be downloaded from http://www.AXMEDIS.org in the 
specification documents area. 
 

In this section, an example on how the AXOM capabilities can be exploited by authoring and player 
tools is presented. The usage of AXOM functionalities is quite simple. For the manipulation of content 
package the creation of a new command and its execution are needed. Targets of the content access and 
manipulation are expressed with logical references: AxIndex objects. The AXOM is responsible of providing 
such indexes for the root level or for any sub-tree of the package hierarchy. 

 
// creating a manager to manipulate a new AXMEDIS object 
AxObjectManager myEmptyObject = new AxObjectManager(); 
 
// creating a resource element targeting to a digital resource URL (a jpeg image) 
AxResource myDigitalRes = new AxResource(); 
myDigitalRes.load(“bar.jpg”); 
 
// performing the addition of the just created resource in the empty object 
 
// step1: creation of the suitable command object 
AxCommandAdd addCmd = new AxCommandAdd(myDigitalRes, myEmptyObject.getRootIndex()); 
 
// step2: execution of the command 
myEmptyObject.executeCommand(addCmd); 
 
// step3: (optional) gathering of the results: the index of the added element 
AxIndex addedResIndex = addcmd.getIndexOfAddedElement(); 

 
The usage of the AXOM hides the DRM verification of grants which can be needed to authorize the  
manipulations. The following statement explains how the add() (AxCommandAdd) is performed on a 
protected package automatically unprotecting the target element and re-protecting again the result of the 
addition.  
 
add(prot-obj[pinfo, pdtree, e], new-elem) =  
protect(add(unprotect(prot-obj[pinfo, pdtree, e]), new-elem), pinfo) 
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The operation of unprotect() is performed only if who/what is invoking/performing it has been 
successfully authorized. The AXOM is capable of controlling the execution of the above mentioned 
commands, delegating to them the specification of the grants needed and the accesses to the content 
elements. On the other hand, only the AXOM can (i) request the grant authorization from the Authorization 
Service, and can (ii) unprotect the content package (see boxes in the following Figure).  Sequence diagram of 
Figure 6 shows how a command is queried for both authorization and un-protection. In fact, the 
getRequiredGrants() method of AxCommand is polymorphic and every command can define a list of granted 
rights. Every right has to be checked against the proper authorization service. Only after the authorization 
phase has succeeded, the AxObjectManager asks to the command which content package elements have to 
be unprotected in order to perform their manipulation. After the un-protection, the execution leaves the 
responsibility of performing the needed change to the command, passing to it the whole object model, 
already unprotected in the required parts.  

 

   
Sequence diagram of a command execution 

 

3.1.11 Defining custom commands for using AXOM 
The proposed solution has been designed to speed-up the creation of AXMEDIS-compliant tools, which 

can easily exploit the provided functionalities and can also extend the command set to their specific need. A 
custom new command can be defined by taking into account its fundamental aspects: authorization, un-
protection and behavior implementation. By specializing from AxCommand class the custom command class 
presents getRequiredGrants, getAccessedIndexes and execute that have to be implemented according to the 
desired semantics and manipulation logic. The personalizations have to define one or more constructors to 
give arguments to the manipulation (e.g., target elements)  and to introduce specific methods in order to 
obtain back information after a performed execution. 
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An example of an extension set of manipulation commands could be one for resource processing. Let us 

consider a command for processing an image performing a mirror transformation (left to right) and replace 
the resource with the result of the processing. Command AxCommandImageMirror defines a constructor 
which accepts the target image as an argument. The constructor can be defined as 
AxCommandImageMirror(AxIndex imageIndex). The following pseudo-code provides and example about the 
definition of the command, including the declaration of the required rights and what has to be unprotected. 
The method execute() sketching the command implementation is also reported. Each proposed custom 
command has to be certified and approved to be compliant with the semantics of the rights. This means that 
the enforcement of the rights into the authoring and player tools has to be performed in according to a rights 
data dictionary, in which the meaning of each term used for defining rights in licenses is formally specified. 
Examples of rights data dictionaries are the MPEG-21 RDD [MPEG-21 RDD] and that defined by Mi3P 
[MI3P DICT]. The AXOM model has the needed flexibility to formalize the enforcement of both the models 
for the aspects related to authoring and rendering/playing.  

 
 
class AxCommandImageMirror : public AxCommand 
{ 
   private AxIndex targetIndex; 
 
   //constructor 
 AxCommandImageMirror(AxIndex imageIndex) 
 { 
  targetIndex = imageIndex; 
 } 
  
 //declaration of required granted rights 
 //the operation “modify” has to be authorized with details “apply mirror filter” 
 vector AxGrant getRequiredGrants() 
 { 
  return new vector { new AxGrant(targetIndex, “modify”, “apply mirror filter”) }; 
 } 
 
 //declaration of content elements to be unprotected  
 //only the target resource has to be unprotected  
 vector AxIndex getAccessedIndexes() 
 { 
  return new vector { targetIndex };  
 } 
 
   void execute(AxModelContainer model, AxIndexManager indexManager, AxStatusManager s) 
 { 
  //since the model has been already unprotected it is possible to 
  //have direct access to the target resource (located by targetIndex) 
  AxResource res = (AxResource) indexManager.resolveIndex(targetIndex); 
 
  //a resource attribute is accessed to gather some information 
  string mime res.getMIMEType(); 
 
  //processing 
  inputstream bytes, res.getAsset().getInputStream(); 
  inputstream mirrorbytes = applyMirrorFilter(mime, bytes); 
  res.getAsset().setInputStream(mirrorbytes); 
 } 
}; 

 
Please note that targetIndex is used to store the location of the target resource, which is set only at 

construction time. This index is returned as the unique “accessed index” of the grant authorization. The index 
is used at command execution time to retrieve the resource in the object model. 
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3.1.12 Using AXOM for a player 
The following pseudo-code is a simplification to explain how simple is realizing a player application 

which is able to access packages which include multi-format resources and related descriptions. The script 
creates an instance of the AxObjectManager giving the filename (or URL) of the object to be loaded, it 
makes access to the root element (rootObj) using the root index and retrieves the AXOID. Afterwards all the 
metadata of the object are accessed (via DOM structure) and finally the index of the first content is obtained 
(with the assumption that it is a resource) and with this index a stream to read the resource content is 
obtained. 

 
… 
// creating a manager to manipulate “myobject.axm” file 
AxObjectManager myObjectManager = new AxObjectManager(“myobject.axm”); 
 
// obtaining a clone of root object general information 
AxObject rootObj = myObjectManager.getAxObjectElement(myObjectManager.getRootIndex()); 
 
// retrieving content identifier 
string axoid = rootObj.getAXOID(); 
 
// accessing content metadata obtaining a clone of each content metadata 
foreach index in myObjectManager.getAxMetadataIndexes(myObjectManager.getRootIndex()) 
{ 
 AxMetadata meta = myObjectManager.getAxObjectElement(index); 
 
 // retrieving XML that represents content description 
 DOMElemente metaDOM = Meta.getDOMElement(); 
 ... metadata access ... 
} 
// accessing children of the root level in the object structure 
vector AxIndex children = myObjectManager.getChildIndexes(myObjectManager.getRootIndex()) 
 
//(assuming first children is a digital resource) obtaining a clone of resource 
information 
AxResource res = myObjectManager.getAxObjectElement(children[0]); 
 
// retrieving MIMEType of the target resource 
string mimeType = res.getMIMEType(); 
 
// obtaining a byte stream directly from the digital resource (e.g. for rendering) 
stream resStream = myObjectManager.getResourceAsset(children[0], “play”); 
… 
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 (a)    

 (b) 
AXMEDIS player: (a) AXMEDIS hierarchy view and HTML text, (b) view of resources 
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Views of the AXMEDIS Editor for the same object shown in the above Figure by the player.  

Please note that the editor is capable of showing the object as an AXMEDIS hierarchy, or an MPEG-
21 hierarchy. In this case an MPEG-21 hierarchy is shown.  

 

3.2 AXMEDIS Object Manager: problems and actions 
Some of the desired functionalities have not been yet realized: 

 To move an object portion into another object: the “move” command has been implemented only 
with references to the same object portions. This action can be performed by cut & paste.  

 To copy a sub-tree of the object into another position of the object itself. 
 To introduce IPMP tool parameters (e.g., key) is not possible, since a parameter serialization has not 

been implemented. The tools can be used with fixed parameters only for demonstration purpouses. 
 To produce an MPEG-21 compliant file format is not possible, since implementation choice 

regarding and efficient protection/unprotection of digital resources have not been taken yet. 
 The portability of device-fingerprint extraction procedures has to been tested on PDA. 
 The event-driven mechanism has been defined, while it is not yet implemented in the 

AXMEDIS/MPEG-21 hierarchy elements.  
 
Other functionalities are present but they are not implemented in an efficient way: 

 Memory leaks are due to the uncorrect usage of XMLTranscode function of XercesC library 
 Resource consumption from protected assets presently lacks in the possibility of seeking along the 

resource stream, maintaining the unprotection buffer at the correct status. The only way to 
implement it, at the present state, is the total rewind and reinizialization of the digital asset stream. 
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4 AXMEDIS Object Preprocessor and Postprocessor (EPFL, DSI)  
 
The set of tools implementing the AXMEDIS Objects Preprocessing and Postprocessing provide two main 
functionalities. On one hand, conversion from textual XML to binary form and vice-versa has to be 
implemented in order to allow both objects presentation in a human readable (and editable) format and 
objects download or stream through bandwidth-critical channels. On the other hand, when objects are 
converted from a binary format to textual XML on the end-user terminal, the existent references to external 
objects must be resolved.  

4.1 Object Preprocessor and Postprocessor: State of the art 
As a textual format, XML tends to be rather verbose since it has not been designed to work ideally in a real-
time, constrained and streamed environment such as those found in the i-TV, in the multimedia or in the 
mobile industry. As long as structured documents (HTML, for instance) were basically composed of only 
few embedded tags, the overhead induced by textual representation was not critical. Applications are now 
dealing with larger and highly structured XML documents. More and more XML files are exchanged in 
many fields such as in i-TV, database synchronization or enterprise application integration (EAI). In these 
cases, the XML textual representation is verbose and its processing very inefficient. 
Therefore, optimized binary encoding mechanisms have been developed in order to reduce the bandwidth 
needed to transmit XML objects when necessary. To overcome this lack of efficiency of textual XML, 
MPEG-7 Systems has defined a generic framework to facilitate the carriage and processing of MPEG-7 
descriptions: BiM (Binary Format for MPEG-7) [17]. It enables the streaming and the compression of any 
XML documents. Among the advantages of BiM there is its flexibility. In fact, a BiM decoder can deal with 
evolution of XML languages. Technically, at encoding phase a level of compatibility is chosen for the 
bitstream. The encoding process adds necessary information to ensure that an old decoder will be able to skip 
unknown part of the bitstream. This feature allows also XML private extensions to be easily inserted within 
the original XML document without breaking interoperability. If forward compatibility is not needed, the 
redundancy is removed and the bitstream becomes more compact. Given the proliferation of MPEG 
standards and other external organizations referring to  MPEG-7 Systems BiM technology, it seemed that a 
dedicated standard would considerably ease the referencing and maintenance of the standard independently 
of the MPEG-7 Systems specification. These are the reasons which led to the creation of a new project of the 
MPEG group (ISO/IEC WG11): the so called MPEG-B (23001-1) MPEG-B -- Part 1: Binary MPEG format 
for XML. 
 
Open source implementations of BiM include: 
 
• the BIM Open Source project which is entirely Java based and composed by four different subprojects. 

The first project is the BIM Database Standard Edition, a personal information manager. The second 
project is the BIM Dynamic Development Environment. The third project is the BIM Telnet Client. The 
telnet client is a smaller scale project. It is useful for storing aliases, triggers, patterns, and some artificial 
intelligence in a basic telnet interface. The fourth project is the BIM Obfuscator used to obfuscate Java 
code variables and methods. It basically protects name integrity across packages.   

• The MPEG-B reference software is available but its efficiency is very limited. It can be used for testing 
the output of other implementations but it could hardly be integrated in larger frameworks which may 
need to use it as a plug-in. 

• The most efficient BIM implementation is the EXPWAY BiM commercial implementation called 
BinXML™ [20]. This product is very efficient in terms of compression performances provided. On the 
MPEG-7 test set, BinXML™ reaches an average compression ratio of 85 %. The average number of bits 
per elements and attribute is 2.93 bits (min = 0.003, max = 13, standard deviation = 1.76) against 136.7 
bits for the original XML files. 

 
The only open source implementation in C++ of BiM is then the MPEG reference software. If its efficiency 
should not be adequate to the AXMEDIS purposes another solution called XMill is available. XMill is a 
special-purpose compressor for XML data that typically achieves twice the compression rate over existing 
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compressors, such as gzip. MILL is an open source program delivered under a BSD License, it is written in 
C++, and it is available for all 32-bit MS Windows (95/98/NT/2000/XP), and all POSIX (Linux/BSD/UNIX-
like OSes) [21] platforms. 
Similar to gzip, XMill is a command-line tool that works on a file-by-file basis. A given file with extension 
'.xml' is compressed into a file with extension '.xmi'. Any other file without extension '.xml' is compressed 
into a file by appending extension '.xm'. Reversely, the original file is obtained by replacing extension '.xmi' 
with extension '.xml' or by removing extension '.xm'. Alternatively, the user writes the output to the standard 
output and optionally read from the standard input. 
 
A widely deployed open source project for XML validation, authoring and manipulation is the Xerces 
toolset. Xerces (named after the Xerces Blue butterfly) provides XML parsing and generation. Currently, 
there are two validating versions, in Java and C++, implementing the W3C XML and DOM (Level 1 and 2) 
standards, as well as the de facto SAX (version 2) standard. The parsers are highly modular and 
configurable. There is also some support for XML Schema (draft W3C standard). Xerces-C++ is a validating 
XML parser written in a portable subset of C++. It provides a shared library for parsing, generating, 
manipulating, and validating XML documents. 
 

4.2 Object Preprocessor and Postprocessor: The problems 
At the 71st MPEG meeting held in Hong Kong (China) the MPEG-21 DID standard [6] was amended to 
substitute the REFERENCE element with the W3C Xinclude schema. This is due to the fact that in December 
2004 W3C published the XML Inclusions (XInclude) 1.0 Recommendation (see W3C XINCLUDE).  The 
functionality provided by the REFERENCE element in the first edition of ISO/IEC 21000-2 can be 
substantially provided by XInclude.  XInclude also provides functionality that extends beyond that of the 
REFERENCE element.  For example, the document author can provide a fallback in case the referenced 
elements are unable to be retrieved.  Hence in this second edition the REFERENCE element has been removed 
and similar functionality is achieved using XInclude. 
Some important differences between REFERENCE and XInclude have to be considered when using XInclude 
instead of REFERENCE. These include: 

1. A REFERENCE element operates on its parent element, in that the content of the referenced element is 
included into the content of the parent element of the REFERENCE element.  Whereas an XInclude include 
element operates on itself, in that the included content replaces the XInclude include element. 

2. XInclude processing can result in addition of xml:base and xml:lang attributes to the top-level included 
elements. 

3. XInclude processing does not include the attribute value inheritance of the REFERENCE element. 

 
The above mentioned amendment to the MPEG-21 schema requires an extension of the Xerces capabilities 
in order to support the validation of the Xinclude schema. In particular, the Xerces Schema Validator needs 
to be extended to accept INCLUDE element coming for XInclude Namespace. A normal schema validator 
cannot manage this element since they are xml:base and xml:lang attributes. A special validator has to be 
provided in order to validate the XInclude syntax and the whole schema by considering the referred elements 
 

4.3 Object Preprocessor and Postprocessor: Work performed 
 
The work for the development of the AXMEDIS Reference Resolver is based on the Xerces toolset for the 
authoring and manipulation of XML files. The application opens an XML file and searches for references 
inside it. So far, a reference is defined as something like this:  
 
<reference file="C:\referenced_file.xml"  XPath="node[2]/something[0]/node[3]/something"> 
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where: 
 

• the file attribute is the referenced file. 
• the XPath attribute is the path inside the referenced file of one specific node. This path is in format 

XMLPath. 
 

Then the Reference Resolver opens all the referenced files and searches for the referenced nodes and, finally, 
it substitutes the link or reference with the referenced element. 
 
The following snapshot displays the user interface of the reference resolver.  
 

 
Figure 1 - The user is required to open the input file which is referencing the "referenced.xml" file 

 
Suppose the input XML is named as input.xml and the referenced XML file is named as referenced.xml. 
The input XML file has the following content.  
 
<?xml version="1.0" encoding="iso-8859-1"?> 
<!DOCTYPE personnel> 
<!-- DOCTYPE personnel SYSTEM "personal.dtd"--> 
 
<!-- @version: --> 
 
<personnel> 
 
  <person id="Big.Boss" > 
    <name><family>Boss</family> <given>Big</given></name> 
    <email>chief@foo.com</email> 
    <link subordinates="one.worker two.worker three.worker four.worker 
five.worker"/> 
  </person> 
 
     
  <person id="one.worker"> 
    <reference file = "referenced.xml" XPath = 
"/AUCTIONBLOCK/ITEM/BIDS/BID[0]" /> 
    <name><family>Worker</family> <given>One</given></name> 
    <email>one@foo.com</email> 
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    <link manager="Big.Boss"/> 
  </person> 
 
  <person id="two.worker"> 
    <name><family>Worker</family> <given>Two</given></name> 
    <email>two@foo.com</email> 
    <link manager="Big.Boss"/> 
  </person> 
 
  <person id="three.worker"> 
    <name><family>Worker</family> <given>Three</given></name> 
    <email>three@foo.com</email> 
    <link manager="Big.Boss"/> 
  </person> 
 
  <person id="four.worker"> 
    <name><family>Worker</family> <given>Four</given></name> 
    <email>four@foo.com</email> 
    <link manager="Big.Boss"/> 
  </person> 
 
  <person id="five.worker"> 
    <reference file = "referenced.xml" XPath = 
"/AUCTIONBLOCK/ITEM/BIDS/BID[3]/BIDDER" /> 
    <name><family>Worker</family> <given>Five</given></name> 
    <email>five@foo.com</email> 
    <link manager="Big.Boss"/> 
  </person> 
 
</personnel> 
 
 
The referenced XML file has the following content: 
<?xml version="1.0"?> 
<AUCTIONBLOCK> 
   <ITEM> 
      <TITLE>Vase and Stones</TITLE> 
      <ARTIST>Linda Mann</ARTIST> 
      <DIMENSIONS>20x30 inches</DIMENSIONS> 
      <MATERIALS>Oil</MATERIALS> 
      <YEAR>1996</YEAR> 
      <DESCRIPTION/> 
      <PREVIEW-SMALL SRC="images/burl-s.jpg" WIDTH="300" HEIGHT="194" 
ALT="Vase and Stones"><!--The small image--></PREVIEW-SMALL> 
      <PREVIEW-LARGE SRC="images/burl.jpg" WIDTH="640" HEIGHT="413" ALT="Vase 
and Stones"/> 
      <BIDS> 
         <BID> 
            <PRICE>3300</PRICE> 
            <TIME>9:19:32 AM</TIME> 
            <BIDDER>John</BIDDER> 
            <TIMESTAMP>1315</TIMESTAMP> 
         </BID> 
         <BID> 
            <PRICE>3200</PRICE> 
            <TIME>8:18:31 AM</TIME> 
            <BIDDER>Andrew</BIDDER> 
            <TIMESTAMP>1308</TIMESTAMP> 
         </BID> 
         <BID> 
            <PRICE>3100</PRICE> 
            <TIME>2:48:08 PM</TIME> 
            <BIDDER>Chris</BIDDER> 
            <TIMESTAMP>1307</TIMESTAMP> 
         </BID> 
         <BID> 
            <PRICE>3000</PRICE> 
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            <TIME>2:47:58 PM</TIME> 
            <BIDDER>opening price</BIDDER> 
            <TIMESTAMP>1298</TIMESTAMP> 
         </BID> 
      </BIDS> 
      <MTIME> 
         <TIMESTAMP>1315</TIMESTAMP> 
         This is an example of mixed content 
      </MTIME> 
   </ITEM> 
</AUCTIONBLOCK>. 
 
In the input XML file there are two parts associated with the referenced XML file. They are the following in 
the input XML file.  
 
<reference file = "referenced.xml" XPath = "/AUCTIONBLOCK/ITEM/BIDS/BID[0]" /> 
 
and 
 
<reference file = "referenced.xml" XPath =   
 "/AUCTIONBLOCK/ITEM/BIDS/BID[3]/BIDDER" /> 
 
After resolving, the output file replaces these two parts with the corresponding elements in the referenced 
XML file. For example: 
 
<reference file = "referenced.xml" XPath = "/AUCTIONBLOCK/ITEM/BIDS/BID[0]" /> 
 
This part is replaced by the following code from the referenced XML file. The result is demonstrated in the 
following snapshot.   
 

<BID> 
            <PRICE>3300</PRICE> 
            <TIME>9:19:32 AM</TIME> 
            <BIDDER>John</BIDDER> 
            <TIMESTAMP>1315</TIMESTAMP> 

</BID> 
 

 
Figure 2 - Output of the reference resolver after processing input.xml 
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Following the recent modifications of the MPEG-21 DID standard the current version of the resolver 
described above needs to be modified and extended accordingly. 
 
Therefore, we build such a function  std::istream* XinculdeResovler(Xinclude &xi) which use the parameter 
Xinclude defined from DSI and returns an standard istream. For such a thing, we introduced Libxml2 library 
since the xerces C++ does not support the Xinclude.  
 
Libxml2 is the XML C parser and toolkit developed for the Gnome project (but usable outside of the Gnome 
platform), it is free software available under the MIT License. XML itself is a metalanguage to design 
markup languages, i.e. text language where semantic and structure are added to the content using extra 
"markup" information enclosed between angle brackets. HTML is the most well-known markup language. 
Though the library is written in C a variety of language bindings make it available in other environments.    

4.4 Object Preprocessor and Postprocessor: problems and actions  
 
The following tools and solutions have been analysed: 
• XML to BIN and BIN to XML (the partial implementation of BIN to XML produced by DSI) 
• Resolution of references (an experiment produced by EPFL using a library) 
• MPEG-21 file format 
 
For the purpose of demonstrating a proof of concept and for the purpose of realizing an effective tool the 
XML-BIN solution is not viable since too complex and far from the research activity needed for the 
AXMEDIS project with the aim of producing an efficient tool for downloading content. Presently neither the 
inventor of that technology in MPEG are capable of providing a working tool to test and integrate. They are 
working on this problem since several years.  
The consortium decided to go in the direction of realizing an MPEG-21 file format saver and loader (for 
binary files) in addition to the AXMEDIS/MPEG-21 XML saver and loader already in place. This will allow 
us to produce and distribute simple and compact files. 
 
5 AXMEDIS Editor, authoring tool (DSI) 
The AXMEDIS Editor should allow the user to create and manipulate AXMEDIS objects. 

5.1 Editor: Work performed 
The AXMEDIS editor allows to: 

• load and save protected and unprotected AXMEDIS object as a xml file 
• make a query on the AXMEDIS Database and get the content from the db. 
• create a new AXMEDIS object 
• acquire a definitive AXOID from AXCS 
• register the protection information and metadata to the AXCS 
• visualize and manipulate the hierarchy of both the AXMEDIS and MPEG-21 (see Hierarchy Editor 

and Viewer) 
• view resources (images, documents, video, audio) in an AXMEDIS object  using the internal 

resource viewers 
• manipulate images using the internal image editor 
• use content processing plugins to manipulate resources 
• edit metadata in xml using the Metadata Editor 
• define the PAR (Potential Availabe Rights) for the object using the DRM editor 
• define protection information, the MPEG-21 IPMP information (some parameters are still missing) 

using the Protection Editor 
• produce the SMIL resource relating the other basic resources present in the AXMEDIS Object using 

the Visual & Behaviour Editors (partially working) 
• see the workflow status using the Workflow Viewer 
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• be activated from the workflow and to notiy the completion of an activity 
 
The following is the AXMEDIS editor window for a new object, on the left are present the hierarchy views 
(AXMEDIS and MPEG-21), in the center the different views on an element and on the right some activities 
that can be performed. 
 

 
Figure 3 - AXMEDIS editor window for a new object 

 
In the following picture an AXMEDIS object was loaded and a resource is opened (double click) 
 

 
Figure 4 - An AXMEDIS object is opened and the resource is rendered 

 
In the following image is opened with Metadata Editor the AXInfo of an object 
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Figure 5 - The AXMEDIS editor displays a metadata element. 

 
For a more complete description of the functionalities provided see the “DE5.0.1.1 AXMEDIS Major Tools 
User Manuals” 
 
6 Hierarchy Editor and Viewer (DSI) 
The Hierarchy Editor and Viewer show the AXMEDIS and MPEG-21 hierarchy and allow manipulating 
them. 

6.1 Hierarchy Editor and Viewer: Work performed 
The AXMEDIS Hierarchy Editor and Viewer allows to:  

• visualize the AXMEDIS hierarchy as tree structure 
• add a new AXMEDIS resource, AXMEDIS metadata or AXMEDIS object to an AXMEDIS object 
• remove any element inside the object 
• move the elements up or down 
• drag & drop elements to move elements inside the object or from an object to another one 
• drag & drop a file on the hierarchy to automatically add a resource 
• copy & paste  

The MPEG-21 Hierarchy Editor and Viewer allows to:  
• visualize the MPEG-21 hierarchy as tree structure 
• add a new MPEG-21 element (container, item, descriptor, etc.) 
• remove any element inside the object 
• move the elements up or down 
• drag & drop elements to move elements inside the object or from an object to another one 

 
The following is an example of AXMEDIS Hierarchy: 
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Figure 6 - Example of AXMEDIS hierarchy 

 
The following is an example of MPEG-21 Hierarchy: 
 

 
Figure 7 - Example of MPEG-21 hierarchy 

 
For a more complete description of the functionalities provided see the “DE5.0.1.1 AXMEDIS Major Tools 
User Manuals” 
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7 Visual and Behavioral Editor and Viewer (EPFL)  
 
The Behaviour Editor together with the Visual Editor will provide the user with the infrastructure to produce 
multimedia presentations. A multimedia presentation can be composed of many media objects (text, audio, 
video, vector graphics...). The user will use the Behaviour and Visual Editors to organize the media objects 
in space and time. The Behaviour Editor will complement the Visual Editor by adding time boundaries to the 
media objects. This means that every media object will be visible only for a period defined by the user. The 
simplest example for this is a slide show: the user specifies a group of slides and each slide is only visible 
during a slot of time defined by the user. 
The Behaviour Editor will use a subset of the SMIL language to describe the multimedia presentation. 
The Visual Editor will arrange the media objects (video, photo, text, etc) on the screen. The Visual Editor 
allows object placement in a 2-D (or possibly 3-D) environment. Moreover, it permits managing (i.e. 
moving, deleting, adding, etc…) object subparts which have spatial properties or constraints. The layout 
description will be done according to the SMIL W3C standard [9]. 
 

7.1 Visual and Behavioral Editor and Viewer: State of the art 
 
SMIL authoring tools are implemented by different companies and consortia. Some of them are commercial 
tools whereas some are also available as free software or even open source toolsets.   
SMIL authoring tools implemented in C++ could not be found as open source projects. A powerful SMIL 
authoring tool commercialized by Oratrix [10] – GriNS2 - has been examined and can be used as reference 
implementation supporting most of the functionality needed by AXMEDIS. On the other hand, the most 
interesting open project is LimSee2 developed by INRIA [11] and it is implemented in Java. LimSee2 can 
also be used to test the conformance of the implemented Visual Editor and Viewer.  
At the heart of any SMIL implementation lays a module in charge of managing the Timing and 
Synchronization of the decoded scenes. Orchestrating the timing of the various media elements in the 
presentation is, after all, what makes SMIL different from traditional Web media.  
 
The following sections provide a brief overview and some snapshots of the GRiNS and LimSee2 features.  
 

7.1.1 GRiNS Pro Editor for SMIL 2.0 
GRiNS Pro Editor for SMIL 2.0 is a SMIL authoring application developed by Oratrix Software 
Development Company for creating, editing and maintaining streaming media documents for the RealOne 
player and also for other SMIL 2.0 compliant players, such as Internet Explorer6.0 and 3GPP. GRiNS Pro 
Editor can take source materials such as audio, video, image and text assets, and integrate them into a 
presentation which can be distributed via the Web. 
 
GRiNS has an internal layout editor which manages visual and auditory resources. When working with 
template-based presentations, the template contains a number of regions to organize screen and other 
resources in the presentation. When the content creator uses these regions, he will typically not need to visit 
the Layout view. For more complex presentations, or when creating custom templates, the Layout view 
provides a means of creating, sizing, editing and placing new regions. 
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Figure 8 - Layout of the GRiNS editor 

 
When activated, the Layout view shows a window similar to the GRiNS Player window and a separate 
editing window for selecting layout regions.  
More information is available on the Oratrix Web site [10]. 
As one of the four views supported by the GRiNS SMIL authoring environment, the Timeline View is for 
editing the SMIL file in terms of time structure. The hierarchical structure is intended to represent the coarse 
timing relationships reflected in the <par> and <seq> constructs. While the attributes associated with an 
element can be used to define more fine grained relationships which are often difficult to visualize with the 
hierarchical view alone. For this reason GRiNS also supports a timeline projection of a presentation. Unlike 
some systems which use the timeline as the initial view of the application, the GRiNS timeline displays 
relationships derived from the hierarchical structure. This means that the user is not tied to a particular clock 
or frame rate since the actual timing relationships will only be known at execution time. When working with 
the timeline view the user can define exact start and end offsets within <par> groups by using a 
synchronization arc shown as an arrow.  
 

 

7.1.2 LimSee2 
LimSee2 is an open authoring application for SMIL 1.0 and 2.0 languages conducted by the WAM team 
(Web Adaptation Multimedia) at INRIA, Grenoble, France. 
 
LimSee2 has a multi-view solution (Layout view/Attributes view/Structure View/Timeline view) that renders 
the structure of the SMIL document at different levels during the authoring process: timing and 
synchronization, spatial layout, XML tree etc. The different views are synchronized (a modification in one 
view is immediately rendered in all the other views) and provide functionality that allows a user to 
manipulate and fine-tune a SMIL document without requiring a full knowledge of the language. 
 



DE4.1.1.2 – Content Modeling and Managing, 1st Update 
 
 

AXMEDIS project 
 
 
 
 

50

 
Figure 9 - Layout of the LimSee2 editor 

 
The spatial layout of a SMIL document can be edited in LimSee2 in a 2D canvas, which constitutes a 
WYSIWYG (What You See Is What You Get) environment for a fixed time in the temporal scenario. SMIL 
regions can be easily moved, resized or created in a few clicks, media content can be directly previewed (for 
images, texts and videos), and region z-indexes can be adjusted with an intuitive drag-and-drop mechanism. 
The 2D canvas also provides traditional features such as a zooming tool or a customizable snap grid. 
More information is available on the LimSee2 Web site at INRIA [11].  
 
LimSee2 is one of the most efficient authoring tools in terms of editing the SMIL time structure. The 
timeline view is a faithful representation of the temporal behavior of the document. In this view the author 
can perform all editing operations related to synchronization between elements. The mouse cursor informs 
the user on the editing operations he can perform on the selected SMIL element. When the cursor takes the 
shape of a cross, an user action moves the object along the time axis (thus changing the begin and end 
attributes); if on the other hand it looks as a double arrow, the action changes the length of the object 
(duration attribute). Durations expressed as relative time placements between elements and represented by 
red arrows can be modified directly by moving the mouse while it is on these arrows.  
 
It is important to notice that every editing action implies a consistent update on all the elements of the 
document. For instance changing the duration of an object can induce changes of time positions of other 
objects of the same composite or of ascendent composites. This consistency checking is continuously 
performed during user actions thanks to the use of the Cassovary constraint solver. This feature allows users 
to perceive on the whole document and in real time all the consequences of the modification they are 
performing. 
 

7.2 Visual and Behavioral Editor and Viewer: Work performed (EPFL) 
 
The work on the AXMEDIS Visual Editor has been started. It is based on the WxWidgets OGL library for 
cross-platform graphical user interfaces implementation. The state of the Visual Editor is the following:  
 
• Hierarchy authoring of SMIL with Hierarchy Editor: the program allows the user to construct 

and edit of SMIL hierarchy components. 
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All the SMIL components are stored inside the hierarchy structure between the tags <body> and </body>.  
There could be any combinations of tags of <par> and <seq> to support parallel and sequential temporal 
behaviour of the media objects. The following are some examples of Hierarchy structure of objects in SMIL 
 
<body> 
        <par> 
  <seq> 

<img id="lamp-picture" region="content-image" 
src="LITEdataCE/lamp1.jpg"/> 

<audio id="Welcome-US" region="LogoRegion" 
src="LITEdataCE/Welcome-US.mp3"  dur="21.4s"/> 

 
  </seq> 

 
<audio id="lamp-audio" region="content-audio" 
src="LITEdataCE/lamp1.mp3"/> 

</par> 
 </body> 
 
Or  
 
<body> 
        <par> 
  <par  dur="30s"> 

<img id="lamp-picture" region="content-image" 
src="LITEdataCE/lamp1.jpg"/> 

<audio id="Welcome-US" region="LogoRegion" 
src="LITEdataCE/Welcome-US.mp3"  dur="21.4s"/> 

 
  </par> 
  <seq> 

<img id="picture" region="content" src="LITEdataCE/lamp1.jpg"/> 
<audio id="Welcome" region="LogoRegion" src="LITEdataCE/Welcome-

US.mp3"  dur="2s"/> 
</seq> 

 
</par> 

 </body> 
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• Load Media Resources from AXMEDIS Object with SMIL Hierarchy Editor. 
 
SMIL component is created by including media resources from the left panel of the AXMEDIS object. The 
working process is described as follows:  with one internal media resource selected, the SMILHierarchy 
business logic will extract and return the reference or the ID from the AXMEDIS Object to the SMIL 
component.  
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•  Spatial Visual Authoring of SMIL with Visual Editor: The program allows the user to draw 

rectangles on the screen with the mouse. The shapes can also be resized, moved or deleted. 

Spatial View shows object placement in a 2-D environment. Moreover, Spatial View permits managing (i.e. 
moving, deleting, adding, etc…) object subparts which have spatial properties or constraints. 
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•  Definition and change of the background size and info 

 
• Associate the resource with the region. Every shape corresponds to an SMIL Region that will be a 

placeholder for any media content: text, video, audio, image.  
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• Edit the Temporal information of the elements with GUI behavior Editor. 

 
 
• Integration with AXOM 
 

7.3 Visual and Behavioral Editor and Viewer: problems and actions 
 
1. The above described toolsets are one a commercial application (GRiNS) and the other a free JAVA 

application (LimSee2). In the open source community few are the projects aiming at developing SMIL 
editors in C++ and they are all in a very early stage (still planning, no source code produced). AXMEDIS 
need then to build its own SMIL editor, an open C++ application, with functionality similar to the one of 
LimSee2 or GRiNS.   

2. The current data model selected is not well designed. Therefore, we proposed to build another data 
model as the following UML and build the current GUI on the top of this data model.  
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8 Metadata Editor and Viewer (UNIVLEEDS) 
 
The AXMEDIS Metadata Editor and Viewer aim to adequately display and edit metadata information 
contained within an AXMEDIS object. Due to the complex nature of AXMEDIS objects, there may be one 
or more metadata sections with different schemas, including MPEG-21, Dublin Core, and AxInfo. 
• Metadata Viewer shall be able to adapt itself (e.g. by analysing the data-related XML schema) 

automatically to the metadata structure; 
• Specific set of valuable metadata, such as authoring MPEG-7 metadata, should be included into 

AXMEDIS Editor basic release; 
For Metadata visualisation, two possible approaches can be done: (1) using the above editor without the 
manipulation and save functionality activated; and (2) generating a HTML file (with CSS) and use a browser 
to display the file 
 
The Metadata Editor main aims to add, delete, move and edit elements for Dublin Core and AxInfo metadata 
with validation. This is achieved by utilising the methods and functionalities provided by Xerces and the 
AXMEDIS MPEG-21 compliant model. The Metadata Editor and View is integrated into the AXMEDIS 
Editor as described in section 6 of the report. 
 

8.1 Metadata Editor and Viewer: State of the art 
Currently there is an influx of high performance, fully compliant XML parsers including Xerces and Expat, 
as it is further discussed in the deliverable DE4-3-1 [12]. While there are editors and viewers available for 
creating, specifying and editing XML, tools are required for editing various metadata standards (e.g. Dublin 
Core). This is an ongoing problem currently being addressed by working groups and specifically for the 
Dublin Core standard, an ongoing series of workshops to address these problems are ongoing by the Dublin 
Core Metadata Initiative (DCMI) Workshop Series [13].  
 
The AXMEDIS metadata editor is required to apply manipulation functionalities such as adding, deleting 
and moving XML elements and their attributes with schema validation. This manipulation applies not only 
for the Dublin Core, but AXMEDIS AxInfo and other user defined metadata for the AXMEDIS objects. This 
requires the development of generic functionality that can be applied to multiple metadata standards 
including the user defined metadata. The metadata editor and viewer will utilise the new tools developed for 
the transcoding of metadata as discussed in DE4-3-1 and will also utilise the functionalities provided by the 
Xerces [14] libraries. Future development utilises the new AXMEDIS MPEG-21 compliant model as 
discussed in section 3, AXMEDIS Object Manager. 

8.2 Metadata Editor and Viewer: Work performed 
The work on the Metadata Editor and Viewer has been started and the first prototype with metadata viewing 
and basic editing functionalities is near completion for demonstration at the AXMEDIS2005 Conference. 
The main stages of the Metadata Viewer and Editor are as follows: 

• Visualize the XML as a tree structure 
• Loading and saving of the metadata XML file using the library Xerces-C++  
• Parsing XML and validating using Xerces Grammar loading from the XML Schema 
• Separate test GUI with metadata editor/viewer wxWindows Frame implemented with wxWidgets 

(version 2.4.2) 
• GUI functionalities including local and global expansion of the tree view 
• Adding, inserting and deleting metadata attributes with validation using XML schemas 
• Integrate Metadata Editor and Viewer into the AXMEDIS Editor 
• Creating a HTML view of the metadata elements for viewing object metadata in a browser 

(wxMozilla browser integrated in the Metadata View) 
• Committing Metadata Changes into the AXMEDIS object 
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Planned future enhancements include: 

• Filtering viewing elements by namespace or schema identification 
• Adding generic metadata with schema validation with user specified XML schemas 

 
In the following image the AXMEDIS Editor Metadata View is shown. The tree view provides 
functionalities to edit and move metadata elements and the panel are used to edit metadata elements and add 
values to the appropriate leaf elements e.g. title. 
 

 
 

Figure 10 – AXMEDIS Editor with the Metadata View  Editor panel to edit the Dublin Core. 

 
In the following image the Metadata Elements are added using the tree menu. Validated items from the 
associated schema are used to generate the element list for both adding and insertion of new metadata 
elements. The left image demonstrates editing metadata using the Metadata Editor tree menu. Functionalities 
include adding, inserting and deleting elements. The right image demonstrated editing the metadata using the 
Metadata Editor Panel. Functionalities include adding (multiple elements can be added), inserting and 
deleting elements as well as editing the text and attributes fields for the leaf element nodes e.g. title. 
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Figure 119 – AXMEDIS Editor with the Metadata Editor Edit view containing the AxInfo metadata.  

 
The image below shows the AXMEDIS Editor viewing the AXMEDIS Info in the Metadata View. This view 
is generated HTML from the XML and the user can use their own stylesheet to format the view within the 
window 
 

 
 

Figure 20 – AXMEDIS Editor with the Metadata Editor Viewer presenting the AxInfo metadata.  
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The axdefault.css has the following content style: 
.level0 { 
   background-color: white; 
   border: 1px solid black; 
   position: absolute; 
   padding:0px; 
   margin: 0 auto; 
   width: 95%; 
 
} 
 
.level1 { 
  background-color: blue; 
  padding: 4px; 
} 
 
.level2 {background-color:blue; padding:4px} 
 
.level3 {background-color:green; padding:4px} 
 
.leaf { 
  background-color: #cccccc; 
  padding: 2px 
} 
 
.elementname { 
  font-family:sans-serif, helvetica, verdana, geneva,arial; 
  background-color:#000000; 
  border-bottom: 3px solid #ffffff; 
  font-weight: bold; 
  font-size: 100%; 
  color: #ffffff; 
} 
 
.leafname { 
  font-family:sans-serif, helvetica, verdana, geneva,arial; 
  background-color:#ffffff; 
  font-style: italic; 
  font-weight: bold; 
  font-size: 90%; 
  border-top: 2px solid #000000; 
  border-left: 1px solid #000000; 
} 
 
.leafcontent { 
  font-family:sans-serif, helvetica, verdana, geneva,arial; 
  background-color:#ffffff; 
  font-size: 90%; 
  border-left: 1px solid #000000; 
  padding-left: 1em; 
} 
 
 
 

8.3 Metadata Editor and Viewer: problems and actions 
Some of the desired functionality has not been implemented: 

• User defined filtering of the tree structure 
• Adding Generic metadata to the AXMEDIS object with schema validation 
• Adding saved Dublin Core and AXMEDIS Info from a template file to the AXMEDIS object  
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9 AXMEDIS ActiveX Control as editor (DSI) 
 
The AXMEDIS ActiveX control allows exploiting AXMEDIS objects in windows applications and in web 
pages. 
 

9.1 ActiveX Control: Work performed 
The initial prototype of AXMEDIS ActiveX Control allows to: 

• load an AXMEDIS object from file (.axm)  or from url (http) 
• display the AXMEDIS hierarchy (for end user) and the resources in the object 
• hide/show the hierarchy 
• get the content count (how many resources/objects are present in the object) 
• open a content in the resource view 
• get some minimal information on the content  
• control the execution of the content play/stop 
• view metadata information 

 
The following picture shows the ActiveX used in the ActiveX Control Test Container 
 

 
Figure 12 - ActiveX Control Test Container 

See the AXMEDIS PC Player prototype as another example of AXMEDIS ActiveX use. 

9.2 ActiveX Control: problems and actions 
Some of the specified functionality has not been implemented: 

• the methods for advance control on resource playing (time interface and visual interface) 
• licence display and control 
• method to show metadata 
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10 AXMEDIS Plug-in into Mozilla (SEJER) 
 
The AXMEDIS plug-in into Mozilla [15] is intended to integrate the AXMEDIS player inside HTML pages. 
The three screenshots below demonstrate the rendering of several contents, with the hierarchy visible or not. 
 

 

Playing music 

 

Displaying a picture 
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Displaying a picture 
with the Hierarchy 
panel hidden 

Figure 13 - Rendering of several contents into Mozilla 

The plug-in renders AXMEDIS objects, as the AxPlayer does, and exposes some methods to the JavaScript. 
Web developers can easily embed the player in HTML pages and use DHTML functionalities to control the 
player. 
The JavaScript exposes properties and methods for navigation, media time control, media visual control, 
support and generic command management. 
 

10.1 Plug-in into Mozilla: Work performed 
 
The work on the AXMEDIS plug-in into Mozilla has been started and is almost in sync with the ActiveX 
Control.  
The following properties and methods have been implemented: 
 
 

/* behaviour methods and attributes */ 
attribute boolean viewHierarchy; 
 
/* loading and content methods and attributes */ 
readonly attribute short contentCount; 
attribute string src; 
 
short load(in string filename); 
string getContentType(in short contentRef); 
void openContent(in short contentRef); 
 
void play(); 
 
/* media time control methods and attributes */ 
void stop(); 

 
The plug-in is also able to read the value of the viewHierarchy and the path to the file to load from the 
parameters in the HTML page. 
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10.2 Plug-in into Mozilla: problems and actions 
 
The code of the plug-in is based on the sample “scriptable” from GeckoPluginSDK. The first problem was to 
have mozilla/firefox to recognize the plug-in, even after the library has been copied into the plugin 
directorory of the application. In order to do that, the library name must start with “np” 
 
Then, when the code from the AxActiveX was inserted into the plug-in, three problems arise: 

- the resources of the player were not displayed correctly. The HINSTANCE of the application has to 
be set to the one of the library; 

- the initial layout of the controls composing the player is not correct until the user resizes the plug-in. 
This was corrected by forcing the plug-in to layout at the end of the initialization; 

- the background of the player was not drawn correctly. Ignoring the WM_ERASEBKGND solved the 
problem. 

 
The plug-in should be able to raise events that JavaScript code in the HTML page should listen to. Little 
documentation is available for this specific task. A solution was found by using nsIDOMEventListener an 
implementing nsIDOMEventTarget. 
 
The main difficulty about the plug-in is the ever changing interfaces of mozilla and the fact that it is 
dependend of the version of the instance it is running in, as the Mozilla’ dlls are already loaded and that the 
plug-in cannot specify them. 
 
Firefow 2.0 will be a challenge as some interfaces are changing and very few documentation about the 
changes is available. 
This will be quite tedious for the document viewer based on mozilla. 
Currently, it is very difficult to recompile wxMozilla for FireFox 1.5, as some of the interfaces or classes are 
marked obsolete or are now simply removed. So far, we were able to recompile wxMozilla but not to link a 
simple plugin with it. 
 
The following methods and properties have to be implemented: 

/* behaviour methods and attributes */ 
attribute string backgroundColor; 
 
/* navigation methods and attributes */ 
void goNext(); 
void goPrev(); 
 
/* media time control methods and attributes */ 
void pause(); 
readonly attribute boolean isPlaying; 
void jumpToTime(in long time); 
readonly attribute long currentTime; 
readonly attribute long duration; 
attribute long startTime; 
attribute long endTime; 
 
/* media visual control methods and attributes */ 
void fit(in double width, in double height); 
void zoomIn(in double ratio); 
void zoomOut(in double ratio); 
attribute boolean fullScreen; 
void print(); 
void scale(); 
attribute double zoom; 
attribute boolean autoFit; 
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/* support methods and attribute */ 
readonly attribute boolean supportTimeControl; 
readonly attribute boolean supportVisualControl; 
void showLicense(); 
readonly attribute boolean needLicense; 
readonly attribute boolean haveLicense; 
void acquireLicense(); 
void showMetadata(in long ref); 
 
/* command management */ 
boolean execCommand(in string cmdID, in boolean showUI, in string value); 
boolean queryCommandEnabled(in string cmdID); 
boolean queryCommandIndeterm(in string cmdID); 
boolean queryCommandStatus(in string cmdID); 
boolean queryCommandSupported(in string cmdID); 
boolean queryCommandValue(in string cmdID, out string pCmdValue); 

 
 
11 AXMEDIS plug-in into Multimedia Players (DSI) 
In this area several experiments have been performed on Windows Media Player trying to customize the 
default behaviour of the player in order to: 

 enforce AXMEDIS digital rights; 
 render multimedia content packaged in an AXMEDIS object. 

For more details on Customizing Windows Media Player see Report in Appendix (file Customizing-
WMPlayer.pdf included with this deliverable). 

11.1 Plug-in into Multimedia Players: Work performed 
Several experimentations have been performed with the Windows Media Technologies: a prototype of 
customized Windows Media Player has been realized. The customization has been focused on the digital 
rights enforcement and on AXMEDIS object decoding and rendering on the WM Player. 

11.2 Plug-in into Multimedia Players: problems and actions 
Two main issues have been identified in examining the Windows Media Technology: 

 It is not possible to control play of resource in terms of avoiding unauthorized operations. No 
customization are possible in terms of DRM. 

 It is possible to create a render plug-in and a UI plug-in, but is not possible to demand play of well-
know resources as soon as they have been extracted by the composed AXMEDIS object. Only a 
device canvas is at disposal to be drawn by the render plug-in. 

 
12 AXMEDIS PC Player state of the art (DSI, EPFL)  
The AXMEDIS PC Player application allows opening and rendering AXMEDIS objects in the end user 
terminal. The AXMEDIS player will use the AXMEDIS internal Players to render the different types of 
content: audio, video, text, and SMIL presentations. 
In these terms, given the nature of an AXMEDIS Object, the Player shows a strong relationship and 
interconnection with the concept of MPEG-21 Client Terminal. 
A Visual Basic application has been realized to test the ActiveX, it could be considered as a preliminary 
prototype of the PC Player. 
Furthermore, the Internal SMIL Player (see DE5.1.1, AXMEDIS Framework Infrastructure) can at the same 
time be exploited to synchronize the several media objects according to precise spatial and temporal stamps, 
and as such constitutes the core of the scheduling and playback functionality of the AXMEDIS Player.  

12.1 PC Player: State of the art 
Other multimedia tools, mainly based on proprietary formats, are currently spreading on the market. They 
are based on frameworks that are not as flexible and powerful as MPEG-21, however they constitute a state 
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of the art in the domain, since as noticed above MPEG-21 is still in development stage and current tools are 
poor. Reviewing these frameworks is important as it provides a direct investigation about what currently 
means a state of the art player terminal in terms of media support, security, flexibility and other aspects; this 
is useful to learn about successful features of client terminal players for PC platforms and also to show how 
much advanced the MPEG-21 based AXMEDIS client will result.  
We review here the main multimedia frameworks in their actual state. We do not speculate about their future, 
or about their possible evolutions. The landscape is likely to evolve quickly, some of the main actors will 
probably disappear, and new actors will also appear.   
 

12.1.1 Flash 
Flash is a proprietary system developed by Macromedia, Inc. [22]. It is composed of an authoring tool, and a 
viewer available for free on the most widely available platforms (Macintosh and Windows based). The 
viewer can be integrated in an HTML page, so Flash content can be easily integrated in Web content. 
Flash is based on vector graphics. In conjunction with scripting (Actionscript), and animation (timeline based 
as well as scripting based), this has made of Flash the most widely used multimedia framework for the Web. 
The very low bit rate induced by the use of vector graphics, scripting, and timeline based animation has 
made of Flash a very convenient format for Web-based animation, storyboards, high quality graphics, and a 
suitable alternative to HTML for the development of Internet web sites. 
 
Media support 
The support of audio can be considered as being poor in Flash. The only compression scheme supported is 
mp3, together with a proprietary compression scheme known as “Nelly Mosser” for which no information is 
available to our knowledge. Flash supports also uncompressed schemes, PCM based, such as WAV or AIFF. 
For structured audio, no format – even MIDI - is supported. Video support in Flash has continued to evolve 
since its introduction in Flash MX and Flash Player 6. Flash Player 7 greatly improves video quality, 
supports higher frame rates, and provides additional opportunities for loading dynamic media at runtime. 
 
System support 
Flash supports the operating systems of Windows and MacOS. It cannot support the Unix, Linux, BSD 
system. 
 
Authoring and production 
Flash benefits from a proprietary authoring tool developed by Macromedia.  
 
Interactivity and animation 
Interactivity and animation can be implemented in Flash by using ActionScript, a proprietary scripting 
language 
 
Openness and extensibility 
Flash is in principle a closed system on the client’s side. No extensions can be developed, no decoders can be 
added, and no interactivity other than interactivity defined on the authoring side with the ActionScript 
scripting language can be defined to enhance the standard viewer (this is not to be confused with the 
extensibility functions available in the new Flash MX 2004, which are available in the Flash authoring 
application). 
Flash is open to XML, and able to exploit XML data in a client-server architecture, via http-based protocol, 
or via XML socket based, real-time exploitation of data. With this functionality, it is for example possible to 
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imagine a Flash client application exploiting XML data available on line, for example XML-based metadata 
such as RDF, or Dublin Core, or even MPEG-7 metadata in their XML format. 
The Flash file format is itself now open, as well as some parts of the source code, and many developers are 
developing new Flash based solutions. For example, the NorthCode company [23] has developed SWFStudio 
(http://www.northcode.com/swfstudio/), a software which makes possible to build stand-alone executables 
from Flash content. In this configuration, it becomes possible to build plugins to Flash executables. The same 
society has developed a plugin development kit in order for other developers to build their own extensions to 
Flash (with the restriction that this works only with Flash stand alone applications – it is always impossible 
with the Flash standard client). 
 
Security and privacy  
Flash implements a browser-like security sandbox scheme in order to ensure the security and privacy of 
Flash movie and the client machine. The sandbox defines a limited space in which a Flash movie running 
within the Macromedia Flash Player is allowed to operate. Its primary purpose is to ensure the integrity and 
security of the client’s machine, and as well as security of any Macromedia Flash movies running in the 
player. Basically, the sandbox idea is the following: A Macromedia Flash movie executes inside a sandbox. 
Any information inside the sandbox can be communicated only to the domain from which the movie came. 
Access to information within the sandbox from outside of the sandbox is severely limited. 
 

12.1.2 Windows Media 
Being preinstalled with every version of Microsoft Windows sold, Windows Media Player is becoming 
increasingly widespread on the web.  
 
Media support 
Windows Media Player supports most of media formats, but it does not support the RealNetworks content 
such as the .ra, .rm, .ram media file. It cannot support the QuickTime content like .mov, .qt format. As for 
the MPEG-4 (.mp4), Windows Media Player gives no support.  
 
System support 
Windows Media Player supports the operating systems of Windows and MacOS. It cannot support the UNIX, 
Linux, BSD system. 
 
Authoring and production 
Production of Windows Media content can be done in multiple ways: by the mean of Windows Media 
Encoder, or by the mean of the toolkits provided by Microsoft for this purpose. This toolkit can be accessed 
by the mean of the C++ language, the Visual Basic language, or even by the mean of an HTML interface. 
 
Interactivity and animation 
No support of interactivity – scripting, controls – is directly available in Windows Media.  
 
Openness and extensibility 
Customization of the Windows Media Player is possible by using the Software development Kit provided to 
this end by Microsoft. By using the SDK, it is possible to develop a customized end-user interface driving 
the Windows Media content, in any language supported by the Windows Media SDK (C++, Visual Basic, 
HTML, .net with C#…). 
 
Security and privacy 
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Windows media frameworks implement the Windows Media digital rights management (DRM) platform to 
protect and securely deliver a la carte and subscription content for playback on a computer, portable device, 
or network device. Windows Media DRM is comprised of multiple components including Windows Media 
DRM for Portable Devices and Windows Media DRM for Network Devices, as well as an updated Windows 
Media Rights Manager SDK. These components allow for the seamless flow of content to almost any device, 
offer the widest range of purchase and rental options for digital media, and ensure the security of premium 
content as it flows from device to device. Windows Media DRM works in the following five steps: 
1.Packaging 2.Distribution 3.Establishing a license server 4.License acquisition 5.Playing the digital media 
file to secure content providers to protect their content and maintain control over the entire process of the 
media distribution. 
 

12.1.3 QuickTime 
 
Apple’s products 
They are the following: 

• QuickTime 7 Pro [24] enables H.264 video creation, audio and video capture, multi-channel audio 
creation and multiple files export. It is an easy-to-use tool for creating AAC audio files and 3G files 
for mobile viewing, editing videos and exporting movies. 

• QuickTime MPEG-2 Playback Component provides QuickTime users with the ability to import and 
play back MPEG-2 content, including both multiplexed and non-multiplexed streams. It is suited for 
content creators with projects such as Professional content production and transcoding video content 
(from MPEG-2 video to MPEG-4 for example). 

• QuickTime Broadcaster is a tool for producing live broadcast events. 
 
Media support 
QuickTime 7 Player supports a wide-range of industry-standard audio formats, including AIFF, WAV, 
MOV, mp3, MP4 (AAC only), CAF and AAC/ADTS. For structured audio, QuickTime supports MIDI. 
There is no support for audio effects or 3D audio. Multichannel audio is supported by QuickTime 7 up to 24 
audio channels, enabling standard surround formats. QuickTime 7 supports H264.  
 
System support 
QuickTime supports the operating systems of Windows and MacOS. It cannot support the UNIX, Linux, 
BSD system. 
 
Authoring and production 
Adobe’s Premiere or Macromedia Director can generate QuickTime content. There are also a number of 
production tools available, like FinalCut Pro for instance. Apple does not provide authoring tools, but 
software like Adobe’s Premiere or Macromedia Director are able to produce QuickTime content, generally by 
the mean of a plug-in. Apple’s QuickTime-related products (QuickTime Pro, QuickTime MPEG-2 Playback 
and QuickTime Broadcaster) are not literally authoring tools, but provide however a few creating, encoding 
and editing functionalities. 
 
Interactivity, animation 
No scripting language is available for defining interactivity, but interactivity can be defined by using the 
QuickTime Software Development Kit provided by Apple. 
 
Openness, extensibility 
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Extensions to QuickTime can be defined on the user’s side by using the QuickTime Software Development 
Kit provided by Apple. It provides interfaces in C or Java QuickTime content can be embedded in a web 
page, but only a restricted set of functions are available from scripting languages such as JavaScript, making 
QuickTime not very well suitable for development of interactive content on the Web. Timeline-based, raw 
graphics animation is provided by authoring tools such as Adobe Premiere or Macromedia Director. 
 
Security and privacy: tbd 
 

12.1.4 Real 
RealNetworks media are limited to audio, from speech, mono-channel to surround, channel music, and 
video. There is no native support for interactivity, vector graphics, but the Real Player [25] supports the 
W3C’s standard for synchronized multimedia SMIL, and thus interactivity, animation and support of vector 
graphics can be integrated this way. 
 
Media support 
Real plays every major media format Including, AVI, MP3, RealAudio, RealVideo, WAV Audio, and 
Windows Media. This feature makes it a very popular media player. 
 
System support 
Real not only supports the operating systems of Windows and MacOS, but also support the UNIX, Linux. 
But it cannot support BSD system. 
 
Authoring and production 
The Helix producer enables encoding of streaming media (audio, video), in the native Real formats, with 
different bit rates. The Helix producer cannot generate SMIL animations – but can generate the included 
media. 
 
Interactivity, animation 
Real Media does not include any native support for interactivity or animation, but these functionalities can be 
integrated in SMIL animations by integration of Flash or SVG content. 
 
Metadata 
There is no support for metadata in Real Media.  
 
Openness and extensibility 
Real Media does not include any native support for scripting or extensibility, but the SMIL support for these 
features must be taken in account. 
 
RealPlayer 

• Audio: The Real Player includes support for its audio proprietary format as well as for mp3 format. 
It is also possible to include MIDI content. 

• Vector graphics, animation: Real Player supports the integration of Flash content (only Flash 3 and 
Flash 4), with some restrictions such as for audio content, which must be integrated using another 
channel (mp3, or rm). Interaction with Flash content is also supported, enabling in this manner 
capabilities of interactions with timeline from the user. It is for example possible to develop a simple 
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user interface in Flash, composed of some buttons for playing, stopping, fast reviewing or 
forwarding an audio track, but this kind of interaction will be limited to interaction with the timeline. 

• Real Player supports also integration of SVG. 
 
Security 
Real implements the Helix DRM platform for secure media content delivery over PC and non-PC devices, 
including mobile devices and home equipments. Helix DRM includes a set of products and services enabling 
business models through secure rights managed distribution of movies, music and other digital content. Helix 
DRM provides secure media packaging, license generation and content delivery to a trusted media player 
base across all major platforms to multiple devices. It extends the RealPlayer and Helix Platform open 
architecture to accommodate the incorporation of a wide range of rights management systems. It integrates 
into existing infrastructures and back-end systems, supporting a broad set of business models including 
purchase, rental, video on-demand, and subscription services. 
 
The above media players are all developed for the multiple kinds of content files which cover over the range 
of document, images, audio, video, multimedia, etc. Here, we also want to enclose two famous audio players 
iTunes and Winamp with the purpose of learning their good features of Graphical User Interface which could 
be a good example for the development of AXMEDIS Player. 
 

12.1.5 iTunes 
 
iTunes [26] is also a digital media player developed by Apple Computer, for playing and organizing digital 
music and video files. Additionally, the program connects to the iTunes Music Store (sometimes referred to 
simply as "iTunes" or "iTMS") which allows users to purchase digital music files that can be played by 
iTunes. The player has gained and maintained a reputation as being easy to use while still providing many 
features for obtaining, organizing, and playing music. iTunes is also the principal way to manage the music 
on Apple's popular iPod digital audio player. The program is freely downloadable and is also supplied with 
Mac OS X as well as Apple's iLife home-application suite. 
 
Media Support 
iTunes can currently encode to MP3, AIFF, WAV, MPEG-4 AAC, and Apple Lossless, and can play 
anything QuickTime can play (even video formats, as long as they have audio). In order to play other 
formats such as the Ogg Vorbis audio format iTunes requires addition of QuickTime components. However, 
the extensions for Ogg Vorbis does not work with QuickTime version 7 and Mac OS Tiger installed. In May 
2005, video support was introduced to iTunes with the release of iTunes 4.8. But Video support in iTunes is 
still limited at this point iTunes is so far still incompatible with the most common video formats such as 
.MPEG and WMV. 

 

System support 
iTunes supports Windows and MacOS. It cannot support the UNIX, Linux and BSD system.  
 
Authoring and production 
iTunes was developed from SoundJam MP, a popular commercial MP3 application distributed by the 
Macintosh software company Casady & Greene.  
 
Openness and extensibility 
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On the Macintosh, iTunes is tightly integrated with Apple's iWork suite of applications and the rest of the 
applications in iLife. 
 
Security and privacy: tbd 

 

12.1.6 Winamp 
Winamp [27] is an audio player made by Nullsoft, part of Time Warner. It is skinnable, multi-format 
freeware. Originally, MP3 playback was based on the AMP decoding engine by Tomislav Uzelac et al. In 
later versions this was replaced with Nitrane, a proprietary decoder created by Nullsoft and subject of a 
lawsuit from Playmedia Systems, Ltd. After an out of court settlement and licensing agreement, Nullsoft 
switched to an ISO decoder from Fraunhofer Gesellschaft, the developers of the MP3 format 
 
Media Support 
Winamp support a wide range of audio format file including MIDI, MOD, MP3, Ogg Vorbis, WAV, 
WMA and many other audio formats. 
 
System support 
Winamp only supports Windows. It cannot support MacOS, UNIX, Linux, and BSD system. 
 
Authoring and production 
Winamp was first released by Justin Frankel in 1997.  
 
Security and privacy: tbd 
 
The features of these above media players are summarized in the following tables.   

General Features: Basic general information about the players: creator/company, license/price etc. 

 Creator First public 
release date 

Stable 
version 

Software 
license 

Proprietary 
format 

Flash Macromedia December 
1996 

8.0 Proprietary Flash 

Director Macromedia 1988 MX 
2004 

Proprietary DCR 

iTunes Apple 
Computer 

January, 
2001 

4.9 Proprietary Apple Lossless 

QuickTime Apple 
Computer 

December, 
1991 

7.0.1 Proprietary QuickTime 

RealPlayer RealNetworks 1995 10 Proprietary RealAudio, 
RealVideo 

Winamp Nullsoft June, 1997 5.094 Proprietary NSV 
Windows Media Player Microsoft November, 

1992 
10 Proprietary WMA, WMV 

Operating Systems Support: The operating systems on which the players can run natively 
(without emulation). 

 Windows Mac OS X Linux BSD Unix 



DE4.1.1.2 – Content Modeling and Managing, 1st Update 
 
 

AXMEDIS project 
 
 
 
 

72

Flash Yes Yes No No No 
Director Yes Yes No No No 
iTunes 2000/XP/2003 only Yes No No No 

QuickTime Yes Yes No No No 
RealPlayer Yes Yes Yes No Yes 

Winamp Yes No No No No 
Windows Media Player Yes Yes Planned No No 

 
Main Features: 
 

 Audio 
playback 

Video 
playback 

Outbound 
streaming 

Skinnable Media 
Database 

Flash Yes Yes Yes No Yes 
Director Yes Yes Yes No Yes 
iTunes Yes Yes Yes No  Yes 

QuickTime Yes Yes No  Partial  No 
RealPlayer Yes Yes No Yes Yes 
Winamp Yes Yes No  Yes Yes 

Windows Media Player Yes Yes No  Yes Yes 

Audio Formats Support: Information about what audio file formats the players support.  

Lossy compression Lossless compression  
MP3  WMA RealAudio Vorbis AAC AC3 APE FLAC ALAC 

Flash Yes Yes No No  No  No No No  No 
Director Yes Yes Yes Yes Yes  ?  ?  ?  ? 
iTunes Yes Partial  No No  Yes No No No Yes 

QuickTime Yes No  No No  Yes No  ? No  Yes 
RealPlayer Yes Yes Yes Yes Yes  ?  ?  ?  ? 

Winamp Yes Yes No Yes Yes No No  No  No 
Windows Media Player Yes Yes No No  No  No No No  No 

Video Formats Support: Information about what video file formats the players support.  

 MPEG-1 MPEG-2 MPEG-4 WMV RealVideo Theora Flash 
Flash Yes Yes No Yes No No  Yes 

Director Yes  ?  ? No Yes  ? Yes 
iTunes Yes No  Yes No No No Yes 

QuickTime Yes No Yes No No No Yes 
RealPlayer Yes  ?  ? No Yes  ? Yes 

Winamp Yes No  No  Yes No  No No 
Windows Media Player Yes Yes No Yes No No  Yes 

Container Formats Support: Information about what container formats the players support.  

 AVI ASF QuickTime OGM Matroska MP4 
Flash Yes Yes No No No No 

Director Yes  ? Yes  ?  ? Yes 
iTunes Yes  ? Yes  ?  ? Yes 

QuickTime Yes No  Yes No  ? Yes 
RealPlayer Yes No No  ?  ?  ? 
Winamp Yes No No No No Yes 

Windows Media Player Yes Yes No No No No 
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13 AXMEDIS PC Player: Work performed (DSI) 
 
Two prototype players have been developed. The first one exploited the features of Microsoft Foundation 
Classes and ActiveX in order to rapidly develop a user friendly graphical interface able to open and display 
objects and the associated AXMEDIS hierarchy. 
The second player is directly based on the AXMEDIS components not using the ActiveX. 
 
The AXMEDIS PC Player allows to: 

• load an AXMEDIS object 
• browse the content in the object (only resources) 
• hide/show the AXMEDIS hierarchy with the tree view showing the resources in the object 
• get the content count (how many resources/objects are present in the object) 
• play/stop the content fruition for audio, video, document and external resources 
• view of metadata 
• make a sliding show of all the images that are present in the object 

 
The following are snapshots of the AXMEDIS PC Player. 
 

 
 
The content of the AXMEDIS object may be browsed using the arrows in the toolbar or using the hierarchy 
view (opened using the button in toolbar) 
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14 AXMEDIS PC Player ActiveX based (DSI) 
 
The preliminary prototype of the AXMEDIS PC Player allows to: 

• load an AXMEDIS object 
• browse the content in the object (only resources) 
• hide/show the AXMEDIS hierarchy with the tree view showing the resources in the object 
• get the content count (how many resources/objects are present in the object) 
• play/stop the content fruition for audio, video, document and external resources 
• view/load/edit/save of metadata in XML 

 
Selecting the File/Load… in the menu it is possible to load an object. When an object is loaded his first 
resource in the hierarchy is automatically showed or played. 
 

 
Figure 14 – AXMEDIS PC player rendering an ActiveX image 

 
Note: in the figure above the ActiveX is only the image and not the buttons 
 
When the Hierarchy button is pressed, the AXMEDIS Hierarchy is shown: 
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Figure 15 – AXEDIS hierarchy shown with the resource 

 
When  the Dublin Core element in the tree view is selected it is possible to edit, view, load and save 
metadata in XML format. 
 

 
Figure 163 – AXEDIS Dublin Core metadata view 

 
When a resource is selected in the tree view, the resource is played or visualized. 
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Figure 174 – Example of image resource view 

Through the navigation buttons it is possible to view of play the next or the previous resource. Also the 
content count with the total number of resource available in the object is showed. 
 

 
Figure 185 – The navigation buttons 

 
Through the Play/Pause and Stop buttons it is possible to control an audio or a video resource playing. 

 
Figure 196 – The Play/Pause and the Stop buttons 

 
All types of resources managed by the AXMEDIS Editor are also visualized or played in the Pc Player 
ActiveX based. 
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15 SMIL Player in AXMEDIS player (EPFL) 
The SMIL player used in AXMEDIS will be based on the AMBULANT  SMIL Player. The developed 
prototype of the AMBULANT SMIL player running embedded in a wxWidgets application can be used by 
users to perform the standard operations of a player: play, stop, pause, close and open a SMI L resource from 
an AXMEDIS object.   

15.1 SMIL Player in AXMEDIS player: Work performed (EPFL) 
The SMIL player used in AXMEDIS will be based on the AMBULANT  Player. The AMBULANT Open 
SMIL Player is an open-source, full SMIL 2.0 media player. It is intended for researchers and developers 
who want a source-code player upon which they can build higher-level systems solutions for authoring and 
content integration, or within which they can add new or extended support for networking and media 
transport components. The AMBULANT player may also be used as a complete, multi-platform media 
player for applications that do not need support for closed, proprietary media formats. The AMBULANT 
player written in C++, is distributed under a modified GPL license,  and it is available for Windows, Linux, 
and Macintosh. 
 
When the user wants to display the SMIL component, the Player will extract it from the AXMEDIS Object, 
uncompress it from binary to a media file and store it as a temporary file on the disk. The SMIL file is  
described in section 8.1.2 as follows: 
 
<?xml version="1.0" encoding="UTF-8" standalone="no" ?> 
<smil> 
 
  <head> 
    <layout> 
      <root-layout background-color="red" height="600" id="rootlayout" 
title="AXMEDIS" width="800"/> 
      <region height="143" id="RegionName1" left="105" top="124" width="104"/> 
      <region height="145" id="RegionName2" left="295" top="125" width="235"/> 
      <region height="147" id="RegionName3" left="234" top="287" 
width="357"/></layout> 
  </head> 
 
  <body> 
<par> 
    <audio begin="2" end="16" region="RegionName1" src="Reference1"/> 
    <video begin="6" end="21" region="RegionName2" src="Reference7"/> 

<video begin="2" end="14" region="RegionName3" src="Reference5"/> 
</par> 
  </body> 
 
</smil> 
 
The src value refers to the resources contained in the AXMEDIS Object, the player extracts relevant media 
resources from the AXMEDIS Object, stores them as temporary media files on the disk. After this, the 
Player will replace the <body> part of the above file with these directories of temporary media files and 
returns them to a new temporary SMIL file with the <body> part as follows: 
 
<body> 

    <audio begin="2" end="16" region="RegionName1" src="C:\Temp\Birthday.mp3"/> 
    <video begin="6" end="21" region="RegionName2" src="C:\Temp\BPz3-g.mpg"/> 
    <video begin="2" end="14" region="RegionName3" src="C:\Temp\Fz3s.mpg"/> 
  </body> 
 
However this is a temporary solution a way to get resources without saving them to disk have to be studied. 
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It works but it consumes a lot of memory space. Considering the limited space in different clients, such as 
PDA or mobile phone, this may does not work.  
 
How to play a SMIL component directly from AXMEDIS object? 
This section attempts to explain the basic structure of the internal SMIL Player by loosely explaining what happens 
when you run it and play an AXMEDIS object. The main mechanism and process are based on those of AMBULANT 
SMIL player. We modify the section of generating data source to get it integrated with AXMEDIS editor. If you want to 
have a better knowledge of this mechanism, please check AMBULANT website and it will definitely help you to 
understand our method here.  
 
1. Opening a SMIL component inside an AXMEDIS object 
When the user selects Open (or double-clicks) we need to get the data of the SMIL component from AXMEDIS object. 
It generates the decompressed stream and gives it to the Player. There is an XML parser as a third party library to parse 
the stream into a DOM tree and create a player to play that DOM tree. In addition, we need to tell the player how it can 
obtain media data, create windows and more, because the media data are described as “AxIndex” and the content of 
media data are stored in the AXMEDIS object.    
 
Most player implementations (the Windows player is an exception) have a class with a name like mainloop to handle 
this. Such a mainloop is created per SMIL component. This mainloop object will first create the various factories and 
populate them: 
 
•  A window factory is usually implemented by the main program itself. The player will call this when it needs a 

window. Usually the first request to create a window will actually return the document window (after resizing to the 
appropriate size). 

•  A global playable factory is created. This is the object the player will use to create renderers for the various media 
types. The global factory is filled with the various renderers this ambulant player supports. In effect, this is the step 
where you get to decide how various media are rendered. 

•  A datasource factory is created and filled with the factory functions that will create datasources for audio, video or 
other, raw, data such as text. The factory functions that are added to the datasource factory partially determine how 
data is retrieved over the net, which protocols and formats are supported and such. Partially, because some media 
items (audio and video, notably) may be rendered by simply passing the URL to some underlying media 
infrastructure such as DirectX or QuickTime. Note, since we will directly retrieve the resource through 
“AxIndex” instead of using original URL, we will modify the code here. i.e., to generate the data source or 
data stream from “AxIndex”.  

 
Next the factories are put together in a factories struct, and if the architecture supports dynamically loadable plugins we 
get the plugin engine singleton object and ask it to load the plugins. This will search the plugin directories for dynamic 
objects with the correct naming convention, load them, and call their initialize routine. The factories object is passed to 
the initialize routine, so the plugin itself can register any factories it wants. 
 
The next step is to create the DOM tree. One way to do this is to use to “axom::getAxObjectElement(*resourceIndex)” 
to read the SMIL component from the AXMEDIS object, and then pass this data to document::create from string. This 
will return a document object. This object contains the DOM tree itself (implemented by the node object) and some 
context information. Note: In AMBULANT SMIL Player, The context information are XML namespace 
information, original URL for resolving relative URLs used in the document, a mapping from XML IDs to node 
objects. Since we will directly retrieve the resource through “AxIndex” instead of using original URL and 
resolved relative URLs, we have to modify the code here.  
 
The final step is to create a player object. This is done through create smil2 player, passing the document, the factories 
and one final object, embedder. This object is again implemented by the main program, and implements a small number 
of auxiliary functions, such as opening an external webbrowser or opening a new SMIL component. 
 
2. Creating the player (same as AMBULANT) 
When the smil player object is created it gets the document, factories and embedder arguments. It now needs to create 
its internal data structures to facilitate playback later on: 
 
•  A timer and event processor are created. The timer is the master clock for the presentation, and the event processor is 

a runqueue object that is used for low-level scheduling. Whenever the high-level scheduler wants some code to be 
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executed it will add an event to the event processor, possibly with a timeout and a priority. The event processor runs 
in a separate thread, waits for events in it runqueue to become elegible and then runs them. This mechanism is the 
underlying engine that makes the whole player work, anything that needs to wait doesn’t do so inline but uses the 
event processor to get a callback at a later stage: the scheduler, renderers needing input data, etc.  

•  A layout manager is created, which will be used to find where media items should be displayed. The smil layout 
manager reads the <layout> section of the DOM tree and builds a parallel layout tree (which also contains 
information on some of the body media nodes, the ones that have layout information themselves) of region node 
objects. Then this tree of region node objects is converted into a tree of surface template objects. To create toplevel 
windows the new topsurface method of the window factory is used, and subregions are created using the new 
subsurface method of their parent surface template. The layout manager also contains mappings to be able to get from 
a node to the corresponding region node to the surface template, and this will be used during playback to play media 
items in the correct location.  

•  A timegraph is created. This is the internal representation of the <body> part of the DOM tree that will be used to 
play back the document. In addition a scheduler is created, which will interpret the data in the timegraph. 

 
3. Starting playback 
When the user selects Play we call the start method of the player object. This will invoke start on the scheduler. This 
will start playing the root node of the tree. The scheduler will now do all the SMIL 2 magic, whereby events such as the 
root node being played causes other nodes to become playable, etc. At some point a media item needs to be rendered. 
The scheduler calls the new playable method from the global playable factory. This will pass the DOM node to the 
various factories until one signals that it can create a playable for the object. In addition, if the playable has a renderer 
(which is true for most media objects, but not for things like SMIL animations) we also obtain the surface on which the 
media item should be renderered, through the layout manager. We then tell the renderer which surface to use. Soon 
afterwards the start method of the playable is called to start playback. An average renderer will need to obtain data 
from AxIndex (note, originally, AMBULANT obtains from URL). It will do this by creating a datasource for the 
document through the datasource factory object. Every time the renderer wants more data it calls the start method of 
the datasource passing a callback routine. Whenver data is available the datasource will schedule a call to the callback 
routine, through the event processor. When the renderer has enough information to start drawing it will not actually 
draw immedeately, but it will send a need redraw call to its surface. This will percolate up the surface hierarchy, to the 
GUI code, and eventually come back down as a redraw call all the way to the renderer (assuming it is not obscured by 
other media items, etc). At this point the bits finally get drawn on the screen. Whenever anything “interesting” happens 
in the renderer (the media item stopped playing, the user clicked the mouse, etc) it invokes a corresponding method on 
its playable notification. This interface is implemented by the scheduler, and these notifications are how the scheduler 
gets informed that it can start scheduling new things, etc. 
 
4. Steps for real integration 
Steps for ambulant player integration: 
 

- Modifying the SMIL file input to direct access 
- Modifying text/image/audio/video renders to accept a link to an AxObject 
- Modifying memfiles for direct playing text and images 
- Creating a DirectShow input with direct play. (In common with DSI) 
- Adapting the output to fit the AxEditor frames 

 
 
Modifying the SMIL file input to direct access: 
This is done by defining new methods for DOM Tree/document generation and by using these new methods in a new 
player constructor with stream interface. 
 
Modifying text/image/audio/video renders to accept a link to an AxObject: 
There we have to modify all functions that call loading(render) function to accept an AxObjectManager pointer to 
access the played data. In the renders functions, we have to solve the “url” to AxIndex to get the datas (done by 
FindResourceIndex in memfile). 
 
Modifying memfiles for direct playing text and images: 
Memfiles are used in text and image playing. By modifying them we allow direct access for image and text. For audio 
and video, we add all necessary static method for getting istream* from “url”. 
 
Creating a DirectShow input with direct play. (In common with DSI): 
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We have to modify the way Ambulant calls DirectShow to be compliant to istream*. For this we have to define a new 
DirectShow SourceFilter. And connect this new SourceFilter to the Renders. 
 
Adapting the output to fit the AxEditor frames: 
This consists in several little modifications for frames. 
 

•  
 

Figure 20 – Sample SMIL presentation rendered by the internal AXMEDIS SMIL player 

 

15.2 SMIL Player in AXMEDIS player: problems and actions (EPFL) 
 
How to use DirectShow to play Audio and Video resources 

1. DirectShow has no default interface for (stream/buffer) 
2. DirectShow moved from DirectX SDK to Platform SDK – some problems with missing files. 

We planned to solve the above problems with the following methods:  
1. Creating a new Source Filter (Output Pin) for DirectShow 
2. Connecting the new Source Filter to the render 
 
16 MPEG-4 OSMO Player in AXMEDIS player (EPFL) 
The MPEG-4 internal player constitutes a slightly different case of Media Player for AXMEDIS. In fact 
MPEG-4 itself not only supports media content in terms of different media files or streams, but it satisfies a 
much more relevant number of requirements providing tools to multiplex and synchronize all the elementary 
media streams even in the wider context of a rich multimedia scene (including user navigation, user 
interaction, inherent behavior of the scene and presentation of natural and synthetic sounds and media). All 
of these  are included in a compliant MPEG-4 Player, so that any kind of control description or rule is 
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normally coded inside the mp4 file or systems specific stream. The overall architecture of the Player in 
accordance to the MPEG-4 specification is reported in the following picture (control flow in dotted lines): 
 

For all these reasons including the MPEG-4 Player into the internal AXMEDIS resources may result rather 
straightforward as only a very reduces number of commands are transmitted from the current Player user 
interface to the underlying architecture (executive control). 
 
The overall player interface can be based on the abstract class axMediaPlayer (see previous sections above), 
through the specialized class axMPEG4Player. The functionality that is implemented by this class is rather 
reduced in terms of operations, given the complex architecture of the player itself and associated content 
described above. 
Currently the MPEG-4 Player can allow two working modes: 
• Network Channel (DMIF): in this modality the only possible command is open of a network address 

After this is done by validation of the rights through the AXOM, all the streaming content is received 
and rendered including audiovisual objects and scene/interaction. Connection is closed when a new one 
is open or the Player is closed.  

• File (MP4): in this modality and under the AXOM control load of a file is possible and content is 
available as for the network modality. In any case this mode may allow the implementation of simple 
axMedia functions like start/stop/pause since file is available and no indeterminate buffering is 
necessary. All more than this may be really complex as it will interact with the decoding process of all 
built-in MPEG-4 decoders. More complex behavior for multiple media in AXMEDIS can be 
implemented in single objects linked through SMIL in the main AXMEDIS Player (and Editor). 

 
Once open or load are allowed, user activity can be monitored by built-in tracing capabilities and possibly 
reported: it is in any case MPEG-4 activity in terms of operation on the MPEG-4 content by built-in sensors 
and controls. 

16.1 MPEG-4 OSMO Player in AXMEDIS player: Work performed (EPFL) 
• Directly display mp4 resource without any temporary files. 
How to directly access the MPEG-4 resource from AXMEDIS object without saving a temporary file？The 
OSMO player is based on the GPAC library.  GPAC is written in C for portability reasons (embedded 
platforms and DSPs), attempting to keep the memory footprint as low as possible. GPAC provide a possible 
work mode on the MPEG-4 file, however, AXMEDIS editor only provide a C++ istream class interface to 
access the MPEG-4 resource in AXMEDIS object.  A simple solution for this problem is to extract the 
MPEG-4 resource and save them into a temporary MPEG-4 file. But this solution is not optimal because it 
requires an addition disk space for storing the temporary file. 
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 A better solution is that the player directly accesses the MPEG-4 resource from AXMEDIS object without 
saving a temporary file. To implement this solution, GPAC interface has to be changed. A new interface has 
been developed and it consists of several interface functions, which make it possible for GPAC C code to 
operate on a C++ istream class instead of a file. Then some interface source code in GPAC has to be 
modified, and all the source code relative to file operation has to be replaced by the new interface, which is 
used for player to access the MPEG4 resource from AXMEDIS object using C++ istream class.   
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•  
 

 

16.2 MPEG-4 OSMO Player in AXMEDIS player: problems and actions (EPFL) 
Mp4 resource is currently displayed in an extra frame instead of from the AXMEDIS resource editor. 
We have to verify the feasibility of displaying mp4 resource with the current axeditor window (need to 
check with DSI conformance of AXOM display specification with ISO MPEG-4 Systems Standard) 
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AXMEDIS object using an ISTREAM operation interface 

without a temporary file   
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17 Comments on the full round of AXMEDIS process 

o User registration and certification 
 Now it is off line since the CA and the AXCS are not connected 
 Certificates are produced manually 

o Tools registration 
 Ok 
 Enabling code, is done automatically 
 Where to put the enabling code into the certificate. 

o Production of a new objects 
 What you can do:  

 Putting Single resource, multiple resources, etc. 
 Using Drag and drop, etc… 

 Definition of metadata, etc… 
 To be improved: Definition of internal PAR, loading them from some db 
 To be improved: Definition of the par a subset of IPAR 

 Problems: 
 SMIL editor 

o Request of AXOID 
 What you can do:  

 Direct connection with the AXCS 
 What is missing: 

 New service for getting the new AXOID format 
 Realized but not ready, from AXCS 

 Problems: 
 We are using now the old format of AXOID 

o Object protection 
 What you can do:  

 We can protect with the default parameters 
 What is missing: 

 Management and definition of additional parameters (DSI, FHGIGD) 
 Problems: 

 None a part for the missing flexibility 
o Registration of the object on AXCS, posting of protection information on 

AXCS 
 What you can do:  

 Ok, with the old version of the WS registration service 
 When you save an object with the final AXOID on the database the DB ask you to make 

the registration  
 What is missing: 

 New version with the new AXOID 
 Management of parameters 
 Etc… 

 Problems: 
 New version with the new AXOID version and new parameters 

o Object save, download, distribution 
 What you can do:  

 Ok 
 Ok even with classical P2P tools 

 What is missing: 
 AXMEDIS Azureus P2P 

 Problems: 
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 Missing P2P distribution 
o Production of the license 

 License can be produced from  
 AXMEDIS Editor internal License Editor 
 Independent License editor 
 It possible to create a license and post on the PMS 

 FUPF Reporting 
 What is accessible: PMS Client – PMS Server allow creation and management of licenses 
 What is missing: Pending integration issues from DSI. Pending interface improvements. 
 Which problems are pending: PAR discussion  Reference to PAR from AXMEDIS object 

 Problems and work to be done 
 The present version works only if the license is produced manually 
 The DRM editor talks only with one PMS Server, the Server URL has to be moved into the 

Configuration.  
 No ask of AXCID and AXOID, implicit values 
 First case: Distributor producing, protecting and distributing 

 Verification: PAR license verification  
 SECOND case: Content  producers, protecting and distributing to distributor 

 Verification: 
 Parent license 
 PAR license verification  

 Posting of the license on the PMS automatically 

o Object usage on a player 
 What you can do:  

 It does not work if you do not have the license 
 Allow you playing when you have the right license 
 ….. 

 What is missing: 
 The user certificate has to be added on the computer manually 
 The AI has to be use to automatize this process 
 ……nothing up to now……. 

 Problems: 
 ……testing pending……. 

 
 
18 AXMEDIS PDA Player (TISCALI, DSI)  
 

18.1 AXMEDIS PDA Player: Work performed 
 
• The porting of AXOM libraries over PDA platforms and that of following well-known libraries: 

o STLPort version 5.0.1 or greater. This is an open source implementation of the C++ Standard 
Template Library (STL). It has already been ported for eVC4 and WCE platforms. In that way, 
AXOM code, which relies on STL classes, should not be changed during the porting. 

o Xerces-C++ version 2.7.0. Some effort has to be done to port this library on PDA platform since 
Xerces community does not provide any hint for doing that port. Only general guidelines are 
available. 

o OpenSSL version 0.9.8a or greater. It already provides means to be ported on PDAs. The main 
issue in doing that is the introduction of a support library (WCECompat version 1.2) which 
provides to OpenSSL some feature of the C Runtime Library which are missed in the eVC4 
libraries. In order to avoid complicated integration among STLPort, WCECompat and standard 
eVC4 CRT it is suitable to use OpenSSL as dynamic library on PDA. 

o Missing of: libcurl.lib for http, ftp protocol implementation 
o Missing: estimation of fingerprint 
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o Missing: management of the current directory, use as current directory the path of the executable 
file. 

• Porting of the OSMO MPEG-4 player 
o MS Windows Pocket PC 2003 
o MS Windows Mobile 2005 
o Visual Studio 2005 
o Moving its user interface to AXMEDIS player one 
o The migration of the interface to go into that of AXMEDIS is needed 

• Porting of the SMIL ambulant player 
o SMIL ambulant player is well document it can be done 
o SMIL ambulant can be played into the rights frame of the AXMEDIS editor and may be on 

players…………. 
 

18.2 AXMEDIS PDA Player: problems and actions 

• The integration with OSMO and the SMIL has to be performed  
• Stream from AXOM and you pass the stream to OSMO an SMIL 
• The user interface has to be developed 

o The buttons and other controls of SMIL and OSMO have to be moved under AXMEDIS user 
interface of editor and players 

o Hierarchical viewer…may be not ?? 
o The hierarchy for the final user can be reproduced with only what has to be seen by the user in 

SMIL or HTML 
• PMS Client has to be ported on PDA 

o To be done, 
o First version can be without secure cache, ODBC simulator, C++ lib for SQL-light  
o A simple version of secure cache will be needed later 

• Porting of the SMIL ambulant player 
o It is based on Directshow for  passing  resources to the renderer, this mecniams has to removed 

since the player has to be based on streaming and using may by OSMO or onother audio visual 
stream rendering, for example that provided by DSI.  

o SMIL ambulant player is well document it can be done 
o SMIL ambulant can be played into the rights frame of the AXMEDIS editor and may be on 

players…………. 
• OSMO 

o Configuration problems  
o Take the configuration file of OSMO, GPAC.cfg 
o The player from AXMEDIS editor is not in the frame on right but in a different window 

• Porting on HTML and  document view (SEJER) 
o This issue has to be better analysed to the see if the issues developed on PC can be ported on 

PDA 
• Other Issues: 

o At the end the player could be to large, now it could be in the range of 20Mbyte 
o The target should be Windows Mobile 5, this is one more reason to go on VS2005. 
o Now is on Pocket PC 2003 
o ….. 
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19 AXMEDIS Mobile Player (DSI)  
 

19.1 AXMEDIS Mobile Player: Work performed 

• Example and experiments done and current: 
o DSI: done, Player Symbian in C++ with progressive download 
o DSI: started, player pure java, with MPEG-2 streaming, single resources, few metadata 
o DSI: done, p2p among mobiles 
o DSI: started, scenarios editor for SMIL scenes 

• Mobile player hyp: 
o Take up ELTEO  is requesting the mobile player distributing video and audio 
o Take up DELTA is requesting the mobile player distributing video and audio, menu’ flash or 

SMIL, 
o Take up 4HOME, OMA players  

• Possible Solutions: 
o Symbian in C++, too many cross compiling 
o Pure java, simpler, remake from C++ 
o Windows Mobile 5, pratically derived from PDA version C++ 

• Additional features 
o Protection of the HTML, SMIL, Flash 
o A SMIL player in Java, for mobile is accessible 
o At least single resources 
o Streaming on MPEG-2 of the MPEG-21 files 

19.2 AXMEDIS Mobile Player: problems and actions 

• Possible Decision: 
o Pure Java implementation of simple player MPEG-21/AXMEDIS 

 Probably JAVA profile with Threads will be needed ?? for the unprotection 
o Usage of the local video-audio renderer 
o Implementation or reuse of a simple SMIL player for mobile in java at least for managing menu, 

images, etc., execution of URI and links 
o Production of the MOBILE version of AXMEDIS objects from AXMEDIS editor, with 

decomposition of AXMEDIS Object Model and SMIL if needed 
 The same features will be accessible on AXCP 
 Scripts have to be produced for testing and as examples 

o Possible support of AXOM with hierarchies into the java player,  
 first implementation with simple one layer support, with reduced metadata, etc. 
 then addition of hierarchy 

o protection processor: 
 only one level of protection 
 only one algorithm in the first version, more later 
 small parameters  
 fingerprint based on IMEI 

o Direct connection with PMS Server via protected channel, with SSL,  
 Certificate download for the SSL 
 no usage of the secure cache (at least for the first version) 
 simple secure cache later 

• Decisions: 
o Develop a pure java version of AXMEDIS player, as described above 

• Time schedule: 
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o First Usable version for March/April 2007 
• Proposed Partners committed, under verification: 

o TISCALI: SMIL and play, user interface 
o DSI: AXOM, Protection processor, connection, certificate,  
o EXITECH: RX stream MPEG-2, for realizing the streaming effect/progressive download, usage 

of a Server MPEG-2 stream  
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