
DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

1

AXMEDIS

Automating Production of Cross Media Content
for Multi-channel Distribution

www.AXMEDIS.org
DE3.1.2.3.2

Specification of AXMEDIS Command
Manager, update of DE3.1.2.2.2

Version: 3.1
Date: 30-09-2007
Responsible: DSI (verified and approved by coordinator)
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: report
Visible to User Groups: yes
Visible to Affiliated: yes
Visible to the Public: yes
Deliverable Number: DE3.1.2.3.2
Contractual Date of Delivery: M36
Actual Date of Delivery: 30/09/2007
Title of Deliverable: DE3.1.2.3.2 Specification of AXMEDIS Command Manager
Work-Package contributing to the Deliverable: WP3.1
Task contributing to the Deliverable: WP3, WP2
Nature of the Deliverable: report
Author(s): DSI
Abstract: this part includes the specification of components, formats, databases and protocol related
to the AXMEDIS Framework area AXMEDIS Object Model including only details on Command
Manager and its usage, the usage of the AXOM
Keyword List: AXOM, AXMEDIS Command Manager, MPEG-21 models, authoring tools and
players.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

2

AXMEDIS Copyright Notice
The following terms (including future possible amendments) set out the rights and obligations licensee will be requested
to accept on entering into possession of any official AXMEDIS document either by downloading it from the web site or by
any other means.

Any relevant AXMEDIS document includes this license. PLEASE READ THE FOLLOWING TERMS CAREFULLY AS
THEY HAVE TO BE ACCEPTED PRIOR TO READING/USE OF THE DOCUMENT.

1. DEFINITIONS

i. "Acceptance Date" is the date on which these terms and conditions for entering into possession of the
document have been accepted.

ii. "Copyright" stands for any content, document or portion of it that is covered by the copyright disclaimer in a
Document.

iii. "Licensor" is AXMEDIS Consortium as a de-facto consortium of the EC project and any of its derivations in
terms of companies and/or associations, see www.axmedis.org

iv. "Document" means the information contained in any electronic file, which has been published by the
Licensor’s as AXMEDIS official document and listed in the web site mentioned above or available by any
other means.

v. "Works" means any works created by the licensee, which reproduce a Document or any of its part.

2. LICENCE

1. The Licensor grants a non-exclusive royalty free licence to reproduce and use the Documents subject to
present terms and conditions (the Licence) for the parts that are own and proprietary property the of
AXMEDIS consortium or its members.

2. In consideration of the Licensor granting the Licence, licensee agrees to adhere to the following terms and
conditions.

3. TERM AND TERMINATION

1. Granted Licence shall commence on Acceptance Date.

2. Granted Licence will terminate automatically if licensee fails to comply with any of the terms and conditions
of this Licence.

3. Termination of this Licence does not affect either party’s accrued rights and obligations as at the date of
termination.

4. Upon termination of this Licence for whatever reason, licensee shall cease to make any use of the
accessed Copyright.

5. All provisions of this Licence, which are necessary for the interpretation or enforcement of a party’s rights or
obligations, shall survive termination of this Licence and shall continue in full force and effect.

6. Notwithstanding License termination, confidentiality clauses related to any content, document or part of it
as stated in the document itself will remain in force for a period of 5 years after license issue date or the
period stated in the document whichever is the longer.

4. USE

1. Licensee shall not breach or denigrate the integrity of the Copyright Notice and in particular shall not:

i. remove this Copyright Notice on a Document or any of its reproduction in any form in which those
may be achieved;

ii. change or remove the title of a Document;

iii. use all or any part of a Document as part of a specification or standard not emanating from the
Licensor without the prior written consent of the Licensor; or

iv. do or permit others to do any act or omission in relation to a Document which is contrary to the
rights and obligations as stated in the present license and agreed with the Licensor

5. COPYRIGHT NOTICES

1. All Works shall bear a clear notice asserting the Licensor’s Copyright. The notice shall use the wording
employed by the Licensor in its own copyright notice unless the Licensor otherwise instructs licensees.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

3

6. WARRANTY

1. The Licensor warrants the licensee that the present licence is issued on the basis of full Copyright
ownership or re-licensing agreements granting the Licensor full licensing and enforcement power.

2. For the avoidance of doubt the licensee should be aware that although the Copyright in the
documents is given under warranty this warranty does not extend to the content of any document
which may contain references or specifications or technologies that are covered by patents (also
of third parties) or that refer to other standards. AXMEDIS is not responsible and does not
guarantee that the information contained in the document is fully proprietary of AXMEDIS
consortium and/or partners.

3. Licensee hereby undertakes to the Licensor that he will, without prejudice to any other right of
action which the Licensor may have, at all times keep the Licensor fully and effectively
indemnified against all and any liability (which liability shall include, without limitation, all
losses, costs, claims, expenses, demands, actions, damages, legal and other professional fees and
expenses on a full indemnity basis) which the Licensor may suffer or incur as a result of, or by
reason of, any breach or non-fulfillment of any of his obligations in respect of this License.

7. INFRINGEMENT

1. Licensee undertakes to notify promptly the Licensor of any threatened or actual infringement of the
Copyright which comes to licensee notice and shall, at the Licensor’s request and expense, do all such
things as are reasonably necessary to defend and enforce the Licensor’s rights in the Copyright.

8. GOVERNING LAW AND JURISDICTION

1. This Licence shall be subject to, and construed and interpreted in accordance with Italian law.

2. The parties irrevocably submit to the exclusive jurisdiction of the Italian Courts.

Please note that:

• You can become affiliated with AXMEDIS. This will give you the access to a
huge amount of knowledge, information and source code related to the
AXMEDIS Framework. If you are interested please contact P. Nesi at
nesi@dsi.unifi.it. Once affiliated with AXMEDIS you will have the possibility
of using the AXMEDIS specification and technology for your business.

• You can contribute to the improvement of AXMEDIS documents and
specification by sending the contribution to P. Nesi at nesi@dsi.unifi.it

• You can attend AXMEDIS meetings that are open to public, for additional
information see WWW.axmedis.org or contact P. Nesi at nesi@dsi.unifi.it

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

4

Table of Content

1 EXECUTIVE SUMMARY AND REPORT SCOPE .. 5

1.1 THIS DOCUMENT CONCERNS (DSI)... 6
1.2 LIST OF MODULES OR EXECUTABLE TOOLS SPECIFIED IN THIS DOCUMENT ... 6

2 GENERAL ARCHITECTURE AND RELATIONSHIPS AMONG THE MODULES PRODUCED............. 7

3 AXMEDIS OBJECT MANAGER (DSI) ... 8
3.1 GENERAL DESCRIPTION OF THE MODULE .. 9

3.1.1 AXMEDIS Object loading.. 12
3.2 MODULE DESIGN IN TERMS OF CLASSES .. 12

3.2.1 AxObjectManager Capabilities Overview ... 14
3.2.2 AxObjectManager as IndexManager .. 16
3.2.3 AxObjectManager as EventManager .. 17
3.2.4 Class Methods Overview .. 26

3.3 EXAMPLES OF USAGE ... 40
3.4 ERRORS REPORTED AND THAT MAY OCCUR.. 41

4 AXOID ASSIGNMENT (DSI) .. 41

5 OBJECT REGISTRATION (DSI) ... 42
5.1 CALCULATING AXMEDIS OBJECT HASH .. 42

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

5

1 Executive Summary and Report Scope

The full AXMEDIS specification document has been decomposed in the following parts:

DE
number

Deliverable title responsible

DE3.1.2.3.1 Specification of General Aspects of AXMEDIS framework

AXMEDIS-DE3-1-2-3-1-Spec-of-AX-Gen-Asp-of-AXMEDIS-framework

DSI

DE3.1.2.3.2 Specification of AXMEDIS Command Manager

AXMEDIS- DE3-1-2-3-2-Spec-of-AX-Cmd-Man

DSI

DE3.1.2.3.3 Specification of AXMEDIS Object Manager and Protection Processor

AXMEDIS-DE3-1-2-3-3-Spec-of-AXOM-and-ProtProc

DSI

DE3.1.2.3.4 Specification of AXMEDIS Editors and Viewers

AXMEDIS-DE3-1-2-3-4-Spec-of-AX-Editors-and-Viewers

DSI

DE3.1.2.3.5 Specification of External AXMEDIS Editors/Viewers and Players

AXMEDIS-DE3-1-2-3-5-Spec-of-External-Editors-Viewers-Players

DSI

DE3.1.2.3.6 Specification of AXMEDIS Content Processing

AXMEDIS-DE3-1-2-3-6-Spec-of-AX-Content-Processing

DSI

DE3.1.2.3.7 Specification of AXMEDIS External Processing Algorithms

AXMEDIS-DE3-1-2-3-7-Spec-of-AX-External-Processing-Algorithms

FHGIGD

DE3.1.2.3.8 Specification of AXMEDIS CMS Crawling Capabilities

AXMEDIS-DE3-1-2-3-8-Spec-of-AX-CMS-Crawling-Capab

DSI

DE3.1.2.3.9 Specification of AXMEDIS database and query support

AXMEDIS-DE3-1-2-3-9-Spec-of-AX-database-and-query-support

EXITECH

DE3.1.2.3.10 Specification of AXMEDIS P2P tools, AXEPTool and AXMEDIS

AXMEDIS-DE3-1-2-3-10-Spec-of-AXEPTool-and-AXMEDIA-tools

DSI

DE3.1.2.3.11 Specification of AXMEDIS Programme and Publication tools

AXMEDIS-DE3-1-2-3-11-Spec-of-AX-Progr-and-Pub-tool

UNIVLEEDS

DE3.1.2.3.12 Specification of AXMEDIS Workflow Tools

AXMEDIS-DE3-1-2-3-12-Spec-of-AX-Workflow-Tools

UR

DE3.1.2.3.13 Specification of AXMEDIS Certifier and Supervisor and networks of AXCS

AXMEDIS-DE3-1-2-3-13-Spec-of-AXCS-and-networks

DSI

DE3.1.2.3.14 Specification of AXMEDIS Protection Support

AXMEDIS-DE3-1-2-3-14-Spec-of-AX-Protection-Support

UPC

DE3.1.2.3.15 Specification of AXMEDIS accounting and reporting

AXMEDIS-DE3-1-2-3-15-Spec-of-AX-Accounting-and-Reporting

EXITECH

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

6

1.1 This document concerns (DSI)
AXMEDIS Object Manager, so called AXOM, is the outer module exposing functionalities in order to
manipulate AXMEDIS Object (or MPEG-21 Digital Items). It hides all the underlying model for
representing loading, saving object content and metadata. This module is the keystone to build any
AXMEDIS compliant tools since it grants the developer to correctly manages the underlying content model,
while also respecting DRM constraints on the AXMEDIS Object. AXMEDIS Object Manager guarantees
DRM rules respect on AXMEDIS object manipulations according to the issued licences. AXMEDIS Object
Manager is the sole responsible of command execution (i.e. to command an execution of a desired
manipulation), because completion of this task requires features of all other modules in specification.

1.2 List of Modules or Executable Tools Specified in this document
A module is a component that can be or it is reused in other cases or points of the AXMEDIS framework or
of other AXMEDIS based solutions.
The modules/tools have to include effective components and/or tools and also testing components and tools.

Module/tool

Name
Module/Tool Description and purpose, state also in

which other AXMEDIS area is used
Standards exploited

if any
AXMEDIS Object
Manager

In AXMEDIS Editor, AXMEDIS players, AXMEDIS Content Processing
tools, and all tools that use the AXMEDIS object model

MPEG-21 REL/RDD

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

7

2 General architecture and relationships among the modules produced
AxObjectManager architecture work in cooperation with many modules involved in manipulating
AXMEDIS Objects and to provide at upper level applications useful methods to accomplish all needed tasks
in order to manage, modify, and even create, new objects. These interfaces are build in accordance to DRM
guidelines and accomplishes all operations enforcing DRM .

Any Content Consumption
Application

AxObjectManager

MPEG21
Object
Model

AXMEDIS
Object
Model

«refines»

«uses»

«uses» «uses»

«traces»

This module include several classes . The core is AXMEDIS Object Manager, that coordinates all other
classes and expose methods to upper level applications.
AxIndexManager supports indexing of managed elements, providing retrieval functionalities for the entire
module.
AxCommand provide a common interface for all the defined commands in the module.
Another concept such as the “event” paradigm, as explained in the Observer design pattern, has been
considered and implemented as a part of AxObjectManager package, in order to allow upper layer
applications to effectively manage their rendering of the multimedia package Events managed in
AxObjectManager provides information about changes in the package structure and notifies modifications in
the embedded digital resources or the related metadata. Both AXMEDIS and MPEG-21 models may be
subject of those changes , thus two distinct sets of events have been provided.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

8

3 AXMEDIS Object Manager (DSI)

Module/Tool Profile
AXMEDIS Object Manager

Responsible Name Davide Rogai
Responsible Partner DSI
Status (proposed/approved) Proposed
Implemented/not implemented Implemented
Status of the implementation 90%
Executable or Library/module
(Support)

Single Thread or Multithread Multithread
Language of Development C++
Platforms supported Windows/Unix-Linux
Reference to the AXFW
location of the source code
demonstrator

https://cvs.axmedis.org/repos/framework/source/axom

Reference to the AXFW
location of the demonstrator
executable tool for internal
download

https://cvs.

Reference to the AXFW
location of the demonstrator
executable tool for public
download

Address for accessing to
WebServices if any, add
accession information (user and
Passwd) if any

Test cases (present/absent)
Test cases location http:///////////////////
Usage of the AXMEDIS
configuration manager (yes/no)

Yes

Usage of the AXMEDIS Error
Manager (yes/no)

No

Major Problems not solved --
--

Major pending requirements -Right Enforcement logic
--

Interfaces API with other tools,
named as

Name of the communicating tools
References to other major
components needed

Communication model and format
(protected or not, etc.)

Formats Used Shared with format name or reference to a

section

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

9

Protocol Used Shared with Protocol name or reference to a

section
Object ID Generation AXCS
Object Registration AXCS
AXDB Loader AXDB
AXDB Saver AXDB
Used Database name

User Interface Development model, language,

etc.
Library used for the development,
platform, etc.

Used Libraries Name of the library and version License status: GPL. LGPL. PEK,

proprietary, authorized or not
libcurl libcurl-7.15.0 LGPL
gsoap Gsoap 2.7 LGPL

3.1 General Description of the Module
The AXMEDIS Object Manager (AxObjectManager from now on) has to be used to develop software tools
which will handle contents following DRM rules. This module has three main tasks :

• To Provide API to upper layer tools in order to allow AXMEDIS and MPEG-21 DIs object
manipulation, also maintaining indexes for the object

• To Assure DRM compliance on any object model related operation, even avoiding direct control
from upper layer tools to AXMEDIS and MPEG-21 DIs objects.

• To Establish an Event-Driven communication between Model Layer and Application Layer to cope
whit objects structure and content changes.

AXMEDIS Object Model (AXOM from now on) is used to cope with content objects and it is compliant
with MPEG-21, extending it with additional features and data structures.
AXOM can be used as foundation to design and develop applications which are able of manipulating both
MPEG-21 DIs and AXMEDIS Objects, editing/authoring and playing contents and supporting
manipulation/access of a hinged package structure (containing nested levels of packaging, hierarchies
organization).
On the other hand one of the most important features of this model is to provide the means to create a
trusted environment,, capable,to enforce DRM .
 AXOM is capable to guarantee that a tool built on its accessible commands will provide digital right
observance Commands are designed to allow only execution of license permitted actions..; different actions
on the content model should require different grants (i.e., authorizations). Actions can target the content
structure, the resources and the metadata; a unique flow to handle verification of any action performed on the

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

10

content has been conceived. Finally a single command may require multiple authorisation to be executed
(almost one).

AxObjectManager is the interface among AXOM and upper application layer. Object Manager will provide
all base operations (add, change, delete, etc…) which will be needed to manipulate AXMEDIS and MPEG-
21 DIs objects,. Moreover, it will maintain the trustness of the object model avoiding direct manipulation of
its components from application.

As stated, the AXOM can be used to build a large set of content manipulation applications/systems obtaining
trusted behavior encapsulated in a clear use of AXMEDIS/MPEG-21 Objects. The developer can use the API
exposed by the AXOM for object loading, browsing and navigation in the object structure, obtaining streams
for embedded digital resources according to the rights defined in the licenses. Every action performed on the
content is related to a set of rights, which have to be owned at consumption time to enable the action. The
result is a transparent DRM-including manipulation of the underlying content package.
The API is organized in two main subsets:
• Object Model Access – functionalities for browsing and reading content elements; i.e. getting metadata,

components, reading content element attributes such as resource descriptors, technical information:
MIME-type;

• Object Model Manipulation – functionalities for modifying content package according to DRM rules by
using a set of executable commands to add, remove, copy, move content elements such as metadata or
resources, to change content elements attribute.

The Object Model Access API covers the basic functionalities to explore and retrieve information from the
content package; some of them are listed in the following:
• getAxObjectElement – to obtain information about a content element, it provides a clone of the element

included in the package;
• getAxChildIndexes – to get the list of indexes of the package component when applied to the root level or

to an inner sub-package;
• getAxMetadataIndexes – to get the list of indexes of the package descriptors;
• getResourceAsset – to realize the digital resource extraction, providing a byte stream that can be used for

different purposes such as rendering, printing, content processing. This method can used for different
purposes: call arguments allow to impose the action to be performed on the resource in terms of rights
and related details — e.g., play for 15 minutes;

• getPublicMetadataTree – to obtain the complete tree of “public” metadata of the underlying content –
i.e. obtaining a full description of it without the need of unprotecting.

The Object Model Manipulation API has been kept minimal; while an extensible set of elementary command
classes have been provided. Thus the content manipulation looks like a sequence of commands targeting the
AXMEDIS Object.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

11

AxMPEG21ElementEvent

AxObjectManager

Any Content Manipulation
Application

AxInfo
AxResource

AxMetadata
AxObject

DIDLStatement
DIDLComponent

DIDLDescriptor
DIDLItem

AxCmdChangeRes

AxCmdDelete
AxCmdAdd
AxCmdExpand

AxObjectStructureEvent

AxEvent

access
execute

register

MPEG-21 model classes

AXMEDIS model classes

Commands

Events

AXOM.lib

Obtain data
for rendering

Manipulate
content

Get notice of
content changes

• Object Manager works in respect of DRM model, i.e. on every user action it shall invoke the control of
user grants on the involved items. That should be possible through the invocation of Protection Processor
(see AXMEDIS-DE3-1-2-2-3)

• Object Manager stores information about taken actions, in particular the following information shall be
stored:

o Kind of action and entities involved;
o Who takes the action;
o Where the action have been taken (AXMEDIS Editor installation identifier);
o When the action have been taken (timestamp);

Object Manger provides an interface to permit development of data-manipulation plug-ins by third party
developer. This functionality is implemented in ProtectionProcessor. (see AXMEDIS-DE3-1-2-2-3) and
exposed in Object Manager.

In order to build a reusable and flexible infrastructure, the AXMEDIS Object Manager has been decomposed
in five parts, separating responsibilities of the several elements: MPEG-21 Object Model responsible of
managing the MPEG-21 DI allowing content access and manipulation; AXMEDIS Object Model a
refinement and an extension of MPEG21 DI, targeting the mentioned requirements and realizing on top of
the MPEG-21, the concept of AXMEDIS Data Model.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

12

View

DIDL
XML

View
Command Manager

AXMEDIS
Object Model

MPEG-21
Object Model

LoaderSaver

AXMEDIS/MPEG-21 Application

AxObjectManager

The part which is described with full details in this document is Command Manager, it is places at the top of
the layers and allows to access and manipulate high-level features in the underlying MPEG-21 structure;
The Command Manager allows transparent manipulation of content in respect to DRM rule and directly
accessing to the Servers for the acquisition of the License and of Protection Information. It allows to access
or to manipulate content with a built-in authorization check on the basis of MPEG-21 REL.

3.1.1 AXMEDIS Object loading
AXMEDIS Object Manager can be created for managing new and existing objects. In case of existing object
they can be retrieved by means of different URIs. The supported protocols are:
• File System: file:// protocol or a path can be used to locate an object to be loaded an manipulated via

AXOM
• HTTP download: http:// is used when AXMEDIS object have to be retrieved from the Web
• FTP download: ftp:// is used when AXMEDIS object have to be retrieved by using File Tranfer

Protocol.
• AXDB checkout: a special database protocol as been defined with corresponding URI type. The syntax

is axdb://<user>:<passwd>@<host>:<port>/<endpoint>?axoid=<axoid>&ver=<version>.
To save an AXMEDIS object or to upload on the AXDB specific command have been designed, for this
actions are governed by DRM rules.

For any of these protocol option it can be chosen which loading mode has to be exploited: two file formats
are supported:
• Simple XML document
• MPEG-21 FileFormat (ISOMedia compliant)

If nothing is specified, the loader automatically detect the file type by the prologue and select the appropriate
loading mode.

3.2 Module Design in terms of Classes
AxObjectManager class is composed and is hard linked to a range of classes that implements needed
functionalities. Next Class Diagram shows relations between these classes. AxObjectManager is the core
class, this class derives from AxModelContainer that offers functionalities to hold AxObjects and MPEG-21
elements. AxIndexManager is in charge to maintain indexing throughout the object model. AxCommand
class and his derived children represent allowed commands exposed to the outer environment.
AxModelStatusManager controls status of the elements locking and unlocking Objects

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

13

The AXMEDIS Object Manager architecture supports extendibility, new types of objects based on MPEG-
21 model can be easily managed in MPEG-21 Object Model without changes in present structure. Moreover,
only minor changes are needed to process content models that extend MPEG-21 or AXMEDIS elements
definitions. Hooks to perform operations on content packages are provided by the upper level layer by means
of AxObjectManager and AxCommand set.
These classes offer:
• a range of executable commands targeting the manipulation of both AXMEDIS and MPEG-21 object

models,
• coordination of functionalities of lower levels modules to organize a reliable and protected execution

flow.

The set of commands is easily extendable to manage future needs of upper level applications as shown in the
sequel. Execution of defined commands is performed using class AxObjectManager as shown in the sequel

The “Command Pattern” has been applied to the design of AxObjectManager. The controller is the
AxObjectManager which exposes the AXOM API. AxObjectManager is an intermediate layer between the
application views and the object models (i.e., the object/package model with resources and descriptors). A
view cannot directly manipulate the object model, while it has to issue commands to the AxObjectManager
class. The latter is in charge of performing the requested actions on the model. Specifically, each conceivable
command has been realized as a class which implements the interface AxCommand. It exposes two main
methods: execute and getRequiredGrants. The execute method of AxCommand has to be implemented by
each specialized class to actually perform the action on the object model. The command execution method is
able to directly access to the data model without any restriction, since the command is executed only if the
authorization is obtained. The getRequiredGrants method of AxCommand allows the verification of the
requested grants. Thus, the AxObjectManager class is able to handle the request received by the user and the
set of conceivable commands can be augmented without any impact on the current architecture.

AxObjectManager class has few control points and the code to verify the commands can be easily inserted
in. Indeed AxObjectManager class is not in charge of verifying the grants, while it has been designed in
order to provide hooks to easily create control mechanisms. The DRM enforcement is modeled by the
declaration of the requested rights which has to be stated by each AxCommand inherited class. In fact, to
each command is associated a list of AxGrant, which are the basic arguments for issuing the request to the
authorization service. In this way, AxObjectManager is able to generically handle any request issued by the
user, respecting governance, delegating authorization service the task of determining if the user has been
authorized or not on the basis of the license.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

14

Going deeply we can see how AxCommand class is used. From this class derives all allowed commands that
could be requested to AxObjectManager. These commands share the common interface provided by
AxCommand, featuring specific methods and data structures to accomplish their tasks.

AxCommand

AxCommandAdd

AxCommandBeginChangeRes

AxCommandCopy

AxCommandDelete

AxCommandEditAxCommandEmbed

AxCommandEndChangeRes

AxCommandExpand

AxCommandGetMetadata

AxCommandGetProtInfo

AxCommandMove

AxCommandObtainAXOID

AxCommandRegister

AxCommandSave

AxCommandSetProtInfoAxCommandUploadOnDB

AxMPEG21CmdBeginChangeRes AxMPEG21CmdEmbedRes AxMPEG21CmdEndChangeRes AxMPEG21CommandAdd

AxMPEG21CommandCopy AxMPEG21CommandDelete AxMPEG21CommandEdit AxMPEG21CommandExpand

AxMPEG21CommandGetProtInfo AxMPEG21CommandMove AxMPEG21CommandSetProtInfo

A typical command will override AxCommand::execute method to implement the operation sequence needed
to perform represented command task . Other accessory methods could be implemented in the derived
command classes.

3.2.1 AxObjectManager Capabilities Overview

The AxObjectManager exposes functionalities for: creating new content; opening existing content by indicating a URI;
browsing content structure; accessing metadata and resources embedded or referred to by the content; manipulating
content structure, metadata and resources; saving the content; adding/modifying protection information associated to
any content element.
The following pictures shows how the entire module works in terms of sequence diagrams. In the first
picture an example of command execution is taken. The command , represented by AxCommand class, is
passed at AxObjectManager by mean of executeCommand method.
Next operations involves :

• Getting all grants elements, maintained in AxCommand, for command execution
• Getting all indexes of model elements, maintained in AxCommand, to unprotect for command

execution
• Checking all grants for command execution through ProtectionProcessor
• Unprotecting all elements needed for command execution
• Command execution.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

15

AxObjectManager

1: executeCommand(command:AxCommand)

AxCommand

2: getRequiredGrants()

2: return grantList

3: getAccessedIndexes()

3: return indexList

ProtectionProcessor

8 + i: isGranted(obj:AxObject, grant:string, details:string)

AxIndexManager

5 + i: resolveIndexInAxObjectElement(axindex:AxIndex)

GrantListElement[i]

4+i: getIndex()

4+i: return axindex

5 + i: return obj

6 + i: getOperation()

6 + i: return grant

7 + i: getDetails()

7 + i: return details

a: 8 + i : return false

b: 8 + i: return true
9 + n: makeAxObjectElementClear

11: execute(model, indexManager, statusManager)

11: return

1: return not granted

1: return

n= indexList pointer
i= grantList pointer

9 + n: return

10 + n: unprotectElement(src, axom)

10 + n: return

By using model encapsulation, a good level of security has been achieved in terms of robustness against developer’s
malicious content handling preventing direct manipulation from the views. Thus, views are not allowed to target content
elements by using pointers. Command targets have to be indicated using logical references that prevent the access to the
physical addresses referring to the digital resources. Thus, the view interacts with the model using instances of the class
AxIndex. These are used like pointers, while they can be actually resolved only by the AxObjectManager which
generated them.

The Command Pattern allows to easily extend the set of actions which AXOM is capable to execute (and control)
The proposed solution has been designed to speed-up the creation of AXMEDIS-compliant tools, which can easily
exploit the provided functionalities and can also extend the command set to their specific need. A custom new
command can be defined by taking into account its fundamental aspects: authorization, un-protection and behavior
implementation. By specializing from AxCommand class the custom command class presents getRequiredGrants,
getAccessedIndexes and execute that have to be implemented according to the desired semantics and manipulation
logic. The custom action commands classes have to define one or more constructors to give arguments to the
manipulation (e.g., target elements) and to introduce specific methods in order to obtain back information after a
performed execution.

An example of an extension set of manipulation commands could be one for resource processing.
Let us consider a command for processing an image performing a mirror transformation (left to right) and replace the
resource with the result of the processing.
Command AxCommandImageMirror defines a constructor which accepts the target image as an argument.
The constructor can be defined as AxCommandImageMirror(AxIndex imageIndex).

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

16

The following pseudo-code provides and example about the definition of the command, including the declaration of the
required rights and what has to be unprotected.
The method execute() sketching the command implementation is also reported.

Each proposed custom command has to be certified and approved to be compliant with the semantics of the rights. This
means that the enforcement of the rights into the authoring and player tools has to be performed in according to a rights
data dictionary – e.g., MPEG-21 RDD and that defined by Mi3P.

class AxCommandImageMirror : public AxCommand
{ private AxIndex targetIndex;
 //constructor
 AxCommandImageMirror(AxIndex imageIndex)
 { targetIndex = imageIndex;
 }
 //declaration of required granted rights the operation “modify” has to
 // be authorized with details “apply mirror filter”
 vector AxGrant getRequiredGrants()
 { return new vector { new AxGrant(targetIndex, “modify”,
 “apply mirror filter”) };
 }
 //declaration of content elements to be unprotected
 //only the target resource has to be unprotected
 vector AxIndex getAccessedIndexes()
 { return new vector { targetIndex };
 }
 void execute(AxModelContainer model,
 AxIndexManager indexManager, AxStatusManager s)
 { //since the model has been already unprotected it is possible to
 //have direct access to the target resource (located by targetIndex)
 AxResource res = (AxResource) indexManager.resolveIndex(targetIndex);
 string mime res.getMIMEType();
 //processing
 inputstream bytes, res.getAsset().getInputStream();
 inputstream mirrorbytes = applyMirrorFilter(mime, bytes);
 res.getAsset().setInputStream(mirrorbytes);
 }
};

Please note that targetIndex is used to store the location of the target resource, which is set only at construction time.
This index is returned as the unique “accessed index” of the grant authorization. The index is used at command
execution time to retrieve the resource in the object model.

3.2.2 AxObjectManager as IndexManager

One of the main tasks AxObjectManager is responsible is to give support to upper layer application for a
direct, in terms of indirection , access to the element managed by AXOM. To maintain separation of the
functionalities the class AxIndexManager has been designed to wrap indexing functionalities then any
AxObjectManager includes an instance of this class.

AxIndexManager maintains two separated indexes tables: one that refers to MPEG-21 hyerarchy and the
other refers to AxObjects hierarchy. Another class designed to implement indexing functionalities is
AxIndex, representing instances of a single index and used in AxIndexManager as key for indexes tables.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

17

As shown in the class diagram AxIndexManager declares four private maps structure among its own
structure. These maps establish legacy among objects and indexes and indexes and objects. Direct access to
maps structures is hidden by the implementation through AxObjectManager and AxIndexManager avoiding
direct access to referred objects and elements.

3.2.3 AxObjectManager as EventManager
The AxObjectManager, managing the life-cycle of the AXMEDIS Object manipulation need to efficiently
handle the result of the modifications. The view that are attached to this manipulation controller has to
render the changes after a proper notification of what it has been changed in the underlying model.

The observer pattern has been implemented in the AxObjectManager (is not the sole case). In the following
diagram the main relationships among entities which build the event-driven enabling infrastructure:

− The MPEG- 21 Element that is where te modification could take place (e.g. a child is added)
− The MPEG-21 Document that is responsible of propagating any change notification to the proper

handler
− The Event Dispatcher that after the notification from the Document can forward to all the registere

listeners the received information.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

18

+DIDLDocument()
+~DIDLDocument()
+getRootElement()
+setRootElement()
+getDeclarations()
+setDeclarations()
+elementChanged()
+structureChanged()
+contentChanged()

+structureDispatcher : EventDispatcher<MPEG21StructureListener>
+elementDispatcher : EventDispatcher<MPEG21ElementListener>
+contentDispatcher : EventDispatcher<MPEG21ContentListener>
-mRootElement : MPEG21Element *
-mDeclarations : DIDLDeclarations *

DIDLDocument

+createMPEG21Element()
+createMPEG21Element()
+elementChanged()
+structureChanged()
+contentChanged()

MPEG21Document

+EventDispatcher()
+~EventDispatcher()
+operator +=(in listener : Listener*) : EventDispatcher &
+operator -=(in listener : Listener*) : EventDispatcher &
+addListener(in listener : Listener*)
+removeListener(in listener : Listener*)
-fireEvent(in const Listener::Event &)

-mListeners : list<Listener *>

EventDispatcher

Listener

0..1

1

In the above diagram the design of the Event dispatcher is outlined. The relation with the DIDLDocument
allow document changes being notified to the listeners.

The fundamental entity is EventDispatcher, since it implements management of event listener once for all in
a general manner. In fact it models in a template the common functionality of storing a list of event listeners
and firing a certain event on all of them. This template can model, as depicted in the diagram, all the
listener/event types.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

19

DIDLDocument

MPEG21Document

EventDispatcher

Listener

0..1

1

MPEG21ContentListenerMPEG21ElementListenerMPEG21StructureListener

AxObjectManager

AxModelContainer

«private»

AxObject

Synchronizer

1

*

1

*

1

*

1

1

1 1

1

1

1

1

1 1

The following diagram depicts the mechanism that notifies any listener of an event, in this case the insertion
of a child in an MPEG21Element.

MPEG21NodeElement

event:MPEG21StructureEvent

DIDLDocument EventDispatcher MPEG21StructureListener

fireRefStructureChanged()

MPEG21StructureEvent

getOwnerDocument

structureChanged(event)

fireEvent(event)

StructureChanged(event)

insertChildBefore()

for each Listener
in the list

to access the required
information the Listener
need to examine event
argument

The architecture is extensible, while three kinds of listener have been defined in order to handle typical
events describing changes inside and MPEG-21 Document:

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

20

− MPEG21StructureListener that is able to receive all the nofications regarding changes in the
hierarchical structure of MPEG-21 Document (e.g. a child has been added, another is removed).

− MPEG21ElementListener that is able to receive notification regarding the changes of the elements’
attributes (e.g. id attribute has been changed).

− MPEG21ContentListener that is responsible of handling the modification regarding the digital assets
or the XML content that are stored inside some MPEG-21 element (e.g. DIDLStatements,
DIDLResource).

In the following the three listener classes are reported. Their responsibility is also to define the specific Event
class and the specific CallBackType. With this two inner-classes can enforce how listener implementation
can obtain information regarind the managed event.

The MPEG21StructureEvent is the more complex event class since the structure of an MPEG-21 Document
can change in different manners. In the following diagrams some of the structure events are listed.

When adding a new element inside an MPEG-21 Document, the event object carries the information of the
element in which something has been added, and the element that is added. The first is indicated by “Source”
and the second by Subject.

The addition can be performed not only to the end of an existing children list or to an empty list. In this case
three object information is carried by the event: the Source and the Subject, like in the simple addition, and
the Reference, that represent the position reference in order to retrieve “where” in the list the new element
has been added.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

21

Source Object

Subject Object

Operation “INSERT CHILD BEFORE”

Reference Object

Some important changes in the structure of the MPEG-21 Document are related to the root element of the
document. The MPEG21StructureEvent in this case define three possible condition.

− SET ROOT that means that a new root element has be set to the Document.

− JOIN ROOT and LEAVE ROOT that are respectively the action of adding a new element to the

Document or to remove it.

The presented mechanism is simply the basis of the event dispatching inside the Model of the
AxObjectManager. New entities are needed in order to notify MPEG-21 event to the outside views, but more
important is to adjust the AXMEDIS model after the MPEG-21 modification, and to notify also the
AXMEDIS Data Model events to the views.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

22

The Synchronizer has bene created to keep AXMEDIS Model and MPEG-21 Model in a consisten relation,
since AXMEDIS is a simplified view of the MPEG-21.

At any MPEG-21 Document change the AXMEDIS object model can be invalidate because a forbidden
MPEG-21 Element has been inserted or some element that are mandatory for AXMEDIS Application
Domain are removed.

The Synchronizer acts as a listener for every kind of MPEG-21 Document event and contains the adjustment
and validation logic.

In the following a table is reported to examine all the situation that are generated by MPEG21StructureEvent

CHILD(sbj) PARENT(src) EVENT TYPE Required Sync. Operations

DIDLDescriptor DIDLItem CHILD_ADDED

New metadata has been attached to an AXMEDIS Object:

• to verify the AxMetadata it is not already present
• to load the DIDLDescriptor as an AxMetadata
• to verify if the AxMetadata is not considered

mandatory
• to find the AxObject that is associated to the parent

DIDLItem
• to invoke syncAddMetadata(new metadata)

DIDLItem DIDLItem CHILD_ADDED

New object has been attached to the AXMEDIS Object as a
sub-component:

• to verify the AxObject it is not already present
• to load the DIDLItem as an AxObject
• to find the AxObject that is associated to the parent

DIDLItem
• to invoke syncAddContent(new content)

DIDLComponent DIDLItem CHILD_ADDED

New media resource has been attached to the AXMEDIS
Object”:

• to verify the AxResource it is not already present
• to load the DIDLComponent as an AxResource
• to find the AxObject that is associated to the parent

DIDLItem
• invoke syncAddContent(new content)

DIDLStatement DIDLDescriptor CHILD_ADDED

No action

DIDLDescriptor DIDLDescriptor CHILD_ADDED

New descriptor has been added as attribute of an AxMetadata:
• to verify Statement proper NameSpace and

LocalName (if not AxObect is invalidated)
• To find the AxMetadata that is associated to the

parent DIDLDescriptor
• invoke refreshMetadataDescriptors()

DIDLResource DIDLComponent CHILD_ADDED

New resource has been added to a DIDLComponent: the
AXMEDIS model has to be invalidated

Other DIDL element Other DIDL element CHILD_ADDED

All cases that are not included in the above list cause the
AXMEDIS model invalidation

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

23

DIDLDescriptor DIDLItem CHILD_REMOVED

A metadata has been removed from an AXMEDIS Object:

• to verify the related AxMetadata it is not already
removed

• To find the AxMetadata that is associated to the
DIDLDescriptor

• to verify if the AxMetadata is not considered
mandatory

• to invoke syncRemoveMetadata(metadata)

DIDLItem DIDLItem CHILD_REMOVED

Object has been removed from a composite AXMEDIS object:

• to verify the related AxObject it is not already
removed

• To find the AxObject that is associated to the
DIDLItem

• to invoke syncRemoveContent(content)

DIDLComponent DIDLItem CHILD_REMOVED

A resource has been cancelled

• AxObject has to be invalidated

DIDLStatement DIDLDescriptor CHILD_REMOVED

The DIDL Statement has been removed by the Descriptor: to
be invalidated

DIDLDescriptor DIDLDescriptor CHILD_REMOVED

Deleting a Descriptor in a Descriptor:

• To find the AxMetadata that is associated to the
DIDLDescriptor

• invoke refreshMetadataDescriptors()

DIDLResource DIDLComponent CHILD_REMOVED

Resource is remove inside a DIDLComponent

Other DIDL element Other DIDL element CHILD_REMOVED

All cases that are not included in the above list cause the
AXMEDIS model invalidation

In the following diagram the situation in which a new DIDLComponent is inserted as a child of a DIDLItem
is depicted. The diagram highlights the sinchronization aspect of the related AXMEDIS object model.

In the following a table is reported to examine the required operation when the Synchronizer is notified with
a MPEG21ContentEvent.

Element Event Type Required Sync. Operations
DIDLStatement CONTENT_CHANGED

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

24

The content has been changed:
• to verify the parent element is a Descriptor
• to find the AxMetadata that is associated to the DIDLDescriptor
• to check if the modified metadata is mandatory and some required

information have been removed.

DIDLResource CONTENT_CHANGED

no action

Xinclude CONTENT_CHANGED

The fallback is changed

• to verify the new XInclude contains the reference to an AXMEDIS
Object

Other DIDL
element CONTENT_CHANGED

All cases that are not included in the above list cause the AXMEDIS model
invalidation

DIDLStatement CONTENT_CLEARED

The metadata content has been deleted

• to verify the parent element is a Descriptor
• to find the AxMetadata that is associated to the DIDLDescriptor
• to check if the modified metadata is mandatory and some required

information have been removed.

DIDLResource CONTENT_CLEARED

A resource has been emptied. AxObject has to be invalidated.

Xinclude CONTENT_CLEARED

The Xinclude elementi is emptied thus, the AxObject has to be invalidated

Other DIDL
element CONTENT_CLEARED

All cases that are not included in the above list cause the AXMEDIS model
invalidation

The following diagram depicts a situation in which the deletion of content inside a DIDLResource causes the
invalidation of the parent AXMEDIS Object, because is not any more compliant to its standardization.

From the point of view of the AxObjectManager:

− it owns to data model MPEG21Document and the root AxObject, through the AxModelContainer
class.

− it refers to a Synchronizer object in order to keep this two model in synchronization.
− it is responsible of providing means to allow client ciews registering to the interesting events related

to the MPEG-21 and the AXMEDIS object models.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

25

DIDLDocument

+getAxModel()
+getDiModel()
#AxModelContainer()
#setAxModel()
#setDiModel()

-diModel : DIDLDocument *
-axModel : AxObject *

AxModelContainer

+initialize()
+terminate()
+createAxObjectManager()
+createAxObjectManagerFromDB()
+createAxObjectManager()
+AxObjectManager()
+AxObjectManager()
+~AxObjectManager()
+executeCommand()
+getURI()
+getAxRootIndex()
+getMPEG21RootIndex()
+getRelatedAXMEDIS()
+getRelatedMPEG21()
+getAxObjectElement()
+getAxChildIndexes()
+getAxMetadataIndexes()
+getPublicMetadataTree()
+getMPEG21Element()
+getMPEG21ChildIndexes()
+getResourceAsset()
+isAxValid()
+isDIValid()
+getSynchronizer()
#applyProtection()
#setModel()
#setModel()
#setURI()
-AxObjectManager()
-invalidateDI()
-invalidateAx()
-makeMPEG21ElementClear()
-makeAxObjectElementClear()
-mpeg21ToAXMEDIS()
-findRelatedAxContent()
-findRelatedAxMetadata()
-axmedisToMPEG21()
-applyAxProtection()
-fillContentInfoItem()
-isAxGranted()
-isMPEG21Granted()
-isRegistered()
-attachSyncToDispatchers()
-detachSyncToDispatchers()

-mURI : string
-mErrorMsg : string
-mDIValid : bool
-mAxValid : bool
-sync : Synchronizer *
-statusManager : AxModelStatusManager
-indexManager : AxIndexManager
-executedCommands : vector<AxCommand *>
-msInitialized : bool
-regAXOIDs : map<std :: string,bool>

AxObjectManager

«private»

+Synchronizer()
+~Synchronizer()
+getObjectManager()
-structureChanged()
-elementChanged()
-contentChanged()
-manageStructureEvent()
-manageElementEvent()
-manageContentEvent()
-checkStatement()
-hasThisChild()
-findRelatedRefObj()
-isAValidFallback()

-mObjectManager : AxObjectManager *
-mAxModel : AxObject *
-mDiModel : DIDLDocument *

Synchronizer

AxObject

1 1

1 1

1 1

1

1

1

1

A view has to implement a specific method defined by the listener class and it has to register itself to
AxObjectManager in order to react to specific changes of the underlying content model.

Please note that the signature of the listener methods will change the Event object definition, in order to
communicate not pointer any more, but AxIndex objects.

So AxEvent and AxMPEG21Event will be the classes of the objects that are received by the listener that are
outside the controller (AxObjectManager).

In the following is reported the classes’ declarations.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

26

class AxEvent
{
public:
 typedef enum {
 INVALIDATE,
 METADATA_ADDED,
 OBJECT_ADDED,
 RESOURCE_ADDED,
 METHOD_ADDED,
 RESOURCE_CHANGED,
 OBJECT_CHANGED,
 METHOD_CHANGED,
 OBJECT_REMOVED,
 METADATA_REMOVED,
 RESOURCE_REMOVED,
 METHOD_REMOVED,
 METADATA_MODIFIED,
 CONTENT_ATTRIBUTES_CHANGED,
 METADATA_ATTRIBUTES_CHANGED,
 METHOD_ATTRIBUTES_CHANGED,
 RESTORE}
 EventType;

 AxEvent(const AxIndex& parent, EventType Type,int position=0);
 ~AxEvent();

 inline const AxIndex& getElementIndex()const;
 inline int getPosition() const;

 inline EventType getType()const;
};

class AxMPEG21Event
{

public:

 typedef enum {
 CONTENT_CHANGED,
 ELEMENT_ADDED,
 ELEMENT_REMOVED,
 ATTRIBUTES_CHANGED}
 EventType;

 AxMPEG21Event(const AxIndex* parenIndex,const AxIndex* target,const
AxIndex* reference, EventType Type);
 ~AxMPEG21Event();

 inline const AxIndex* getParentIndex()const;
 inline const AxIndex* getTargetElement()const;
 inline const AxIndex* getReferenceElement()const;

 inline EventType getType()const;
};

3.2.4 Class Methods Overview

AxObjectManager - AxModelContainer

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

27

Core class of this module, expose methods to interface outer applications to inner classes of the module. As
exposed in previous parts of this specification through AxObjectManager ,AxIndexManager, AxCommand
and AxModelStatusManager are accessed.

AxObjectManager – Class methods
AxObjectManager -AxObjectManager(const string anURI) - ~AxObjectManager
Class constructor and destructor.
AxObjectManager constructors acts in a two way behaviour. If a class user wants to create a new manager
for a target existing AXMEDIS or DIDL object , an input URI string has to be specified in order to retrieve
it. Elsewhere a new empty clear object is created along with AxObjectManager new instance.

Initialize – terminate
These two static methods setup and dismiss all needed information and data structures in order to allow
usage of AxObjectManager and linked modules. Initialize has to be called as first step when an application
has to use Axmedis Object Model or MPEG-21 object model.in any way. Multiple calls of initialize don’t
cause changes in initialized items. Terminate has to be called whenever an application stops using Axmedis
Object Model and MPEG-21 Object Model
executeCommand
Performs operations to allow execution of the input AxCommand., then execute the command
getAxObjectElement – getMPEG21Element - getResourceAsset
Interface to AxIndexManager. Retrives element related to input AxIndex . Search path is chosen in
AxObject or DIDLDocument trees respectively. It returns a clone of the encapsulated object, it has to be
destroyed by client code.
getRootIndex
Return index of the root element of AxIndexManager. This index points both AxObject and
DIDLDocument roots
invalidateDI, invalidateAX
Make Digital Item tree or AxObject tree invalid
mpeg21ToAXMEDIS – axmedisToMPEG21

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

28

Convert MPEG21 element to AxObject element and vice versa. Return index of the converted element
getURI – setURI
Returns an set URI for the manager
isDIValid – isAxValid
Check validity status of the models
isMPEG21Element – isAxObjectElement
Checks if the given index refers an MPEG21Element or an AxObjectElement respectively
SetModel
Sets the model root index in AxIndexManager
makeMPEG21ElementClear – makeAxObjectElementClear
Unprotect referred elements through the use of ProtectionProcessor
loadFromURI
a static methods for loading objects from multiple URI has been provided, in order to avoid a constructor
which can fail. By calling this static method a pointer to AxObjectManager ready to managed the loaded
document.

AxModelContainer – Class methods
AxModelContainer
Class constructor
getAxModel – getDIModel
Returns AxModel and DIDLDocument root pointers
setAxModel – setDIModel
Sets AxModel root and DIDLDocument root

AxIndexManager – AxIndex - AxModelStatusManager
These classes support AxObjectManager. AxIndexManager is demanded to manage access to data models
maintaining indexes for all the elements. The class maintains two different indexes, one for
MPEG21Elements and the other for AxObjectElements.
AxModelStatusManager provide functionalities to control the status of the model.

AxObjectManager

+AxIndexManager()
+~AxIndexManager()
+reset()
+getRootIndex() : const AxIndex &
+getIndexOf(inout element : AxObjectElement) : const AxIndex &
+getIndexOf(inout element : MPEG21Element) : const AxIndex &
+resolveIndexInAxObjectElement(inout index : const AxIndex) : AxObjectElement &
+resolveIndexInMPEG21Element(inout index : const AxIndex) : MPEG21Element &
+setMPEG21RootElement(inout element : MPEG21Element)
+setAxObjectRootElement(inout element : AxObjectElement)
+setElementIndexedBy(inout index : const AxIndex, inout element : MPEG21Element)
+setElementIndexedBy(inout index : const AxIndex, inout object : AxObjectElement)
+hasIndex(inout element : const AxObjectElement) : bool
+hasIndex(inout element : const MPEG21Element) : bool
+isValid(inout index : const AxIndex) : bool
+isValidAxObjectElement(inout index : const AxIndex) : bool
+isValidMPEG21Element(inout index : const AxIndex) : bool
#getNextFreeValue() : IndexType

-indexesToObjects : map<AxIndex *,AxObjectElement *>
-indexesToElements : map<AxIndex *,MPEG21Element *>
-objectsToIndexes : map<AxObjectElement *,AxIndex *>
-elementsToIndexes : map<MPEG21Element *,AxIndex *>
-freeValues : list<AxIndex :: IndexType>
-lastFreeValue : IndexType
-rootIndex : AxIndex *

AxIndexManager

1

1

«uses»

+operator ==(inout rhs : const AxIndex) : bool
+operator !=(inout rhs : const AxIndex) : bool
#AxIndex()
#AxIndex(inout Parametro1 : const AxIndex)
#AxIndex(in aValue : IndexType, inout manager : AxIndexManager)

AxIndex

+reset()
+setLocked(inout index : const AxIndex, in locked : bool) : bool
+isLocked(inout index : const AxIndex) : bool

-lockedIndexes : list<AxIndex *>
AxModelStatusManager

1

1

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

29

AxIndex Manager – Class methods
AxIndexManager - ~AxIndexManager
Class constructor and destructor
reset
Reset all the element index to an empty value. Delete all AxIndex elements in the index
getRootIndex
Return index of the root element of AxIndexManager.
getIndexOf
Get the AxIndex of input element.
resolveIndexInAxObjectElement – resolveIndexInMPEG21Element
Return element associated with input AxIndex
setMPEG21RootElement – setAxObjectRootElement
Sets root for MPEG21Element index and AxObjectElement index
setElementIndexedBy
Add a new entry in one of two indexes chosen by input element
hasIndex
Checks if the given element has an associated AxIndex
isValid – isValidAxObjectElement – isValidMPEG21Element
Check validity status of the element
getNextFreeValue
Returns next AxIndex number free from element associations

AxIndex– Class methods
AxIndex
Class constructor
operator ==
Checks if two AxIndex are equal
operator !=
Checks if two AxIndex are.different

AxModelStatusManager– Class methods
Reset
Reset the class to initial state cleaning all locked indexes
SetLocked
Lock target element
IsLocked
Checks if target element is locked

AxCommand – AxGrant
These classes support commands definitions and execution. AxCommand represent the common interface for
all the command defined for the models. AxGrant models grants required for command executions. These
grants will be checked by Protection Processor (see DE- 3-1-2-2-3- ProtectionProcessor) .

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

30

+AxCommand()
+~AxCommand()
+execute(inout model : AxModelContainer, inout indexManager : AxIndexManager, inout statusManager : AxModelStatusManager)
+getReverseCommand() : AxCommand &
+getRequiredGrants() : const ConstAxGrantListType &
+getAccessedIndexes() : const ConstIndexListType &
+isMPEG21Command() : bool
-initializeRequiredGrants() : auto_ptr<ConstAxGrantListType>

AxCommand

+AxGrant(inout index : const AxIndex, inout operation : const string, inout details : const string = "")
+~AxGrant()
+getIndex() : const AxIndex &
+getOperation() : const string &
+getDetails() : const string &

-mIndex : AxIndex *
-mOperation : string
-mDetails : string

AxGrant

1..*

1

AxCommand – Class methods
AxCommand - ~AxCommand
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
getReverseCommand
Return the reverse version of this command if a reverse command is supported by the command itself
GetRequiredGrants
Returns a list of grants needed for the execution of this command.
getAccessedIndexes
Return a list of AxIndex that refers to all the elements used by the execution of this command
isMPEG21Command
Checksif the command operates on an MPEG21Element
initializeRequiredGrants
Initialize the grant list for the command

AxGrant – Class methods
AxGrant - ~AxGrant
Class constructor and destructor
getIndex – getOperation –getDetails
Returns index , operation name and details for the grant

AxCommands
A list of all implemented command classes is now showed

AxCommandAdd: add a new AxObject to the tree. The object which is passed as an argument to the
addition is cloned with deep option set to true.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

31

AxCommandAdd – Class methods
AxCommandAdd - ~AxCommandAdd
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
getIndexeOfAddedElement
Return the index of added element
getRequiredGrants
Return grants needed to command execution

AxCommandBeginChangeRes: Change the AxResource content. This command returns an output stream
where the modified resource can be written. The action has to be finalized with AxCommandEndChangeRes.

AxCommandBeginChangeRes– Class methods
AxCommandBeginChangeRes - ~AxCommandBeginChangeRes
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
getOuputStream
Return the output stream of Resource to be changed
getRequiredGrants
Return grants needed to command execution

AxCommandCopy: copy a target AxObject element to a destination

AxCommandCopy – Class methods
AxCommandCopy - ~AxCommandCopy
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
getNewElementIndex
Return the index of new element
GetRequiredGrants
Return grants needed to command execution

AxCommandDelete: delete a target AxObject element

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

32

AxCommandDelete – Class methods
AxCommandDelete
Class constructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
GetRequiredGrants
Return grants needed to command execution

AxCommandEdit: edit an element of the AxObject, this command can be used to modofy the attribute of
any element in the AxObject (e.g. to modify the mime-type of a resource).

AxCommandEdit – Class methods
AxCommandEdit
Class constructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
GetRequiredGrants
Return grants needed to command execution

AxCommandEmbed: embed a new asset in an AxResource. Similar to the command for changing a
resource, this command modify at once all the resource asset. The main difference is that allows to pass an
input stream where the command will extract the content.

AxCommandEmbed – Class methods
AxCommandEmbed - ~AxCommandEmbed
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxCommandEndChangeRes: terminate an AxResource change operation. Finalize the changes of a given
resource. It has to be call when a resource modification process (beginning with a
AxCommandEndChangeRes) is terminates. After its execution the new resource will be embedded as an
asset.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

33

AxCommandEndChangeRes – Class methods
AxCommandEndChangeRes - ~AxCommandEndChangeRes
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxCommandExpand: Returns indexes of target element’s children. This command is used to browse the
AxObject level by level.

AxCommandExpand – Class methods
AxCommandExpand - ~AxCommandExpand
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getChildrenIndexes
Return indexes to children of expanded node
getRequiredGrants
Return grants needed to command execution

AxCommandGetMetadata: return metadata indexes. This command is used to obtain the list of metadata,
which are associated to a given AxObject.

AxCommandGetMetadata – Class methods
AxCommandGetMetadata - ~AxCommandGetMetadata
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
getMetadataIndexes
Return the indexes of retrived metadata
GetRequiredGrants
Return grants needed to command execution

AxCommandGetProtInfo: returns Protection Information for target AxObject

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

34

AxCommandGetProtInfo – Class methods
AxCommandGetProtInfo - ~AxCommandGetProtInfo
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
GetToolList
Return a list ot tool types used to process element’s protection information
GetRequiredGrants
Return grants needed to command execution

AxCommandMove: Move an AxObject element to a destination

AxCommandMove – Class methods
AxCommandMove - ~AxCommandMove
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
GetRequiredGrants
Return grants needed to command execution

AxCommandObtainAxoid: It contact the suitable service in orded to obtain an AXOID. Inthis way it can be
uniquely identified in the AXMEDIS. This is a mandatory step before the publication/distribution.

AxCommandObtainAXOID – Class methods
AxCommandObtainAXOID - ~AxCommandObtainAXOID
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getAXOID
Return Axmedis Object ID (AXOID)
getRequiredGrants
Return grants needed to command execution

AxCommandRegister: Register the object. This is a mandatory step before the publication/distribution.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

35

AxCommandRegister – Class methods
AxCommandRegister - ~AxCommandRegister
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxCommandSave: save the object in a output file

AxCommandSave – Class methods
AxCommandSave
Class constructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getState
Return state of saving process
getMessage
Return information about command execution errors
getRequiredGrants
Return grants needed to command execution

AxCommandSetProtInfo: set protection info for the object

AxCommandSetProtInfo – Class methods
AxCommandSetProtInfo - ~AxCommandSetProtInfo
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
GetRequiredGrants
Return grants needed to command execution

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

36

AxCommandUploadOnDB: save the object in a AXDB

AxCommandUploadOnDB– Class methods
AxCommandUploadOnDB
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
GetState
Return state of saving process
GetMessage
Return information about command execution errors
GetRequiredGrants
Return grants needed to command execution

Note: the default constructor will target the “default database” (location will be retrieved by the current
configuration). If the extended constructor will be used, the target database is located by the proper
information.

AxMPEG21CmdBeginChangeRes: Changes a Resource asset in the MPEG-21 DI. See corresponding
command on the AXMEDIS Object.

AxMPEG21CmdBeginChangeRes – Class methods
AxMPEG21CmdBeginChangeRes - ~AxMPEG21CmdBeginChangeRes
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
GetOutputStream
Return output stream related to new Resource
GetRequiredGrants
Return grants needed to command execution

AxMPEG21CmdEmbedRes: load resource asset content in an MPEG-21 DI

AxMPEG21CmdEmbedRes – Class methods
AxMPEG21CmdEmbedRes- ~AxMPEG21CmdEmbedRes
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

37

getIndexeOfAddedElement
Return the index of added element

AxMPEG21CmdEndChangeRes: End changes of the resource. To be called at the end of a Resource
editing which has been started by AxMPEG21CmdBeginChangeRes.

AxCmdEndChangeRes – Class methods
AxMPEG21CmdEndChangeRes - ~AxMPEG21CmdEndChangeRes
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxMPEG21CommandAdd: add a target MPEG-21 element to an MPEG-21 DI

AxMPEG21CommandAdd – Class methods
AxMPEG21CommandAdd - ~AxMPEG21CommandAdd
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getIndexeOfAddedElement
Return the index of added element
getRequiredGrants
Return grants needed to command execution

AxMPEG21CommandCopy: Copy target MPEG-21 Element

AxMPEG21CommandCopy – Class methods
AxMPEG21CommandCopy - ~AxMPEG21CommandCopy
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
getNewElementIndex
Return the index of copy element
GetRequiredGrants
Return grants needed to command execution

AxMPEG21CommandDelete: Delete target MPEG-21 Element

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

38

AxMPEG21CommandDelete – Class methods
AxMPEG21CommandDelete
Class constructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
GetRequiredGrants
Return grants needed to command execution

AxMPEG21CommandEdit: Edit target MPEG-21 Element. It changes the attribute of the element with no
impact on the structure.

AxMPEG21CommandEdit – Class methods
AxMPEG21CommandEdit
Class constructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
GetRequiredGrants
Return grants needed to command execution

AxMPEG21CommandExpand: Return indexes of target element’s children

AxMPEG21CommandExpand – Class methods
AxMPEG21CommandExpand- ~ AxMPEG21CommandExpand
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
getChildrenIndexes
Return indexes to children of expanded node
GetRequiredGrants
Return grants needed to command execution

AxMPEG21CommandGetProtInfo: Returns protection info for target MPEG-21 element

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

39

AxMPEG21CommandGetProtInfo – Class methods
AxMPEG21CommandGetProtInfo - ~AxMPEG21CommandGetProtInfo
Class constructor and destructor
execute
Execute the command in environment defined by input model, indexMannager, statusManager
getToolList
Return a list ot tool types used to process element’s protection information
getRequiredGrants
Return grants needed to command execution

AxMPEG21CommandMove: Move target MPEG-21 element to destination

AxMPEG21CommandMove – Class methods
AxMPEG21CommandMove - ~AxMPEG21CommandMove
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

AxMPEG21CommandSetProtInfo: Set protection informations for MPEG-21 target element

AxMPEG21CommandSetProtInfo – Class methods
AxMPEG21CommandSetProtInfo - ~AxMPEG21CommandSetProtInfo
Class constructor and destructor
Execute
Execute the command in environment defined by input model, indexMannager, statusManager
getRequiredGrants
Return grants needed to command execution

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

40

3.3 Examples of usage
In the following, a subset of the commands which are at disposal in the AXOM is presented. Each command models a
specific manipulation on the content package. The important aspects of each class, inherited by AxCommand, are the
constructors, which are needed for setting the operation parameters, and additional methods defined in order to get the
execution results. The results typically may contain additional information not directly accessible in the modified
package.
• AxCommandAdd– this command class has been defined to add AxObject elements. It presents constructors to

impose the entry point of the addition: AxCommandAdd(AxObjectElement newElement, AxIndex parentIndex) to
add an element at the end of the list of descriptors or components; AxCommandAdd(AxObjectElement newElement,
AxIndex parentIndex, AxIndex referenceIndex, bool insertBefore) to insert a new content element before or after a
given element in the list AxIndex getIndexOfAddedElement() to obtain after the execution the logical reference of
an added new element

• AxCommandDelete – command class defined to reduce the content package by deleting descriptions, digital
resources or inner packages. A constructor is needed in order to select the target element to be removed:
AxCommandDelete(AxIndex deleteIndex)

• AxCommandEdit – command class defined to edit the attributes included in the content elements of the package:.
AxCommandEdit(AxObjectElement dataElement, AxIndex editIndex) change the attributes of the target element by
copying them from dataElement;

The usage of AXOM functionalities is quite simple. For the manipulation of content package the creation of a new
command and its execution are needed. The AXOM is responsible of providing indexes for the root level or for any
sub-tree of the package hierarchy.
In the following a simplified version of AXOM usage is reported by using a pseudo-code and adding comments, this
highlight the semantic meaning of the performed actions.

// creating a manager to manipulate a new AXMEDIS object
AxObjectManager myEmptyObject = new AxObjectManager();
// creating a resource element targeting to a digital resource URL (a jpeg image)
AxResource myDigitalRes = new AxResource();
myDigitalRes.load(“bar.jpg”);
// performing the addition of the created resource in the empty object
// step1: creation of the suitable command object
AxCommandAdd addCmd = new AxCommandAdd(myDigitalRes, myEmptyObject.getRootIndex());
// step2: execution of the command
myEmptyObject.executeCommand(addCmd);
// step3: (optional) gathering of the results: the index of the added element
AxIndex addedResIndex = addcmd.getIndexOfAddedElement();

The usage of the AXOM hides the DRM verification of grants which can be needed to authorize the manipulations. The
AXOM is capable of controlling the execution of the above mentioned commands, delegating to them the specification
of the grants needed and the accesses to the content elements. On the other hand, only the AXOM can (i) request the
grant authorization from the Authorization Service, and can (ii) unprotect the content package.

It is important to specify that any operation call in AxObjectManager requires the class initialized. Two static
methods, initialize and terminate, have to be called at the start and at the end of any chunk of code that
involve use of AxObjectManager. Classes initialized by this methods are lower model static factories,
loaders and writers.(see DE-3-1-2-2-3)

AxObjectManager::initialize();
...Any Code...
AxObjectManager::terminate();

This chunk of code shows an example of Object Manager’s command execution.. We suppose that initialize
is already executed.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

41

Please note that after obtaining an object from the AxObjectManager (e.g. an AxResource) it has to be
destroyed, since it is a clone of the node (and only it) which is inside the object model.

In the following is also reported a simple example on how is possible to open a digital resource which has
been embedded in an AXMEDIS object, for rendering.

DataSource* loadedAsset=axom->getResourceAsset(index);
std::istream& embeddedStream = loadedAsset->getInputStream();
ResourceDecoder *decoder = new ResourceDecoder(embeddedStream,
encoding=="base64");
load(decoder->getInputStream(), mimetype);
delete decoder;
delete loadedAsset;
In this example the load function model the action of extracting the digital asset file and process them w.r.t.
the suitable format (based on mime-type information).

3.4 Errors reported and that may occur
Error code Description and rationales

0 Invalid Index: input index don’t refers expected element
1 Invalid input resource
2 Unable to unprotect the input element

4 AXOID Assignment (DSI)

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

42

See AXMEDIS – DE – 3-1-2-3-13

5 Object Registration (DSI)

The Registration of the AXMEDIS Object put the object in a state that it can be distributed outside the
factory. This registered object could reach the user through the Web, the P2P networks, the physical media.
The Registration is the guarantee for the final/business user that the package he receives is actually what is
intended to be, the metadata and the embedded media resource has to be certified by a trusted authority.

So the Registration process include two sub-processes:

− The calculation of the hash
− The sending of the calculated hash, plus the metadata and the protection information, obtaining the

signed hash.
Some pieces of information like the metadata and the protection parameters, are simply extracted from the
AXMEDIS Object Model. The calculation of the Object Hash for the Object Signature requires some steps,
due to the potential complexity of the hierarchy. The next section will examine in details these aspects.

5.1 Calculating AXMEDIS Object hash
AXMEDIS Object are MPEG-21 Document that is mainly an XML document. So the basis of that process, is
the XML Signature standard.
The AXMEDIS object can be published in two formats:

− Simple XML format
− MPEG-21 FileFormat

In the first case the media resources are embedded inside the XML document by encoding them in base64.
In the second case the media resources are attached in the ISOMedia format outside the XML document that
is referencing by specific URI.

In both cases the presence of media resource arises a problem in the signature calculation process.
The hash of the MPEG-21 document and the hash of the media resource that are included/connected to the
model, need to be done separately.

The integrity of MPEG-21 Document and media resource is assured by the following algorithm:

1. for each media resource calculate a hash of the resource bytes and write a descriptor associated to the
resource that explicitly states the hash value of the resource

2. detach all the media resource from the Document (it is not needed in the file format)
3. calculate the hash of the resulting document

After these steps it is not possibleto change the resources without detection, because of the associated hash
value. And the latter cannot be changed because of the document’s signature (encrypted hash).

From the technological point of view the XMLSignature library (xsec) by Apache has been used.
That library implements the W3C XMLSignature standard by using Xerces and Xalan libraries. The only
problem is that xsec is capable of apply a signature on a XML Document which has been loaded by DOM
standard.

The DOM Structure of the document is not the basis of the MPEG-21 Object Model, so the process can be
sketched as in the following.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

43

Please note that the temporary writing/re-parsing of the XML document is needed in order to allow xsec to
work with familiar structures.

Some classes have been defined in order to simplify the use of xsec library.
These classes are used by the axobjectregistrator that exploits this classes to calculate XML hash for the
signature.

The class XMLUtil has been developed to simplify the DOM loading of the temporary XML file.
The XMLDigester uses XMLSignature Apache library in order to calculate the XML document hash value.
The AXCSWSClient is a GSOAP generated Web Service client for the ObjectRegistrator Service of AXCS.

In the following the classes created for evaluating hash and for testing its behaviour are reported.

DE3.1.2.3.2 – Specification of AXMEDIS Command Manager

AXMEDIS Project

44

+digestDocument()
+digest()
+setValue()
-findX509Data()
-getX509CertificateFromOpenSSL()
+calulateHashValue()

XMLDigester

#CryptoUtil()
#~CryptoUtil()
+loadPKEY(in path : const char*) : EVP_PKEY *
+loadPublicKEY(in path : const char*) : EVP_PKEY *
+loadRSAPublicKEY(in path : const char*) : RSA *
+loadRSAPublicKeyFromX509(in path : const char*, in cert : const char*) : EVP_PKEY *
+loadCryptoKeyFromX509(in path : const char*, in cert : const char*) : XSECCryptoKey *

CryptoUtil

«uses»

The encryption will be performed by the AXMEDIS Certifier and Supervisor and the encrypted hash will be
returned by Certification Protocol response.
For the Certification Protocol details see AXMEDIS – DE – 3-1-2-3-13

