

AXMEDIS Tutorial on Content Processing

Version 1.4 December 2006

Martin Schmucker – Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany

Ivan Bruno – Department of Systems and Informatics (DSI-DISIT), University of Florence, Italy

Maulik Sailor – Intelligent Media Systems & Services (IMSS), University Reading, United Kingdom

AXMEDIS attacks the challenges of digital content processing and distribution

Automating Production of Cross Media Content for Multi-channel Distribution

Table of Content

- Tutorial Rationale
- Tutorial Objectives & Outcomes
- AXMEDIS Content Processing (AXCP) Part I
 - Overview
 - Automation
 - Life-Cycle
 - Core Functionality
 - Extended Functionality

Table of Content (II)

- AXMEDIS Content Processing (AXCP) Part II
 - AXCP Engine
 - ► AXCP Grid
 - Usage Scenarios
- Summary, Conclusion and Outlook
- Discussion, Questions and Answers

Tutorial Presentation

Rationale

- Recommended: General Tutorial
- Focus: Automatic Content Processing
 - Underlying basics concepts
 - Usage examples of tools
- Discussion of limits and constraints
- Documents are available at http://www.axmedis.org

Tutorial Presentation (II)

Intended audience

- Decision makers
- Technical managers
- Programmers
- People in the areas of
 - Content production
 - Content distribution and content protection

Prerequisites

- Basic knowledge of production cycle and tools
- Basic knowledge of distribution and protection tools

Tutorial Objectives

- Recall overall automatic content processing process
- Overview on individual tools
- AXMEDIS content processing framework usage know-how
- Interaction with tools
- Description of usage scenarios

Tutorial Outcomes

- How to use content processing tools in the AXMEDIS framework
- How to automate content production and processing using AXMEDIS
- Interaction of workflow and content processing
- Distribution of workload by using the AXMEDIS GRID distributed environment

AXMEDIS Tutorial on Content Processing - Part I

- Current Challenges and Key Issues
- AXMEDIS General Overview
- AXMEDIS Content Processing

Current Challenges

- Very fast growing digital-content market
- Major limitations include:
 - Convergence of the media, interoperability of content
 - DRM applications and introduction in several distribution channel
 - Massive processing of content processing and distribution
- Real challenges that are currently being discovered
 - Business-to-Consumer Scenarios (B2C)
 - Business-To-Business Scenarios (B2B)
- Required: innovative means for various scenarios

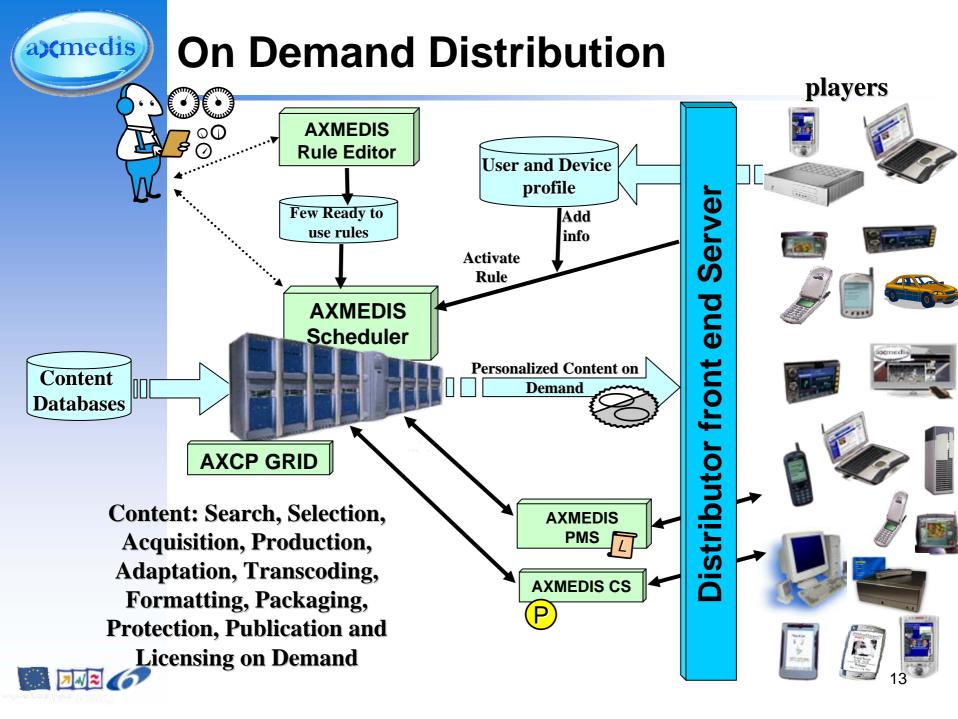
Key Issue: Flexibility

- Devices and content delivery formats are not static
 - Emerging devices and formats
 - Dynamic market in terms of possibilities and content types and formats
- Required: Flexible Software Tools
 - Support of numerous content types and formats
 - Support of different devices

Key Issue: Automated Processing

On-demand distribution:

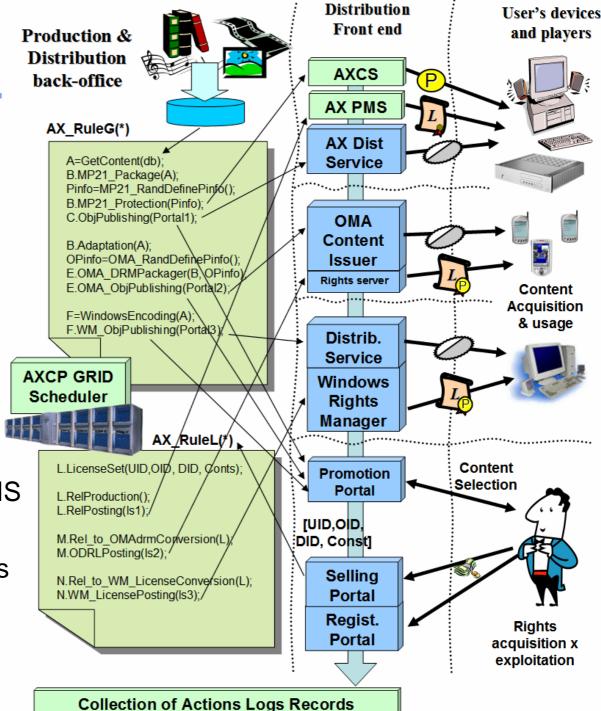
- Production on the basis of requests and profiling (user device, network, etc.), etc.
- Request depending adaptation and processing


Multi-channel distribution

- Differing receiving devices
- Differing distribution modalities
- Multiple interoperable DRMs, license chain processing

Content monitoring

- Broadcast channels and networks,
- Peer-To-Peer networks, Websites, etc.


a) medis **Multichannel Distribution Augmented License** Distribution Server Front-end Get the content Content unprotecting and rights exploitation **License distribution** and player/device verification and Ask for the License supervision **AXMEDIS** Content License **Processing** Users **Production Selling Servers Tools** Front- end and devices **License distribution** and player/device k for the License verification and supervision Content unprotecting and rights exploitation Get the content **Distribution Server Front-end Open Licensing Model**

Different channels

Different DRMs

- AXMEDIS
- ► OMA
- WindowsMedia

AXMEDIS Advantages

Flexible and innovative solutions for

- Content production and management
- Content distribution and aggregation
- Digital Rights Management (DRM)

Cost Efficiency through underlying principles

- Automatic massive content production and processing
- GRID technology
- Extensibility through plug-ins technology

Cost Efficiency through the integration with

- Existing Content Management Systems (CMS)
- Existing e-Service, e.g. back-office and workflow support

AXMEDIS Advantages (II)

AXMEDIS Automated Content Processing

- Massive and small scale processing
- Locally performed or Workflow controlled
- On any kind of Digital Resource not only AXMEDIS objects

AXCP Applications for massive processing as

- Production/packaging platform for producers and integrators
- Protection of objects, and protection information processing
- Transcoding/adaptation platform for distributors
- License Production, or as License Sever/processor
- etc.

Summary: AXMEDIS

- Intelligent and flexible solution
 - Automated content processing and production
 - Efficient usage of available resources
 - Interoperability with existing infrastructure
 - Automatic provision of new service

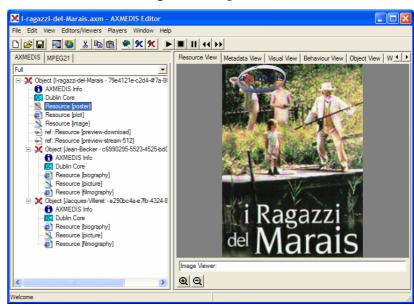
Content Processing With AXMEDIS

Automation of content processing

AXMEDIS General Overview

- AXMEDIS Editor
- AXMEDIS Automatic Content Processing
- AXMEDIS Architecture
- AXMEDIS Content Processing

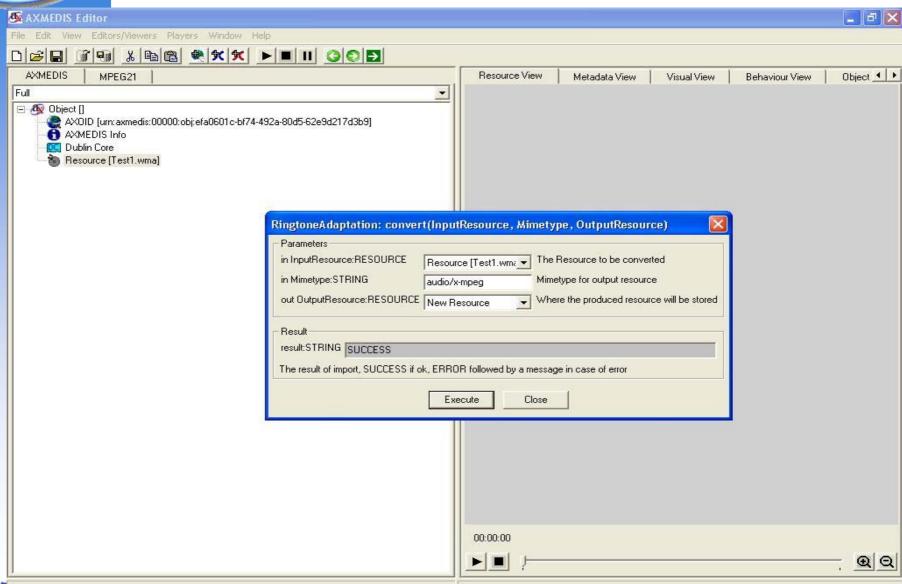
AXMEDIS Editor


- manual production of AXMEDIS objects
- inspection of automatically produced objects
- finishing AXMEDIS objects pre-produced automatically
- AXMEDIS Tutorial on Content Production,
 - → LT1: Tuesday, 12th (yesterday)

AXMEDIS Editor

- It integrates many Editors & Viewers to handle all the aspects of the AXMEDIS Objects production
 - Resource
 - Metadata
 - DRM
 - Protection
 - Presentation
 - Workflow
 - Annotation
 - **.**..

- AXMEDIS Tutorial on Content Production,
 - → LT1: Tuesday, 12th (yesterday)



Ringtone Adaptation Plug-in

- Adaptation of Ringtones of popular formats
- Transcoding on-demand.
- Main functions
 - Convert to different formats
 - MP3, Wav, etc
 - Resample the Frequency, Bit rate etc
 - Clip to 5 sec, 30 sec clip etc

Convert to MP3

RingtoneAdaptation: convert_to_MP3(InputResource, OutputResource)

in InputResource:RESOURCE	Resource [Test1.wma	The Resource to be converted
out OutputResource:RESOURCE	New Resource	Where the produced resource will be stored
Result		
result:STRING SUCCESS		
3000E33		
The result of import, SUCCESS if o	lu CDDOD fallamad ku a si	

Convert to Wav

RingtoneAdaptation: convert_to_WAV(InputResource, OutputResource)

- Parameters		
in InputResource:RESOURCE	Resource [Test1.wma	The Resource to be converted
out OutputResource:RESOURC	New Resource	Where the produced resource will be stored
- Result		
result:STRING SUCCESS		
The result of import, SUCCESS if	ok, ERROR followed by a	a message in case of error
		4.
	Execute	Close

Resample

RingtoneAdaptation: resample(InputResource, OutputResource, OutputSamplingRate, OutputNumChannels, Outpu... 🔀

Parameters		
in InputResource:RESOURCE	Resource []	The Resource to be converted
out OutputResource:RESOURCE	New Resource 🔻	Where the produced resource will be stored
in OutputSamplingRate:UINT32	44100	Sampling rate of the output audio file (default: sampling rate of the input)
in OutputNumChannels:UINT16	2	Number of channels of the output audio file (default: number of channels of the input)
in OutputBitRate:UINT16	128	Bit rate of the output audio file - Only applies to compressed audio file formats (default: 64 kb)
Result result:STRING SUCCESS The result of import, SUCCESS if or	ok, ERROR followed by a n	nessage in case of error Execute Close

Convert & Resample

RingtoneAdaptation: convert_and_resample(InputResource, Mimetype, OutputResource, OutputSamplingRate, Out... 🔀

Parameters			
in InputResource:RESOURCE	Resource [Test1.wm;	The Resource to be converted and resampled	
in Mimetype:STRING	audio/x-mpeg	Mimetype for output resource	
out OutputResource:RESOURCE	New Resource	Where the produced resource will be stored	
in OutputSamplingRate:UINT32	44100	Sampling rate of the output audio file (default: sampling rate of the input)	
in OutputNumChannels:UINT16	2	Number of channels of the output audio file (default: number of channels of the input)	
in OutputBitRate:UINT16	128	Bit rate of the output audio file - Only applies to compressed audio file formats (default: 64 kb)	
Result			
result:STRING SUCCESS			
SUCCESS			
The result of import, SUCCESS if a	ik, ERROR followed by a m	essage in case of error	
	F		
		Execute Close	

GetInfo

RingtoneAdaptation: getInfo(InputResource, SamplingRate, NumChannels, Bi...

Parameters — — — — — — — — — — — — — — — — — — —		
in InputResource:RESOURCE	Resource [Test1.wma	The Resource to be converted
out SamplingRate:UINT32	44100	Sampling rate of the input ring tone
out NumChannels:UINT16	2	Number of channels of the input ring tone
out BitRate:UINT16	128	Bit rate of the input ring tone - (default: 64 kb)
out Duration:STRING	0:2:5:1	Duration of the Ringtone File

Result resultSTRING SUCCESS

The result of the operation, SUCCESS if ok, ERROR followed by a message in case of error

Execute

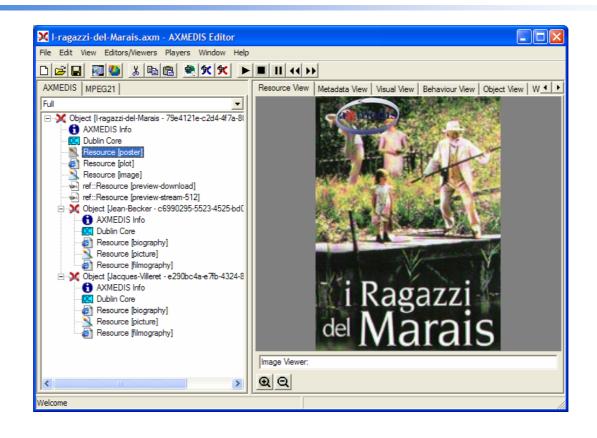
Close

Ringtone Adaptation: clip(InputResource, OutputResource, Mimetype, ReadStartingT...

Parameters		
in InputResource:RESOURCE	Resource [Test1.wnx 💌	The Resource to be converted
out OutputResource:RESOURCE	New Resource	Where the produced resource will be stored
in Mimetype:STRING	audio/x-mpeg	Mimetype for output resource
in ReadStartingTime:FLOAT	0.0	Starting time for the clip(default: beginning of the file)
in ReadEndingTime:FLOAT	30.0	Ending time for the clip (default: end of the file)

Result: STRING SUCCESS

The result of import, SUCCESS if ok, ERROR followed by a message in case of error


Execute

Close

AXMEDIS Editor

- AXMEDIS Tutorial on Content Production,
 - → LT1: Tuesday, December, 12th, 2006 (yesterday)

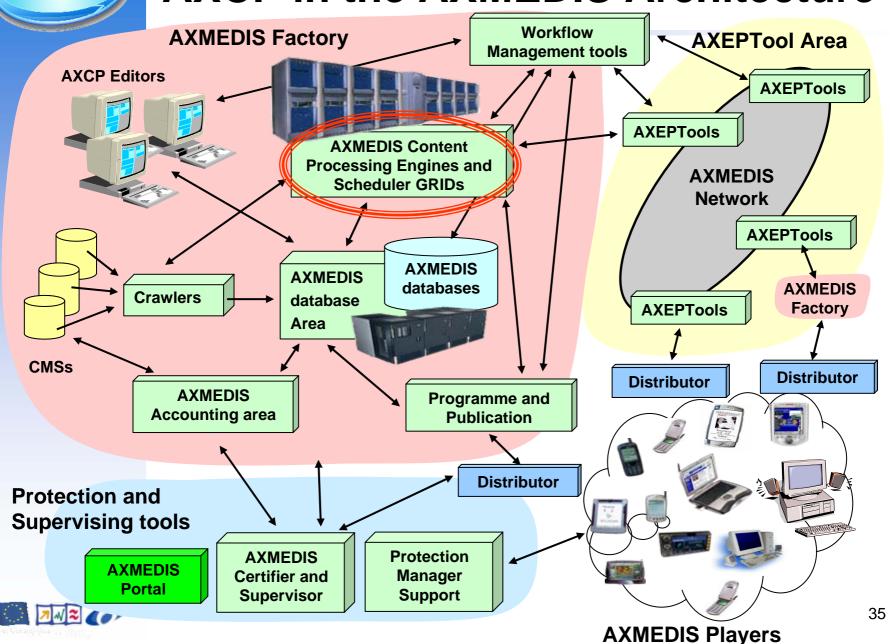
AXMEDIS Automated Content Processing Tools

Available functionalities in the AXMEDIS Framework

AXMEDIS Automated Content Processing Area

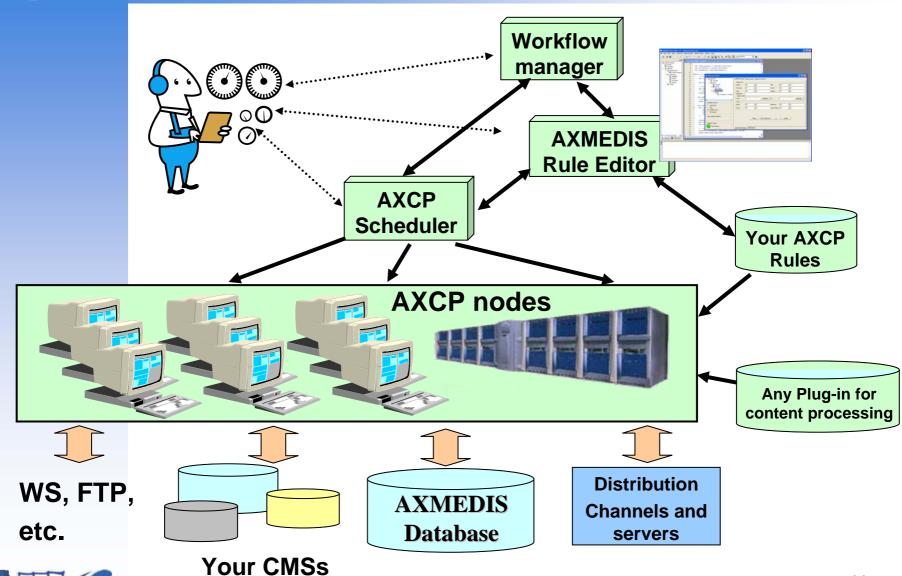
- Properties
- Architecture
- AXMEDIS Content Processing Engine
- AXMEDIS GRID

Automatic Content Processing


- Content distribution and production characteristics:
 - Content lifetime
 - Demand is time dependent
 - ...

Example:

- Creating a content for a current event
- ▶ Now: winter scenario ... started to snow (... or not)
- Manual production is (too) time consuming
- How can the AXMEDIS Automatic Content Processing (AXCP) Area support you?
 - Scalability
 - Extensibility
 - → Essential functionality to fulfil real world's requirements



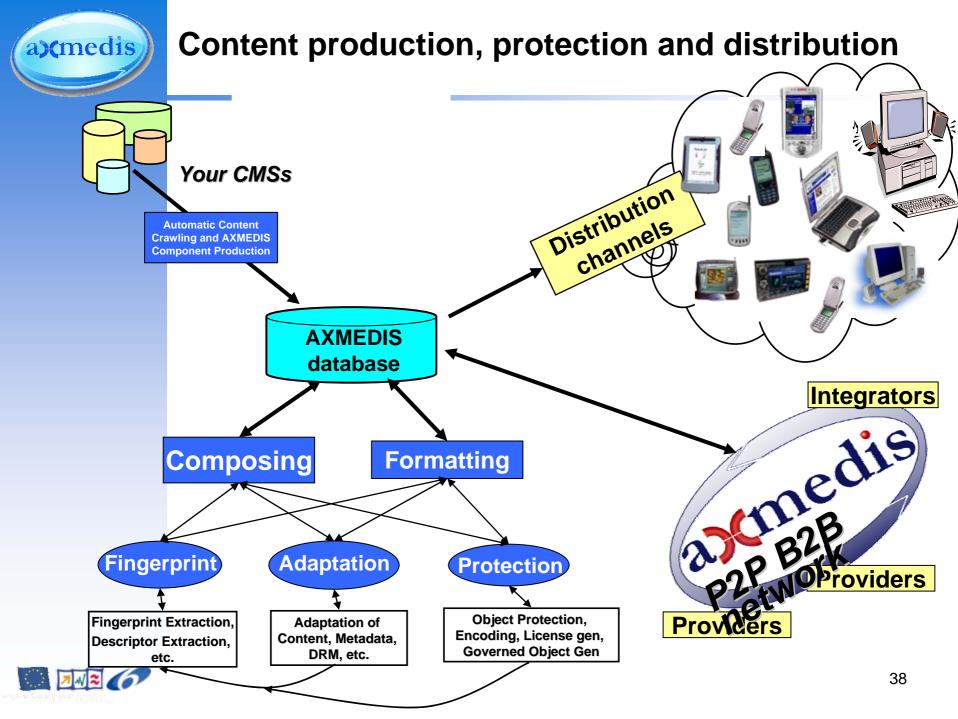
AXCP in the AXMEDIS Architecture Workflow Workflow AXEDIS Factoria Workflow Workflow AXEDIS Factoria Workflow

AXMEDIS Content Processing GRID

AXMEDIS Automated Content Processing Capabilities

Automated Content and Metadata Retrieval

- Content and Metadata Ingestion and Gathering
- Content Query, Retrieval and Storage


Automated Content and Metadata Processing

- Content Adaptation and Transcoding
- Metadata Generation and Mapping
- Content Composition and Formatting
- Content Protection and Licensing

Automated Content Distribution

- Content Publication
- Content Distribution
- Profile management and processing
- Production of Content on Demand

Content and Metadata Retrieval

Access to numerous existing DBs and CMSs for

- Content and Metadata Ingestion and Gathering
- Content Query, Retrieval and Storage
- Automatic migration of digital contents

Access to several different resources

- File Systems: Win, Linux, MAC, etc.
- ► ODBC, JDBC, etc.
- Native DB: DB2, Oracle, MS-SQL, MySQL, etc.
- Protocols: IMAP, POP, Z39.50, etc.
- XML databases

Automation of

Loading and saving of AXMEDIS objects

Content and Metadata Processing

Metadata Generation

- Calculation of Low and High Level Descriptors
- For AXMEDIS objects and included resources

Metadata Mapping

Managing generic, AXInfo and DublinCore Metadata

Content Composition

- Putting together content different kinds of raw assets to create a new digital item
 - → AXMEDIS Object (or MPEG-21 format)
- Composing different AXMEDIS objects selected from the AXMEDIS database

Content and Metadata Processing (II)

Content Adaptation and Transcoding

- Adaptation of content (digital item adaptation, DIA)
- ► For distribution via different channels to users' platforms such as i-TV, mobile, PC, etc...

Content Formatting

- Modifying digital resources according to a specific format
 - File format and properties
- Applying a (content dependent) formatting style
 - graphic layout
 - spatial constraints
 - quality limitations
 - synchronization between audio and images, etc.

Content and Metadata Processing (III)

Content Protection

- Preventing un-authorized content access
- Preventing un-authorized content manipulations

Content Licensing

- DRM and License production
- DRM and Licence processing
- Offline and on-demand services

Content Distribution

Content Publication

- metadata adaptation and mapping
- publication of AXMEDIS objects on external channels in the B2B distribution (AXEPTools)

Content Distribution

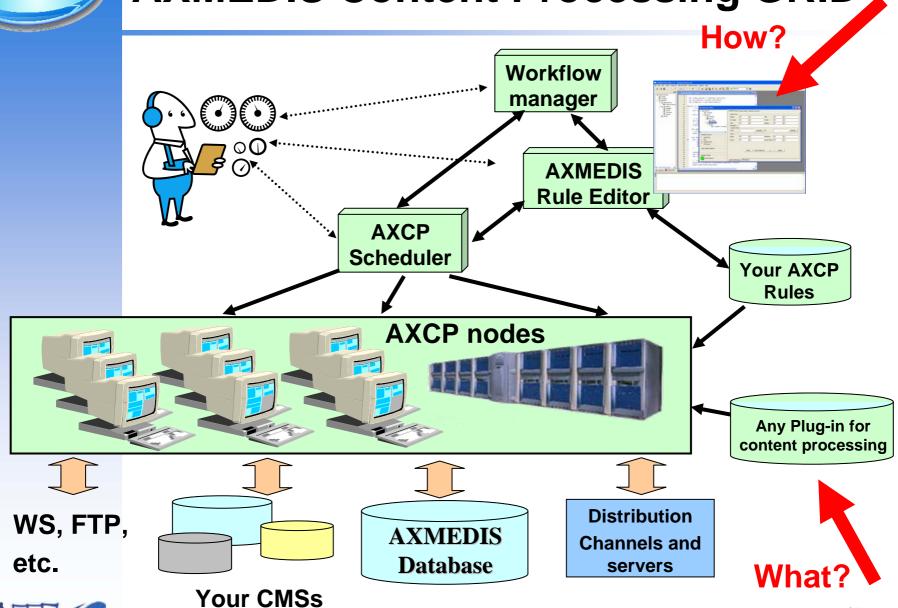
AXMEDIS objects distribution via available channels in the B2C scenarios

Profile management and processing

Considering the characteristics of transmission channels and receiving device

Production of Content on Demand

Creating new content upon customer's request


Extensibility

- Provided functionality is extensible
- Plugin Interface
 - To include further existing tools
 - To include future tools
- Plugin SDK (Software Development Kit)
 - For easy integration of your algorithms as plugins
 - Including documentation and source code examples

AXMEDIS Content Processing GRID

How can you automate content processing within AXMEDIS?

Definition of rules for automated content processing

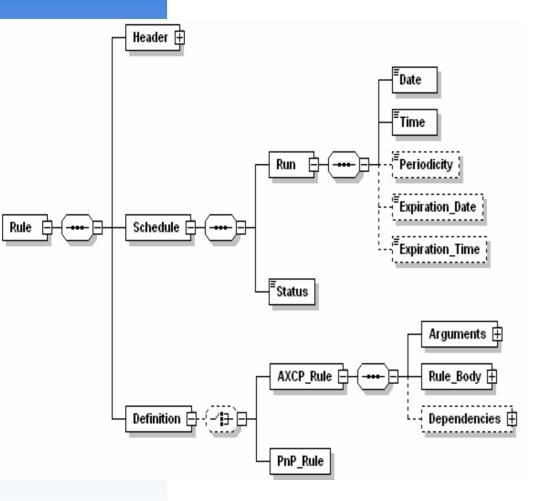
AXMEDIS Scripting Language

- Rules are expressed in a scripting language
 - What is a rule?
 - What can be done with a rule?
 - How to write, test and finalize a rule?
 - How to execute a rule?

Rules within AXMEDIS

An AXCP Rule is a scripted procedure:

$$R = f(S_1, S_2, ..., S_n, P_1, ..., P_m)$$


Where:

- S_i is a database Selection
 - It is a sequence of queries to be sent to the AXMEDIS Database to retrieve objects IDs;
- \mathbf{P}_i is a parameter (basic type as integer, string, Boolean, etc.);
 - For example, coordinates for a formatting, size or value of object collection to be created, destination of the objects, name of the author, etc.
- f is the identifier of rule (name of rule or an ID);
- R is the result of the rule application.
 - It can be a new AXMEDIS object, or a metadata manipulation, the license of an AXMEDIS object, a message to be returned to invokers, etc...

AXCP Rule XML description

- General metadata regarding: rule name, AXRID (rule identifier), rule version, rule type, software name, version of software, date of production, time of production, author, affiliation, URL, comment, last modification and terminal ID. (Header)
- Temporal metadata describing conditions for firing the rule, expiration time, periodicity and the rule status ("active" or "inactive") and (Schedule)
- List of arguments (parameters and selections), list of dependences (required AXMEDIS plug-ins) and the rule body (the script code to run).(Definition)

AXCP Script Language

- AXCP Rules are formally based on a script language
- Basis: Javascript Language (Spidermonkey by Mozilla)
- Extended functionality that is provided by the AXMEDIS framework for managing
 - AXMEDIS Objects, Digital Resources
 - License, Metadata
 - Network, Database Access and Web Service
 - Profiling (user, device, context)
 - ...
- Additional functions/utilities
 - File System management
 - Invoking/Execution of external tools
 - MimeType management
 - Zip/Unzip Archive
- Everything that can be done manually with AXEditor can be done automatically with the AXCP

→ ... and more ②

AXCP Tools: Rule Editor

Where and how to write, test and execute rules

AXCP Rule Editor

- IDE (integrated development environment) for creating, testing and managing AXCP rules
- Provides a set of tools and views to help the user during the editing and building of rule.
- Integrates the AXCP rule executor in order to provide functionalities for:
 - executing, debugging, testing and validating
- Provides an online help
 - Documentation about script functions and classes of the AXCP Script Language.
 - List of AXCP Plugins and documentation about exposed functionalities

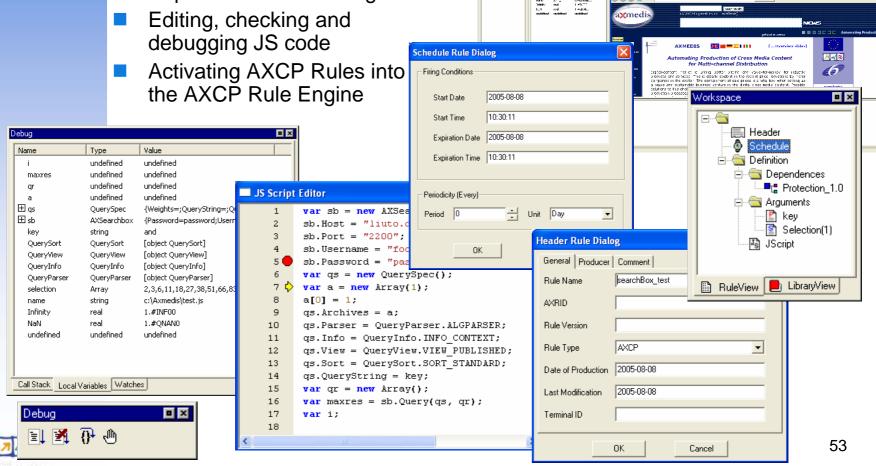
AXMEDIS Content Processing Area:

wo.Post = "sedd":

%o.Hermare "white":

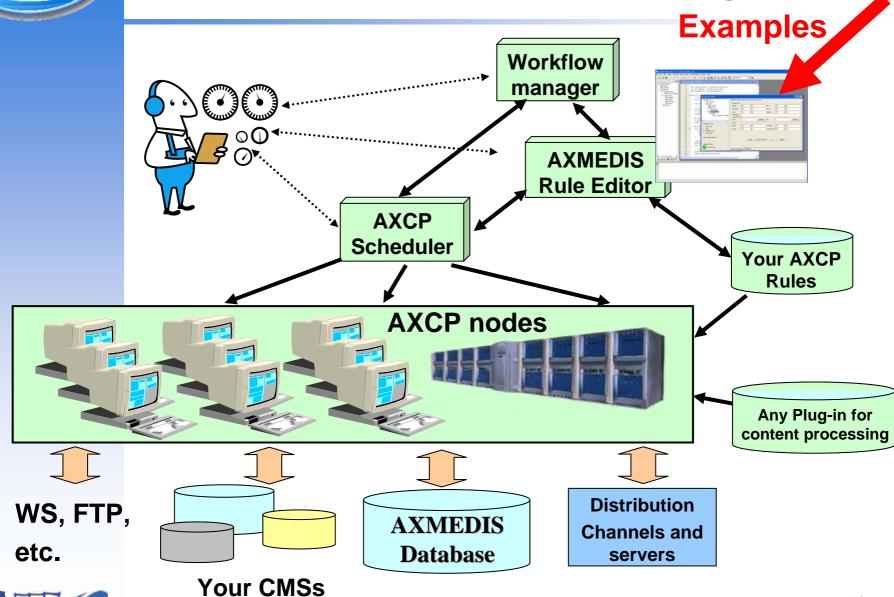
wo.Password = "password"

war qs new (Hermans))


tan d = How Accop(1):

Talenter Guergharsen (LISPARER) quidate Vestyland (LISPARER) quidate Guergham (TERN PHALTHER) quidate Vestyland (TERN PHALTHER) quidate Vestyland (TERN PHALTHER)

AXCP Rule Editor



- Creating and editing AXCP Rules
- Defining parameters and required AXMEDIS Plugins

AXMEDIS Content Processing GRID

Examples

Using the Available Functionality for Automated Content Processing

Simple Rule without parameters

Example 1 of the User Manual DE5.0.1.1

Goal:

Create a simple script for resizing an image resource named AXMEDIS_logo.png stored in the C:\\ path and saving the new resized image on the disk.

Method:

- Writing and debugging the script
- Comparing the original and new to see the result

Steps

- 1. Create an empty digital resource (image)
- 2. Load the image file into the resource
- 3. Use the Image Processing plug-in for scaling the image resource
- 4. Saving the scaled image resource

Rule Parameters

Example 2 of the User Manual DE5.0.1.1

Goals:

- Create a simple script for resizing an image resource stored on file system and saving the new resized image on the disk.
- Generalize the previous script inserting some arguments in the script.
 - Location for loading and saving the image
 - Resulting image dimensions
 - Output image format
- Obtain a rule that will remain valid and will be not modified in the future.

Method:

Writing and debugging the script

Steps

Parameter definition

- 1. Definition of rules arguments (input_path, output_path, width, height, out_mime_type)
- 2. Create an empty resource

Parameter usage

- 3. Load the image file by the *input_path* argument
- 4. Use the Image Processing plugin for scaling the image
- 5. Use the Image Processing plugin for *conversion* the image
- Resulting image is saved in the location specified by the output_path argument

Creating AXMEDIS Objects

Example 3 of the User Manual DE5.0.1.1

Goal:

- Example 2 (Loading manipulating image resource)
- Converting the resource into a different format
- Create an AXMEDIS object
- Filling metadata
- Embedding an image resource
- Storing on disk and/or uploading on DB

Method

- Write and debugging the script
- Show of the produced AXMEDIS Object with AXEditor

Steps:

- Definition of rules arguments (input_path, output_path, width, height, out_mime_type)
- 2. Create an empty resource
- 3. Load the image file by the input_path argument
- 4. Use the Image Processing plugin for *scaling* the image
- 5. Use the Image Processing plugin for conversion the image

 AXMEDIS objects
- 6. Creating an empty AXMEDIS object
- 7. Adding meta data and the image resource
- 8. Save the AXMEDIS object
- 9. Open the AXEditor for visualisation

"Full Round" AXMEDIS Automated Object Production

Steps:

- Example 3 (previous example: AXObject creation)
 - Filling metadata
 - Embedding a resource
 - Adapting the resource into a different format
- Registering Object
- Protecting Object
- Creating and storing licenses
- Storing on disk and/or uploading on DB

Method

- Write and debugging the script
- Show of the produced AXMEDIS Object with AXEditor

Steps:

- 1. Setting of the license related parameters
- 2. Create an empty resource and AXMEDIS object
- 3. Load the resource
- 4. Adding meta data and the resource in the AXMEDIS object

DRM operations

- 5. Save the AXMEDIS object on disk and AXMEDIS database
- 6. Creating licences for distribution
- 7. Creating license for the end user
- 8. Fruition Using the AXMEDIS object

Automated Content Processing

What you have seen

- What is a rule and what can be done with it?
- Writing a rule in the AXCP Rule Editor for automated content processing?
- How to execute and testing a rule in the AXCP Rule Editor?

Next:

Extended functionalities for content processing

Which further functionalities are available?

Extended functionalities provided by the AXMEDIS Framework for Automated Content Processing

Examples: Extended Functionalities

- Content Description and Meta Data Creation
- Meta Data Mapping
- Adaptation and Transcoding
- Content Authentication

Content Description and Meta Data Creation

Automatic extraction/calculation of

- Low Level Descriptors (LLDs)
- Perceptual Hashes/Content Fingerprints
- High Level Descriptors (LLDs)

List of available functionalities

- Audio LLDs
 - MPEG-7 AudioWaveform
 - MPEG-7 AudioPower
 - MPEG-7 AudioSpectrumEnvelope
 - MPEG-7 AudioSpectrumCentroid
 - MPEG-7 AudioSpectrumSpread
 - MPEG-7 AudioSpectrumFlatness
 - Mel-Frequency Cepstrum Coefficients

Content Description and Meta Data Creation (II)

- Continued list of available functionalities
 - ► Audio HLDs
 - Rhythm
 - Audio File Segmentation
 - Music Genre
 - Video
 - Basic Integration of MPEG-7 reference implementation
 - Text
 - Language Guesser
 - Keyword Extraction

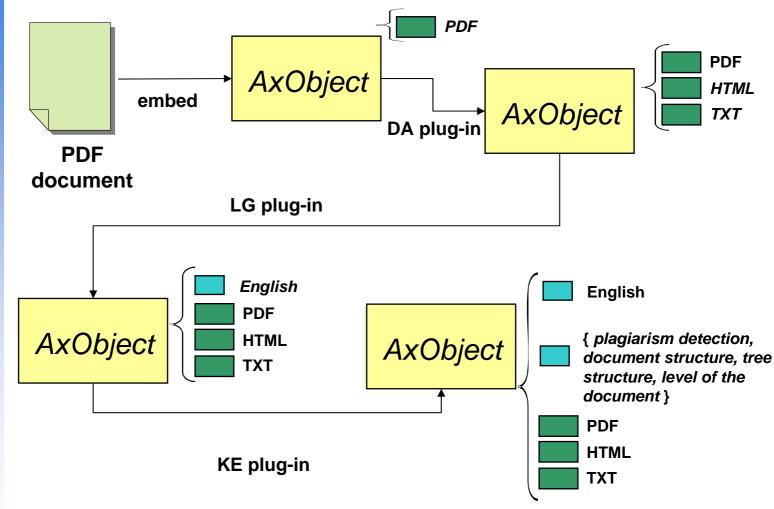
Demonstration: Text processing

Document Adaptation (DA)

transcoding between various text formats (PDF, HTML, Postscript, RTF, plaint text)

Language guesser (LG)

Retrieving the main language from a plain text document

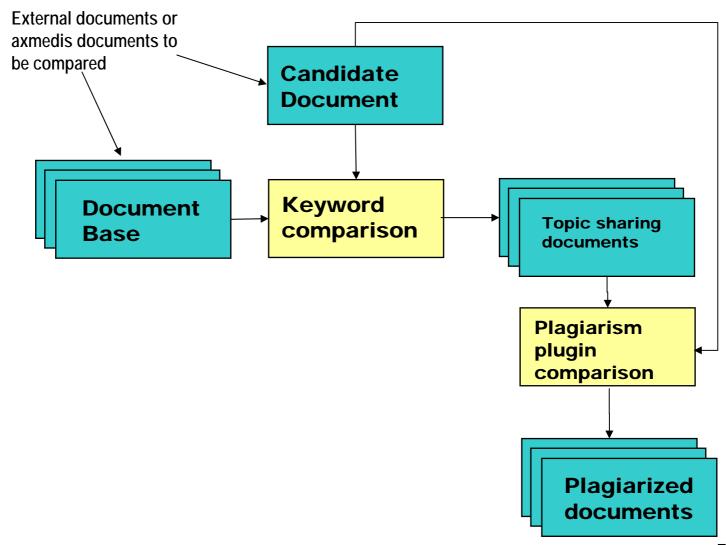

Keyword extractor (KE)

- Extraction of mono-term and multi-term keywords from an plain text (English, Italian, German, Spanish and French, only English is implemented so far)
- Automatically extracted descriptors can be used to fill AXMEDIS objects metadata, allowing better search results.

Text Processing

Steps

- 1. Loading resource
- 2. Transcoding to HTML
- 3. Embedding the HTML resource in the object
- 4. Transcoding to plaint text
- 5. Embedding the plain text resource in the object


Plagiarism detection plug-in

- Detection of plagiarism behaviour: plagiarism between two textual documents
- Basic model: a set of modifications (insertion, deletion, substitution) performed
- Return value: normalised similarity value
- Can be combined with other tools, e.g. keyword extractor

Plagiarism plugin usage scenarios

Steps

- 1. Defining the reference document
- 2. Defining the documents to compare with
- 3. Comparing the documents

Adaptation and Transcoding

- Transcoding to and from numerous formats
- Supported media types:
 - Audio
 - Images
 - Text
 - Video
- Metadata Adaptation
- Rights Information Adaptation
 - ▶ Licenses: MPEG-21 ←→ OMA
- Dynamic Transcoding
 - → See: Workflow Tutorial, today, starting 2pm

Audio Adaptation

Goal:

Genre detection (only possible with WAVs)

Steps

- Loading the input resource (MP3 format)
- Converting the input resource to WAV
- Apply a genre detection
- Output: genre

Meta Data Mapping

Manages

Generic, AXInfo and DublinCore Metadata

Provides functionalities for

- Extracting Metadata from an AXMEDIS Object
- Adapting Metadata
 - Loading adaptation style sheet
 - Transforming extracted metadata
- Embedding the transformed metadata into an AXMEDIS Object

Steps

- 1. Open AXMEDIS object
- 2. Initialize the Metadata Mapper
- 3. Extract the Metadata from the AXMEDIS object
- 4. Load the saved XSLT file from the disk
- 5. Transform the metadata producing the new Metadata
- 6. Embed the new metadata into an AXMEDIS Object
- 7. Save the AXMEDIS Object

Content Authentication

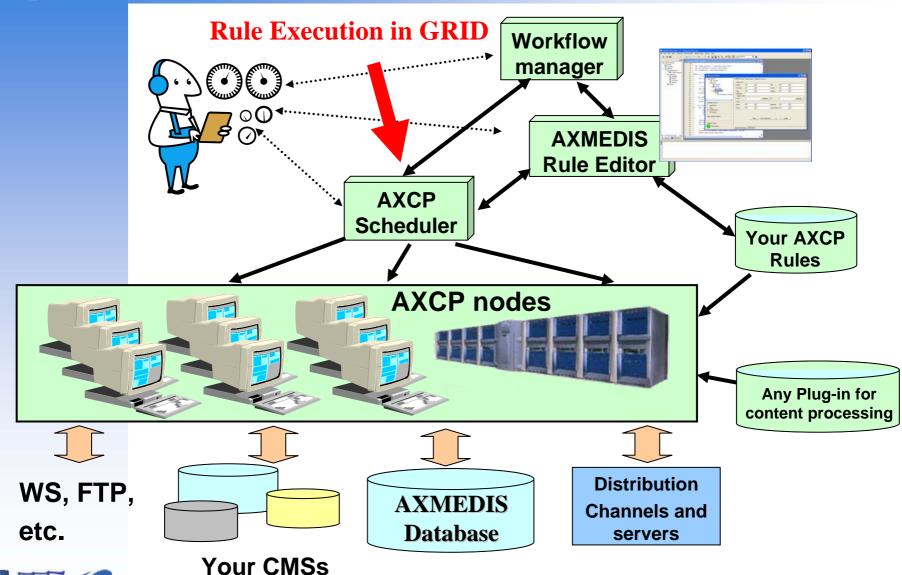
- Cryptographic Hash Functions
 - All kind of content
- Perceptual Hash Functions
 - Audio
 - Images
 - Video

Further Functionalities

- I/O functions
- File and directory access
- Profiling of devices, distribution channels and users
- Network access: FTP, HTTP, ODBC, webservices, ...

Summary

- Why to automate content processing processes
- Automated content processing in AXMEDIS
 - Writing, executing and debugging rules
 - Available functionality
 - Examples for using the available functionality


AXMEDIS Tutorial on Content Processing - Part II

- AXCP Rule Scheduler
- AXCP GRID
- Complex Scenarios
- Summary and Conclusion
- Discussion, Questions and Answers

AXMEDIS Content Processing GRID

AXCP Rule Engine

Managing the Rule Execution in the AXMEDIS Grid

AXCP Rule Engine

Consists of

- Rule Scheduler (Server Side)
- ▶ Rule Remote Executor (Client Side): AXCP GRID Node

Rule Scheduler: Internal Scheduler and Dispatcher for

- rule installation
- rule firing
- rule executor discovering and management
- rules scheduling and dispatching according to the executor profile
- communication with the AXMEDIS environment (workflow)
- ...

Rule Remote Executor

Consisting of the same JavaScript engine

AXCP Scheduler: Functionalities

- Install & Activate a Rule in AXCP Grid
- Run a Rule in AXCP Grid
- Deactivate a Rule
- Suspend a Rule
- Pause a running Rule
- Resume a previously suspended Rule
- Kill a Rule immediately
- Remove a Rule from the AXCP Grid
- Determine the Status for any Rule in the Grid
- Retrieve the Logs for any Rule in the Grid
- Retrieve the List of Rules in the Grid
- Retrieve a particular Rule in the Grid
- manually or with a remote client (e.g. workflow)

Remote Rule Executor

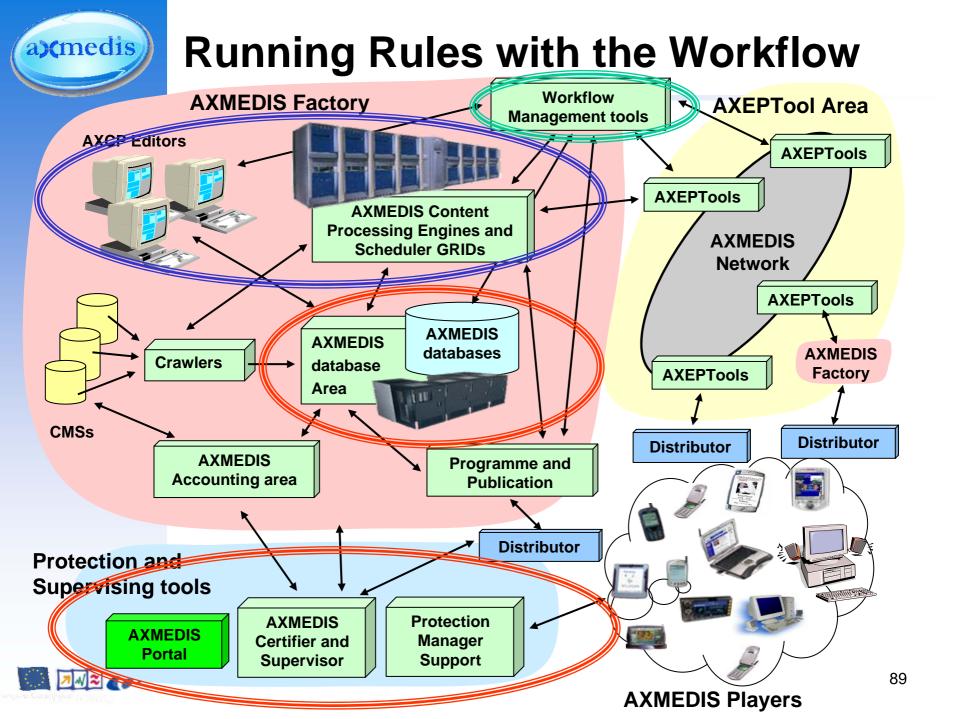
Application

Standalone

Node of the GRID

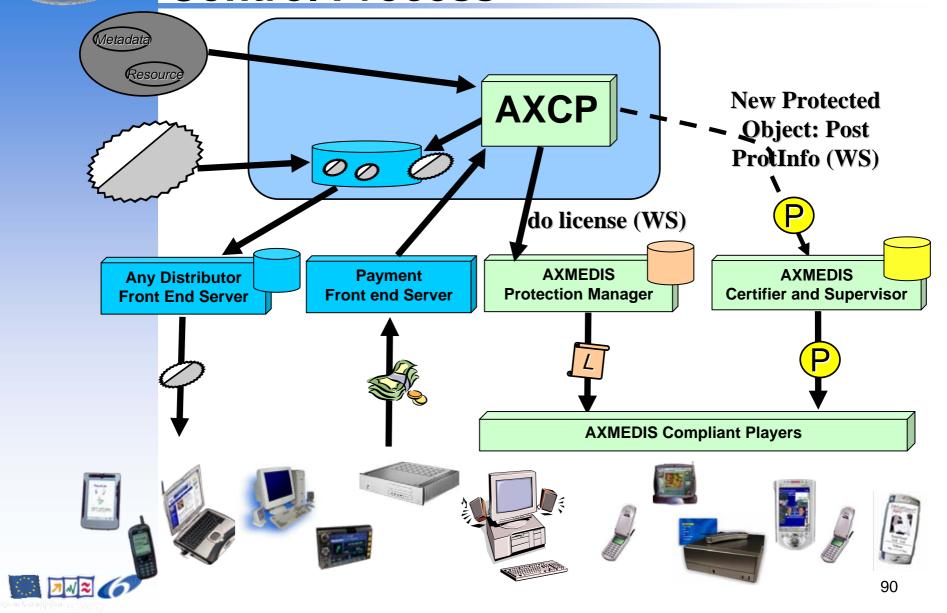
Properties

- CPU Monitoring
- CPU Workload Constraints
- Communication with the Scheduler (GRID Node)



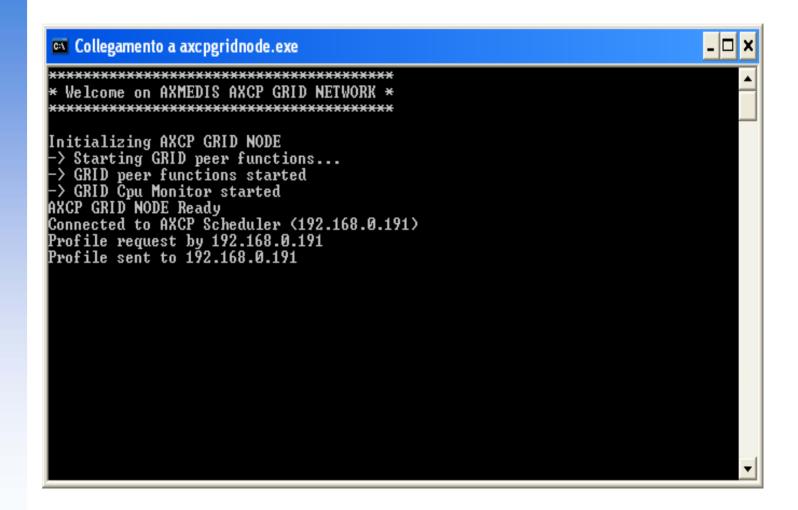
AXCP GRID Node

Workload setting (see configuration.xml)


```
<Module category="" id="WORKLOAD_SETTINGS">
    <Parameter name="MON" type="string">
           0;0;0;0;0;0;30;50;30;30;20;30;45;50;20;30;45;50;30;30;0;0;0;0
    </Parameter>
    <Parameter name="TUE" type="string">
           0:0:0:0:0:0:30:30:30:30:20:30:45:50:20:30:45:50:30:30:0:0:0:0
    </Parameter>
    <Parameter name="WED" type="string">
           0;0;0;0;0;0;30;30;50;60;20;30;45;50;20;30;45;50;30;30;0;0;0;0
    </Parameter>
    <Parameter name="THU" type="string">
           0;0;0;0;0;0;60;60;60;60;20;30;45;50;20;30;45;50;30;30;0;0;0;0
    </Parameter>
    <Parameter name="FRI" type="string">
           0:0:0:0:0:0:50:50:50:50:20:30:45:50:20:30:45:50:30:30:0:0:0:0
    </Parameter>
    <Parameter name="SAT" type="string">
           0;0;0;0;0;50;50;50;50;20;30;45;50;20;30;45;50;30;30;0;0;0;0
    </Parameter>
    <Parameter name="SUN" type="string">
           0;0;0;0;0;50;50;30;70;20;30;45;50;20;30;45;50;30;30;0;0;0;0
    </Parameter>
</Module>
```

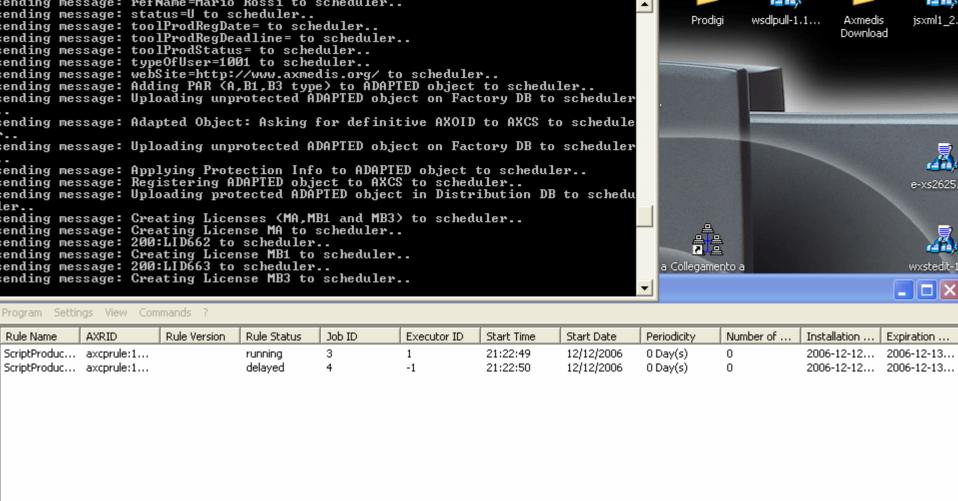

AXMEDIS The Protection and Control Process

GRID in action


- Put in Execution the Scheduler
- Put in Execution the single GRID Nodes
- Joining of nodes to the GRID
- On the AXCP Editor: Installing Rules

On the Scheduler: Running Rules with the Workflow

Discovered AXCP GRID Node


Installing Rules

Manually using the scheduler

AddRule	Ctrl-A
Launch scheduler Stop Scheduler	Ctrl-L Ctrl-S
Backup Restore	Alt-B Alt-R
Minimize	Alt-M
Exit	Alt-X
Start Grid Peer functions	Ctrl-F
test replace parameters test replace schedule test install whole rule as string test replace parameters and schedule	

- Installing rules with the AXCP Editor
 - Script for Automated Production of content and production of licenses
- Activating rule using external application
 - AXCP Rule Editor, Workflow, ...
 - Workflow is activating them
- Running a rule
 - On-demand execution

Executor N... IP Address CPU Type Clock OS. Transfer Rate HD Space Status Job ID Executor ID Cpu Usage From 3 IVAN-PORTA... 192,168,0,191 x86 Family 1.60 (GHz) Windows N... 1 (MB/s) 20.80 (GB) busy 1 0.00% 21:00:00

SIEMENS 192.168.0.216 x86 Family ... 798.00 (MHz) Windows N... 185 (KB/s) 27.55 (GB) -1 3 0.00% 20:00:00 ready PC1355 192.168.0.247 x86 Family ... 1.79 (GHz) Windows N... 187 (KB/s) 21.09 (GB) ready -1 4 0.00% 21:00:00

BAZOOLA

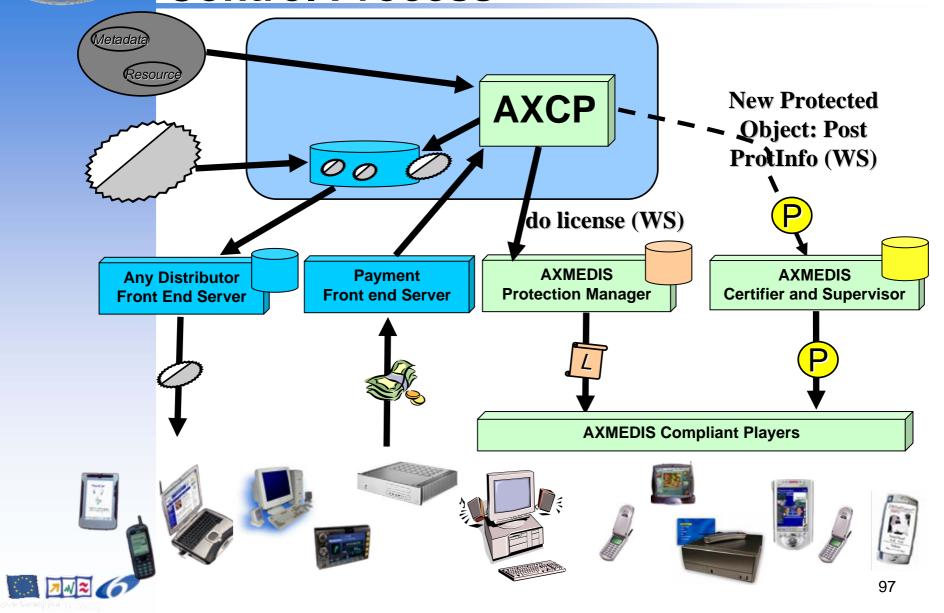
12.46 (GB) 192.168.0.242 x86 Family ... 1.73 (GHz) Windows N... 115 (KB/s) ready -1 0.00% 21:00:00

Massive Production of AXObjects

Distributed workload

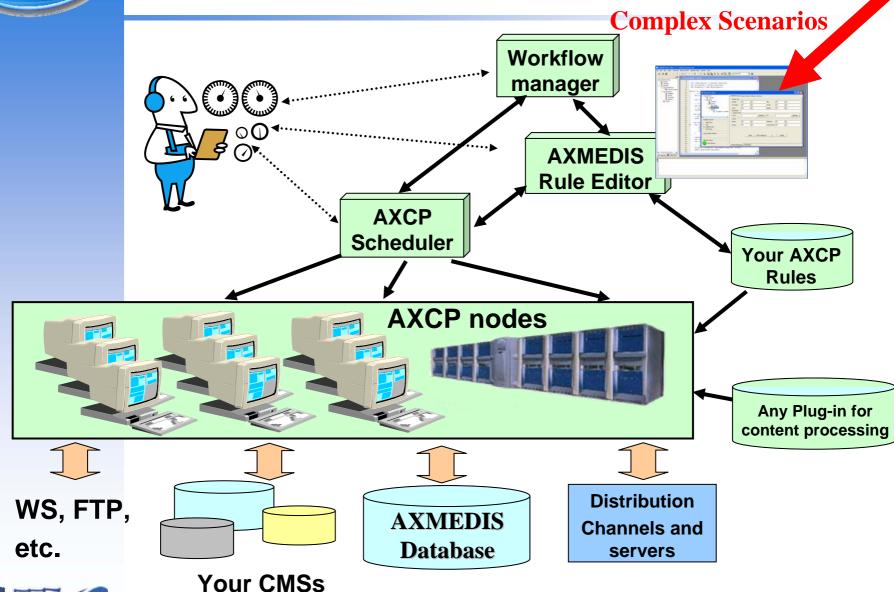
- Steps
 - 1. Loading raw resources from file system
 - 2. Content adaptation
 - 3. Content protection
 - 4. Posting protection information on AXCS
 - 5. DRM Licensing:
 - 1. Production of Mother license for distribution
 - 2. Posting of licenses on the PMS
 - 3. Production of some final user licenses only for adapted objects
 - 4. Posting of licenses on the PMS
 - 6. Distribution
- Results
 - 1. Master Version (protected and unprotected)
 - 2. Adapted Objects (protected and unprotected)

What is produced


Some Different GRID nodes

- only two of them have capabilities to manage the rules in terms of plugins installed
- Two rules activated on two different nodes
- The rules work on some resources
 - a PDF is adapted to produce two objects in TXT and HTML
 - From an MP3 is produced an object
 - A wav file is adapted to produce an object with an MP3
 - From images in different formats, some adaptation resizing are performed
- More than 30 AXMEDIS objects are created

AXMEDIS The Protection and Control Process

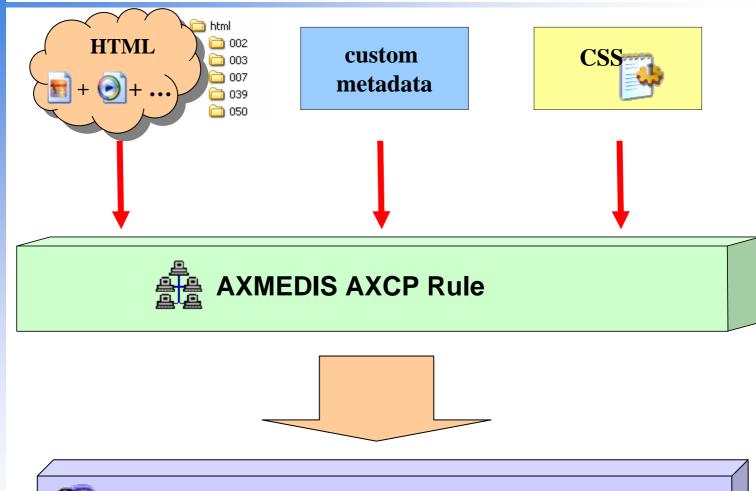

Complex Scenarios

Real Scenario taken from Accademia Nazionale di Santa Cecilia

AXMEDIS Content Processing GRID

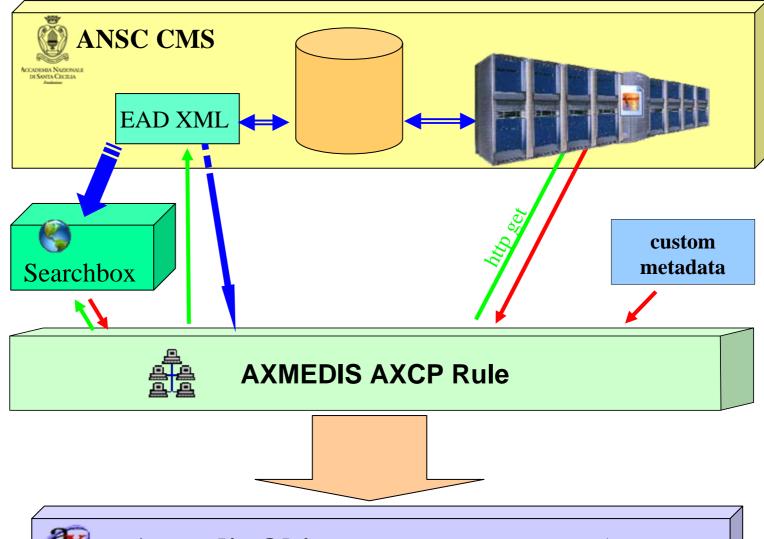
Complex Scenarios

Accademia Nazionale di Santa Cecilia, http://www.santacecilia.it


Examples:

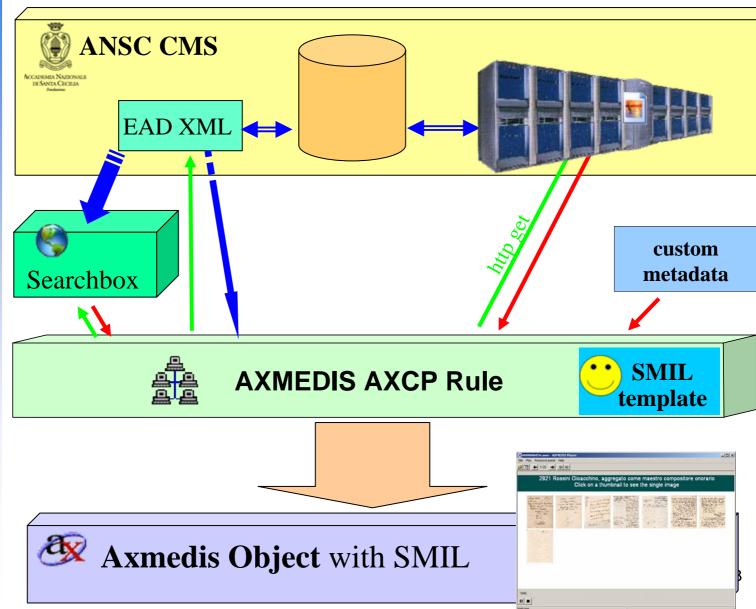
- Content gathering from file system
- Crawling from CMS using SearchBox Tool
- Automatic SMIL representation

Content gathering from file system



Axmedis Object: Resources (HTML, Images, mp3, CSS, ..) metadata ...

Crawling from CMS using SearchBox Tool



Axmedis Object: Resources + metadata

Automatic SMIL Representation

Summary

- Rules Definition, test and validation
- Rules installation and Execution
- Rules Scheduling
- AXMEDIS GRID management

Adding Your Plugins

Flexible Plugin Interface already used to integrate the extended functionality

Examples:

- ImageMagick,
- ► FFMPEG,
- CryptLib,
- MPEG-7 reference implementation,
- **...**

External tools

- M2ANY: AudioID (integrated)
- ISHCE: Audio Watermarking (under development)

Conclusions

- The AXMEDIS Scripting Language provides a flexible solution for automatic content processing.
- The AXMEDIS Core Functionality provides the basic method for the management of digital content and corresponding rights.
- External Functionality included in AXMEDIS enriches the basic functionality to cover daily tasks.
- The AXMEDIS GRID allows a dynamic load balancing.
- The extensibility of the AXMEDIS Framework provides the flexibility for future scenarios:
 - scripting and creation of new AXMEDIS plugins.

Conclusions

- AXMEDIS reduces costs for content management by providing a solution for automating the content processing, production, protection and distribution.
- AXMEDIS reduces distribution and aggregation costs in order to increase accessibility with a
 - Peer-to-Peer platform at Business-to-Business level
 - Integration of content management systems
 - Integration of workflows

Contact

Martin Schmucker,

Fraunhofer Institute for Computer Graphics Research, Darmstadt, Germany

Web: http://www.igd.fraunhofer.de/igd-a8

Prof. Paolo Nesi, Ph.D.

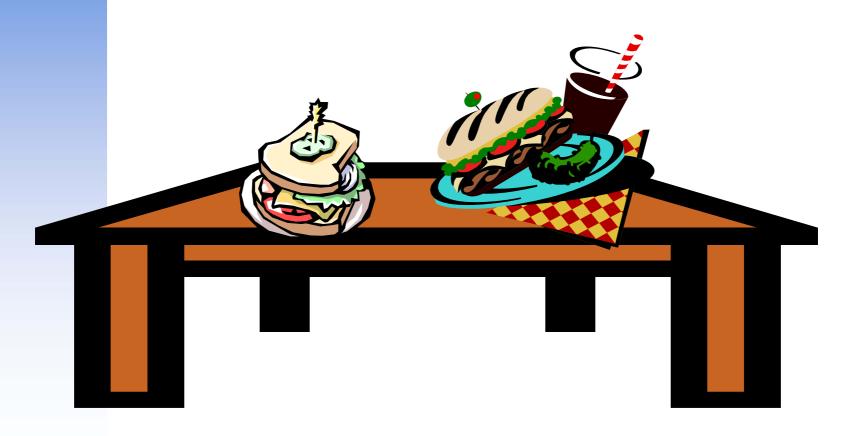
DISIT-DSI

Department of Systems and Informatics

Distributed Systems and Internet Technology Lab

University of Florence

Via S. Marta 3, 50139 Firenze, Italy


Email: nesi@dsi.unifi.it

Web: http://www.AXMEDIS.org

Lunch Break

Steps

- 1. Open AXMEDIS object
- 2. Initialize the Metadata Mapper
- 3. Extract the Metadata from the AXMEDIS object
- 4. Load the saved XSLT file from the disk
- 5. Transform the metadata producing the new Metadata
- 6. Embed the new metadata into an AXMEDIS Object
- 7. Save the AXMEDIS Object

AXMEDIS Tutorial on Content Processing

Version 1.4 December 2006

Martin Schmucker – Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany

Ivan Bruno – Department of Systems and Informatics (DSI-DISIT), University of Florence, Italy

Maulik Sailor – Intelligent Media Systems & Services (IMSS), University Reading, United Kingdom

