

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

1

AXMEDIS

Automating Production of Cross Media Content
for Multi-channel Distribution

www.AXMEDIS.org

DE2.1.1b
User Requirements and use cases

Version: 1.6-Public
Date: 14/01/2005
Responsible: DSI
Project Number: IST-2-511299
Project Title: AXMEDIS
Deliverable Type: public
Visible to User Groups: Yes
Visible to Affiliated: Yes
Visible to Public: Yes

Deliverable Number: DE2.1.1
Contractual Date of Delivery: see annex I
Actual Date of Delivery: 05-01-2005
Work-Package contributing to the Deliverable: WP2
Task contributing to the Deliverable: all of WP2
Nature of the Deliverable: document
Author(s): all

Abstract:
This document reports the requirements collected for the realization of the AXMEDIS Framework
and AXMEDIS tools in general for the automated production, protection and cross channel
distribution of digital content.
Keyword List: Requirements, Multimedia, cross media, Cross channel distribution, content
production, protection.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

2

Table of Content
1 EXECUTIVE SUMMARY AND REPORT SCOPE .. 9

2 STRUCTURE OF USE CASES.. 11

2.1 STRUCTURE OF USE CASES .. 11
2.2 USE CASE AND SCENARIO DIAGRAM: SHAPES AND SEMANTICS ... 11

3 GENERAL USE CASES... 13

3.1 MACRO-FUNCTIONALITY ... 13
3.1.1 Automatic collection of content into local AXMEDIS Database from proprietary CMS 13
3.1.2 Querying for AXMEDIS objects and Selection creation.. 14
3.1.3 Automatic load (and update) of AXMEDIS objects into local AXDB from AXEPTool 16
3.1.4 Automatic protection of AXMEDIS objects... 18
3.1.5 Automatic composition of AXMEDIS objects ... 19
3.1.6 Automatic formatting of AXMEDIS objects.. 20
3.1.7 Automatic publication of AXMEDIS objects on AXEPTool ... 21
3.1.8 Automatic programme and publication of AXMEDIS objects on distribution channels............................ 22
3.1.9 Acquisition of AXMEDIS objects from the distributor.. 23
3.1.10 Viewing/Using of AXMEDIS objects.. 24

4 AXMEDIS OBJECT EDITING ... 25

4.1 AXMEDIS EDITORS, AS AUTHORING TOOLS ... 25
4.1.1 Creation of a new AXMEDIS object .. 25
4.1.2 Load and save AXMEDIS objects.. 25
4.1.3 Navigating through AXMEDIS objects.. 26
4.1.4 Adding AXMEDIS elements to an existing AXMEDIS object.. 27
4.1.5 Extracting AXMEDIS elements ... 28
4.1.6 Removing an element from an AXMEDIS Object ... 28
4.1.7 Moving an element within the AXMEDIS Object.. 29
4.1.8 Adding a resource ... 29
4.1.9 Managing/Modifying a resources ... 30
4.1.10 Navigating and understanding DRM rules and PAR.. 31

4.2 AXMEDIS INTERNAL VIEWERS.. 32
4.2.1 Invoking an internal viewer/editor.. 32
4.2.2 Managing a digital resource by respecting the DRM in an Internal Viewer/Editor.................................... 32
4.2.3 Closing an Internal viewer/editor ... 33

4.3 AXMEDIS TOOLS FOR USING/PRODUCING AXMEDIS OBJECTS IN OTHER CONTENT TOOLS.......................... 33
4.3.1 Invoking an external tool with a digital resource belonging to the AXMEDIS object 33
4.3.2 Managing the digital resource by respecting the DRM in an external tool... 34
4.3.3 Closing an External Tool .. 35
4.3.4 Updating a digital resource modified by an external tool ... 36
4.3.5 Transferring a digital resource to an external tool .. 36

5 AXMEDIS PRODUCTION TOOLS.. 37

5.1 COMPOSITIONAL TOOLS .. 37
5.1.1 Compositional Engine .. 37

5.1.1.1 Automatic composition ... 37
5.1.1.2 Compositional Engine verifies the compatibility of DRM associated with digital resources.............................. 37
5.1.1.3 Compositional Engine verifies the rights of digital resources... 38
5.1.1.4 Compositional Engine embeds a digital resource in the new AXMEDIS object .. 38
5.1.1.5 Compositional Engine generates a new AXMEDIS object ... 39
5.1.1.6 Compositional Engine requires the Fingerprint estimation of a digital resource... 39
5.1.1.7 Compositional Engine requires the Adaptation of a digital resource .. 40
5.1.1.8 Compositional Engine requires the Protection of the new AXMEDIS object... 40
5.1.1.9 Compositional Engine merges component’s DRM/PAR rules into a new AXMEDIS object............................. 40

5.1.2 Composition Rules Editor... 41
5.1.2.1 Create a new compositional rule ... 41
5.1.2.2 Search and Select a compositional rule... 41

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

3

5.1.2.3 Activating a compositional rule .. 42
5.1.2.4 Removing a compositional rule .. 42
5.1.2.5 Debugging a compositional rule ... 43

5.2 FORMATTING TOOLS.. 43
5.2.1 Formatting Engine .. 43

5.2.1.1 Automatic formatting.. 43
5.2.1.2 Formatting Engine verifies the compatibility of DRM associated with digital resources 44
5.2.1.3 Formatting Engine verifies the rights of digital resources... 44
5.2.1.4 Formatting Engine embeds a formatted digital resource in a new AXMEDIS object ... 45
5.2.1.5 Formatting Engine generates a new AXMEDIS object... 45
5.2.1.6 Formatting Engine requires the Fingerprint estimation of a digital resource .. 45
5.2.1.7 Formatting Engine requires the Adaptation of a digital resource .. 46
5.2.1.8 Formatting Engine requires the Protection of the new formatted AXMEDIS object .. 46
5.2.1.9 Formatting Engine calls an External Tool to execute formatting operations... 47
5.2.1.10 Formatting Engine merges DRM/PAR rules... 47

5.2.2 Formatting Rules Editor ... 48
5.2.2.1 Create a new formatting rule... 48
5.2.2.2 Search a rule.. 48
5.2.2.3 Activating a formatting rule .. 48
5.2.2.4 Removing a formatting rule .. 49
5.2.2.5 Debugging a formatting rule ... 49

6 AXMEDIS WORKFLOW .. 50

6.1 WORKFLOW SCENARIOS .. 50
6.2 CONTROLLING AND SUPERVISING LOCAL AXMEDIS TOOLS... 60

6.2.1 General WorkFlow Use Cases.. 60
6.2.1.1 Create NPD Workspace .. 60
6.2.1.2 Add components to the NPD... 60
6.2.1.3 Edit information of the NPD... 60
6.2.1.4 Delete information of a NPD .. 61
6.2.1.5 Show information regarding components of a NPD ... 61
6.2.1.6 Delete a NPD .. 62
6.2.1.7 Search a NPD.. 62
6.2.1.8 Track Component.. 62
6.2.1.9 Identify the CPA for a NPD... 63
6.2.1.10 Timestamp Generator.. 63
6.2.1.11 Generate Versions... 63
6.2.1.12 List of Work.. 64
6.2.1.13 Select a Work Item from the List of Work.. 64
6.2.1.14 Complete a task of a work Item .. 65
6.2.1.15 Distribute the assigned Work to process and people... 65
6.2.1.16 Change State/Phase of a Task for a work Item.. 66
6.2.1.17 Notification of information to a personnel for a task of a work .. 66
6.2.1.18 Global Viewer of all information of a NPD .. 66
6.2.1.19 Check-in task performed by manual operator ... 67
6.2.1.20 Check-out task performed by manual operator ... 67

6.3 CONTROLLING AND SUPERVISING AXMEDIS OBJECT LIFE IN AXMEDIS COMPLIANT FACTORIES 67

7 AXMEDIS OBJECT ACQUISITION FROM CMS .. 70

7.1 AUTOMATIC GATHERING OF CONTENT, COLLECTOR ENGINE .. 70
7.1.1 Setup for metadata mapping ... 70
7.1.2 Setup for content crawling.. 70
7.1.3 Define what content to acquire from Crawled Integrated Database ... 71
7.1.4 Start content crawling ... 71

7.2 FINGERPRINT EXTRACTOR AS A COLLECTION OF COLLECTOR ENGINE PLUG-INS FOR EXTRACTING FEATURES 72
7.2.1 Calculating content descriptors/fingerprint during crawling .. 72

8 AXMEDIS DATABASE.. 74

8.1 MANAGING A DATABASE OF AXMEDIS OBJECTS .. 74
8.1.1 Administer Objects in the AXMEDIS DB.. 74
8.1.2 Administer User in the AXMEDIS DB .. 74
8.1.3 Accessing a specific version of an AXMEDIS object .. 74
8.1.4 Removing last version of an AXMEDIS object ... 75
8.1.5 Removing an AXMEDIS object ... 75

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

4

8.1.6 User Management... 76
8.1.7 User Groups Management .. 76

8.2 MAKING QUERIES INSIDE DATABASES OF AXMEDIS OBJECTS AND INSIDE THE OBJECTS 77
8.2.1 Querying for AXMEDIS objects and inside objects... 77
8.2.2 Querying for AXMEDIS from Clients ... 78
8.2.3 Bookmark a query .. 79
8.2.4 Retrieve a bookmarked query... 79
8.2.5 Organize bookmarked queries .. 80
8.2.6 Save an incomplete query... 80
8.2.7 Retrieve an incomplete query ... 81

9 AXMEDIS AXEPTOOLS FOR P2P DISTRIBUTION ON B2B .. 82

9.1 AXEPTOOL FOR P2P ON B2B ... 82
9.1.1 Discovery and connection of peers on B2B P2P network .. 82
9.1.2 Report P2P downloads/uploads network traffic ... 82

9.2 PUBLICATION AND LOADING AXMEDIS OBJECTS OF AXEPTOOL ... 83
9.2.1 Creation of a publishing rule for the AXEPTool .. 83
9.2.2 Automatic publication of a selection of objects on the AXEPTool .. 83
9.2.3 Automatic updating of a modified object on the AXEPTool.. 84
9.2.4 Automatic publication of a not protected object on the AXEPTool ... 86
9.2.5 Manual Publication of AXMEDIS Objects with the AXEPTool.. 87
9.2.6 Producing a query to search on the AXEPTool .. 87
9.2.7 View/Manage query results coming from the AXEPTool.. 87
9.2.8 Active query pool management for the AXEPTool.. 88
9.2.9 Downloading an AXMEDIS object.. 88
9.2.10 Automatic downloading of a selection of objects available in the P2P network.................................... 89
9.2.11 Refining the selection (Active Selections) for the AXEPTool... 90
9.2.12 Automatic loading new versions of AXMEDIS Objects for the AXEPTool ... 91
9.2.13 Automatic loading new AXMEDIS Objects with the AXEPTool ... 92
9.2.14 Manual Loading of AXMEDIS Objects with the AXEPTool .. 92
9.2.15 Creation of a loading rule for the AXEPTool... 93
9.2.16 Preview an AXMEDIS object content coming from AXEPTool ... 93
9.2.17 Feedback toward the workflow system .. 94

10 PROGRAMME AND PUBLICATION ENGINE TOOLS ... 95

10.1 PROGRAMME AND PUBLICATION RULES PRODUCTION .. 95
10.2 PROGRAMME AND PUBLICATION RULES EDITING.. 96
10.3 ACTIVATION OF PROGRAMME AND PUBLICATION RULES .. 97
10.4 LAUNCH OF PROGRAMME AND PUBLICATION RULES FROM WORKFLOW... 97
10.5 TRIAL PRE-ACTIVATION OF PROGRAMME AND PUBLICATION RULES... 99
10.6 LAUNCH OF TRIAL PROGRAMME AND PUBLICATION RULES FROM WORKFLOW.. 99

11 AXMEDIS AXEPTOOLS FOR SATELLITE DATA BROADCAST ON B2B .. 101

11.1 AXMEDIS B2B CLIENT APPLICATION ... 101
11.1.1 B2B Client Installation... 101
11.1.2 B2B Client Customization.. 101
11.1.3 B2B Client Registration ... 102

11.2 ENABLING A B2B RECEIVING STATION .. 102
11.3 DOWNLOADING AXMEDIS OBJECTS FROM AXEPTOOL BY USING SATELLITE DATA BROADCAST ON B2B 103

11.3.1 Pushing an AXMEDIS Object by B2B Carousel ... 103
11.3.2 Updating AXMEDIS Content by B2B Carousel .. 104

11.4 AUTOMATIC CONTENT RECEPTION VIA SATELLITE ... 104
11.5 CONTENT DELIVERY VIA SATELLITE ... 105
11.6 CONTENT PROTECTION FOR SATELLITE DISTRIBUTION .. 106

12 AXMEDIS PROTECTION TOOLS.. 107

12.1 SUPER AXCS... 107
12.1.1 AXMEDIS Registration of AXCSs.. 107
12.1.2 Tool/device off-line registration... 107
12.1.3 AXMEDIS Object ID Generation .. 107

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

5

12.1.3.1 Generation of unique Object ID.. 108
12.1.4 Global Object List WEB Service ... 108

12.1.4.1 Search of AXMEDIS Objects ... 108
12.1.5 Super AXCS Collector ... 109

12.1.5.1 On-line transfer between AXCS and Super AXCS... 109
12.1.5.2 Off-line synchronization between AXCS and Super AXCS ... 109

12.2 AXMEDIS CERTIFIER AND SUPERVISOR... 110
12.2.1 AXMEDIS Registration Service .. 110

12.2.1.1 End User registration in a distribution channel ... 110
12.2.1.2 End User registration in a different distribution channel... 111
12.2.1.3 Registration of a new Teacher/School or Student ... 112
12.2.1.4 Registration of an old User of the Channel on AXMEDIS ... 113
12.2.1.5 User password modification.. 113

12.2.2 AXMEDIS Certification and Verification.. 114
12.2.2.1 Authentication of a Device.. 114
12.2.2.2 Certification of AXMEDIS Tool and User ... 115
12.2.2.3 Verification of AXMEDIS users using AXMEDIS tools.. 117
12.2.2.4 Verification of AXMEDIS users using AXMEDIS tools on a Device during content consumption inside a
domain 118

12.2.3 AXMEDIS Supervisor ... 119
12.2.3.1 User blocking.. 119
12.2.3.2 User unblocking.. 120
12.2.3.3 Tool blocking.. 120
12.2.3.4 Tool unblocking.. 121
12.2.3.5 AXMEDIS Protection Information delivery ... 121
12.2.3.6 Storage of protection information of an AXMEDIS Object to the AXCS .. 122
12.2.3.7 Requesting of protection information of an AXMEDIS Object .. 122

12.2.4 AXMEDIS Reporting Web Service ... 122
12.2.4.1 Object usage reporting .. 122

12.2.5 Accounting Manager and Reporting Tool .. 123
12.2.5.1 List of all operations performed on an object.. 123
12.2.5.2 List of all operations performed by a user... 123
12.2.5.3 Usage report about an object... 123
12.2.5.4 Usage report about a distributor.. 124
12.2.5.5 Usage report about a provider ... 124
12.2.5.6 List objects for which an administrative account can be requested... 124
12.2.5.7 Listing AXMEDIS clients of a distributor/channel... 125
12.2.5.8 Listing distributors .. 125

12.2.6 AXCS Synchronizer ... 126
12.3 PROTECTION TOOL ENGINE ... 126

12.3.1 Content protection .. 127
12.3.2 Create a new protection rule... 128
12.3.3 Search and Select a protection rule .. 129
12.3.4 Activating a protection rule .. 129
12.3.5 Removing a protection rule .. 130
12.3.6 Debugging a protection rule ... 130
12.3.7 Editing protection rules .. 130
12.3.8 Printing protection rules ... 131

12.4 ADMINISTRATIVE INFORMATION INTEGRATOR .. 133
12.4.1 Integrating Distributor administrative information of the basis of End User actions 133
12.4.2 Integrating Collecting Society administrative information of the basis of End User actions 134
12.4.3 Distributor asks for administrative information ... 135
12.4.4 Administrative information retrieval for distributors ... 137
12.4.5 Administrative information retrieval for collecting societies ... 137

12.5 PROTECTION MANAGER SUPPORT/SERVER GENERAL .. 138
12.5.1 Protection Manager Support / Server ... 138

12.5.1.1 Consumption of a protected and governed AXMEDIS object in a connected environment 138
12.5.1.2 Consumption of a protected and governed AXMEDIS object in a unconnected environment.......................... 138
12.5.1.3 Protection of an AXMEDIS object ... 139
12.5.1.4 Protection and association of licenses of/to an AXMEDIS object .. 139
12.5.1.5 Renewal of IPMP information after the detection of a succeed attack (connected) .. 140

12.5.2 DRM Support ... 140
12.5.2.1 License creation for new content .. 140
12.5.2.2 License creation for cross-media content.. 141

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

6

12.5.2.3 License migration.. 141
12.5.2.4 User authorisation ... 142
12.5.2.5 Navigation of licensing information ... 142
12.5.2.6 Rights Expression Translator .. 142

12.6 ENCRYPTION/DECRYPTION SUPPORT... 143
12.6.1 Encryption .. 143
12.6.2 Decryption.. 143
12.6.3 Encryption of symmetric key ... 143
12.6.4 Decryption of symmetric key ... 144
12.6.5 Storage of security information.. 144
12.6.6 Retrieval of security information.. 144

13 AXMEDIS PLAYER... 145

13.1 AXMEDIS PLAYER ON PC, TABLET PC.. 145
13.1.1 Content Recording for Playtime Shift .. 145
13.1.2 Fast-forward of Content in Internal Players/Viewers... 146
13.1.3 Local adaptation of Content in Internal Players/Viewers... 146
13.1.4 Annotate for personal use... 147
13.1.5 Local User Profiles... 148
13.1.6 History of the last played contents ... 148

14 AXMEDIS FOR DISTRIBUTION VIA INTERNET .. 148

14.1 BACK OFFICE MANAGEMENT .. 148
14.1.1 Creating a New Mediaclub... 148
14.1.2 Mediaclub Setup... 149
14.1.3 Mediaclub Accounts and Permission Management.. 149
14.1.4 Mediaclub Project Uploading and publishing contents ... 150
14.1.5 Mediaclub Project Acquiring AXMEDIS content... 150
14.1.6 Mediaclub Project define payment gateway entry... 151
14.1.7 Mediaclub Shop payment Management .. 151
14.1.8 Mediaclub Shop Management refound a transaction ... 151

14.2 END USER CLIENT CONFIGURATION .. 152
14.2.1 User Software Installation .. 152
14.2.2 User Registration.. 152

14.3 USER LOGIN ... 153
14.3.1 Authentication trough AXMEDIS client.. 153
14.3.2 Authentication trough an external SSO system.. 153

14.4 CATALOGUE BROWSING .. 154
14.4.1 Catalogue Listing ... 154
14.4.2 Catalogue Searching... 155
14.4.3 Available resources listing ... 155
14.4.4 Content Access... 156
14.4.5 User Page ... 156

14.5 CATALOGUE CONTENT PURCHASE .. 157
14.5.1 Content Fetching .. 157
14.5.2 User Authentication Form.. 157
14.5.3 Catalogue Content Transaction .. 158
14.5.4 Content Access... 159
14.5.5 Content Preview ... 160
14.5.6 License Acquisition.. 160
14.5.7 Multi-device license activation and back-up .. 161
14.5.8 Pre-ordering and registration for a group of students... 161

14.6 BUSINESS MODELS .. 162
14.6.1 Rental ... 162
14.6.2 pay per download ... 162
14.6.3 Sell-through.. 163
14.6.4 subscription .. 163
14.6.5 pay per minute.. 164
14.6.6 pay per Kb downloaded.. 164
14.6.7 pay per day ... 164

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

7

14.6.8 pay per credits .. 165
14.6.9 Grouped licenses .. 165
14.6.10 Packaged offers .. 166

14.7 ADVANCED PAYMENT METHODS ... 166
14.7.1 Gift Certificates .. 166
14.7.2 Wallet ... 168

15 AXMEDIS FOR DISTRIBUTION TOWARDS MOBILES ... 169

15.1 GENERAL ASSUMPTIONS AND NOTES TO ARCHITECTURE.. 169
15.2 USE CASES... 170

15.2.1 Transcoding New Content.. 170
15.2.2 The APS Loads the Content Tree... 171
15.2.3 Subscriber Browses the Content Tree .. 172
15.2.4 The Subscriber Samples Content ... 173
15.2.5 The Subscriber Purchases Content ... 174

16 AXMEDIS FOR DISTRIBUTION TOWARDS I-TV ... 174

16.1 USER TERMINAL INSTALLATION AND CONFIGURATION... 174
16.1.1 User Hardware Installation... 174
16.1.2 User Software Installation .. 175
16.1.3 User Registration.. 176

16.1.3.1 Application Selection.. 176
16.1.3.2 User Profiling.. 177

16.2 CONTENT LISTING ... 177
16.2.1 Content Web Listing .. 177
16.2.2 Content Carousel Listing.. 178

16.3 CONTENT VOTING ... 179
16.4 CONTENT SELECTION .. 179

16.4.1 Manual Content Selection .. 179
16.4.2 Automatic Content Selection.. 179

16.5 CONTENT RECEPTION .. 180
16.6 CONTENT REPARATION.. 180
16.7 CONTENT ACCESS.. 181
16.8 CONTENT PREVIEW.. 181
16.9 LICENSE ACQUISITION ... 182

16.9.1 User Identification.. 183
16.9.2 Billing... 183

16.10 CONTENT BACKUP .. 184
16.11 CONTENT RESTORE ... 184

16.11.1 Cache Preloading.. 185
16.12 CACHE CLEANING ... 185
16.13 CACHE-BASED PERSONALISED CONTENT DISTRIBUTION SPECIFIC USE CASES ... 186

16.13.1 Automatic Content Access Set Up ... 186
16.13.2 AXMEDIS Channel personalisation .. 186
16.13.3 Automatic Content Access ... 186
16.13.4 AXMEDIS Channel PVR functionalities ... 187

17 AXMEDIS FOR DISTRIBUTION TO PDA VIA KIOSKS.. 187

17.1 CONTENT CATALOGUE CREATION... 187
17.2 CONTENT CATALOGUE LOADING (PUBLICATION) .. 188
17.3 CONTENT CATALOGUE LOADING UPDATE... 189
17.4 KIOSK START-UP.. 190
17.5 USER REGISTRATION TO KIOSK .. 190
17.6 USER LOGIN ... 192
17.7 CONTENT BROWSING & PREVIEWING.. 193
17.8 CONTENT SELECTION AND CHART MANAGEMENT .. 193
17.9 CHECK OUT PROCEDURE INITIATION... 194
17.10 PURCHASING / ACQUIRING / RENTING ... 194
17.11 REPOSITORY SELECTION ... 195
17.12 DESTINATION TARGET IDENTIFICATION (UNIQUE ID FOR TARGET – WIFI) ... 195

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

8

17.13 DELIVERY TEMPLATE SELECTION (DEPENDING ON DEVICE) .. 196
17.14 DELIVERY FORMAT SELECTION (DEPENDING ON CONTENT) .. 196
17.15 DEVICE COMPATIBILITY (ROLL BACK IN CASE OF FAILURE) ... 197
17.16 STORAGE AVAILABILITY (ROLL BACK IN CASE OF FAILURE)... 197
17.17 BILLING... 198
17.18 DATA DELIVERY ... 198
17.19 CHECK OUT PROCEDURE CLOSURE... 198
17.20 SUCCESSFUL DELIVERY CHECK (RECOVERY IN CASE OF FAILURE) ... 199
17.21 CONTENT FRUITION AFTER DOWNLOAD ON PDA OR MOBILE.. 201
17.22 CLIENT BASED CONTENT LICENSE VERIFICATION (ACCESS DENY IN CASE OF FAILURE) 201
17.23 APPLICATION FRONTEND INSTALLATION ON END USER DEVICE .. 202
17.24 USER PROFILE CHANGE... 203
17.25 INTERFACE LANGUAGE SELECTION ... 204
17.26 USER DEVICE CONFIGURATION... 205
17.27 CONTENT UPDATE (VIA SATELLITE).. 206

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

9

1 Executive Summary and Report Scope
See DE2.1.1a, which is Part A of this document.

Market and end-users are pressing content industry to reduce prices. This is presently the only solution to
setup viable and sustainable business activities with e-content. Production costs have to be drastically
reduced while maintaining product quality. Content providers, aggregators and distributors need innovative
instruments to increase efficiency. A solution is automating, accelerating and restructuring the production
process to make it faster and cheaper. The goals will be reached by: (i) accelerating and reducing costs for
content production with artificial intelligence algorithms for content composition, formatting and workflow,
(ii) reducing distribution and aggregation costs, increasing accessibility, with a P2P platform at B2B level
integrating content management systems and workflows, (iii) providing algorithms and tools for innovative
and flexible Digital Rights Management, exploiting MPEG-21 and overcoming its limits, supporting several
business and transactions models. AXMEDIS consortium (producers, aggregators, distributors and
researcher) will create the AXMEDIS framework with innovative methods and tools to speed up and
optimise content production and distribution, for production-on-demand. The content model and
manipulation will exploit and expand MPEG-4, MPEG-7 and MPEG-21 and others real and de-facto
standards. AXMEDIS will realize demonstrators, validated by means of real activities with end-user by
leading distributor partners: (i) tools for content production and B2B distribution; (ii) content production and
distribution for i-TV-PC, PC, kiosks, mobiles, PDAs. The most relevant result will be to transform the
demonstrators into sustainable business models for products and services during the last project year.
Additional demonstrators will be 2-3 associated projects launched as take up actions. The project will be
supported by activities of training, management, assessment and evaluation, dissemination and
demonstration at conference and fairs.

This deliverable is related to all the deliverables of WP2 which is devoted to the continuous collection and
analysis of user requirements. This activity is performed by setting up a user group of experts and by
considering the content production models, educational paradigms, entertainment models, distribution
paradigms and protection innovative aspects of the project. The WP presents early requirements analysis
with related tasks and a successive WP2.4 for its updating during the whole project when additional, or
revised, detailed requirements will appear. The work includes the adoption of interviews and the
identification of use cases, description of the test cases, (while the corresponding collection of reference
content for stressing key problems and for the eventual verification and validation of corresponding solutions
is performed in WP8), collection of current practices (best practices) in using media technologies and
solutions (processes, tools, methodologies, equipment, etc), identification of distribution processes and
models.

Main deliverables are:
• DE2.1.1 -- User Requirements and use cases (M3) – this deliverable contains the description of the user

requirements and the corresponding use cases in UML, coming from WP2.1 and WP2.2;
• DE2.2.1 – Test cases and content description (M4) – this deliverable contain the description of the test

cases for research functionalities and AXMEDIS tool validation, coming from WP2.2;
• DE2.4.1 – Requirements update (M18);
• DE2.3.1 – User Group Set up and analysis (M4). The analysis will be done on the basis of the curricula

and the needs of the AXMEDIS project, to verify that all the aspects and user profiles and roles will be
covered by the user group;

• DE2.3.2 – User Group Maintenance (M13).

The main activities that have supported the production of this deliverable are related to:
WP2.1 -- Early Requirements Analysis -- collection of user requirements by using the expert user groups.

The focus will mainly be on: content workflow, content management, content production, content
searching, content rights management (licensing, formalising usage rules), content formatting in the
various contexts (PC, mobile, i-TV, kiosk, PDA), user profiling, content composition, fingerprint,

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

10

watermark, indexing, querying, transaction models, push and pull balancing, etc. In addition, a more
detailed analysis of the functionalities that could be useful in the above contexts will be done: query
on technical aspects, content composition, content formatting, distribution, content exchanging,
certification, supervision, etc. The use cases have to be collected by considering the points of view of
content designers, multimedia producers, TISCALI, OD2, ANSC, AFI, ILABS, XIM, SEJER. In
addition, EUTELSAT, HP, DSI, DIPITA, CPR, CRS4, IRC, UNIVLEEDS, EPFL, COMVERSE,
ACIT, etc., will also collect this information from their experts by using specific interview based on
guidelines produced by the consortium. A part of this information will be collected by reviewing the
results of several past projects. In the analysis of requirements also those of the AXMEDIS partners
and potential customers and SMEs in the respect of the WWW pages for getting general AXMEDIS
services will be considered.

WP2.2 -- Use cases and test cases description -- this WP is devoted to the organisation of the requirements

in terms of use cases and the corresponding identification and description of test cases. The test cases
will be used for validating the functionalities identified by research and development WPs and
during the activities of integration and optimisation, and in those of demonstration which is
temporally allocated after the M30. The Content for the test cases will be collected and/or produced
in WP8. The description about how the test cases will be selected and about which content will be
suitable for that goal is reported in WP8. The use cases will be structured according to the UML
model, including: name, ID, description, context assumptions (equipment, paradigm, location),
actors (skill, age, instrument, paradigm), steps, variation, non functional aspects, content, interaction
protocol, issues, etc. The test cases will be structured according to structure of the AXMEDIS
framework and tools that will be developed in these 18 months of work. The model will be UML
including: name, ID, description, functionality to be tested, context, partners involved, validator skill,
data set needed, steps, expected results, variations, issues, additional activities to be considered,
metrics to be used, etc. In this subWP, the targeted quality of use of the tools that will be developed
during the project will be also defined in terms of metrics for usability. To this end users including
the general public will be modelled based on the definition of the user requirements. The usability
metrics will be focussed on extracting relevant drivers in the real environment of the application. Use
cases and test cases for describing the interaction with the AXMEDIS services provided by the
AXMEDIS portal will be separately described.

WP2.3 -- Set up and management of a AXMEDIS User Group -- a user group of experts will be set up.

The members of the user group will receive updated information about the project evolution and will
constitute a source for testing and validating the produced results. The user group has to present
experts representing the different users of AXMEDIS tools at business and consumer levels. These
are content producers, content integrators, content designers, usability experts, content distributors,
content aggregators, publishers, etc. A separate deliverable has been produced reporting all the
activities regarding the User Group.

For the terms and the definitions reported in this document please refer to the Specification Document Part J.

This document is comprised of two parts:

A) on requirements
B) on use cases

Test cases are reported in a different deliverable.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

11

2 Structure of Use Cases

2.1 Structure of Use Cases
UCId Unique identifier of the use case
Use case Name of the use case
Description Plain description of the use case activation, execution and termination
Actors People, tools or entities involved in the use case, e.g. who (or what) activates the

use case
Assumptions Conditions which must be satisfied before use case activation
Steps Step by step description of the use case activation, execution and termination
Post-conditions Conditions which must be satisfied after use case termination
Variations Use case variations which could be relevant by the end-user point of view and that

are similar to the main use case for developers
Asynchronous
actions

Important actors’ actions which change standard use case step flow, e.g. during a
background search an actor could stop it by clicking on the stop button. For each
asynchronous actions, relevant post-conditions should be reported

Design suggestions Useful hints or implications about the thought project structure regarding the use
case

Issues Possible issues, notes or annotations related to the use case implementation

2.2 Use Case and Scenario diagram: shapes and semantics

Shape Name Semantic

Actor
The shape represents one of the Actor declared
in the related use case or scenario

Tool

The shape represents the tool whose name
(defined in the specifications document) is
contained within the shape, e.g. an engine or
the AXMEDIS Editor, etc…

Support

The shape represents the support whose name
(defined in the specifications document) is
contained within the shape, e.g. AXDBM,
etc…

Repository

The shape represents a data repository whose
name (defined in the specifications document)
is contained within the shape, e.g. the local
AXDB or the “Repository of Publication
Rules/Selections” in “Programme and
Publication Area”

Tool

Actor

Support

Repository

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

12

Interaction

The shape represents an interaction between
two modules, e.g. a call to an available
function in another module, a data flow
between tools, etc…
The number above the arrow should
correspond to a step of the related use case or
scenario. If one step implies more than one
interaction among actors, tools and supports
than the label could be the number of the step
plus a letter, e.g. 1a, 1b, etc…
Notice that interaction arrow can not be
bidirectional, i.e. if an interaction between two
modules implies a double exchange of data
you will draw two one-way interactions.
In use cases and scenarios description, you
should explain what kind of interaction a step
implies, i.e. a data or content transmission,
function call, use, etc…

Unprotected
AXMEDIS Object or

Content

The shape represents a raw content (mp3, wav,
etc…) or an unprotected AXMEDIS object.
The shape could contains the “name” of
content with respect to the related use case

Protected AXMEDIS
Object

The shape represents a protected AXMEDIS
object. The shape could contains the “name”
of content with respect to the related use case

Data
The shape represents data, other than content
and protected/unprotected AXMEDIS object,
used in the use case, e.g. selection, rule, etc…

AXEPTool
Distributed Database

The shape represents the AXEPTool in its
meaning of distributed database as it is used in
all other documents of AXMEDIS

1

Content

Protected
Object

Data

AXEPTool

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

13

3 General use cases

3.1 Macro-functionality

3.1.1 Automatic collection of content into local AXMEDIS Database from proprietary CMS
A fundamental behaviour of AXMEDIS project is that AXMEDIS will not substitute actually used
proprietary CMSs. AXMEDIS will collect contents from those CMSs within content owner’s local
AXMEDIS Database. Therefore AXMEDIS shall provide an almost automatic way to collect contents.

UCId UC3.1.1
Use case Automatic collection of content into local AXMEDIS Database from proprietary

CMS
Description An Actor wants to import content from his/her CMS to his/her local AXMEDIS

Database.
Actors Creator, Producer
Assumptions The Actor has his/her content digitally stored on a CMS which could be a

specifically designed programme, a database or more simply a set of files on a
file-system.

Steps 1 The Actor, using Collector Engine, chooses which content shall be collected.
The Actor could specify:

o which content have to be collected
o which fingerprints have to be estimated
o mapping of metadata stored in the CMS

2 Collector Engine elaborates the request by:
2.1 picking up selected content from the Crawler Results Integrated Database
2.2 estimating specified fingerprints by using Fingerprint Estimation Tools as

Plug-in for Collector Engine (through Collector Plug-in Manager)
2.3 putting together content, fingerprint and all other information needed to

fulfil AXInfo schema within a simple AXMEDIS object
3 Collector Engine puts newly created AXMEDIS objects into the local AXDB

Post-conditions None

Actor

Collector
Engine

Actor’s
CMS

Fingerprint
Estimation

Local
AXDB

1

2.1b

2.1a

2.2a

2.2b

3
AXInfo

plus
content

2.3

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

14

Variations • The Actor schedules the collection of content triggering it to a specified time
and date

• The Actor requests to collect content by using the AXMEDIS Workflow
Manager

• Collector Engine stores the newly created AXMEDIS objects on the local file
system, instead of storing it within the local AXDB, depending on the Actor’s
preferences

Asynchronous
actions

None

Design suggestions None
Issues None

3.1.2 Querying for AXMEDIS objects and Selection creation
Of course, querying and selection of AXMEDIS objects are two of the most used functionalities through
AXMEDIS Tools. An example on Selection creation is reported below to better understand it.

Example on Selection creation
The Actor executes a series of queries using the AXQS User Interface (which are called Q1, Q2, Q3, Q4 and
Q5 below). In that way, he/she can control which AXMEDIS objects satisfy the conditions imposed in the
queries. Suppose the Actor receives the following response:
• Q1={AXO1-1, AXO1-2, AXO1-3}
• Q2={AXO2-1, AXO2-2, AXO2-3, AXO2-4, AXO2-5, AXO2-6, AXO2-7, AXO2-8, AXO2-9}
• Q3={AXO3-1, AXO3-2}
• Q4={AXO4-1, AXO4-2, AXO4-3, AXO4-4, AXO4-5}
• Q5={AXO5-1}
where AXOX-X are AXMEDIS object identifiers or something similar.
The Actor wants to create a Selection, he can do that in merging those results in several ways:
1) Suppose he/she “likes” (for doing whatever he/she wants) all those objects, than he/she will create

Selection S1, e.g. by picking all the check-boxes related to those objects. S1 will be the set of AXMEDIS
objects (or object identifiers):

S1={AXO1-1, AXO1-2, AXO1-3, AXO2-1, AXO2-2, AXO2-3, AXO2-4, AXO2-5, AXO2-6,
AXO2-7, AXO2-8, AXO2-9, AXO3-1, AXO3-2, AXO4-1, AXO4-2, AXO4-3, AXO4-4, AXO4-5,
AXO5-1}

This is yet an expanded Selection because it does not contain Queries.
2) Suppose he/she “likes” queries Q1, Q2 and Q4, i.e. he/she does not like only the sets of objects obtained

at this time but he/she likes the features expressed by the queries. That is, he/she feels he/she will like all
objects that can be retrieved at “all time” (not only at this time). Moreover he/she likes objects AXO3-1,
AXO3-2 and AXO5-1. He/She will create Selection S2 by picking the check-boxes related to AXO3-1,
AXO3-2 and AXO5-1 and those related to Q1, Q2 and Q4 themselves (not related to the objects AXO1-
X, AXO2-X and AXO4-X!!!). S2 will be the set of AXMEDIS objects and Queries:

S2={Q1, Q2, Q4, AXO3-1, AXO3-2, AXO5-1}
This is an expandable Selection, i.e. to determine which objects belong to it one shall evaluate the
queries contained in it.
It has to be pointed out that S2 is an “evolving” set of AXMEDIS objects. That is, if S2 is expanded
approximately at the same time of its creation time the expanded Selection will probably equal to S1,
conversely if S2 is expanded a long time after its creation the expanded Selection will probably be a
different set of AXMEDIS objects.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

15

UCId UC3.1.2
Use case Querying for AXMEDIS objects and Selection creation
Description An Actor is looking for an AXMEDIS object or a set of AXMEDIS objects which

respect a set of technical, right or feature related conditions. The Actor wants to
create a Selection on the base of the received responses

Actors Aggregator, Publisher, Reseller, Retailer
Assumptions None

Actor

AXQS User
Interface

AXQS

AXEPTool
Query Support

Interface

AXDBM Collector
Engine Query

Support

Selection

AXEPTool
Crawler Results

Integrated
Database

AXDB

Query

Merged Response

1 / 7 / 8 1 2

3a

5a

3b

5b

6
6 8

3c 5c

4a 4b 4c 4d 4e 4f

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

16

Steps 1 The Actor, using the AXQS User Interface, composes a Query on aspects of
interest (technical, DRM or feature related). Furthermore, the Actor chooses
“where” to search for available AXMEDIS objects: within local AXMEDIS
Database (and within AXMEDIS objects contained within the local AXDB),
on AXEPTool network or among those contents which have to be collected,
by the Collector Engine, and have not yet.

2 The Actor submits the queries previously composed
3 AXQS submits the Actor’s query to each of the chosen search “places” by

using the corresponding specific interface: (i) Collector Engine Query Support
Interface, (ii) AXEPTool Query Support Interface and (iii) AXMEDIS
Database Manager

4 Each query interface (see step 3) looks for the required features in the
corresponding domain

5 AXQS collects all the responses from the query interfaces
6 AXQS merges the results all together and return the complete list to the

AXQS User Interface
7 AXQS User Interface shows the result to the Actor in an adequate manner, i.e.

in such a way that the Actor can understand: (i) from which source an object
come (ii) which are the restriction on the object (iii) etc…

8 The Actor creates a new Selection (he/she could give it a name or a
description)

9 The Actor can add to the Selection some of the AXMEDIS object returned
(e.g. by picking the checkboxes corresponding to the desired objects) or the
query itself (in this case, the Selection could change during the time
depending on the evolution of the available objects)

10 The Actor can iterate steps 1 to 5 and 7. In that way, the Actor could create a
complex Selection which could be composed of several Queries and/or several
AXMEDIS objects (e.g. identified by a list of AXOIDs)

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

3.1.3 Automatic load (and update) of AXMEDIS objects into local AXDB from AXEPTool
UCId UC3.1.3
Use case Automatic load (and update) of AXMEDIS objects into local AXMEDIS

Database from AXEPTool
Description An Actor wants to load within his/her local AXMEDIS Database all AXMEDIS

objects (published on AXEPTool) which belongs to a given Selection of
AXMEDIS objects available on the AXEPTool network. Moreover, the Actor
wants:
• the system will update automatically the previously downloaded objects if

they change on the AXEPTool network
• the system will load automatically new objects which become element of the

given Selection
Actors Aggregator, Content Provider, Publisher, etc…
Assumptions The Actor has previously created a Selection which contains available AXMEDIS

objects on the AXEPTool network which satisfy some Actor’s needs by using the
AXQS User Interface integrated within the Publication/Loading Rules/Selections
Editor (see use case “Querying for AXMEDIS objects and Selection creation”)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

17

Steps 1 Using the Publication/Loading Rules/Selections Editor, the Actor activates the
previously created Selection submitting it to the P2P Active Selections. The
Actor could also specify:

o an activation period, i.e. a period of time for which the Selection will
be elaborated

2 AXEPTool P2P Active Selection Engine elaborates the active Selections
contained in the P2P Active Selections:
2.1 the AXEPTool P2P Active Selection Engine expands the Selection
2.2 for each object which belongs to the expanded Selection

2.2.1 AXEPTool P2P Active Selection Engine downloads the
AXMEDIS object

2.2.2 the object is monitored by the AXEPTool Monitor
2.2.3 the object is stored on the AXEPTool IN AXMEDIS Database

3 After all objects have been downloaded, the Actor can try (e.g. play, run,
visualize, etc…) each object accordingly to the related DRM rules

4 After the Actor has tried those objects, he/she can decide more effectively
which AXMEDIS object are really interesting for him/her. Then he/she
creates another Selection (maybe smaller than the previous one) containing
only the interesting AXMEDIS objects

5 The Actor activates the new Selection submitting it to the AXEPTool Active
Loading Rules/Selections still by using the Publication/Loading
Rules/Selections Editor. The Actor could also specify

o an activation period, maybe the same as step 1
6 The Loading Tool Engine of AXEPTool elaborates the active Selection:

6.1 the Loading Tool Engine of AXEPTool expands the Selection
6.2 for each object which belongs to the expanded Selection

6.2.1 load the AXMEDIS object into the local AXDB
7 Accordingly to the activation period given by the Actor, AXEPTool P2P

Active Selection Engine and Loading Tool Engine of AXEPTool will
elaborate the Selections

8 If a new version of one of the formerly downloaded object is published on
AXEPTool network:
8.1 Publishing and Monitoring Objects is informed of this update by its

identical counterpart which belongs to who has published the new version
8.2 Publishing and Monitoring Objects alerts AXEPTool P2P Active

Selection Engine
8.3 AXEPTool P2P Active Selection Engine verifies if the newly published

object belongs to one of the active Selections stored in P2P Active
Selections

8.4 if the object belongs
8.4.1 AXEPTool P2P Active Selection Engine will download again

the object replacing the old version
8.4.2 AXEPTool IN AXDB will alert Loading Tool Engine of

AXEPTool
8.4.3 Loading Tool Engine of AXEPTool will load the object to the

local AXDB (supposing the related Selection still active)
9 If a new AXMEDIS object is published on AXEPTool network

9.1 Publishing and Monitoring Objects is informed by its identical counterpart
which belongs to who has published the new object

9.2 Publishing and Monitoring Objects alerts AXEPTool P2P Active
Selection Engine

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

18

Steps 9.3 AXEPTool P2P Active Selection Engine verifies if the newly published
object belongs to one of the active Selections (verifying if it matches the
features of a Query contained in an active Selection) stored in P2P Active
Selections

9.4 AXEPTool P2P Active Selection Engine will download the new object
9.5 AXEPTool IN AXDB will alert Loading Tool Engine of AXEPTool
9.6 Loading Tool Engine of AXEPTool will load the object

Post-conditions None
Variations • Selections can be activated by using the AXMEDIS Workflow Manager

• The Actor wants the Selection is elaborated only once, than the Actor
specifies the Selection as one-time Selection instead of specifying an
activation period

• Step 2 can require a large amount of time to be accomplished (due to transfer
time and object size). Thus, the Actor should be advised by AXEPTool P2P
Active Selection Engine when step 2 has been completed, e.g. via workflow
functionalities. A similar observation can be done for step 8 and 9.

Asynchronous
actions

None

Design suggestions None
Issues None

3.1.4 Automatic protection of AXMEDIS objects
UCId UC3.1.4
Use case Automatic protection of AXMEDIS objects
Description An Actor wants to protect one or some AXMEDIS objects contained within

his/her local AXDB (perhaps before distributing them over B2B or B2C
networks). Doing that, the Actor wants to add some PAR (Potential Available
Rights) to the AXMEDIS objects and he/she also wants to obtain the
corresponding licence templates.

Actors Aggregator, Author, Composer, Performer, Producer, Publisher and Reseller
Assumptions The Actor has previously created a Selection which contains AXMEDIS objects

contained within the local AXDB by using the AXQS User Interface integrated
within the Protection Tool User Interface and Rules Editor (see use case
“Querying for AXMEDIS objects and Selection creation”)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

19

Steps 1 The Actor composes protection rules by using Protection Tool Rules Editor.
Such rules specifies:

o the previously created Selection
o PAR to be added
o DRM rules to be added
o how to protect those objects (encryption, specific algorithm, etc…)
o the scheduling for the protection process

2 The Actor, through Protection Tool User Interface, submits the protection
rules to the Protection Tool Engine Rules/Selections

3 AXPTE elaborates the Rules/Selections contained within the Protection Tool
Engine Rules/Selections at the set time:
3.1 the AXPTE expands the Selection
3.2 for each object which belongs to the expanded Selection

3.2.1 AXPTE gets the AXMEDIS object by using the AXMEDIS
Database Manager

3.2.2 AXPTE applies all requested protections to the object
3.2.3 AXPTE adds the required DRM rules and PAR through PMS

and AXOM
3.2.4 AXPTE produces the license template related to PAR added to

the object and send them to the License Generator using the
PMS

3.2.5 AXPTE stores the protected AXMEDIS objects to the local
AXDB using AXDBM

Post-conditions None
Variations • Protection rules can be activated by using the AXMEDIS Workflow Manager

• The Actor could also request the immediate protection of a single AXMEDIS
object using the Protection Tool Engine User Interface

• Protection of content can require a large amount of time to be accomplished
(due to content size and applied protections). Thus, the Actor should be
advised by AXPTE when step 3 has been completed, e.g. via workflow
functionalities

Asynchronous
actions

None

Design suggestions None
Issues None

3.1.5 Automatic composition of AXMEDIS objects
UCId UC3.1.5
Use case Automatic composition of AXMEDIS objects
Description An Actor wants to obtain, in an almost automatic way, a set of compounded

AXMEDIS objects from a set of AXMEDIS objects
Actors Aggregator
Assumptions The Actor has previously created a set of Selections by using the AXQS User

Interface integrated within the Compositional Rules Editor (see use case
“Querying for AXMEDIS objects and Selection creation”).

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

20

Steps 1 The Actor, using Compositional Rules Editor, activates a compositional rule
submitting the followings to the Active Compositional Rules:

o a composition rule which could be created on-the-fly or chosen from
the Repository of Compositional Rules

o the previously created set of Selections which are the sets of
AXMEDIS objects on which the rule will be applied

o the right number and type of parameter (other than Selections)
required by the compositional rule signature

o scheduling information
o etc…

2 The Compositional Engine elaborates the activated rules contained into the
Active Compositional Rules according to the scheduling information. Such
elaborations are made in respect of DRM rules of all involved objects.

3 Compositional Engine advises the Actor when the composition process is
completed using workflow functionalities.

Post-conditions All produced objects shall contain a new AXOID and information (contained in
AXInfo) such as: their composition, usability, fingerprinting, etc…

Variations • Compositional rules can be activated using the AXMEDIS Workflow
Manager

• The Actor could also request the composition of a set of AXMEDIS objects
by using the Compositional Rules Editor, e.g. to test and verifies the
behaviour of a rule

• Instead of a rule, the Actor could gives to the Compositional Engine an object
template which specifies how to glue together the AXMEDIS objects
contained into the Selections

Asynchronous
actions

None

Design suggestions None
Issues The meaning of “to elaborate a compositional rule” is explained somewhere else

because that also implies to understand how rules are written and which
functionalities the compositional rule scripting language provides. See for this the
Compositional and Formatting use Cases.

3.1.6 Automatic formatting of AXMEDIS objects
UCId UC3.1.6
Use case Automatic formatting of AXMEDIS objects
Description An Actor wants to automatically obtain a formatted AXMEDIS object on the base

of rules
Actors Publisher, Distributor
Assumptions The Actor has previously created a Selection by using the AXQS User Interface

integrated within the Formatting Rules Editor (see use case “Querying for
AXMEDIS objects and Selection creation”).

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

21

Steps 1 The Actor, using Formatting Rules Editor, activates a formatting rule
submitting the followings to the Active Formatting Rules:

o a formatting rule which could be created on-the-fly or chosen from
the Repository of Formatting Rules

o the previously created Selection which is the set of AXMEDIS objects
on which the rule will be applied

o the right number and type of parameter (other than Selection) required
by the formatting rule signature

o scheduling information
o etc…

2 The Formatting Engine elaborates the activated rules contained into the Active
Formatting Rules according to the scheduling information. Such elaborations
are made in respect of DRM rules of all involved objects.

3 Formatting Engine advises the Actor when the composition process is
completed using workflow functionalities.

Post-conditions All produced objects shall contain a new AXOID and information (contained in
AXInfo) such as: their composition, usability, fingerprinting, etc…

Variations • Formatting rules can be activated using the AXMEDIS Workflow Manager
• The Actor could also request the formatting of an AXMEDIS objects by using

the Compositional Rules Editor, e.g. to test and verifies the behaviour of a rule
Asynchronous
actions

None

Design suggestions None
Issues The meaning of “to elaborate a compositional rule” is explained somewhere else

because that also implies to understand how rules are written and which
functionalities the compositional rule scripting language provides. See for this the
Compositional and Formatting use Cases.

3.1.7 Automatic publication of AXMEDIS objects on AXEPTool
UCId UC3.1.7
Use case Automatic publication of AXMEDIS objects on AXEPTool
Description An Actor wants to publish his/her AXMEDIS objects on the AXEPTool network

to yield them available to the AXMEDIS community
Actors Aggregator, Producer, etc…
Assumptions The Actor has previously created a Selection which contains AXMEDIS objects

contained within the local AXDB by using the AXQS User Interface integrated
within the Publication/Loading Rules/Selections Editor (see use case “Querying
for AXMEDIS objects and Selection creation”)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

22

Steps 1 The Actor, using Publication/Loading Rules/Selections, activates the
previously created Selection submitting it to the AXEPTool Active
Publication Active Rules/Selections. The Actor could also specifies:

o an activation period, which determines since when and for how long
the objects of the Selection will be available on AXEPTool network

o etc…
2 Publication Tool Engine of AXEPTool elaborates the active Selections

contained in the AXEPTool Active Publication Active Rules/Selections
according to activation periods:
2.1 the Publication Tool Engine of AXEPTool expands the Selection
2.2 for each object which belongs to the expanded Selection

2.2.1 Publication Tool Engine of AXEPTool publishes the object on
the AXEPTool OUT AXDB

3 Every time an object is published on the AXEPTool OUT AXDB, it advises
the Publishing and Monitoring Objects which will broadcast the event to all its
counterparts on the network

4 If someone in the network is interested in one of the published object, then
him/her AXEPTool P2P Active Selection Engine will download the object.
The download process will be monitored by the AXEPTool Monitor

5 If a yet-published (and still-published) AXMEDIS object is updated in the
local AXDB. The local AXDB advises the Publication Tool Engine of
AXEPTool that the object has been updated.

6 Publication Tool Engine of AXEPTool controls if the object belongs to one of
the active Selections. If it does:
6.1 Publication Tool Engine of AXEPTool update the object contained into

the AXEPTool OUT AXDB with the new version of it
6.2 As described in Step 3 all the other peers in the network are advised
6.3 If someone of them has downloaded the previous version of the object and

is still interested in it, him/her AXEPTool P2P Active Selection Engine
will automatically downloads the new version as described in Step 8 of
the use case “Automatic load (and update) of AXMEDIS objects into
local AXMEDIS Database from AXEPTool”

6.4 The download will be monitored by the local AXEPTool Monitor
7 At the Selection expire time (if exists), Publication Tool Engine of AXEPTool

removes the objects belonging to the Selection from the AXEPTool OUT
AXDB.

8 Every time an object is removed from the AXEPTool OUT AXDB (than no
more available on the AXEPTool network), it advises the Publishing and
Monitoring Objects. It will broadcast the event to all its counterparts on the
network which shall remove the object from their AXEPTool IN AXDB

Post-conditions None
Variations Publication of AXMEDIS objects on AXEPTool can be also made using the

AXMEDIS Workflow Manager
Asynchronous
actions

None

Design suggestions None
Issues None

3.1.8 Automatic programme and publication of AXMEDIS objects on distribution channels
UCId UC3.1.8
Use case Automatic programme and publication of AXMEDIS objects on distribution

channels
Description An Actor wants to create a programme to be published for a community of End-

Users.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

23

Actors Publisher, Distributor
Assumptions The Actor has previously created a Selection which contains AXMEDIS objects

contained within the local AXDB using the AXQS User Interface integrated
within the Programme and Publication Rules Editor (see use case “Querying for
AXMEDIS objects and Selection creation”). Otherwise the Selection can be one
of those stored within the Repository of Publication Rules/Selections

Steps 1 The Actor creates a Publication Rules specifying:
o the Selection of AXMEDIS objects to be published
o the publication periods, i.e. periods of time in which the AXMEDIS

objects will be available for the End-User
o optionally, a set of specific formatting rules (different from those

usually used by the Programme and Publication Engine)
2 The Actor could save the Publication Rule into the Repository of Publication

Rules/Selections
3 The Actor activates the Rule by submitting it to the Active Publication

Rules/Selections related to a specific distribution channel (There are one
Active Publication Rules/Selections and one Programme and Publication
Engine for each distribution channel)

4 The Programme and Publication Engine related to the chosen distribution
channel elaborates the active Rules:
4.1 Programme and Publication Engine expands the Selection contained in the

Rule
4.2 before publication time, Programme and Publication Engine, using

Formatting Engine, performs the needed adaptation on each object in the
Selection. The adaptation request is made on the base of the default
formatting rules of the Programme and Publication Engine, which are
strictly connected to distribution channel characteristics through the Client
View Profile associated to the Engine. If the Publication Rule contains
some formatting rules those overrides the defaults

4.3 at publication time, Programme and Publication Engine uploads all the
adapted objects on the Distribution Server

4.4 when the publication time expires, Programme and Publication Engine
removes the objects uploaded at Step 4.3 from the Distribution Server (or,
in some way, commands to the Distribution Server to remove them)

Post-conditions None
Variations Publication process can be activated using the AXMEDIS Workflow Manager
Asynchronous
actions

None

Design suggestions None
Issues None

3.1.9 Acquisition of AXMEDIS objects from the distributor
UCId UC3.1.9
Use case Acquisition of AXMEDIS objects from the distributor
Description An Actor wants to acquire one or more AXMEDIS objects choosing them from

the Distributor’s program (see use case “Automatic programme and publication of
AXMEDIS objects on distribution channels”)

Actors End-User
Assumptions The Actor is using an AXMEDIS complaint Client Viewer

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

24

Steps 1 The Actor, using the Query Support for Client integrated within the Client
Viewer, creates a query to consult the list of available AXMEDIS objects on
Distribution Channels

2 The Actor submits the query
3 The Query Support for Client transmits the query to the Query Support for

Distributions Channel and gets back the response
4 The Query Support for Client displays the response to the Actor. In particular

it shows the following information:
o name, e.g. song title, movie title
o description, e.g. movie story/review
o usability and related price, e.g. price for each kind of available action

on the object
o availability periods
o relevant metadata
o etc…

5 Before entirely downloading an object, the Actor could preview it if the object
itself has been designed to allow this action

6 Once the Actor has previewed the objects, he/she chooses the objects he/she
wants to acquire, e.g. picking the related checkboxes (similar to Selection
creation, see use case “Querying for AXMEDIS objects and Selection
creation”)

7 The Actor downloads the objects on his/her terminal
8 The Actor pays the required fees and receives the licenses to use (accordingly

to the acquired rights) the objects
Post-conditions • The objects are stored on some storage devices directly reachable by the Actor

• The related licenses are stored in the Protection Manager Support (server side)
to which the Client Viewer refers

• The Actor can use at any time and everywhere the object accordingly to the
acquired rights

Variations A lot of variations can be proposed on Step 7 and 8. These two steps are strongly
dependant by the business model used by the distributor and its partners. The
possible variations regards also the transmission model (streaming, downloading)
and a lot of other aspects

Asynchronous
actions

None

Design suggestions None
Issues None

3.1.10 Viewing/Using of AXMEDIS objects
UCId UC3.1.10
Use case Viewing/Using of AXMEDIS objects
Description An Actor wants to view/use a previously-acquired AXMEDIS object on his/her

terminal
Actors End-User
Assumptions The Actor has acquired one or more AXMEDIS objects from a Distributor (see

use case “Acquisition of AXMEDIS objects”)
Steps The Actor, using the Client Viewer, can perform all authorized action (i.e.

acquired rights) on the object
Post-conditions None
Variations
Asynchronous
actions

None

Design suggestions
Issues None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

25

4 AXMEDIS Object Editing

4.1 AXMEDIS Editors, as authoring tools

4.1.1 Creation of a new AXMEDIS object
UCId UC4.1.1
Use case Creation of a new AXMEDIS object
Description An actor wants to create a new AXMEDIS object from scratch.
Actors Integrator, Designer
Assumptions AXMEDIS Editor is opened
Steps 1 The use case begins when an actor clicks on the “New object” buttons within

the AXMEDIS Editor main window
2 The system creates a new software representation of an empty AXMEDIS

object, i.e. an object which contains only the root element and an empty Item
element.

3 The system shows to the actor a hierarchical view of the object
4 The actor can add digital resources and can apply to them content processing

algorithms such ass extractor of metadata, etc.
Post-conditions None
Variations • The actor could also click on “New…” within the “File” menu of the

application
• If the actor want to associate an AXMEDIS Object ID to the newly created

object, the system has to request it to the AXMEDIS Object ID Generator
through the Protection Manager Support

Asynchronous actions None
Design suggestions None
Issues It is suggested that fingerprint should be calculated only when an AXOID is

associated to the object, i.e. when an object really becomes an AXMEDIS Object.
After that, fingerprint and descriptors shall be calculated and communicated to the
AXCS every time the AXMEDIS object is significantly changed.

4.1.2 Load and save AXMEDIS objects
UCId UC4.1.2
Use case Load and save AXMEDIS objects
Description An actor wants to load an AXMEDIS object and, after he/she has worked on it,

he/she wants to save it
Actors Aggregator
Assumptions The Actor is working with the AXMEDIS Editor

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

26

Steps 1 The Actor clicks on the “Open object” buttons within the AXMEDIS Editor
main window

2 The AXMEDIS Editor shows a dialog to allow the actor to choose which
object he/she wants to open. The dialog contains a tabbed pane. The first pane
allows the Actor to open an object stored on the file-system. The second
integrates the AXQS to allow the Actor to search and open objects stored in
the local AXDB or in the Crawling Results Integrated Database.

3 The AXMEDIS Editor opens object using the AXOM
4 If errors did not occur at previous step,

4.1 The AXMEDIS Editor creates an Hierarchy Editor and Viewer showing
the object

5 Else
5.1 The AXMEDIS Editor shows a dialog to inform the Actor about what did

not work correctly
6 The Actor works with the object (see others use cases in this section)
7 The Actor clicks on the “Save object” buttons within the AXMEDIS Editor

main window
8 The AXMEDIS Editor requests to the AXOM to save the object
9 The AXOM validates the software representation of the object
10 If the object is valid, and the Actor has the rights to save a new version of the

object, the AXOM overwrites the old object with the new one whatever was
the source of the object (file-system or AXDB)

Post-conditions None
Variations • The actor could also click on “Open…” within the “File” menu of the

application
• Instead of saving the object at step 7, the Actor want to save the object as, i.e.

he/she wants to save the (modified) object in a new location. To do that step 7
should be replaced with:
7a. The Actor clicks on the “Save object as…” buttons within the AXMEDIS

Editor main window
7b. The AXMEDIS Editor asks the Actor to input the new location which can

be indifferently on the file-system or in the local AXDB
Step 10 does not change except that instead of overwriting the old version the
(modified) object is saved in the chosen location

Asynchronous actions None
Design suggestions None
Issues None

4.1.3 Navigating through AXMEDIS objects
UCId UC4.1.3
Use case Navigating through AXMEDIS objects
Description An actor wants to navigate through the elements which compose the AXMEDIS

object currently opened.
Actors Integrator, distributor
Assumptions • AXMEDIS Editor is opened

• An object is opened within the AXMEDIS Editor

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

27

Steps 1 The use case begins when the Actor open an Hierarchy View of an opened
object

2 The Hierarchy View shows a explorer-like tree view
3 The Actor could expand each tree node to view its children (if it contains

someone)
4 The Hierarchy View should show a specific context menu for each showed

elements. For each element, the context menu should allow the Actor (if
possible):
4.1 To manipulate the element/object structure (e.g. add a child/brother node,

remove the element, etc…)
4.2 To open alternative element views (e.g. DRM Editor and View, Behaviour

Editor and View, Metadata Editor and View, etc…)
4.3 Etc…

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

4.1.4 Adding AXMEDIS elements to an existing AXMEDIS object
UCId UC4.1.4
Use case Adding AXMEDIS elements to an existing AXMEDIS object
Description An Actor wants to add an element to the AXMEDIS object structure
Actors Integrator, producer
Assumptions • AXMEDIS Editor is open

• An object is opened within the AXMEDIS Editor
• An Hierarchy View of the object is open

Steps 1 The use case begins when the Actor click with the right mouse button on an
existing element

2 The Hierarchy View shows the proper context menu to the actor
3 The Actor chooses “Add element…” and then chooses the type of element

he/she wants to add
4 If necessary, the Hierarchy View shows to the Actor a dialog to fill the

element attributes and options
5 If the Actor confirms, the Hierarchy View requests to the AXOM to add the

new element
6 If the Actor has the needed rights:

6.1 the AXOM adds the element to the AXMEDIS object
6.2 the Hierarchy View updates the displayed tree with the new added node

7 Else:
7.1 the AXOM informs the Hierarchy View about why the Actor can not add

the element
7.2 Hierarchy View shows a dialog to the Actor with the received error

Post-conditions None
Variations • The Actor could click on “Add element…” within the “Edit” menu of the

application instead of using the context menu
• The Actor could also add an element as “brother” of an existing element

instead as child of a given element. That should be possible by choosing
“Insert after…”/“Insert before…” from the “Edit” menu or the context menu
(of the reference element)

Asynchronous actions None
Design suggestions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

28

Issues • Adds or insertion should be done without making validity controls because
step-by-step consistency maintenance could bring usability lacks

• By such way, a validity control is necessary when the actor wants to save the
object

4.1.5 Extracting AXMEDIS elements
UCId UC4.1.5
Use case Extracting AXMEDIS elements
Description An Actor wants to create a new AXMEDIS Object from an element of the

currently opened object
Actors Integrator, producer, distributor
Assumptions • AXMEDIS Editor is open

• An object is opened within the AXMEDIS Editor
Steps 1 The use case begins when the Actor click with the right mouse button on an

existing element
2 The Hierarchy View shows the proper context menu to the Actor
3 The Actor chooses “Extract element…”
4 The Hierarchy View shows a dialog to allow the Actor to choose the new

location (into the local file-system, into the AXMEDIS Database, etc…)
where AXOM should store the extracted element

5 If the Actor confirms:
5.1 the Hierarchy View requests to the AXOM to extract the element in the

given location
5.2 the AXOM, after it has checked the Actor’s rights, creates a new

AXMEDIS Object in the location specified by the Actor maintaining the
protection imposed by the DRM rules of the original object

6 The object will contains the selected element with all its relevant information,
such as: DRM rules, metadata, etc…

Post-conditions The new object must works in respect of all the DRM rules associated with the
original element

Variations • The Actor could click on “Extract element…”within the “Edit” (or “File”?)
menu of the application instead of using the context menu

• Extraction could be invoked when the system is opening an External or
ActiveX Editor/Viewer. In such a way the system could pass an AXMEDIS
object component, with all its related information, to another application
maintaining protection of IP

Asynchronous actions None
Design suggestions None
Issues When the Actor wants to export an element, the AXOM has to consider all related

information, both contained within the element or externally associated, e.g.
through an MPEG21 Annotation element

4.1.6 Removing an element from an AXMEDIS Object
UCId UC4.1.6
Use case Removing an element from an AXMEDIS Object
Description An Actor wants to remove an element, and its sub-tree, from the object
Actors Integrator, producer
Assumptions • AXMEDIS Editor is open

• An object is opened within the AXMEDIS Editor
• An Hierarchy View of the object is open and the object contains at least one

element (other than root element)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

29

Steps 1 The use case begins when the Actor click with the right mouse button on an
existing element

2 The Hierarchy View shows the proper context menu to the Actor
3 The Actor choose “Remove”
4 The Hierarchy View shows to the Actor a dialog to confirm the deletion
5 If the Actor confirms

5.1 the Hierarchy View requests to AXOM to remove the element
5.2 the AXOM, after it has checked the Actor’s rights, removes the element

from the AXMEDIS Object and informs all the related views/editors
about the change

5.3 the informed views/editors updates the showed information
Post-conditions None
Variations The Actor could click on “Remove” within the “Edit” menu of the application

instead of using the context menu
Asynchronous actions None
Design suggestions None
Issues • Deletion should be done without making validity controls because step-by-

step consistency maintenance could bring usability lacks
• By such way, a validity control is necessary when the actor wants to save the

object
• The operations have to be allowed by the license if the AXMEDIS object is

protected

4.1.7 Moving an element within the AXMEDIS Object
UCId UC4.1.7
Use case Moving an element within the AXMEDIS Object
Description An Actor clicks on an element, drags it on the desired new location and drops it.

In that way, he/she moves the element in a new location within the object
Actors Integrator, producer
Assumptions • AXMEDIS Editor is open

• An object is opened within the AXMEDIS Editor
• An Hierarchy View of the object is open

Steps 1 The use case begins when the Actor clicks on an element and drags it
2 When the Actor drops the element, releasing the mouse button, the Hierarchy

View controls if the chosen position is an allowed one.
3 If the position is a valid one:

3.1 the Hierarchy View request to the AXOM to move the element in the new
position

3.2 the AXOM controls if the Actor is allowed to do the operation. In that
case, the AXOM moves the element

4 Else, the Hierarchy View cancels the operation warning the Actor
Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues The position of an element in hierarchy of an AXMEDIS Object determines the

semantic of the element with respect to the other elements in the object.

4.1.8 Adding a resource
UCId UC4.1.8
Use case Adding a resource
Description When an Actor chooses to add/insert, into an object, a Resource element, the

Actor should choose which resource he/she wants to link to the object and in
which way (by reference, including it within the object, etc…)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

30

Actors Integrator, producer
Assumptions The Actor is adding a Resource element to the object (view use case “Adding

AXMEDIS element”)
Steps 1 The use case begins when the Actor chooses as type of element to be inserted

“Resource”
2 The Hierarchy View shows a dialog to allow the Actor to choose which

resource to add and the way to add it to the object, e.g. either by reference or
by directly codifying it within the object

3 The Hierarchy View requests to the AXOM to add the given resource
4 The AXOM controls if the Actor has the needed rights on the AXMEDIS

objects and on the resource. That is, if the resource is an AXMEDIS Object
the AXOM will control if the Actor has the embedding rights on the resource

5 If the control succeeds:
5.1 If the Actor chooses to include the resource

5.1.1 The AXOM codifies the resource in base64
5.1.2 The AXOM includes the codified resource within the object

5.2 Else, the AXOM sets the “reference” attribute of the Resource element
with value the location of the element

Post-conditions
Variations A resource can be also a license, in that case the object becomes a governed

object. In that case the License has to be verified consistent with the included PAR
into the AXInfo.

Asynchronous actions None
Design suggestions None
Issues

4.1.9 Managing/Modifying a resources
UCId UC4.1.9
Use case Managing/Modifying a resources
Description An Actor wants to manage or modify a resource within the AXMEDIS object
Actors Integrator, producer, etc.
Assumptions • AXMEDIS Editor is open

• An object is opened within the AXMEDIS Editor
• An Hierarchy View of the object is open

Steps 1 The use case begins when the Actor double-clicks on a Resource element (or
an Item element which contains one resource, or a set of resources of the same
type)

2 The Hierarchy View asks to the AXOM to look for an editor/viewer
associated with resource mime type attribute

3 If there is no such editor/viewer, the Hierarchy View displays an error dialog
4 Else

4.1 The AXOM locks the Resource element
4.2 The AXOM certifies the editor/viewer
4.3 The AXOM runs the editor/viewer as an independent thread
4.4 The AXOM passes, through a secure channel, the extracted resource

(view use case “Extract AXMEDIS elements”) to the editor/viewer
4.5 After the editor/viewer has been closed, the AXOM unlocks the Resource

element and update the previously extracted resource with the output of
the editor/viewer

Post-conditions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

31

Variations • The Actor could select a Resource element and than clicks on “Open
resource…” within the “Edit” menu of the application instead of double-
clicking on the element

• When the AXOM is looking for an editor/viewer associated to a given MIME
type, the AXOM has to search among three different kind of interfacing
models which should be equivalent by actor point of view (except perhaps for
the implemented functionalities):

o Internal AXMEDIS Resource Editors/Viewers
o External Editor/Viewer AXMEDIS Plug-ins
o ActiveX Editor/Viewer AXMEDIS Plug-ins

Asynchronous actions Since AXMEDIS Editor and resource plug-ins work as asynchronous processes,
during plug-in execution, the actor could still work on the AXMEDIS object
except for what concern the involved Resource element and its genealogy which
have been locked before plug-in execution.

Design suggestions None
Issues A certified editor/viewer has to contain an Protection Processor and Protection

Manager Client modules to insure DRM rules respect in all its parts. The
editor/viewer has to control Actor’s rights (through a dedicated interface which is
provided by the AXOM) on every Actor’s actions.
Operations that lead to not allowed by licensing and operation leading to an
invalid object due to conflicting licenses have to be verified and solved.

4.1.10 Navigating and understanding DRM rules and PAR
UCId UC4.1.10
Use case Navigating and understanding DRM rules and PAR
Description An Actor wants a visualization of the DRM rules and PAR (Potential Available

Right), which allow the Actor to edit them, associated with an AXMEDIS objects
or a component thereof

Actors Integrator, producer, distributor
Assumptions • AXMEDIS Editor is open

• An object is opened within the AXMEDIS Editor
• An Hierarchy View of the object is open

Steps 1 The use case begins when the Actor clicks with the right mouse button on an
element

2 The Hierarchy View shows the proper context menu to the Actor
3 If enabled, the Actor chooses “DRM View…”
4 The AXMEDIS Editor shows to the Actor a view which nicely represents the

DRM rules and PAR associated with the selected element. Such view will
allow the Actor to:

o understand which rights he/she can exercise on the object
o understand which rights he/she can gain
o manipulate (add, remove, change, etc…), both in graphical and

textual manner, DRM rules and PAR. Obviously, such manipulations
can be made only by the object owner. Moreover, the Actor can not
make changes which are in contrast with respect to DRM rules and
PAR related to parts of his/her object which belong to another owner

o look for predefined rules set or template
o etc…

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

32

4.2 AXMEDIS Internal Viewers

4.2.1 Invoking an internal viewer/editor

UCId UC4.2.1
Use case Invoking an internal viewer
Description The actor wants to visualize a digital resource
Actors End User, Content Integrator, Content Distributor, Content Consumer
Assumptions • AXMEDIS Editor is open

• An object is opened within the AXMEDIS Editor
• An hierarchical view of the object is open

Steps 1 The use case begins when an actor clicks with the right mouse button on an
digital resource

2 The editor shows a proper context menu to the actor
3 The actor chooses “View…”
4 A proper viewer/editor is associated with the resource on the basis of MIME

type
5 The system sends an opening authorization request to the PMS (via AXOM)
6 If PMS does not provide the authorization

6.1 The system displays an authorization failure message on screen
6.2 The Use Case ends

7 The system performs the verification of the AXMEDIS Editor
8 If the verification is not valid

8.1 The system displays a verification failure message on screen
8.2 The Use Case ends

9 The system activates the proper internal viewer.
10 The digital resource is sent to the viewer/editor (via The Protection Processor

of AXOM)
11 The Use Case ends

Post-conditions None
Variations • Double click on the resource

• System will automatically invoke internal viewers to visualize resources when
the user wants to “play” the entire AXMEDIS object

Asynchronous
actions

None

Design suggestions None
Issues End User usually can only “play” an AXMEDIS objects so only internal

“viewers” should be invoked

4.2.2 Managing a digital resource by respecting the DRM in an Internal Viewer/Editor
UCId UC4.2.2
Use case Managing a digital resource by respecting the DRM in an Internal Viewer
Description During the visualisation or a manipulation of a digital resource, the user could use

some functionalities/commands (cut, paste, filtering, export, save, etc…) that
could require the verification of DRM rule associated with the digital resource

Actors End User, Content Integrator, Content Distributor, Content Consumer
Assumptions • An internal viewer has been invoked by the system

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

33

Steps 1 The use case begins when the user wants to perform a command on the digital
resource

2 The system verifies the DRM of the resource (i.e. if the actor has the right to
perform such command)

3 If the user is authorised
3.1 The internal viewer/editor performs the command

4 Else
4.1 The internal viewer/editor notifies a command failure message.

5 The Use Case ends.
Post-conditions • The viewer continues to work
Variations None
Asynchronous
actions

None

Design suggestions None
Issues The DRM verification is performed by the AXOM

4.2.3 Closing an Internal viewer/editor
UCId UC4.2.3
Use case Closing an Internal Viewer
Description After the visualisation of the digital resource, the user could decide to close the

viewer
Actors End User, Content Integrator, Content Distributor, Content Consumer
Assumptions • An internal viewer has been invoked by the system
Steps 1 The use case begins when the user wants to quit the internal viewer

2 The user clicks with left mouse button on the close button of the system menu
3 If the digital resource is changed

3.1 The viewer/editor displays a dialog asking for the modification
acceptance.

3.2 If the actor does not discard the modification
3.2.1 The Viewer/Editor returns the modified resource

3.3 The viewer is closed
3.4 The Use Case ends

4 The viewer is closed
5 The Use Case ends

Post-conditions If the resource is changed, the modified resource will substitute the original
resource within the AXMEDIS object with the modified one.

Variations The use could quit the viewer by selecting “Quit” in the menu bar
Asynchronous
actions

None

Design suggestions None
Issues None

4.3 AXMEDIS tools for using/producing AXMEDIS Objects in other Content tools

4.3.1 Invoking an external tool with a digital resource belonging to the AXMEDIS object

UCId UC4.3.1
Use case Invoking external tools with a digital resource belonging to the AXMEDIS object
Description The actor wants to use an external tool for content manipulation: (i) playing or

rendering the resource, (ii) manipulating the resource by means of more complex
functions provided by the external tool

Actors End User, Content Integrator, Content Distributor, Content Consumer

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

34

Assumptions • AXMEDIS Editor is open
• An object is opened within the AXMEDIS Editor
• An hierarchical view of the object is open

Steps 1 The use case begins when an actor clicks with the right mouse button on an
resource

2 The system shows the proper context menu to the actor
3 The actor chooses “Open with…”
4 The proper viewer/editor is associated with the resource on the basis of MIME

type
5 The system sends an opening authorization request to the PMS (via AXOM)
6 If PMS does not provide the authorization

6.1 The system displays an authorization failure message on screen
6.2 The Use Case ends

7 The system performs the verification of the AXMEDIS Editor
8 If the verification is not valid

8.1 The system displays an verification failure message on screen
8.2 The Use Case ends

9 The system calls the external tool associated with the resource
10 The external tool is configured by the AXMEDIS plug-in according to the

DRM rules associated with the digital resource
11 The system sends the digital resource to the plug-in (via The Protection

Processor of AXOM)
12 The plug-in provides the digital resource to be represented in the external tool

data model (see “Transferring a digital resource to an external tool” Use Case)
13 The external tool shows the digital resource
14 The Use Case ends

Post-conditions None
Variations • Double click on the resource for automatic call of the tool by means MIME

mechanism
• A table with the available tools is associated with the resource, the system

shows such table and the user selects the proper tool
• System will automatically use external tools to visualize resources when the

user wants to “play” the entire AXMEDIS object and, for example, no
adequate internal viewers are available

Asynchronous
actions

None

Design suggestions None
Issues End User usually can only render an AXMEDIS objects so only external

“viewers” should be invoked

4.3.2 Managing the digital resource by respecting the DRM in an external tool
UCId UC4.3.2
Use case Managing the digital resource by respecting the DRM in an external tool
Description During the visualisation or a manipulation of a digital resource, the user could use

functionalities (cut, paste, filtering, export, save, etc…) that could require the
verification of some DRM rules

Actors End User, Content Integrator, Content Distributor, Content Consumer
Assumptions • An external tool has been invoked by the system

• The external tool uses its AXMEDIS plug-in
• The digital resource has been loaded in the AXMEDIS Data Model inside the

plug-in and the resource is ready to be used.
• The communication with the AXMEDIS Editor is active via plug-in

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

35

Steps 1 The use case begins when the user wants to execute a command provided by
the external tool

2 The external tool communicates the request of command execution to the
AXMEDIS plug-in

3 The AXMEDIS plug-in verifies the DRM of the resource (i.e. if the actor has
the right to perform such command). The license can impose limitations on
the usage of the object into external editors. In addition, the operation
requested can be not safe on that tool, the AXMEDIS plugin knows which are
the safe operations (those that does not violate the license and that allow to
trace the activities). In these cases the requested action cannot be granted.

4 If the actor is authorised
4.1 The AXMEDIS plug-in authorises the External tool to perform the

command
5 Else

5.1 The AXMEDIS plug-in does not authorise the external tool to execute the
command and notifies a command failure message.

6 The Use Case ends
Post-conditions The external tool is still working
Variations None
Asynchronous
actions

None

Design suggestions None
Issues This use case is only viable for those tools in which the DRM of the requested

operation is controllable via the AXMEDIS plug-in. The profile of the AXMEDIS
plug in has to declare which kind of content process and security level is present
in the External Editor/tool. In general if the license do not accept the object to be
processed by such an External Editor-tool the operation will result not feasible.

4.3.3 Closing an External Tool
UCId UC4.3.3
Use case Closing an external tool
Description After the visualisation or manipulation phase of the digital resource by means of

an external content editor or tool, the user could decide to close such tool
Actors End User, Content Integrator, Content Distributor, Content Consumer
Assumptions • An external tool has been invoked by the system

• The external tool uses the AXMEDIS plug-in
Steps 1 The use case begins when the user wants to quit the external tool

2 The user clicks with left mouse button on the close button of the external tool
menu

3 If the digital resource is changed
3.1 The tool displays a dialog asking for the modification acceptance.
3.2 If the actor does not discard the modification

3.2.1 See the “Updating a digital resource modified by an external
tool” Use Case

3.3 The tool is closed
3.4 The Use Case ends

4 The tool is closed
5 The Use Case ends

Post-conditions • The modified digital resource has been updated in the AXMEDIS object
• The external tool has been closed.

Variations The use could quit the tool by selecting “Quit” in the menu bar.
Asynchronous
actions

None

Design suggestions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

36

Issues None

4.3.4 Updating a digital resource modified by an external tool
UCId UC4.3.4
Use case Updating a digital resource modified by an external tool
Description After that a digital resource has been modified by means of an external content

editor or tool, the AXMEDIS object has to be updated with the new version of the
digital resource

Actors AXMEDIS Plug-in, system
Assumptions • An external tool has been invoked by the system

• The external tool uses the AXMEDIS plug-in
• The digital resource has been modified

Steps 1 The use case begins when an updating command is invoked (to update a
modified digital resource command)

2 The plug-in provides the updating of the digital resource in the AXMEDIS
object transferring the new digital resource from the external tool data model
to the AXMEDIS object

Post-conditions • The digital resource has been updated successfully inside the AXMEDIS
object

Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

4.3.5 Transferring a digital resource to an external tool
UCId UC4.3.5
Use case Transferring a digital resource to an external tool
Description After that an external tool has been invoked, the digital resource to be modified

has to be transferred from the AXMEDIS object to the external tool data model
Actors AXMEDIS Plug-in, AXMEDIS Editor, System
Assumptions • An external tool has been invoked by the system

• The external tool uses the AXMEDIS plug-in
Steps 1 The use case begins when the user wants to execute a command provided by

the external tool
2 The external tool communicates the request of command execution to the

AXMEDIS plug-in
3 The AXMEDIS plug-in verifies the DRM of the resource (i.e. if the actor has

the right to perform such command). The license can impose limitations on
the usage of the object into external editors. In addition, the operation
requested can be not safe on that tool, the AXMEDIS plugin knows which are
the safe operations (those that does not violate the license and that allow to
trace the activities). In these cases the requested action cannot be granted.

4 If all is correct and acceptable a digital resource can be transferred to the
external tool

5 The AXMEDIS editor sends the digital resource to the AXMEDIS plug-in
inside the external tool

6 The plug-in converts and transfers the digital resource to the external tool data
model

Post-conditions • The digital resource has been transferred successfully to the external tool data
model

Variations None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

37

Asynchronous
actions

None

Design suggestions None
Issues The transferring of the digital resource can be performed from the AXMEDIS

Editor to the AXMEDIS Plug-in in a safe manner, for instance by encrypting the
digital resources. The resource can be passed via memory or via a temporary file
depending on the relationships between the AXMEDIS Editor and the AXMEDIS
Plug. All content processing operations, such as resource conversion, or others,
have to be allowed by the license if the object is protected.

5 AXMEDIS Production Tools

5.1 Compositional Tools

5.1.1 Compositional Engine

5.1.1.1 Automatic composition
UCId UC5.1.1.1
Use case Automatic composition
Description An Actor wants to compose automatically some AXMEDIS objects.
Actors Content owner, Content Integrator, Content Distributor, AXMEDIS Workflow

Manager
Assumptions An active compositional rule is ready to be executed
Steps 1 The Use Case begins when the Compositional Engine receives a composition

request coming from the AXMEDIS Workflow Manager or the internal
scheduler activates a rule from the Active Composition Rules.

2 The internal scheduler sends a Composition Rule execution request and the
corresponding rule to the Rule Executor.

3 The Compositional Engine executes the submitted rules by:
3.1 recovering all the specified AXMEDIS objects from AXMEDIS Database
3.2 verifying the compatibility of DRM and licensing
3.3 compounding AXMEDIS objects as described into selected rule
3.4 interacting with Fingerprint, Adaptation and Protection tools
3.5 storing all new created AXMEDIS objects into AXMEDIS Database

(AXMEDIS Objects repository)
4 The Composition Engine sends an End process notification to the AXMEDIS

Workflow Manager.
5 The Use Case ends

Post-conditions None
Variations The Actor can create his personalized compositional rule by using Compositional

Rules Editor (see Use Case UCXXX).
Asynchronous
actions

None

Design suggestions None
Issues None

5.1.1.2 Compositional Engine verifies the compatibility of DRM associated with digital
resources

UCId UC5.1.1.2
Use case Compositional Engine verifies the compatibility DRM associated with digital

resources

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

38

Description A compositional rule could include the verification request of DRM rules related
to all digital resources with a DRM target specified by the Content Integrator. In
this case The Compositional Engine verifies that DRM rules are compatible with
the DRM rules and/or conditions specified in the rule

Actors Compositional Engine
Assumptions The DRM rules of digital resources related to the Selection are available
Steps 1 The Use Case starts when the Compositional Engine has to verify if the set of

DRM rules match the DRM target specified in compositional rule.
2 If DRM are not compatible with the DRM and/or conditions specified in the

rule.
2.1 The Composition fails and a composition failure notification is sent to the

AXMEDIS Workflow Manager.
2.2 The Use Case ends.

3 The Compositional Engine continues the rule execution
4 The Use Case ends

Post-conditions The current composition is interrupted.
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.1.1.3 Compositional Engine verifies the rights of digital resources
UCId UC5.1.1.3
Use case Compositional Engine verifies the rights of digital resources
Description A compositional rule could include the verification request of rights related to all

digital resources. In this case, the Compositional Engine verifies that rights are
compatible with the rights target specified in the rule.

Actors Compositional Engine
Assumptions The DRM rules of digital resources related to the Selection are available
Steps 1 The Use Case starts when the Compositional Engine has to verify if the set of

rights match the rights specified in compositional rule.
2 If rights are not compatible with the rights specified in the rule.

2.1 The Composition fails and a composition failure notification is sent to the
AXMEDIS Workflow Manager.

2.2 The Use Case ends.
3 The Compositional Engine continues the rule execution
4 The Use Case ends

Post-conditions The current composition is interrupted.
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.1.1.4 Compositional Engine embeds a digital resource in the new AXMEDIS object
UCId UC5.1.1.4
Use case Compositional Engine embeds a digital resource in the new AXMEDIS object
Description Compositional Engine embeds physically or by reference one o more digital

resource in the new AXMEDIS object.
Actors Compositional Engine
Assumptions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

39

Steps 1 The Use Case starts when the Compositional Engine has to embed a digital
resource in the new AXMEDIS object

2 If the embedding option is “physically”
2.1 The composition engine sends an embedding request and the resource to

the AXOM
3 Else the composition engine sends an embedding request and the reference of

resource to the AXOM
4 The resource is embedded

Post-conditions The resource or the reference is embedded in the AXMEDIS object
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.1.1.5 Compositional Engine generates a new AXMEDIS object
UCId UC5.1.1.5
Use case Compositional Engine generates a new AXMEDIS object
Description Compositional Engine create one o more new AXMEDIS objects and assign them

a new Object ID
Actors Compositional Engine
Assumptions None
Steps 1 The Use Case starts when the Compositional Engine create a new AXMEDIS

object following a compositional rule
2 The composition engine asks for a new Object ID to the AXMEDIS OID

Generator.
3 The ID is applied to the new object.

Post-conditions The Object is created and a new ID has been assigned
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.1.1.6 Compositional Engine requires the Fingerprint estimation of a digital resource
UCId UC5.1.1.6
Use case Compositional Engine requires the fingerprint estimation of a digital resource
Description If a fingerprint request for a digital resource is specified in the composition rule

the Compositional Engine interacts with the Fingerprint tool asking for fingerprint
estimation (via AXOM). The Fingerprint tool will return the content descriptors
related to the digital resource.

Actors Compositional Engine
Assumptions The digital resource is available physically during the composition process
Steps 1 The Use Case starts when a fingerprint estimation request for the digital

resource is specified in the composition rule.
2 The digital resource is sent to the Fingerprint tool
3 The Fingerprint tool returns the content descriptors associated with the digital

resource.
4 The content descriptors are inserted as metadata associated with the digital

resource.
Post-conditions None
Variations None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

40

Asynchronous
actions

None

Design suggestions None
Issues None

5.1.1.7 Compositional Engine requires the Adaptation of a digital resource
UCId UC5.1.1.7
Use case Compositional Engine requires the Adaptation of a digital resource
Description If an adaptation request for a digital resource is specified in the composition rule

the Compositional Engine interacts with the Adaptation tool (via AXOM). The
Adaptation tool will perform the adaptation specified in the composition rule for
the a given digital resource.

Actors Compositional Engine
Assumptions The digital resource is available physically during the composition process
Steps 1 The Use Case starts when an adaptation request for the digital resource is

specified in the composition rule
2 The digital resource is sent to the adaptation tool
3 The Adaptation tool returns the adapted resource

Post-conditions The initial digital resource is adapted on the basis of adaptation request specified
in the rule

Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.1.1.8 Compositional Engine requires the Protection of the new AXMEDIS object
UCId UC5.1.1.8
Use case Compositional Engine requires the protection of the new AXMEDIS object
Description If a protection request for the new AXMEDIS object is specified in the

composition rule the Compositional Engine interacts with the Protection tool (via
AXOM). The Protection tool will create an AXMEDIS protected object.

Actors Compositional Engine
Assumptions The digital resource is available physically during the composition process
Steps 1 The Use Case starts when the rule executor has to perform a fingerprint

estimation.
2 The digital resource is sent to the Fingerprint tool
3 The Fingerprint tool returns the content descriptors associated with the digital

resource.
Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.1.1.9 Compositional Engine merges component’s DRM/PAR rules into a new AXMEDIS
object

UCId UC5.1.1.9
Use case Compositional Engine merges component’s DRM/PAR rules into a new

AXMEDIS object

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

41

Description Compositional Engine create a new AXMEDIS objects and merge component’s
DRM/PAR rules to create a new DRM/PAR rule

Actors Compositional Engine
Assumptions None
Steps 1 The Use Case starts when the compositional engine has to generate the

DRM/PAR for the composite AXMEDIS object
2 Compositional Engine merge component’s DRM/PAR rules into the new

AXMEDIS Objects
3 The actor can modify the DRM/PAR rule of the new AXMEDIS object

without modify the DRM/PAR rules of the components, but in according to
them. The verification can be invoked by exploiting services of the PMS
client in conjunction with the AXOM.

Post-conditions None
Variations The DRM/PAR of the whole new object depends on what could be the

intersection of DRM/PAR rules related to each component
Asynchronous
actions

None

Design suggestions None
Issues None

5.1.2 Composition Rules Editor

5.1.2.1 Create a new compositional rule
UCId UC5.1.2.1
Use case Create a new compositional rule
Description An Actor wants to create a new compositional rule
Actors Content owner, Content Integrator, Content Distributor
Assumptions None
Steps 1 The Actor creates a Selection of digital resources by making queries to the

AXMEDIS Database
2 The Actor rules how these resources have to be compound
3 The Actor stores the created rule into Composition Rules Database

Post-conditions None
Variations 1) The Actor defines a Selection by writing in the rule the scripting code

(Composition Rule Language) for queries to be executed when the rule will be run
2) The Actor can define a rule or writing it as scripting code (Composition Rule
Language) or in a Visual way.

Asynchronous
actions

None

Design suggestions None
Issues None

5.1.2.2 Search and Select a compositional rule
UCId UC5.1.2.2
Use case Search and Select a compositional rule
Description An Actor wants to Select a specific compositional rule he should be enabled to

make some search or browsing, they are organized in some ordering.
Actors Content owner, Content Integrator, Content Distributor
Assumptions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

42

Steps 1 The Actor search into the Repository of Compositional Rules a specific
compositional rule

2 The rules are ordered in some manner and simple queries can be performed
3 If the Actor founds the rule can :

3.1 Use it to create a compounded AXMEDIS object
3.2 Modify it

3.2.1 Then the Actor store the new rule into the Repository by
Compositional Rules Editor

3.2.2 Use the new rule to create a compounded AXMEDIS object
4 If the Actor doesn’t found the rule can create a new one

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.1.2.3 Activating a compositional rule
UCId UC5.1.2.3
Use case Activating a compositional rule
Description An Actor wants to activate a compositional rule
Actors Content owner, Content Integrator, Content Distributor
Assumptions The Composition Rule Editor can access to the Active Rules Repository
Steps 1 The Actor search into the Repository of Compositional Rules a specific

compositional rule
2 If the Actor doesn’t found the rule

2.1 The Actor can create a new one
3 The Actor selects “Activate Rule” function
4 The rule is put into the Active Rules Repository

Post-conditions The rule is added to the set of Active Rule
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.1.2.4 Removing a compositional rule
UCId UC5.1.2.4
Use case Removing a compositional rule
Description An Actor wants to remove a compositional rule
Actors Content owner, Content Integrator, Content Distributor
Assumptions The Composition Rule Editor can access to the Active Rules Repository
Steps 1 The Actor requests the list of Active Rules in the Active Rules Repository

2 The Actor selects the active rule to be disabled
3 The Actor selects “Remove Rule” function
4 The rule is Removed

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

43

5.1.2.5 Debugging a compositional rule
UCId UC5.1.2.5
Use case Debugging/Simulation a compositional rule
Description An Actor wants to debug a compositional rule
Actors Content owner, Content Integrator, Content Distributor
Assumptions A composition rule is available.
Steps 1 The Use Case starts when the Actor wants to debug a rule

2 The Rule Editor enters in the Debugging/Simulation Mode
3 During the debugging mode the Actor can:

3.1 Check the statements of rule step by step
3.2 Control the values of current variables
3.3 Exit from the debugging mode

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.2 Formatting Tools

5.2.1 Formatting Engine

5.2.1.1 Automatic formatting
UCId UC5.2.1.1
Use case Automatic formatting
Description An Actor wants to format automatically some AXMEDIS objects.
Actors Content owner, Content Integrator, Content Distributor, AXMEDIS Workflow

Manager
Assumptions An active formatting rule is ready to be executed
Steps 1 The Use Case begins when the Formatting Engine receives a formatting

request coming from the AXMEDIS Workflow Manager or the internal
scheduler activates a rule from the Active Composition Rules.

2 The internal scheduler sends a Formatting Rule execution request and the
corresponding rule to the Rule Executor.

3 The Formatting Engine executes the submitted rules by:
3.1 recovering all the specified AXMEDIS objects from AXMEDIS Database
3.2 verifying the compatibility of DRM and licensing
3.3 creating the formatted AXMEDIS objects as described into selected rule
3.4 interacting with Fingerprint, Adaptation and Protection tools
3.5 storing all new created AXMEDIS objects into AXMEDIS Database

(AXMEDIS Objects repository)
4 The Formatting Engine sends an End process notification to the AXMEDIS

Workflow Manager.
5 The Use Case ends

Post-conditions An AXMEDIS formatted object is produced.
Variations • The Actor can create his personalized formatting rule by using Formatting

Rules Editor
• The formatting process can be executed by an external tool if specified in the

formatting rule
• The adaptation of resources could be performed by using external

functionalities provided by external tools

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

44

Asynchronous
actions

None

Design suggestions None
Issues None

5.2.1.2 Formatting Engine verifies the compatibility of DRM associated with digital
resources

UCId UC5.2.1.2
Use case Formatting Engine verifies the compatibility DRM associated with digital

resources
Description A Formatting rule could include the verification request of DRM rules related to

all digital resources with a DRM target specified by the Content Integrator. In this
case the Formatting Engine verifies that DRM rules are compatible with the DRM
rules and/or conditions specified in the rule

Actors Formatting Engine
Assumptions The DRM rules of digital resources related to the Selection are available
Steps 1 The Use Case starts when the Formatting Engine has to verify if the set of

DRM rules match the DRM target specified in Formatting rule.
2 If DRM are not compatible with the DRM and/or conditions specified in the

rule.
2.1 The Formatting process fails and a formatting failure notification is sent to

the AXMEDIS Workflow Manager.
2.2 The Use Case ends.

3 The Formatting Engine continues the rule execution
4 The Use Case ends

Post-conditions The current formatting process is interrupted.
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.2.1.3 Formatting Engine verifies the rights of digital resources
UCId UC5.2.1.3
Use case Formatting Engine verifies the rights of digital resources
Description A formatting rule could include the verification request of rights related to all

digital resources. In this case, the Formatting Engine verifies that rights are
compatible with the rights target specified in the rule.

Actors Formatting Engine
Assumptions The DRM rules of digital resources related to the Selection are available
Steps 1 The Use Case starts when the Formatting Engine has to verify if the set of

rights match the rights specified in formatting rule.
2 If rights are not compatible with the rights specified in the rule.

2.1 The Formatting fails and a formatting failure notification is sent to the
AXMEDIS Workflow Manager.

2.2 The Use Case ends.
3 The Formatting Engine continues the rule execution
4 The Use Case ends

Post-conditions The current formatting is interrupted.
Variations None
Asynchronous
actions

None

Design suggestions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

45

Issues None

5.2.1.4 Formatting Engine embeds a formatted digital resource in a new AXMEDIS object
UCId UC5.2.1.4
Use case Formatting Engine embeds a formatted digital resource in the new AXMEDIS

object
Description Formatting Engine embeds one o more digital resource in the new AXMEDIS

object.
Actors Formatting Engine
Assumptions None
Steps 1 The Use Case starts when the Formatting Engine has to embed the new

formatted digital resource in the new AXMEDIS object
2 The composition engine sends an embedding request and the resource to the

AXOM
3 The resource is embedded

Post-conditions The resource is embedded in the new AXMEDIS object
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.2.1.5 Formatting Engine generates a new AXMEDIS object

UCId UC5.2.1.5
Use case Formatting Engine generates a new AXMEDIS object
Description Formatting Engine create one o more new AXMEDIS objects and assign them a

new Object ID
Actors Formatting Engine
Assumptions None
Steps 1 The Use Case starts when the Formatting Engine create a new AXMEDIS

object following a formatting rule
2 The formatting engine asks for a new Object ID to the AXMEDIS OID

Generator.
3 The ID is applied to the new object.

Post-conditions The Object is created and a new ID has been assigned
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.2.1.6 Formatting Engine requires the Fingerprint estimation of a digital resource
UCId UC5.2.1.6
Use case Formatting Engine requires the fingerprint estimation of a digital resource
Description If a fingerprint request for a digital resource is specified in the formatting rule the

Formatting Engine interacts with the Fingerprint tool asking for fingerprint
estimation (via AXOM). The Fingerprint tool will return the content descriptors
related to the digital resource.

Actors Formatting Engine
Assumptions The digital resource is available physically during the composition process

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

46

Steps 1 The Use Case starts when a fingerprint estimation request for the digital
resource is specified in the formatting rule.

2 The digital resource is sent to the Fingerprint tool
3 The Fingerprint tool returns the content descriptors associated with the digital

resource.
4 The content descriptors are inserted as metadata associated with the digital

resource.
5 The Use Case ends

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.2.1.7 Formatting Engine requires the Adaptation of a digital resource
UCId UC5.2.1.7
Use case Compositional Engine requires the Adaptation of a digital resource
Description If an adaptation request for a digital resource is specified in the composition rule

the Formatting Engine interacts with the Adaptation tool (via AXOM). The
Adaptation tool will perform the adaptation specified in the formatting rule for the
a given digital resource. The adaptation is based on a set of parameters such as:
user profile, channel distribution and device profile, file format, etc…

Actors Formatting Engine
Assumptions The digital resource is available physically during the composition process
Steps 1 The Use Case starts when an adaptation request for the digital resource is

specified in the formatting rule
2 The digital resource and the set of formatting parameters are sent to the

adaptation tool
3 The Adaptation tool returns the adapted resource
4 The Use Case ends

Post-conditions The initial digital resource is adapted on the basis of adaptation request specified
in the rule

Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.2.1.8 Formatting Engine requires the Protection of the new formatted AXMEDIS object
UCId UC5.2.1.8
Use case Formatting Engine requires the protection of the new formatted AXMEDIS object
Description If a protection request for the new AXMEDIS object is specified in the

composition rule the Compositional Engine interacts with the Protection tool (via
AXOM). The Protection tool will create an AXMEDIS protected object.

Actors Formatting Engine and Fingerprint Estimation Tools
Assumptions The formatted digital resource is available physically during the composition

process
Steps 1 The Use Case starts when the rule executor has to perform the protection of

the formatted object
2 The formatted object is sent to the Protection tool
3 The Protection tool returns the protected AXMEDIS object
4 The Use Case ends

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

47

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.2.1.9 Formatting Engine calls an External Tool to execute formatting operations
UCId UC5.2.1.9
Use case Formatting Engine calls an External Tool to execute formatting operations
Description If a request of services provided by external tools is specified in the formatting

rule the Formatting Engine will interact with the External Formatting tools. The
External tools will format or perform specific script languages. The external tool
will be able to perform also adaptations specified in the formatting rule for digital
resources.

Actors Formatting Engine
Assumptions The digital resources to be formatted are available physically during the

formatting process
Steps 1 The Use Case starts when the rule executor has to perform an external call to a

formatting tool specified in the rule
2 The formatting engine sends the digital resources and parameters specified in

the external call to the external tool
3 The external tool performs functions specified in the rule
4 The external tool returns formatted digital resources
5 The Use Case ends

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions Parameters involved in the external call could be: user profile, channel distribution
and device profile, file format, scripting code executable by the external tool,
etc…

Issues None

5.2.1.10 Formatting Engine merges DRM/PAR rules
UCId UC5.2.1.10
Use case Formatting Engine merges DRM/PAR rules
Description Formatting Engine merges DRM/PAR rules of the digital resources into a new

formatted AXMEDIS object
Actors Formatting Engine
Assumptions None
Steps 1 Formatting Engine create a new AXMEDIS objects following a formatting

rule
2 Formatting Engine merge component’s DRM rules (in terms of PAR or

included licences, if any) into the new AXMEDIS Objects
3 The actor can modify the DRM/PAR rule of the new AXMEDIS object

without modify the DRM/PAR rules of the components, but in according to
them. The verification can be invoked by exploiting services of the PMS
client in conjunction with the AXOM.

4 Algorithms of PAR adaptation will be provided to perform such operations.
5 The Use Case ends

Post-conditions None
Variations None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

48

Asynchronous
actions

None

Design suggestions None
Issues None

5.2.2 Formatting Rules Editor

5.2.2.1 Create a new formatting rule
UCId UC5.2.2.1
Use case Create a new formatting rule
Description An Actor wants to create a new formatting rule
Actors Content owner, Content Integrator, Content Distributor
Assumptions None
Steps 1 The Actor creates a Selection of digital resources by making queries to the

AXMEDIS Database
2 The Actor rules how these resources have to be formatted
3 The Actor stores the created rule into Formatting Rules Database

Post-conditions None
Variations 1) The Actor defines a Selection by writing in the rule the scripting code

(Formatting Rule Language) for queries to be executed when the rule will be run
2) The Actor can define a rule or writing it as scripting code (Formatting Rule
Language) or in a Visual way.

Asynchronous
actions

None

Design suggestions None
Issues None

5.2.2.2 Search a rule
UCId UC5.2.2.2
Use case Search a rule
Description An Actor wants to search a specific formatting rule
Actors Content Integrator, Content Distributor
Assumptions None
Steps 1 The Actor search into the Repository of Formatting Rules a specific

formatting rule
2 If the Actor founds the rule can :

2.1 Use it to format an AXMEDIS object
2.2 Modify it

2.2.1 Then the Actor store the new rule into the Repository by
Formatting Rules Editor

2.2.2 Use the new rule to format an AXMEDIS object
3 If the Actor doesn’t found the rule can create a new one

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.2.2.3 Activating a formatting rule
UCId UC5.2.2.3
Use case Activating a formatting rule
Description An Actor wants to activate a formatting rule

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

49

Actors Content owner, Content Integrator, Content Distributor
Assumptions The Formatting Rule Editor can access to the Active Rules Repository
Steps 1 The Actor search into the Repository of Formatting Rules a specific

formatting rule
2 If the Actor doesn’t found the rule

2.1 The Actor can create a new one
3 The Actor selects “Activate Rule” function
4 The rule is put into the Active Rules Repository

Post-conditions The rule is added to the set of Active Rule
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.2.2.4 Removing a formatting rule
UCId UC5.2.2.4
Use case Removing a formatting rule
Description An Actor wants to remove a formatting rule
Actors Content owner, Content Integrator, Content Distributor
Assumptions The Formatting Rule Editor can access to the Active Rules Repository
Steps 1 The Actor requests the list of Active Rules in the Active Rules Repository

2 The Actor selects the active rule to be disabled
3 The Actor selects “Remove Rule” function
4 The rule is removed from the Active Rules Repository

Post-conditions The rule is disabled
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

5.2.2.5 Debugging a formatting rule
UCId UC5.2.2.5
Use case Debugging/Simulating a formatting rule
Description An Actor wants to debug a formatting rule to check the correctness and feasibility
Actors Content owner, Content Integrator, Content Distributor
Assumptions A formatting rule is available
Steps 1 The Use Case starts when the Actor wants to debug a rule

2 The Rule Editor enters in the Debugging Mode
3 During the debugging mode the Actor can:

3.1 Check the statements of rule step by step
3.2 Control the values of current variables
3.3 Exit from the debugging mode

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

50

6 AXMEDIS Workflow

6.1 Workflow Scenarios

Assumption: - The user is already logged in and authenticated by the system. Based on his role, the user is

granted a set of “Rights”. The information related to the user (user profile) and the Rights is already
available in the AXMEDIS Database.

Scenario 1: - Starting a New Instance of an NPD i.e. New NPD Set-up
(A Managerial Task)

There are times when a user may wish to cause a new workflow process to be set up by “development and
configuration technicians” to support new kinds of NPD (New Product Development) with new business
process logics. However this scenario relates to occasions when through the Workflow UI, project managers
may wish to start a new NPD instance of an already defined workflow process (e.g. the process for
producing a new media content, which has been previously defined and configured).

A project manager can thus subsequently assign work activities to individual users or let the assignments to
be made automatically by the workflow engine, based on pre-defined rules and roles.

The following scenario describes the process of defining a new NPD within the workflow sub-system. At the
end of this scenario, the project manager can expect a fully configured workspace that can be interrogated by
users at various levels to give information about all the necessary tasks to be performed, people responsible
for performing those tasks, the tools needed to do the tasks, and the location where each task is to be
performed, etc, the scenario proceeds as follows:

The user (Manager) is already authenticated and logged into the system.

He invokes the “create new NPD workspace” function by clicking on this button to define the product and
the NPD for its development. A pop-up dialogue box appears to allow him to enter the basic details of the
NPD (e.g. name, type, etc) and to select pre-defined templates.

The workflow manger (AXWFM) communicates with the AXMEDIS Object Manager (AXOM) through the
AXMEDIS editor workflow plug-in, to generate a Process ID which is to be assigned to the new NPD.

The workflow editor/viewer is then launched to enable the user to define the workflow for the new NPD.

The workflow editor launches a blank page (or a page containing the structure of the selected template) for
defining the workflow components.

NPD set-up phase: The user can now select and add components to define the new project. These
components can be tasks, people, project, products, objects, places, links, etc. This functionality of the
workflow editor is similar to a drawing utility provided by the Microsoft Word editor, which allows the user
to add shapes and assign properties to them. However, for the workflow editor it is necessary that all the
added components must be connected to at least one other component to form a semantic integration of all
the components, which when executed in the defined order produces the required product. Whenever any
component is added to the NPD the corresponding properties dialogue box appears for the added component.
The user can (re)set the required properties in this dialogue box so as to control the behaviour of the
components.

For example the user can add a task to the current NPD workspace and may designate its type as a
“Formatting Task”. The user then can add a person to the current workspace and assign his role to be, say,
the “Technical Editor” responsible for the formatting Task. He can then link this person to the “Formatting

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

51

Task”. The user can then add a tool to the current workspace and assign its role as a “Formatting Tool” and
then link this tool to the “Formatting Task”. The workflow will interpret these links as “The AXMEDIS
Object(ID---) to be formatted with the specific Formatting Tool by the named Technical Editor” thus
assigned this task.

It is also possible for the User to define all the tasks and people working on the project first without creating
the links. As mentioned before the workflow system can automatically distribute the work to the people,
partners, places, etc based on the saved profiles (roles) of the available participating resources and objects.

There are typically two approaches to defining workflow processes: using a specific User Interface or
describing the process via a meta-language (e.g. XPDL); workflow solutions tend to adopt one or the other of
the two approaches).

The command and Reporting is shown in this diagram explicitly as the component that is connected to the
editor/viewer to notify termination of the editing and viewing task. In practice, the Command & Reporting
module can be viewed as an integral component of AXMEDIS Editor.

The Command & Reporting module is an integral component of AXMEDIS Editor, while the AXMEDIS
Editor WF Plug in is an external DLL or Plug in module, produced by using the Workflow development tool
kit and the AXMEDIS Plug in Development Tool Kit.

Scenario 2: - Executing Any Task in the Workflow (End-Worker’s Task)

This scenario describes the process of executing any work Task within the workflow environment. At the
end of this scenario, the user can expect the status of the AXMEDIS Object(s) concerned to be updated and
the work Task marked as completed thus triggering new sets of tasks as appropriate. This scenario proceeds

Scenario 1: - Starting a New Instance of an NPD i.e. New NPD Set-up
(A Managerial Task)

End User
(Manager)

1

2

6 11

3

WFDB

55

4

77

88

99

1010

AXWFM

AX Editor WF Plug In

AXOM + Plug In
Manager WF QS UI

AXOIDG

AX WF
Editor/Viewer

AX WF UIAX WF UI

AXMEDIS Editor

AXOM Commands &
Reporting

12

Scenario 1: - Starting a New Instance of an NPD i.e. New NPD Set-up
(A Managerial Task)

End User
(Manager)

1

2

6 11

3

WFDB

55

4

77

88

99

1010

AXWFM

AX Editor WF Plug In

AXOM + Plug In
Manager WF QS UI

AXOIDG

AX WF
Editor/Viewer

AX WF
Editor/Viewer

AX WF UIAX WF UIAX WF UIAX WF UI

AXMEDIS Editor

AXOM Commands &
Reporting

12

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

52

as follows:

The user (Worker) is already authenticated and logged into the system and the workflow system is up and
running. We can therefore assume that the client’s (i.e. session-owner’s) credentials_ID has been made
available to be authenticated for sign-on to initiate the required exchanges with the AXMEDIS tools/engines
as service providers and thus the information for authentication and billing purposes has been provided.

The user invokes the list-work function by clicking on the button list-work supplying a workflow-
instance_ID which supersedes which effectively represents a given NPD, selecting a work-item to get the
choice of actions to be performed on the work-item for the NPD (or, identically, the workflow-instance) for
which he is assigned to perform tasks.

For any selected task, from any given workflow-instance, the Workflow UI displays to the user a choice of
available actions and descriptions/suggestions related to the selected work-item (i.e. viewed dynamically
these are potential workspace instantiations). These can include actions such as:

EDIT: The user may wish to invoke the AXMEDIS Editor by clicking on Edit and, say, invoke Edit DRM to
Edit the DRM of a selected object; this will launch the AXMEDIS DRM Editor.

SEARCH: The user may wish to search for all objects involved in a particular NPD, by invoking the Search
function of the Workflow UI. The user clicks on Search and then supplies the workflow-instance_ID. The
Workflow Manager passes this query via the Workflow Query Interface through to the Query Support Web
Services Interface which submits it to the AXMEDIS Query Support User Interface. This sets up an
interaction with the AXMEDIS Object Database to search for all objects involved in the specified process or
fulfilling certain criteria.

SHOW: The user can request the workflow system to show more information on any selected components
(AXMEDIS object(s), tool(s), etc) as may be included in the work-list.

Terminate Activity: Users can invoke this functionality to signal to the workflow system their wish to have
an activity terminated. Accordingly the workflow system will proceed to the next step in the workflow
process instance (It is important to note that this functionality enables an over-ride control action on the part
of the human operator if required).

Based on the selected Task the workflow system launches the required tool using the appropriate Interface
(e.g. Web-services) or plug-ins associated with that tool. If the tool is in the exclusive access area of the user,
the “Check-in” and “Check-out” interfaces will be invoked.

The workflow system assigns a time-stamp to such a Task as the start_time, which is later referred to while
tracking the history of the component.

If required the workflow system will also generate new versions of the AXMEDIS Object. Upon the
completion of the Task the workflow system will again assign a time-stamp to this Task as the end time.

At the end of the Task, the workflow system will update the status of the AXMEDIS Object, which may
trigger various other tasks (e.g. DRM editing, invoking AXEPTool, etc).

The Command and Reporting is shown in the above scenario diagram explicitly as the component that is
connected to the editor/viewer to notify termination of the editing and viewing task. In practice, the
Command and Reporting Module can be viewed as an integral component of AXMEDIS Editor.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

53

The Rule Editor Viewer Command & Reporting module is an integral component of AXMEDIS Editor of the
Editor or Engine, while the WF Rule Editor/Viewer Plug in is an external DLL or Plug in module, produced
by using the Workflow development tool kit and the AXMEDIS Plug in Development Tool Kit.

Scenario 3: Invoking the AXEPTool (Publish)

This scenario describes the interaction between the workflow and the AXEPTool to share any AXMEDIS
Object over the P2P network. There are two possible interaction scenarios between the workflow and the
AXEPTool. On the one side, the interaction can be for uploading (Publishing) of some AXMEDIS
Object(s), while on the other side the interaction can be for downloading (Loading) of an AXMEDIS Object.
The Loading operation may involve a Negotiation Phase to procure an appropriate license. Such Negotiation
is controlled by a subsystem of AXMEDIS workflow called Negotiation Workflow. In this section we deal
with the AXEPTool Publication Scenario.

It is assumed that the publications tasks are normally carried out asynchronously and autonomously, without
the intervention of the user. Moreover, the workflow instance contains the Task for uploading of the
AXMEDIS Object on the sender’s side and downloading of the AXMEDIS Object on the receiver’s. The
Scenario Proceeds as follows:

The workflow system is up and running.

We can also assume that the client’s (i.e. session-owner’s) credentials_ID has been made available to be
authenticated for sign-on to initiate the required exchanges information for authentication and billing
purposes.

The workflow system passes the so-called Active Publication Request via the workflow plug-in to the
AXEPTool Command & Reporting module to trigger the AXEPTool Active Publications Rule Selection
Module which enables the selection and submission of appropriate objects for publication. The publication
engine uses the thus activated publication request together with a Rule_ID to control the publication of the
right object(s) from the Active List.

End User

AX QS UI

1

2
16

3

4

WFDB

 5

Content

AXMEDIS Rule Editors

AXWFM

Protected
Object

9

AXOM

Scenario 2: - Executing Any Task in the Workflow (End-Worker’s Task)

8a

77 AX Editor
Plug-in

Manager

Rule Editor/Viewer
Commands &

Reporting AXQS

AXMEDIS ****
Viewer/Editor

Commands &
Reporting

66

1111 1122aa

1133

1144

AAXXWWFFUUII

1100
AX Editor

WF Plug In

1155

WF Rule Editor/Viewer
Plug-in

1122bb
1122cc

1122dd

8b

8c

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

54

If the AXEPTool is not up and running, it is launched by the workflow system using the appropriate
interfaces.

The AXEPTool Publication engine then moves the relevant AXMEDIS Object(s) to the “AXEPTool Out
AXMEDIS Database Area” for publication on the P2P network under the control of the specified Rule_ID.

Upon completion of the activity, the AXEXPTool Publication engine informs the AXWF via the AXEPTool
Comand & Reporting Module about the completion of the process, so it can proceed with the next step in the
workflow-instance flow.

Scenario 4: Invoking the AXEPTool (Load)
This scenario describes the interaction between the workflow and the AXEPTool to share any AXMEDIS
Object over the P2P network. There are two possible interaction scenarios between the workflow and the
AXEPTool. On the one side, the interaction can be for uploading (Publishing) of some AXMEDIS
Object(s), while on the other side the interaction can be for downloading (Loading) of the AXMEDIS
Object. The Loading operation may involve a Negotiation Phase to procure an appropriate license. Such
Negotiation is controlled by a subsystem of AXMEDIS workflow called Negotiation Workflow. In this
section we deal with a Loading operation not requiring the invocation of the Negotiation workflow for
License Procurement. The scenario proceeds as follows:

It is assumed that the user is interaction with the Workflow Management System.
Thus the user (Worker) is already authenticated and logged into the system and the workflow system is up
and running.

We can also assume that the client’s (i.e. session-owner’s) credentials_ID has been made available to be
authenticated for sign-on to initiate the required exchanges information for authentication and billing
purposes.

Scenario 3: Invoking the AXEPTool (Publish)

WFDB 4a
4b

5

AXWFM

Active Publication Rules
Selected

3

1 2

AXEPTool

AXEPTool Active
Publication Rules Selection

Selected Objects
Published

66

77 AAXXEEPPTTooooll PPuubblliiccaattiioonn EEnnggiinnee

AAXXWWFFUUII

WF Engine
Plug In

77

88

99

1100

AXEPTool Engine
Commands & Reporting

1111

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

55

If any Task requires downloading of an AXMEDIS Object from the P2P network, the workflow system
passes this request via the workflow plug-in to the AXEPTool Command & Reporting module to trigger the
AXEPTool Active Loading Rule Selection Module which enables the selection and downloading of
appropriate objects. The Loading engine uses the thus activated loading request together with a Rule_ID to
control the downloading of the right object(s) from the Active List.

As soon as the required object is available on the P2P network, the Loading Tool Engine of AXEPTool
downloads this AXMEDIS Object and moves it to the “AXEPTool In AXMEDIS Database Area”.

When the AXEPTool Loading engine has completed the transfer, it informs the workflow system via the
AXEPTool Command & Reporting module and the WFMS then moves this component to the appropriate
location and proceeds to enable further tasks that could be perfumed once the object has become available.

Scenario 5: Invoking the AXEPTool (Load Upon Completion of Negotiation)

This scenario describes the interaction between the workflow and the AXEPTool for downloading (Loading)
of an AXMEDIS Object when such Loading requires Negotiation as controlled by a subsystem of
AXMEDIS workflow called Negotiation Workflow. In this section we deal with a Loading operation
requiring the invocation of the Negotiation workflow for License Procurement. The Scenario proceeds as
follows:

It is assumed that the user is interaction with the Workflow.

We can also assume that the client’s (i.e. user/session-owner’s) credentials_ID has been made available to be
authenticated for sign-on to initiate the required exchange information for authentication and billing
purposes.

Scenario 4: Invoking the AXEPTool (Loading)

WFDB 4a
4b

5

AXWFM

Active Loading Rules
Selected

3

1 2

AXEPTool

AXEPTool Active Loading
Rules Selection Selected Objects

Loaded

66

AAXXEEPPTTooooll LLooaaddiinngg EEnnggiinnee

AAXXWWFFUUII

WF Engine
Plug In

77

88

99

1111

1100

AXEPTool Engine
Commands & Reporting

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

56

Thus the user (Worker) is already authenticated and logged into the system and the workflow system is up
and running. It is assumed that the user is in interaction with the Workflow System and that the WFMS
contains the AXMEDIS Object License Procurement Negotiation Workflow.

Suppose there is a Task that requires the downloading of an AXMEDIS Object from the P2P network, with
the added complication that the user is required to enter into and complete a Negotiation Phase regarding the
License Procurement of a particular AXMEDIS Object.

The workflow system passes the relevant Object_ID through to the AXMEDIS Query Support User Interface
to set up an interaction with the AXMEDIS Object Manager (AXOM). The relevant Object Licensing
particulars that thus become available are then passed to the License Procurement Negotiation Workflow to
trigger the start of the Negotiation Phase.

Once the Negotiation Phase is completed the Object_ID is passed to the AXEPTool Loading Engine as
usual, using the WF Plug-in, through the AXEPTool Command and Reporting module which enables a link
to the AXEPTool Active Loading Rule Selection list. Once the selection of the relevant rule(s) for the
download of the object is completed, then, as soon as the required Object becomes available on the P2P
network, the Loading Tool Engine of AXEPTool downloads this AXMEDIS Object and moves it to the
“AXEPTool In the AXMEDIS Database Area.

When the AXEPTool Loading engine has completed the transfer, it informs the workflow system via the
AXEPTool Command & Reporting module and the WFMS then moves this component to the appropriate
location and proceeds to enable further tasks that could be performed once the object download has been
completed.

SSeennaarriioo 55:: AAXXEEPPTTooooll NNeeggoottiiaattee--LLooaadd

WFDB 4a
4b

8

AXWFM

Active Loading Rules
Selected

3,7

1 2

AXEPTool

AXEPTool Active Loading
Rules Selection

Selected Objects
Loaded

99

AAXXEEPPTTooooll LLooaaddiinngg EEnnggiinnee

AAXXWWFFUUII

WF Engine
Plug In

1100

1111

1122

1144 LLooaadd rriigghhttss--ggrraanntteedd oobbjjeecctt

NNeeggoottiiaattiioonn
WWoorrkkffllooww 5
6

1133

AXEPTool Engine
Commands & Reporting

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

57

Scenario 6: Sending out Notifications to People
This scenario describes the process of sending out Notifications initiated by the workflow system or by the
people within the workflow environment. At the end of this scenario, the user can expect that notifications
are generated and sent to appropriate target(s). The scenario proceeds as follows:

The user (Worker) is already authenticated and logged into the system and the workflow system is up and
running. We can thus also assume that the client’s (i.e. session-owner’s) credentials_ID has been made
available to be authenticated for sign-on to initiate the required exchanges information for authentication and
billing purposes.

Upon completion of any Task, the workflow system will generate appropriate Notifications, e.g. If any Task
is waiting for the DRM to be cleared, the workflow system will notify this Task by raising the appropriate
signal whenever the required DRMs are cleared.

The workflow system can also send out notifications to the users through appropriate tools like e-mailing
systems, pop-up messages, etc. e.g. if any actor is waiting for an AXMEDIS object to be downloaded by the
AXEPTool, then upon completion of this the Workflow system is notified by the respective Command and
Reporting module and it in turn can deliver a pop-up message on the relevant client screen or other
designated terminal.

Notifications can also be sent out in the form of e-mails to the user, e.g. if the user has been assigned a new
Task, an email will be sent to him regarding this Task and his personal work-list is updated accordingly.

Scenario 7: Global View and Tracking of any Component in the Workflow
This scenario describes the process of generating a global view of any NPD and the tracking of any
component within the selected NPD. At the end of this scenario, the user can expect to have the up-to-date
progress status of the AXMEDIS Objects within the selected NPD.

The user (Manager/Worker with appropriate rights) is already authenticated and logged into the system and
the workflow system is up and running. Therefore we can assume that the client’s (i.e. session-owner’s)

End User

Email System

3a

2, 4c

1, 3b

4a

AXWFM

4b

Scenario 6: Sending out Notifications to People

AAXXWWFFUUII

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

58

credentials_ID has been made available to be authenticated for sign-on to initiate the required exchanges
information for authentication and billing purposes.

The user selects a particular NPD (or identically a workflow-instance_ID) and clicks on the Global View
icon.

The Workflow system identifies all the components for the selected NPD and launches a set of queries to
retrieve information for all of such components from the AXOM through the AXMEDIS Query Support
Interface.

The workflow systems can then launch an Interactive GUI (Workflow viewer) to show the overall status of
the NPD workflow along with its Critical Path Tasks (CPA), based on the results received for the above
queries.

Through the interactive GUI, the user can select any individual component and can demand more
information on it. This component can be any object, task, person, etc.
Accordingly the workflow system can launch a responsive query to retrieve detailed information regarding
the component(s) selected by the user.

The command and Reporting is shown in the scenario diagram explicitly as the component that is connected
to the editor/viewer to notify termination of the editing and viewing task. In practice, the Command &
Reporting module can be viewed as an integral component of AXMEDIS Editor.

The Command & Reporting module is an integral component of AXMEDIS Editor, while the AXMEDIS

End User

AX QSUI

1
2

10

3a

3b

WFDB

4

AXWFM

Scenario 7: Global View and Tracking of any Component in the Workflow

AX WF EditorAX WF Editor

PlugPlug--inin

88

5

AXWFUIAXWFUI

WF QS
InterfaceAX WF

Editor/Viewer

99

77

66

AXMEDIS Editor

AXOM +
Plug-in

Manager

Commands
& Reporting

11
End User

AX QSUIAX QSUI

1
2

10

3a

3b

WFDB

4

AXWFM

Scenario 7: Global View and Tracking of any Component in the Workflow

AX WF EditorAX WF Editor

PlugPlug--inin

88

5

AXWFUIAXWFUIAXWFUIAXWFUI

WF QS
InterfaceAX WF

Editor/Viewer
AX WF

Editor/Viewer

99

77

66

AXMEDIS Editor

AXOM +
Plug-in

Manager

AXOM +
Plug-in

Manager

Commands
& Reporting
Commands
& Reporting

11

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

59

Editor WF Plug in is an external DLL or Plug in module, produced by using the Workflow development tool
kit and the AXMEDIS Plug in Development Tool Kit.

Scenario 8: Invoking the Composition and Formatting Engine

This scenario describes the interaction between the workflow and the Composition and Formatting Engine to
compose/format any AXMEDIS Object according to selected composition/formatting rules (Rule-ID).

It is assumed that the composition and/or formatting task(s) can be carried out autonomously, without the
intervention of the user but it can be done on an adhoc basis synchronously at user’s instant request. In any
event we can also assume that the client’s (i.e. project-owner’s) credentials_ID has been made available to be
authenticated for sign-on to initiate the required exchanges information for authentication and billing
purposes.

The workflow system is up and running.

The workflow system effects the request to the Composition/Formatting engine via the Workflow Plug-in
linking through the Command & Reporting Module through to the Composition and Formatting Active
Rules module. In this way the workflow system passes to the Composition and Formatting engine an
Activate compose/format request together with a composition/Formatting Rule ID and Object ID to control
the correct composition/formatting of the right object(s) from the Active List.

The Composition/Formatting Engine then composes/formats the relevant AXMEDIS Object(s) as required
per specified (or default) composition/formatting rules

Upon completion of the composition/formatting, the WFMS is informed by the Command & Reporting
Module and the metadata of the relevant Object is also updated accordingly.

SScceennaarriioo 88:: IInnvvookkiinngg tthhee CCoommppoossiittiioonn//FFoorrmmaattttiinngg EEnnggiinnee

WFDB 4a
4b

5

AXWFM

Active
Composition/Formating
Rule selected

3

1 2

Active
Composition/Formating

Rules Composition/
Formating
done

66

Composition/Formating Engine

AAXXWWFFUUII

WF Engine
Plug In

77

88

99

1100

Composition/Formating
Engine Commands &

Reporting

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

60

6.2 Controlling and supervising local AXMEDIS tools

6.2.1 General WorkFlow Use Cases

6.2.1.1 Create NPD Workspace
UCId UC6.2.1.1
Use case Create a NPD
Description This use case when run should create a fresh NPD workspace folder with the

required configuration files in it etc i.e. a suitable workspace desktop suited to the
role of the participant(s) in the value chain segment to which they are contributing
towards the NPD as a whole

Actors Creator
Assumptions Always valid: user has been identified by System; User has the correct rights
Steps 1 Actor chooses “Create NPD”.
Post-conditions New NPD project(s) space created in the user client & P2P desktops

New NPD creation process instance started
Variations Actor has no rights
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.2 Add components to the NPD
UCId UC6.2.1.2
Use case Add components to the NPD
Description This use case is responsible for adding components to the NPD. Typically it can be

inherited to add projects, people, roles, processes, phases, partners, components,
activities, Rights, DRM, etc

Actors Creator, Producer, Integrator, Aggregator
Assumptions An NPD process instance is active, a task was assigned to the actor, the actor

selected a work item
Actor has been identified by System

Steps 1 Actor clicks on “Add component” button.
2 A template is opened listing various types of Workflow Components
3 The user selects the desired component to be added
4 The user sets the desired properties of the selected component

Post-conditions New component added to active NPD.
Started (if any) a subprocess for managing the newly created object

Variations Actor has no rights
Component and AXMEDIS Object incompatibility

Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.3 Edit information of the NPD
UCId UC6.2.1.3
Use case Edit information of the NPD

Note: this is a Use case with Workflow tight integration to editors (multiple
interface)

Description This use case is responsible for editing various aspects of the NPD. It can be used
to edit the current DRM rules or can be used to edit a component based on the
selected process and updates versions if required.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

61

Actors Creator, Producer, Integrator, Aggregator
Assumptions An NPD process instance is active, a task was assigned to the actor, the actor

selected a work item
Actor has been identified by System; NPD must exist;
Actor has the correct rights.

Steps 1 Actor clicks on “Edit” button.
2 The property dialogue box opens asking user, the necessary actions for

editing.
3 Based on the action selected the Workflow launches appropriate editor/tool.

Post-conditions Proper editor invoked for active NPD.
Variations Actor has no rights
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.4 Delete information of a NPD
UCId UC6.2.1.4
Use case Remove information of a NPD
Description This is a generic use case responsible for removing anything from the NPD. e.g.

partners, people, processes, components, etc.
Actors Creator, Producer, Integrator, Aggregator
Assumptions An non-empty NPD process instance is active, a task was assigned to the actor,

the actor selected a work item
Actor has been identified by System

Steps 1 Actor selects component to remove then Actor clicks on ‘remove’.
2 Optional confirmation dialogue.

Post-conditions Selected component deleted from active NPD.
Variations Actor has no rights
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.5 Show information regarding components of a NPD
UCId UC6.2.1.5
Use case Show information regarding components of a NPD
Description This use case is responsible for showing information related to various

components, their copyrights, DRM/PAR, History (metadata, timestamp, version),
Template (house styles, business rules), global state of any projects, etc.

Actors Creator, Producer, Integrator, Aggregator
Assumptions An NPD process instance is active, a task was assigned to the actor, the actor

selected a work item
Actor has been identified by System.

Steps 1 Actor clicks on “Show”.
2 An appropriate viewer is launched to show the requested details.

Post-conditions Properties related to the active NPD displayed.
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

62

6.2.1.6 Delete a NPD
UCId UC6.2.1.6
Use case Delete NPD
Description This destroys the NPD workspace, when the decision of No-Go is taken. This

removes all the information regarding the NPD.
Actors Creator
Assumptions An NPD process instance is active, a task was assigned to the actor, the actor

selected a work item
Actor has been identified by System

Steps 1 Actor clicks on “Discard NPD”.
2 Confirmation dialogue.

Post-conditions Active NPD deleted along with associated components.
The process instance initiated with the NPD instance creation is aborted.

Variations No rights.
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.7 Search a NPD
UCId UC6.2.1.7
Use case Search a NPD
Description This is a generic use case that can search for a NPD. A special case can be

inherited to search for eligible components to be worked on.
Actors Creator, Producer, Integrator, Aggregator
Assumptions An NPD process instance is active, a task was assigned to the actor, the actor

selected a work item
Actor has been identified by System.

Steps 1 Actor clicks on “Search” button.
2 A query dialogue box appears
3 Actor inserts the required parameters and launch the search

Post-conditions The result of performed search is displayed in the form of a list
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.8 Track Component
UCId UC6.2.1.8
Use case Track component
Description This tracks down the history of the selected component. The result comprises of

all the actions performed on the component along with all the future activities
including “wait actions” re “suspended” objects awaiting pending operations
which may themselves be contingent on Critical Path Action(s) (CPA) trigger(s).

Actors Creator
Assumptions An NPD process instance is active, a task was assigned to the actor, the actor

selected a work item
Actor has been identified by System.

Steps 1 Actor selects a component.
2 Actor clicks on “Track component” button.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

63

Post-conditions History and planned steps of selected component displayed.
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.9 Identify the CPA for a NPD
UCId UC6.2.1.9
Use case Track CPA
Description This use case identifies the Critical Path Activities (CPA) for a NPD and produces

all the information regarding those activities e.g. people involved, components
being worked on, processes needing attention, etc.

Actors Creator, Producer, Integrator, Aggregator
Assumptions An NPD process instance is active, a task was assigned to the actor, the actor

selected a work item
Actor has been identified by System.

Steps 1 Actor clicks on “Identify CPA” button.
Post-conditions Displays the critical path activities for the active NPD.
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.10 Timestamp Generator
UCId UC6.2.1.10
Use case Timestamp generator
Description This use case is responsible for generating the timestamp for each of the activities

that are performed on an object by an actor or process at anytime, anywhere any
place by any partner – in any phase of the production and distribution end-to-end.
This can be represented within the metadata and will be used by “Track
Component” to locate the evolution status of any object within nested spiral
development lifecycles across distributed teams from different units/partners.
This will allow global tracking including accommodating re-entrant and re-cursive
states of processing of the objects across partner project spaces (projects, phases,
processes, persons, partners, places, periods, purpose, progress-to-date, project-
work-remaining – 10P STAMP, Badii 2004)

Actors Creator, Producer, Integrator, Aggregator
Assumptions A non-empty NPD must be active/open
Steps 1 The workflow manager will log the beginning and end of any task performed

on any object.
Post-conditions An appropriate timestamp is associated with the objects.
Variations This use case can be tested as expected result for each of the other cases.
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.11 Generate Versions

UCId UC6.2.1.11

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

64

Use case Generate version
Description This generates hierarchical versions for all the digital and hard copy artefacts for

the NPD development. This includes all versioning information to enable unique
referencing of digital assets at any level of complexity e.g. work item, objects,
workspace id, package id, bundle id, etc. i.e. both composite and single objects as
well as work-in-progress objects and the workspaces in which they are being
worked on.

Actors Creator, Producer, Integrator, Aggregator
Assumptions An NPD process instance is active, a task was assigned to the actor, the actor

selected a work item
Actor has been identified by System.

Steps 1 The workflow manager will generate versions of the AXMEDIS objects,
including temporary versions, whenever necessary.

Post-conditions New version of active component added to active NPD.
Variations None
Asynchronous
actions

None

Design suggestions None
Issues Versions are simple identifiers necessary to distinguish objects. The objects can be

the variations of same parent object or a temporary object created on the fly.
may be the versioning is also stored into the workflow in terms of actions
performed…

6.2.1.12 List of Work
UCId UC6.2.1.12
Use case List Work
Description This use case is responsible for generating a hierarchical list of the sequence of all

the work to be done in a particular sectorial workflow scenario, e.g. phases,
processes to be invoked on certain objects by certain people with specific globally
traceable coordinates as unique and easily retrievable instances (i.e. 10P Stamped
Workflow Objects).

Actors Creator, Producer, Integrator, Aggregator
Assumptions Actor has been identified by System; There are work items to which the actor is

assigned
Steps 1 Actor clicks on “show work list” button.

2 The actor can interact with the list of works
Post-conditions The actor work list is displayed
Variations
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.13 Select a Work Item from the List of Work
UCId UC6.2.1.13
Use case Select a Work Item from the List of Work
Description This use case is responsible for selecting a work item from the work list
Actors Creator, Producer, Integrator, Aggregator
Assumptions Actor has been identified by System

The actor has executed the “personal work list” case or “list work” case; There are
work items to which the actor is assigned

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

65

Steps 1 Actor clicks on “select work item” button.
2 Once selected the actor can do some editing activities

Post-conditions The actor work item activity list and/or description is displayed
Variations
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.14 Complete a task of a work Item
UCId UC6.2.1.14
Use case Complete a task of a work Item
Description Users can invoke this functionality to signal to the workflow system their wish to

have an activity terminated. Accordingly the workflow system will proceed to the
next step in the workflow process instance (It is important to note that this
functionality enables an over-ride control action on the part of the human operator if
required)

Actors Creator, Producer, Integrator, Aggregator
Assumptions Actor has been identified by System

The actor has previously selected a work item from the work list.
The actor has completed the activity related to work item

Steps 1 Actor clicks on “terminate work item task” button.
Post-conditions The actor work item is completed, it is deleted from the user’s work list and the

Workflow passes to the next activity as planned for the process instance flow
Variations
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.15 Distribute the assigned Work to process and people
UCId UC6.2.1.15
Use case Distribute the assigned Work to process and people
Description This use case is responsible for distributing the work amongst the people assigned

to the NPD. The work can be at component level or at NPD level. Some of the
assigned work may be pipelined or suspended in a wait/pending stack, awaiting
appropriate triggers for handover

Actors Creator, Producer, Integrator, Aggregator
Assumptions An NPD process instance is active, a task was assigned to the actor, the actor

selected a work item
Actor has been identified by System

Steps 1 Actor either selects a specific component first (to distribute at component
level), or directly the Actor clicks on “Distribute work” button to distribute at
the NPD level.

Post-conditions Work is (re)scheduled for the selected component or NPD.
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

66

6.2.1.16 Change State/Phase of a Task for a work Item
UCId UC6.2.1.16
Use case Change State/Phase of a Task for a work Item
Description This use case is responsible for changing states of objects/actors or phases of a

project including triggering and the upload of a new workspace for a new phase in
the project, e.g. the object may become available after copy right clearance or a
person/partner may become (un)available.

Actors Creator, Producer, Integrator, Aggregator
Assumptions An NPD process instance is active, a task was assigned to the actor, the actor

selected a work item
Actor has been identified by System

Steps 1 Actor selects a component
2 Actor then click “change state”.

Post-conditions State/phase is changed for the selected component or actor. The changing of the
state/phase will then trigger a set of sub-sequent activities that are necessary to be
performed before the start of new Phase.

Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.17 Notification of information to a personnel for a task of a work
UCId UC6.2.1.17
Use case Notification of information to a personnel for a task of a work
Description This use case is responsible for sending out notifications to the responsible actors

for the start and/or end of the activities/work; e.g. request for information or
components, etc.

Actors Creator, Producer, Integrator, Aggregator
Assumptions An non-empty NPD must be active/open
Steps 1 Actor selects one or more actors, select from list of message types then clicks

“notify”.
Post-conditions Appropriate notification is sent to responsible actors via appropriate tool (e.g.

email).
Variations The actor may wish to type his own personal message.
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.18 Global Viewer of all information of a NPD
UCId UC6.2.1.18
Use case Global viewer of all information of a NPD
Description This use case is to collect all the information for the current NPD and present a

global view for managerial decisions and for Production accounting information
feed made accessible any Enterprise MIS platforms such as SAP (along with the
10P Object Stamps)

Actors Creator, Producer, Integrator, Aggregator
Assumptions An NPD process instance is active, a task was assigned to the actor, the actor

selected a work item
Actor has been identified by System

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

67

Steps 1 Actor selects “global view”.
Post-conditions Global information is displayed/exported for the active NPD.
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.19 Check-in task performed by manual operator
UCId UC6.2.1.19
Use case Check-in task performed by manual operator

Note: this is a Use case with Workflow loose integration to editors (simple
interface)

Description This use case is responsible for editing manually various aspects of the NPD. It can
be used to edit the current DRM rules or can be used to edit a component based on
the selected process and updates versions if required.

Actors Creator, Producer, Integrator, Aggregator
Assumptions An NPD process instance is active, a task was assigned to the actor, the actor

selected a work item
Actor has been identified by System

Steps 1 Actor clicks on “check-in” button.
Post-conditions The object is copied from AXMEDIS DB To an area for exclusive access of the

actor, ready to be downloaded
Variations Actor has no rights
Asynchronous
actions

None

Design suggestions None
Issues None

6.2.1.20 Check-out task performed by manual operator
UCId UC6.2.1.20
Use case Check-out task performed by manual operator

Note: this is a Use case with Workflow loose integration to editors (simple interface)
Description This use case is responsible for copying the object from the actor exclusive access

area (when he previously uploaded it) to the AXMEDIS DB
Actors Creator, Producer, Integrator, Aggregator
Assumptions An NPD process instance is active, a task was assigned to the actor, the actor

selected a work item
Actor has been identified by System; Actor has previously checked-in.

Steps 1 Actor clicks on “check-out” button.
Post-conditions The file is copied in the AXMEDIS DB
Variations Actor has no rights

It can automatically execute the “task completed”
Asynchronous
actions

None

Design suggestions None
Issues None

6.3 Controlling and Supervising AXMEDIS Object life in AXMEDIS compliant
factories

The AXMEDIS Object Manager will be expected to satisfy the demands of three categories of customers in

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

68

general:

1) Producer-Consumers (Prosumers)

2) Consumers

3) DRM/Licensing Management Authorisers/Supervisors

The modes of interaction with the above three types of actors that may lead to some work to be done on
Objects and the tracking and control of such work by the AXMEDIS Object Workflow Manager is expected
to include the following scenarios:

A) When Prosumers act as producers of digital objects being contributed by them as AXMEDIS Objects and
therefore wish to add a new (“invented”) Object to the AXMEDIS Objects.

B) When Prosumer act as consumers and when they want to take an AXMEDIS Object. This may require
the triggering of authorisation/ licensing/protection tools and the relevant access/updates.

C) When either the prosumers or pure consumers register an order for a particular AXMEDIS Object to be
made available in a particular state that may not be readily available at the first Query instant (i.e. the Object
is needed but in a particular view, with a certain rendering , with a specific embedded element
modified/added/subtracted), then some Editor/Viewer or DRM Editing function (in turn itself invoking the
Protection tool) or other plug-ins may need to be triggered so that the Object is thus (re)worked and turned
from being “not-ready” to being “ready” for the customer’s instance of “usage”, then licensing management
can be triggered before the “usage” instance is allowed to proceed.

To enable any necessary actions to be done on an AXMEDIS Object to satisfy all kinds of users’ demands,
presently, the responsibility boundary between the AXMEDIS Editor and the AXMEDIS Workflow Objects
Manager is not fully established in terms of which is to be triggering which tools/plug-ins.

However the AXMEDIS Workflow Object Manager has to be able to track every operation that needs to be
performed on any Object. It can use a PIA in order to access the status of Objects modified by the
AXMEDIS Editors/Viewers or by any other plug-ins and to trigger the editor or other tools in order to
invoke and track such further modifications as may be necessary on any object so as to satisfy customer
demands; these can include:.

a) View/update Object metadata

b) Create/modify objects or object-parts (e.g. new required views, new rendering, new modifications on
embedded element(s) etc.)

c) Invoke the AXMEDIS Protection Tool and/or Licensing Manager/ Content Processing -triggering a
(meta-data)-Editor/Viewer or other plug-ins. The Protection Tool is the AXMEDIS tool which controls all
interactions with the AXMEDIS Object Manager and all other AXMEDIS Editor/Viewers and plug-ins to
guarantee that both the users’ granted rights and the owners’ protections are respected).

AXMEDIS Object Workflow Manager Triggers: The following comprise the pool of trigger types
initially encountered in the relevant domain analysis: new-usage-instance-needed, new action, full-rights,
relative-rights, right-updated, rights-granted, rights-denied, protection-status, unprotected, protected,
modified/rendered, new-views-created, interrupted-process-n, history, metadata-updated, , metadata-viewed,
metadata missing/incomplete, ready, not-ready, stopped, formatted, packaged, edit-started, edit-completed,
protection-tool-started, protection-tool-ended, license-manager-started, license-manager-ended, wanted,
deposited, owned, viewed-n, taken-n, requested-n, time-done, phase-done, process-done, waiting-on/for-
process-n, awaited-by-process-n, suspended, internal, external, authorised/signed-off

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

69

These will be the subject of further analysis for the next version of this Requirements document.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

70

7 AXMEDIS Object Acquisition from CMS

7.1 Automatic gathering of Content, Collector Engine

7.1.1 Setup for metadata mapping
UCId UC7.1.1
Use case Setup for metadata mapping
Description An Actor wants to setup the environment for CMS crawling.
Actors Content Provider, Content Distributor
Assumptions None
Steps 1 The Actor, defines how to map metadata coming from the CMS to the

AXMEDIS model.
Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions An XLS may be used for this task
Issues None

7.1.2 Setup for content crawling
UCId UC7.1.2

ContentContent
Management Management
System XYZSystem XYZ

DBMSDBMS AXMEDIS
DB

Crawler
Collector
Indexer

Crawler
Collector
Indexer

CMS
DBMS
Plug-in

CrawlerCrawler

IntegratedIntegrated

DBDB

Collector
Engine

Collector
Engine

ContentContent

on File on File SysSys

Fingerprint
extractors

plug-in

Store
Abstract
Document and
Content

11 Define what to import

& start crawling

44

55

44

Query66

Get Content from
FileSys or CrawlerDB

77

88

Metadata
Mapper

99

1010
Store
AXObject

Crawler
User Interface

Crawler
User Interface

Importing
Rules

2233

66

Content Owner

Produce
AXInfo

start save

MappingMapping

InformationInformation

Get Rule

44

77

Acquire content
(optional)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

71

Use case Setup for content crawling
Description An Actor wants to setup the environment for CMS crawling.
Actors Content Provider, Content Distributor
Assumptions Content crawling environment was set up.
Steps 1 The Actor, interacts with the Crawler Collector Indexer to add/remove/modify

an crawling rule
2 When adding/modifying a crawling rule the Actor states:

2.1 the source to craw and all the needed information
2.2 possibly which fingerprints extractor has to be run on the content
2.3 possibly which adaptation algorithm to use

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

7.1.3 Define what content to acquire from Crawled Integrated Database
UCId UC7.1.3
Use case Define what content to acquire from Crawled Integrated Database
Description An Actor wants to setup the environment for CMS gatering.
Actors Content Provider, Content Distributor
Assumptions Content crawling environment was set up.
Steps 1 The Actor, interacts with the Collector Engine User Interface to

add/remove/modify an importing rule.
2 When adding/modifying a rule the Actor states:

2.1 which properties has to have the content to be imported (e.g. all audio
files of Ramazzotti, later that 1990)

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

7.1.4 Start content crawling
UCId UC7.1.4
Use case Start content crawling
Description An Actor wants to start CMS crawling.
Actors Content Provider, Content Distributor
Assumptions The metadata mapping and the crawler have been set up.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

72

Steps 1 The Actor, starts CMS crawling using Collector Engine User Interface
2 The Crawler Collector Indexer starts accessing to the CMS database using a

specific plug-in, it collects the data from the DB and it stores the data into the
Crawler Integrated Database.
2.1 the Collector Engine accesses to the new/updated content and checks the

import rules
2.2 If the content has to be imported

2.2.1 the content is fingerprinted and/or adapted (using plug-ins) as
instructed by the import rule

2.2.2 the AXMEDIS Object is built using the metadata coming from
the Crawler Database

2.2.3 the AXMEDIS Object is uploaded in the AXMEDIS Database
Post-conditions None
Variations None
Asynchronous
actions

Content Acquisition can be stopped

Design suggestions None
Issues None

7.2 Fingerprint Extractor as a collection of Collector Engine Plug-ins for extracting
features

7.2.1 Calculating content descriptors/fingerprint during crawling

Crawler Results
Integrated
Database

Collector
Engine

Collector
Engine

Fingerprint Algorithm
Fingerprint Estimation

Tools as Plugin for
Collector Engine

AXMEDIS DB

33

AXMEDIS DB ManagerAXMEDIS DB Manager

11

66

22

55 44

77 88AXOM

UCId UC7.2.1
Use case Calculating content descriptors/fingerprint during crawling
Description After collecting content by the crawler collector indexer the crawler collector

indexer initiates the calculation of the fingerprint.
Actors Producer

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

73

Assumptions Content was indexed by Crawler Collector Indexer
Steps 1 Fingerprinting method is called by Crawler Content Indexer

2 Content descriptors and fingerprint/descriptors values are calculated.
3 Content descriptors and fingerprint/descriptors values are stored in the

database
Post-conditions Content descriptors and fingerprints are stored in the database and into the

AXMEDIS object structure to save them into the AXOB.
Variations • Different kinds of media types

• Compound objects
Asynchronous
actions

Design suggestions The structure of the content descriptors influences the database retrieval. Especially in
case of processed and modified content the database query must not be limited to
exact matches but also consider similarity search (e.g. nearest neighbour).

Issues In general, content descriptors are information that is extracted automatically.
Two different kinds of descriptors can be identified: low-level and high-level
descriptors. While high-level descriptors have a semantic meaning (directly
understandable by humans like the melody) low-level descriptors are haven’t.
Fingerprints are a special kind of content descriptors. Although they uniquely
identify content they have to be distinguished from OID. The OID is a consecutive
number generated univocally buy the AXCS. Fingerprints are automatically
calculated codes and also called perceptual hashed: They can be used to uniquely
identify the digital resources, and may be the whole object as an extreme case.
Within AXMEDIS also cryptographical hash functions have to be considered.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

74

8 AXMEDIS Database

8.1 Managing a Database of AXMEDIS Objects

8.1.1 Administer Objects in the AXMEDIS DB
UCId UC8.1.1
Use case Administer Objects in the AXMEDIS DB
Description An Actor performs administrative tasks on AXMEDIS DB related to objects.
Actors Content Integrator, Content Distributor, and in general all the user that have an

AXMEDIS DB in-house
Assumptions None
Steps 2 The Actor perform an administrative operation on the AXMEDIS DB such

has: query, browse, open an object, remove a version of object, remove an
object

3 The AXMEDIS object database perform the operations
4 The actor is notified about the success of the operation and the result of the

operation id transmitted back to the actor.
Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

8.1.2 Administer User in the AXMEDIS DB
UCId UC8.1.2
Use case Administer Objects in the AXMEDIS DB
Description An Actor perform administrative tasks on AXMEDIS DB related to users.
Actors Content Integrator, Content Distributor, and in general all the user that have an

AXMEDIS DB in-house
Assumptions None
Steps 1 The Actor perform an administrative operation on the AXMEDIS DB such

has: add/remove/modify a user of modifying the grant of the user
2 The AXMEDIS object database perform the operations
3 The actor is notified about the success of the operation and the result of the

operation id transmitted back to the Actor.
Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

8.1.3 Accessing a specific version of an AXMEDIS object
UCId UC8.1.3
Use case Accessing a specific version of an AXMEDIS object
Description An Actor wants to see a specific version of an object interacting with the

AXMEDIS Database Administration Tool.
Actors Content Integrator, Content Distributor, Content Owner

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

75

Assumptions None
Steps 1 The Actor, login into the system specifying the username and a password, if

not already done
2 The Actor makes a query or browses the database looking for the object
3 The Actor selects to see the history of the object
4 The Tool reports the history containing the date of upload, the name of the

user who performed the upload, a brief description of the reason of new
version

5 The Actor selects the version to view and opens it using the AXMEDIS Editor
Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues When a specific version is opened using the AXMEDIS Editor, AXMEDIS Editor

cannot upload it again in the database

8.1.4 Removing last version of an AXMEDIS object
UCId UC8.1.4
Use case Removing last version of an AXMEDIS object
Description An Actor wants to remove the last version of a specific object interacting with the

AXMEDIS Database Administration Tool.
Actors Content Integrator, Content Distributor, Content Owner
Assumptions None
Steps 1 The Actor, login into the system specifying the username and a password, if

not already done
2 The Actor makes a query or browses the database looking for the object
3 The Actor tries to perform the removal of the last version of the object, if the

Actor has the grant to perform the removal of last version of an object the
action succeed, it fails otherwise.

Post-conditions None
Variations The Actor may perform a query and remove the last version of all the objects

resulting from the query or for a subset of them. In case the removal of one of
them fails the tool should ask to continue or to stop.
The Actor may ask to remove versions to reconstruct the state of the object/objects
up to a specific date.

Asynchronous
actions

In case of multiple removal the Actor can stop the process.

Design suggestions None
Issues None

8.1.5 Removing an AXMEDIS object
UCId UC8.1.5
Use case Removing an AXMEDIS object
Description An Actor wants to remove a specific object interacting with the AXMEDIS

Database Administration Tool.
Actors Content Integrator, Content Distributor, Content Owner
Assumptions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

76

Steps 1 The Actor, login into the system specifying the username and a password, if
not already done

2 The Actor makes a query or browses the database looking for the object
3 The Actor tries to perform the removal of the object, if the Actor has the grant

to perform the removal of an object the action succeed, it fails otherwise.
Post-conditions None
Variations The Actor may perform a query and remove all the objects resulting from the

query or a subset of them. In case the removal of one of them fails the tool should
ask to continue or to stop.

Asynchronous
actions

In case of multiple removal the Actor can stop the process.

Design suggestions None
Issues If transactions have been performed for the object the operation may fail

8.1.6 User Management
UCId UC8.1.6
Use case User Management
Description An Actor wants to add/remove/modify user information to access to the database
Actors Content Integrator, Content Distributor, Content Owner
Assumptions None
Steps 1 The Actor, login into the system specifying the username and a password, if

not already done
2 The Actor selects the user management tool
3 The Tool presents the list of users having access to the system (if the user has

the user management grant)
4 The Actor can:

4.1 Add a new user giving: the username, a password, e-mail, description, the
groups he/she belongs to, the grants

4.2 Remove an user
4.3 Modify the user data

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions The OS or DBMS users management support may be used.
Issues Users should be kept synchronized with the workflow users

8.1.7 User Groups Management
UCId UC8.1.7
Use case User Groups Management
Description An Actor wants to add/remove/modify groups of users
Actors Content Integrator, Content Distributor, Content Owner
Assumptions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

77

Steps 1 The Actor, login into the system specifying the username and a password, if
not already done

2 The Actor selects the group management tool
3 The Tool presents the list of groups having access to the system (if the user

has the user management grant) and for each group the users belonging to it
4 The Actor can:

4.1 Add a new group
4.2 Remove a group (if no users are in it)
4.3 Modify the group
4.4 Add/remove users from the groups

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions The OS or DBMS users management support may be used.
Issues Users should be kept synchronized with the workflow users

8.2 Making queries inside Databases of AXMEDIS objects and inside the objects

Selection creation is explained in the general use case section.

8.2.1 Querying for AXMEDIS objects and inside objects

UCId UC8.2.1
Use case Querying for AXMEDIS objects and inside objects
Description An Actor is looking for an AXMEDIS object or a set of AXMEDIS objects which

satisfy a set of technical, right or feature related conditions.
Actors Content Integrator, Content Distributor, Content Consumer
Assumptions None
Steps 1 The Actor, after performing authentication, by using the AXMEDIS Query

Support User Interface, composes a query on the aspects of interest (technical,
DRM or feature related). Furthermore, the Actor chooses “where” to search
for available AXMEDIS objects: within local AXMEDIS Database, within an
AXMEDIS object, on AXEPTool network or among those contents which
have to be collected, by the Collector Engine, and have not yet.

2 The Actor submits the queries previously composed to execute the search
3 AXMEDIS Query Support User Interface, using the AXMEDIS Query

Support, submits the Actor’s query to each of the chosen search “places” by
using the corresponding specific interface: (i) Collector Engine Query Support
Interface, (ii) AXEPTool Query Support Interface and (iii) AXMEDIS
Database Manager (iv) AXMEDIS Data Model Query Support

4 AXMEDIS Query Support merges the results all together and return the
complete list to the AXMEDIS Query Support User Interface

5 AXMEDIS Query Support User Interface shows the result to the Actor in an
adequate manner, i.e. in such a way that the Actor can understand: (i) from
which source an object come (ii) which are the restriction on the object (iii)
etc…

Post-conditions None
Variations
Asynchronous
actions

None

Design suggestions Web services should be adopted at the communication layer
Issues None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

78

8.2.2 Querying for AXMEDIS from Clients

UCId UC8.2.2
Use case Querying for AXMEDIS From Clients
Description An Actor (end user) is looking for an AXMEDIS object or a set of AXMEDIS

objects which satisfy a set of technical, right or feature related conditions.
Actors Content Integrator, Content Distributor, Content Consumer
Assumptions None

AXEPTool

Programme and
Publication

Tools

Actor

AXDB

Distribution
Server

AXMEDIS
Player

Query Support
for Distribution

Channels
AXMEDIS

Query Support

Formatting
Engine 11

22 33

44 55

66

77

88

99

1111 1122
1133

1144

1155

1166

??

Profile
1100

FFaaccttoorryy

DDiissttrriibbuuttoorr

WWFF

1122aa

1122bb 1133aa
1133bb

Profile

AAPPII

WWSS

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

79

Steps 1 The Actor, after performing authentication, by using the AXMEDIS Query
Support User Interface, composes a query on the aspects of interest (technical,
DRM or feature related). Furthermore, the Actor chooses “where” to search
for available AXMEDIS objects: within local AXMEDIS Database, within an
AXMEDIS object, on AXEPTool network or among those contents which
have to be collected, by the Collector Engine, and have not yet.

2 The Actor submits the queries previously composed to execute the search.
3 The AXMEDIS Query Support for Clients, using the AXMEDIS Query

Support, submits the Actor’s query to each of the chosen search “places” by
using the corresponding specific interface: (i) Collector Engine Query Support
Interface, (ii) AXEPTool Query Support Interface and (iii) AXMEDIS
Database Manager (iv) AXMEDIS Data Model Query Support

4 AXMEDIS Query Support merges the results all together and return the
complete list to the AXMEDIS Query Support for Clients.

5 AXMEDIS Query Support for Clients trnascodes the result to the Actor in an
adequate manner, i.e. in such a way that the Actor can understand: (i) from
which source an object come (ii) which are the restriction on the object (iii)
etc…

6 The Actor can select a content. This selected content is requested from the
Programme and Publication Tool Engine (content production on demand) by
the distribution server. The distribution channel and client profiles are
transmitted together with this request.

7 The Programme and Publication Tool Engine initiates a work flow (WF) for
the formatting of the content.

8 After finishing the WF the object is sent to the distribution server, which
forwards it to the requesting Actor.

Post-conditions None
Variations Query Support for Clients (with reduced query functionality)
Asynchronous
actions

None

Design suggestions Web services should be adopted at the communication layer
Issues The Formatting tool can get the objects from the database directly from the

AXMEDIS database Manager and in particular from the AXMEDIS Object
Loader and Saver.

8.2.3 Bookmark a query
UCId UC8.2.3
Use case Bookmark a query
Description An Actor can save an executed query for future reuse.
Actors Content Integrator, Content Distributor, Content Consumer
Assumptions The bookmarked query must already be executed
Steps 1 The Actor, after performing authentication, by using the AXMEDIS Query

Support User Interface, after the execution of a query asks to store the query
inside the query bookmarks that is in his/her personal profile

2 The AXMEDIS Query Support User Interface save the query in the user
profile allowing the user to choose a name and description for the bookmarked
query. The query will be visible only to the user that have bookmarked it.

Post-conditions None
Variations Query Support for Clients (with reduced query functionality)
Asynchronous
actions

None

Design suggestions None
Issues None

8.2.4 Retrieve a bookmarked query

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

80

UCId UC8.2.4
Use case Retrieve a bookmarked query
Description An Actor can retrieve a query stored in his bookmark collection for submitting the

same query or create a new query starting from the bookmarked one.
Actors Content Integrator, Content Distributor, Content Consumer
Assumptions At least a query must exist in the bookmark of the user profile
Steps 1 The Actor, after performing authentication, by using the AXMEDIS Query

Support User Interface, recall from the bookmark in the user profile a stored
query

2 The AXMEDIS Query Support User Interface show the query in the query
environment for issuing that query of for modifying it

Post-conditions None
Variations Query Support for Clients (with reduced query functionality)
Asynchronous
actions

None

Design suggestions None
Issues None

8.2.5 Organize bookmarked queries
UCId UC8.2.5
Use case Organize bookmarked queries
Description An Actor can organize the queries in the bookmark dividing them in folders

according her/his needs.
Actors Content Integrator, Content Distributor, Content Consumer
Assumptions None
Steps 1 The Actor, after performing authentication, by using the AXMEDIS Query

Support User Interface, recall from his/her user profile the bookmarks
2 The Actor can create folder, rename folder, delete folder, insert query in a

folder or removing queries from folders that belongs to his/her user profile
3 The Actor confirms the new configuration of the bookmarks
4 The AXMEDIS Query support save the new bookmark collection in the user

profile
Post-conditions None
Variations 3a. The Actor cancel the modifications

Query Support for Clients (with reduced query functionality)
Asynchronous
actions

None

Design suggestions An user interface similar to that of Internet browser can be adopted.
Issues None

8.2.6 Save an incomplete query
UCId UC8.2.6
Use case Save an incomplete query
Description An Actor can save an incomplete or not executed query for future reuse.
Actors Content Integrator, Content Distributor, Content Consumer
Assumptions None
Steps 1 The Actor, after performing authentication, by using the AXMEDIS Query

Support User Interface, during the composition of a query asks to store the
query inside the personal user profile

2 The AXMEDIS Query Support User Interface saves the query in the user
profile allowing the user to choose a name and description for the stored
query.

Post-conditions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

81

Variations Query Support for Clients (with reduced query functionality)
Asynchronous
actions

None

Design suggestions None
Issues None

8.2.7 Retrieve an incomplete query
UCId UC8.2.7
Use case Retrieve an incomplete query
Description An Actor can retrieve a query stored in his/her user profile for submitting the

same query or create a new query starting from the stored one.
Actors Content Integrator, Content Distributor, Content Consumer
Assumptions At least a query must exist in the user profile
Steps 1 The Actor, after performing authentication, by using the AXMEDIS Query

Support User Interface, recall from the user profile a stored query
2 The AXMEDIS Query Support User Interface shows the query in the query

environment for issuing that query of for modifying it
Post-conditions None
Variations Query Support for Clients (with reduced query functionality)
Asynchronous
actions

None

Design suggestions None
Issues None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

82

9 AXMEDIS AXEPTools for P2P distribution on B2B

9.1 AXEPTool for P2P on B2B

9.1.1 Discovery and connection of peers on B2B P2P network
UCId UC_9.1.1
Use case Discovery and connection of peers on B2B P2P network
Description The user wants to discover and connect to one or more peers already connected on

the P2P network.
Actors The AXEPTool user.
Assumptions The user launches the AXEPTool.
Steps 1 The user press the “Connect” button in the GUI

2 The AXEPTool starts a discovery protocol to find out on the network one or
more participants in the AXMEDIS P2P network.

3 The AXEPTool receives a list of hosts enabled to accept incoming
connections.

4 The AXEPTool tries to establish one or more connections. If a connection
succeeds identities of local and remote host are exchanged in the handshaking
(by means of digital signatures). That implies the involvment of a external
certification/supervisor authority.

5 Hosts without a certified identity causes the handshaking to fail. They ARE
NOT allowed to join the AXMEDIS community.

6 The remote host can refuse the connection because is busy. Then other remote
hosts are contacted

7 After a timeout, if no connection succeed the AXEPTool popup a
“Unrecoverable Error” message to the user.

Post-conditions If one or more connections succeed the user see the status “CONNECTED” in the
status bar. Otherwise, a error message is popped-up
When the connection is established the AXEPTool is ready to exchange messages
with the other participants in the community.

Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

9.1.2 Report P2P downloads/uploads network traffic
UCId UC_9.1.2
Use case Report P2P downloads/uploads network traffic
Description AXEPTool provides real-time, auto-refreshing, P2P network traffic reports for

Downloads and Uploads. Moreover, uploads/downloads can be suspended,
terminated, and resumed.

Actors The AXEPTool user.
Assumptions AXEPTool is connected to the network, some uploads/download are running .
Steps 1 The user opens the “Download/Upload Table” in the UI

2 Data regarding the messages exchanged are presented to the user
3 The user selects one upload/download and suspend/resume/terminate the

selected session
Post-conditions A download/upload is suspended/resumed/terminated
Variations None
Asynchronous
actions

None

Design suggestions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

83

Issues None

9.2 Publication and loading AXMEDIS Objects of AXEPTool

9.2.1 Creation of a publishing rule for the AXEPTool
UCId UC_9.2.1
Use case Creation of a publishing rule for the AXEPTool
Description The Publication Tool Engine allows the user to build publication rules in two

ways: by example and by the Rule Editor User Interface
Actors Content Owner.
Assumptions One or more objects are stored in the AXMEDIS Data Base
Steps 1a) The user opens the Publication/Loading Rules/Selections of the Publication

tool engine of AXEPTool
2a) The user fills the data required to build a new publication rule.

Or alternatively

1b) The user manually selects an AXMEDIS object in the AXMEDIS Data Base,
or select them as a result of a query and thus from a Selection.
2b) The user invokes the function “Build rule by example”

in both cases

3. The Publication Tool Engine of AXEPTool saves the new rule in the

AXEPTool Active Publication Rules/Selections
Post-conditions A selection of AXMEDIS object is available on the P2P network.
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

9.2.2 Automatic publication of a selection of objects on the AXEPTool

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

84

Actor

Publication/loading
Rules Selections

1:1:activateactivate
selectionselection

AXDB
AXEPTool

AXDB OUT

3:3:notifynotify

AXEPTool

Active Publication
Rules/Selections

Publication
Tool Engine of

AXEPTool

2: publish object2: publish object

Publishing and
Monitoring

Objects
ToTo otherother peerspeers

Protected
Object

workflowworkflow

UCId UC_9.2.2
Use case Automatic publication of a selection of objects on the AXEPTool.
Description The Actor wants to publish one o more AXOB on the AXEPT Tool network.
Actors Aggregator, Producers
Assumptions The user creates a Selection of one or more AXOB. The AXMEDIS Objects are

stored in the AXDB.
Steps 1 The Actor, through the Publication/Loading Rules/Selections, submits the

Selection to the AXEPTool Active Publication Active Rules/Selections
o the Selection becomes active
o the Actor is allowed to modify the default activation period

2 According to activation periods the Publication Tool Engine of AXEPTool
publishes each objects of the Selection on the AXEPTool OUT AXDB.

3 The AXEPTool OUT AXDB advises the Publishing and Monitoring Objects
which provides to broadcast the event to all its counterparts on the network

Post-conditions One or more AXOB are stored in the AXEPTool OUT AXDB. The other Peers
are notified that one or more AXOB have been published by another Peer.

Variations Publication of AXMEDIS objects on AXEPTool can be also made using the
AXMEDIS Workflow Manager.

Asynchronous
actions

None

Design suggestions AXEPTool IN/OUT AXDB is an instance of the AXMEDIS database manager.
Issues Every time that an object is published its integrity has to be verified in order to

allow publishing its metadata and certifying that they are coherent with the
description of the object.

9.2.3 Automatic updating of a modified object on the AXEPTool

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

85

Actor

AXDB
AXEPTool

AXDB OUT

5: 5: notifynotify othersothers

AXEPTool

Protected
Object

Active Publication
Rules/Selections

Publication Tool
Engine of

AXEPTool

3:3:checkcheck ifif

in active in active selectionsselections

Publishing and
Monitoring

Objects

1: 1: updateupdate anan objobj

2: 2: updatedupdated!!!! 4: update4: update

UCId UC_9.2.3
Use case Automatic updating of a modified object on the AXEPTool.
Description The user decides to activate the procedure of updating. The aim is to update an

AXOB already published.
Actors Aggregator, Producers
Assumptions The AXOB is already been published. The AXOB has been modified in the

AXDB by the owner.
Steps 1 The user activates the updating process.

2 The local AXDB advises the Publication Tool Engine of AXEPTool that the
object has been updated.

3 The AXOB has to belong to one of the active Selections.
4 Publication Tool Engine of AXEPTool updates the AXOB contained into the

AXEPTool OUT AXDB.
5 The other Peers in the network are notified.

Post-conditions The AXOB is stored in the AXEPTool OUT AXDB in the new version. The other
Peers are notified that one or more AXOB have been updated by another Peer.

Variations None
Asynchronous
actions

None

Design suggestions AXEPTool IN/OUT AXDB is an instance of the AXMEDIS database manager.
Issues Every time that an object is published its integrity has to be verified in order to

allow publishing its metadata and certifying that they are coherent with the
description of the object.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

86

9.2.4 Automatic publication of a not protected object on the AXEPTool

AX DB AXEPTool
AXDB OUT

Content

Protection Tool
Engine

Protected
Object

AXEPTool

Protected
Object

11

33

44

Actor

22

UCId UC_9.2.4
Use case Automatic publication of a non protected object on the AXEPTool
Description The user wants to publish a non protected object. The aim is to improve the

starting content with the suitable protection information and eventually to publish
it.

Actors Aggregator, Producers
Assumptions The unprotected content is stored in the AXDB.
Steps 1 The user starts the procedure of publishing.

2 The Protection Tools Engine gets the content from the AXDB and creates an
AXOB with the proper protection part.

3 The Protection Tools Engine through the Publication Tool Engine publishes
the AXOB on the AXEPTool OUT AXDB.

4 The event is broadcasted to all counterparts on the network.
Post-conditions The AXOB is stored in the AXEPTool OUT AXDB in the new version. The other

Peers are notified that one or more AXOB have been updated by another Peer.
Variations None
Asynchronous
actions

None

Design suggestions AXEPTool IN AXDB is an instance of the AXMEDIS database manager.
Issues Every time that an object is published its integrity has to be verified in order to

allow publishing its metadata and certifying that they are coherent with the
description of the object.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

87

9.2.5 Manual Publication of AXMEDIS Objects with the AXEPTool
UCId UC_9.2.5
Use case Manual Publication of AXMEDIS Objects with the AXEPTool
Description The user wants to publish an AXMEDIS object in the AXEPTool. Objects are

copied into the Output Database of the AXEPTool.
Actors Content Owner.
Assumptions One or more objects are stored in the AXMEDIS Data Base
Steps 1 The user invokes the Publication Tool Engine by the Publication Engine User

Interface.
2 The user selects objects in the AXMEDIS Data Base.
3 If a selected object is not protected and the user wants it, the Publication Tool

Engine invokes the Protection Tool Engine to protect the object.
4 Selected objects are copied in the AXEPTool OUT AXMEDIS Output

Database
Post-conditions A selection of AXMEDIS object is available on the P2P network.
Variations None
Asynchronous
actions

None

Design suggestions AXEPTool IN AXDB is an instance of the AXMEDIS database manager.
Issues Every time that an object is published its integrity has to be verified in order to

allow publishing its metadata and certifying that they are coherent with the
description of the object.

9.2.6 Producing a query to search on the AXEPTool
UCId UC_9.2.6
Use case Producing a query to search on the AXEPTool
Description The user wants to produce a query in order to search AXMEDIS objects on P2P

network.
Actors The AXEPTool user.
Assumptions The peer is connected to the P2P network.
Steps 1 The user opens the Advanced Query UI to produce a technical query.

2 The user fill in the fields with the necessary information.
3 The user starts the query.

Post-conditions A query result sheet is created and added to the AXEPTool UI
A query message is produced and sent to the network. Results are collected and
presented in the query result sheet in the UI.

Variations None
Asynchronous
actions

The user can launch more than one query at a time.

Design suggestions The fields in the query can be as complex as the metadata model used to describe
AXMEDIS Objects. Thus depending on metadata, the GUI can change the fields
presented to the user. This can be unified with the Query Support

Issues Manual browsing should be available as well.

9.2.7 View/Manage query results coming from the AXEPTool
UCId UC_9.2.7
Use case View/Manage query results coming from the AXEPTool
Description The user wants to manage with the results of the querying process.
Actors The AXEPTool user.
Assumptions A query has been sent.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

88

Steps 1 The user opens the query result sheet for the query he/she is interested.
2 Results received (from others peers) are presented in form of query-hits (the

datum containing all the information related to a remote AXMEDIS Object)
relevant to the query.

3 The user can sort/delete/make selections on the query result sheet.
Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions This can be unified with the Query Support. AXEPTool IN AXDB is an instance
of the AXMEDIS database manager.

Issues Every time that a descriptor of an object received to be presented to the user its
integrity has to be verified in order to allow publishing its metadata and certifying
that they are coherent with the description of the object.

9.2.8 Active query pool management for the AXEPTool
UCId UC_9.2.8
Use case Active query pool management for the AXEPTool
Description The user wants to keep the AXEPTool up-to-date with respect to a particular

query.
Actors The AXEPTool user.
Assumptions One or more queries have been sent. Their query result sheet is available in the

GUI
Steps 1 The user selects one query result sheet.

2 The user select a time-interval for the query to be re-sent to the network
Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions This can be unified with the Query Support. AXEPTool IN AXDB is an instance
of the AXMEDIS database manager.

Issues None

9.2.9 Downloading an AXMEDIS object
UCId UC_9.2.9
Use case Download AXMEDIS Object
Description The user chooses to download a selection of AXMEDIS objects available on the

P2P network.
Actors The AXEPTool user.
Assumptions One or more objects are shown as available in the P2P network within a query

result sheet.
Steps 1 The Actor selects one or more objects in a query result sheet and starts the

download .
2 AXEPTool verifies DRM rules, protections and licensing aspects.
3 A download session is started. A download session sheet is created and

inserted in the GUI.
Post-conditions Once a download session successfully terminates, the downloaded object is stored

in the AXEPTool IN AXDB. Every time that an object is downloaded its integrity
has to be verified in order to allow publishing its metadata and certifying that
they are coherent with the description of the object.

Variations None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

89

Asynchronous
actions

The Actor can start, suspend, cancel or resume the download session of an object

Design suggestions Feedback on download status must be implemented. AXEPTool IN AXDB is an
instance of the AXMEDIS database manager.

Issues none

9.2.10 Automatic downloading of a selection of objects available in the P2P network

Actor

1:1:activateactivate

selectionselection Publication/loading
Rules Selections

AXEPTool IN
AXDB Protected

Object

AXEPTool P2P
Active Selection

Engine

P2P Active
Selections

11
2:2:processprocess activeactive

selectionsselections

AXEPTool

3:start 3:start
downloaddownload

55

Download

Monitor

4: monitor4: monitor

UCId UC_9.2.10
Use case Automatic loading of a selection of objects available in the P2P network.
Description The Actor wants to load within the local AXMEDIS Database one or more AXOB

which belongs to a given Selection of AXMEDIS objects available on the
AXEPTool network.

Actors Aggregator, Content Provider, Publisher
Assumptions The Actor has previously created a Selection of one or more AXOB on the

AXEPTool network which satisfy some Actor’s needs by using the AXQS User
Interface integrated within the Publication/Loading Rules/Selections Editor.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

90

Steps 1 The User activates the Selection by using the Publication/Loading
Rules/Selections Editor.

2 AXEPTool P2P Active Selection Engine elaborates the active Selections
contained in the P2P Active Selections.

3 AXEPTool P2P Active Selection Engine downloads each AXOB of the
Selection.

4 The AXEPTool Monitor has the duty of monitoring the object. Every time
that an object is downloaded its integrity has to be verified in order to allow
publishing its metadata and certifying that they are coherent with the
description of the object.

5 The object is stored in the AXEPTool IN AXDB.
Post-conditions The Actor can play, run, visualize, etc, each object accordingly to the related

DRM rules.
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

9.2.11 Refining the selection (Active Selections) for the AXEPTool

AXEPTool IN
AXDB

Actor

Protected
Object1: 1: refinerefine

selectionselection
Protected

ObjectProtected
Object

AXEPTool active
loading

rules/selections

2: 2: makemake
selectionselection
activeactive

AX DB

Protected
Object

Loading Tool
Engine of

AXEPTool

3: 3: processprocess
the the activeactive
selectionsselections

4:4: load load
objects in objects in
AXDBAXDB

UCId UC_9.2.11
Use case Refining the selection (Active Selections) for the AXEPTool
Description The Actor decides which AXOB is interested in.
Actors Aggregator, Content Provider, Publisher
Assumptions The Actor has tried the loaded objects, according to the related DRM rules.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

91

Steps 1 the Actor selects only the AXOB he/she is interested in.
2 the Selection become Active by submitting it to the AXEPTool Active

Loading Rules/Selections
3 the Loading Tool Engine of AXEPTool elaborates the Active Selection.
4 Each object of the selection is loaded into the local AXDB.

Post-conditions The AXOB are in the AXDB.
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

9.2.12 Automatic loading new versions of AXMEDIS Objects for the AXEPTool

AXEPTool P2P
Active Selection

Engine

AXEPTool
Publishing and

Monitoring Objects

REMOTE

1: new 1: new versionversion eventevent

FromFrom remoteremote
Publishing and

Monitoring Objects

2: 2: alertalert

P2P Active
Selections

3: 3: checkcheck ifif isis in in ourour

selectionsselections

Download

Monitor

4: 4: askask downloaddownload

UCId UC_9.2.12
Use case Automatic loading new versions of AXMEDIS Objects for the AXEPTool
Description Thee peer is informed of updating in published objects. The scenario is performed

in automatic way, by interoperability of Publishing and Monitoring Objects
modules of remote AXEPTools.

Actors None
Assumptions One or more Active Selection have already been produced. A new version of a

previously downloaded object is published.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

92

Steps 1 Publication and Monitoring Objects is informed of the updating.
2 AXEPTool P2P Active Selection Engine is alerted by Publication and

Monitoring Objects.
3 AXEPTool P2P Active Selection Engine verifies if the updated object belongs

to Active Selections.
4 AXEPTool P2P Active Selection Engine downloads the new version of the

object and if its eligible as a « loadable » object it is loaded in the AXDB
moving it from the AXINDB.

Post-conditions Every time that an object is downloaded its integrity has to be verified in order to
allow publishing its metadata and certifying that they are coherent with the
description of the object.

Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

9.2.13 Automatic loading new AXMEDIS Objects with the AXEPTool
UCId UC_9.2.13
Use case Automatic loading new AXMEDIS Objects with the AXEPTool
Description Thee peer is informed of publishing of new objects. The scenario is performed in

automatic way, by interoperability of Publishing and Monitoring Objects modules
of remote AXEPTools.

Actors None
Assumptions One or more Active Selections have already been performed.
Steps 1 Publication and Monitoring Objects is informed of the new publication.

2 AXEPTool P2P Active Selection Engine is alerted by Publication and
Monitoring Objects.

3 AXEPTool P2P Active Selection Engine verifies if the new published objects
matches certain features in the Active Selections.

4 AXEPTool P2P Active Selection Engine loads the new object.
Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions Every time that an object is downloaded or loaded its integrity has to be verified in
order to allow publishing its metadata and certifying that they are coherent with
the description of the object.

Issues None

9.2.14 Manual Loading of AXMEDIS Objects with the AXEPTool
UCId UC_9.2.14
Use case Manual Loading of AXMEDIS Objects with the AXEPTool
Description The user wants to move an AXMEDIS object from the AXEPTool IN AXMEDIS

Data Base to the AXMEDIS Data Base.
Actors Content Provider, Aggregator, Integrator
Assumptions One or more objects are stored in the AXEPTool IN AXMEDIS Data Base

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

93

Steps 1 The user, is invoked by the Publication/Loading Rules/Selection Editor,
selects For each selected objects in the AXEPTool IN AXMEDIS Data Base.

2 The Loading Tool Engine moves selected objects from the AXEPTool IN
AXMEDIS Data Base to the AXMEDIS Data Base:
2.1 The objects are selected by the provided Selections
2.2 The objects are moved

Post-conditions A selection of AXMEDIS object is available in the AXEPTool.
Variations None
Asynchronous actions None
Design suggestions None
Issues Every time that an object is downloaded or loaded its integrity has to be verified in

order to allow publishing its metadata and certifying that they are coherent with
the description of the object.

9.2.15 Creation of a loading rule for the AXEPTool
UCId UC_9.2.15
Use case Creation of a loading rule for the AXEPTool
Description The Loading Tool Engine allows the user to build loading rules in two way: by

example and by the Publication/Loading Rules/Selection Editor.
Actors Content Provider, Aggregator, Integrator
Assumptions One or more objects are stored in the AXEPTool IN AXMEDIS Data Base
Steps 1a) The user opens the Publication/Loading Rules/Selection Editor of the Loading

tool engine
2a) The user fills the data required to build a new loading rule.

Or alternatively

1b) The user manually selects an AXMEDIS object in the AXEPTool IN
AXMEDIS Data Base, query support can be used for this
2b) The user invokes the function “Build rule by example”

in both cases

The Loading Tool Engine saves the new rule in the Loading Rules repository.

Post-conditions A selection of AXMEDIS object is available on the AXEPTool.
Variations None
Asynchronous actions None
Design suggestions Query support and AXMEDIS database manager can be used for creating the

support for queries and the AXEPTool IN AXMEDIS Data Base
Issues None

9.2.16 Preview an AXMEDIS object content coming from AXEPTool
UCId UC_9.2.16
Use case Preview an AXMEDIS object content coming from AXEPTool
Description According to the object media type, the AXEPTool provides a preview modality.

The object preview should be performed by an associated software for every
media type.

Actors The AXEPTool user.
Assumptions The object is in the AXEPTool IN AXMEDIS Data Base.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

94

Steps 1 The user chooses to preview an object.
2 The AXEPTool uses a suitable player for this task..
3 The object is previewed or an error message should be prompted if not

possible.
Post-conditions None
Variations In the case the user (for instance and editor or a producer) wants to perform

operations on the preview to evaluate the usability of the content, the AXEPTool
according to the specific license allows to edit the preview version of the object.

Asynchronous
actions

The user can cancel, stop, close or replay the preview.

Design suggestions The preview is performed with the players available.
Issues None

9.2.17 Feedback toward the workflow system
UCId UC_9.2.17
Use case Feedback toward the workflow system
Description The AXEPTool receives by the workflow systems requests of publishing and

downloading. At the end of this process the workflow systems has to be informed
about the outcome. This use case is intended to be part of an automatic process, so
no users are involved in.

Actors None
Assumptions The AXEPTool receives a request of publishing or downloading by the workflow

system.
Steps 1 If possible, the AXEPTool executes the request.

2 The AXEPTool informs the workflow system about the outcome of the
operation.

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

95

10 Programme and Publication Engine Tools

10.1 Programme and Publication Rules Production

That is how the Rules for Programme and Publication are produced.

UCId UC_10.1
Use case Programme and Publication Rules Production
Description To create/define/edit a programme for certain channel
Actors A programme producer or programme manager
Assumptions None
Steps 1 Actor initiates GUI in the Programme and Publication Editor

2 The Actor submits queries to Query Support for a list of AXMEDIS objects
3 Query Support returns a ‘selection’ (see UCs in section 3.1.2)
4 The Programme and Publication Editor GUI allows the programme producer

to select part/all/none of the query results to create a programme (rule list) to
state what (objects), where (channel), when (schedule), how (distribution,
formatting if necessary), etc. Each of these activities planned may or may not
involve formatting or adaptation which is to be checked by comparing the
object profile and distribution channel profile.

5 The user specify the distribution channel of this programme
6 The schedule is saved in the Programme and Publication Repository which

can be re-used later
Post-conditions By default the programme is “inactive” at the end of the programme production,

until the user activated/published the programme
Variations None
Asynchronous
actions

None

Design suggestions Requires connection/interface to various other modules including the AXMEDIS
Query Support,, etc.

Issues requires to define a representation for the programme/rule – could be in XML

Actor

Programme
and

Publications
Rules Editor

Programme and
Publication
Repositor

1

3

2

6

4

Rules list
5

Query
Support

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

96

10.2 Programme and Publication Rules Editing

That is how the Rules for Programme and Publication are manipulated.

UCId UC_10.2
Use case Programme and Publication Rules Editing
Description Using the programme and publication tool to edit a programme based on an

existing rules
Actors A programme producer or programme manager
Assumptions There are one or more predefined/created programme which can be reused, in the

collection
Steps 1 Actor initiates GUI in the Programme and Publication Editor

2 (2a) the user browse the existing rules/programme in the collection and (2b)
selects schedule for (2c) editing from the Programme and Publication
Repository

3 The Actor may (3a) submit queries to Query Support as in UC (the immediate
last use case) and (3b) Query Support returns the ‘selection’

4 The Programme and Publication Rule Editor GUI allows the programme
producer to select part/all/none of the query results to add or edit to a schedule
list

5 The new schedule can be saved to the Programme and Publication Repository
as in the last use case

Post-conditions All new rules are also collected and saved in the collection
Variations None
Asynchronous
actions

None

Design suggestions Requires connection/interface to various other modules including rules
collection…

Issues requires to define a representation for the programme/rule – could be in XML

Actor

Programme
and

Publication
Rules Editor

1

3b

2a

5

3a

Rules list 2b 4

Query
Support

Programme and
Publication
Repositor

2c

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

97

10.3 Activation of Programme and Publication Rules

That is how the Rules for Programme and Publication are activated.

UCId UC_10.3
Use case Programme Publication
Description The user decide the publish (“activate”) the programme
Actors A programme producer or programme manager
Assumptions A completed programme
Steps 1 The actor uses the Programme and Publication Editor GUI

2 If the programme has not been loaded, the user can select and load the
programme, for final checking

3 The programme/schedule is returned from the repository
4 The component check the status and required information of the programme

and ask for more input if the programme is incomplete (e.g. unknown
publication date or channel)

5 A GUI to allow the user to activate/publish the programme
6 A confirmation on the success of the publication

Post-conditions None
Variations None
Asynchronous
actions

The user can modify/cancel this action before the schedule distribution. Note that
the schedule distribution time is not the same as the programme schedule time.
Schedule distribution time is before the actual programme time, taking into
account the time required for distribution and/or any formatting requirement

Design suggestions None
Issues None

10.4 Launch of Programme and Publication Rules from Workflow

Actor

Programme
and

Publication
Rules Editor

1

2

3b
Rules list

6

3a

5 Active Publication Rules
Selections

4

Programme and
Publication
Repositor

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

98

UCId UC_10.4
Use case Launch of Programme and Publication Rules from Workflow

Description This is an active engine which monitors the system clock to ensure that one or
more scheduled and published programme is delivered in time for the actual
consumption.

Actors Active Engine
Assumptions The engine is running with correct system clock. Distribution channel profile

including the bandwidth – with an estimated time for the actual delivery and time
required for formatting (if on demand is needed).

Steps 1 For each rule,
2 if the rule is new (without start time)

2.1 check source and target format
2.2 if profiles mismatch file request to Format using Workflow manager
2.3 returned resulted object or reference
2.4 Get distribution time
2.5 set start time for distribution

3 check publication schedule due for delivery
4 if due,

4.1 request Objects (using the Workflow Manager according to Scenarios
v3.6)

4.2 Receive objects (from AXDB according to Scenarioos v3.6)
4.3 send to Distribution Servers

5 Return to 1
Post-conditions Update the rules collection together with the status of the process
Variations Content production on demand (request from the AXMEDIS Query Support for

Clients via the distributor) also initiates a workflow. In this case the content is
produced only for the requesting distribution server.

Asynchronous
actions

None

Design suggestions Requires connection/interface to various other modules including formatting
engine, rules collection…

Programme
and

Publication
Engine

1

3

2b

Formatting
Engine

2c

Distribution
Servers

Workflow
Manager

4a

4b
4c

2a

AXDB

Active Publication
Rules/Selections

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

99

Issues 1. Not sure if this engine is to deliver the object direct to the specified
channel or to a distribution server. If to be delivered to the specified
channel(s), API for delivery (e.g. ftp?) to every channel is required! In
alternative we can suppose to store the objects into the database or into the
file system and to send a Acknowledgment to the Workflow or to the
Distributor web service to inform where the objects are with a list of them
with their references.

2. Presumably the formatting engine can distribute the object to the correct
channel, otherwise a more complex interaction between this engine and
the formatting engine is required – to wait for the completion of the
formatting and to deliver the new object to the distribution server or to
deliver direct…

3. How to estimate time requirements for formatting engine and distribution
server?

10.5 Trial Pre-activation of Programme and Publication Rules

That is how the Rules for Programme and Publication are pre-activated to simulate, test and be prepared.

UCId UC_10.5
Use case Programme Publication Pre-activation
Description The user decide the publish (“quick trial”) or (“full trial”) the programme
Actors A programme producer or programme manager
Assumptions A completed programme
Steps 1 Steps 1-4 the same as UC_10.3 (Programme Publication)

2 A GUI to allow the user to activate/publish the programme as a trial (quick
trial or full trial)

3 A confirmation on the success of the trial-run when completed
Post-conditions None
Variations None
Asynchronous
actions

The user can modify/cancel this action before the completion of the trial schedule
distribution.

Design suggestions Use of variable to signify the level of test (0 for activation, 1 for quick test, 2 for
full test).
All connected modules should understand this variable (e.g. formatting engine,
P&P engine).

Issues 1. A quick trial would complete each stage for publication without requiring the
engines such as the formatting engine to actually format the object but simply
acknowledge if it can format the object from the source object to a given
target representation.

2. The full trial completes a publication without final distribution (optional)

10.6 Launch of Trial Programme and Publication Rules from Workflow

UCId UC_10.6
Use case Launch of Trial Programme and Publication Rules from Workflow

Description This is an active engine which monitors the system clock to ensure that one or
more scheduled and published programme is capable for distribution.

Actors Active Engine

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

100

Assumptions The engine is running with correct system clock. Distribution channel profile
including the bandwidth – with an estimated time for the actual delivery and time
required for formatting (if on demand is needed). If it is a trail run, process it
immediately.

Steps 1 For each rule,
2 if the rule is new (without start time) and flagged as a trial (i.e. 1 or 2)

2.1 check source and target format
2.2 if profiles mismatch file request to Format using Workflow manager

without requiring formatting
2.3 if quick trial (i.e. flag equal to 1), returned reply from the formatting

engine whether formatting is possible otherwise (flag equal to 2) format
object and return status from the formatting engine

2.4 Get distribution time
2.5 set start time for distribution

3 if full trial,
3.1 request Objects (using the Workflow Manager according to Scenarios

v3.6)
3.2 Receive objects (from AXDB according to Scenarios v3.6)

4 Request distribution server if it is capable of sending this object
5 Return to 1

Post-conditions Update the rules collection together with the status of the process
Variations None
Asynchronous
actions

None

Design suggestions Requires connection/interface to various other modules including formatting
engine, rules collection…

Issues 1. Formatting engine is not required to format on a quick trial if flagged as a
quick trial but is required to reply if formatting is possible or not

2. If full trial, object is retrieved but not sent to the distribution server,
required reply form distribution server whether object can be distributed

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

101

11 AXMEDIS AXEPTOOLS for Satellite Data Broadcast on B2B

11.1 AXMEDIS B2B Client Application

11.1.1 B2B Client Installation
UCId UC11.1.1
Use case B2B Client Installation
Description A professional user installs the B2B Client Application (hardware and software)

on the Computer of either an AXMEDIS Distributor or an AXMEDIS Receiving
Station (controlled by an AXMEDIS Distributor)

Actors The AXMEDIS professional user
Assumptions The professional PC is connected to a satellite dish, correctly pointed to the

satellite providing the Data Broadcast.
The professional PC has a PCI slot, an Ethernet port, or an USB connector free for
installing the DVB-IP adapter.
The user PC has a working connection to the Internet.

Steps 1 The professional user obtains a DVB-IP satellite adapter suitable for the
professional PC configuration (depending on operating system, available
ports, etc.) and fully supported by the AXMEDIS B2B Client Application

2 The professional user physically installs the DVB-IP adapter according to the
installation instructions provided by the manufacturer

3 The professional user connects the DVB-IP adapter to the satellite dish
4 The professional user boots the PC and installs any required software driver or

application, as specified by the manufacturer in the installation instructions,
and in the AXMEDIS Client Application user manual

5 The professional user configures the DVB-IP adapter according to instructions
6 The professional user checks that the satellite signal is received correctly
7 The professional user has a special Setup to install the AXMEDIS B2B Client

Application
8 The professional user runs the AXMEDIS B2B Client Application Setup
9 The professional user follows the steps of the installation

Post-conditions The professional user installs other needed Applications useful to treat associated
actions with certain AXMEDIS Object.

Variations The whole B2B Client (hardware and software) could be integrated in a unique
box. The AXMEDIS Box could be simply installed in a professional environment
(e.g., a server farm) and integrated in a rack.

Asynchronous
actions

Interactions with operating system components (e.g., firewall) or installed
software (e.g., antivirus) could stop the DVB-IP adapter from working correctly.
Repeated installation of drivers, or installation of out-of-date drivers, or
installation procedure not compliant with instructions, might stop the DVB-IP
adapter from working correctly.

Design suggestions A list of compatible adapters should be prepared.
Full installation instructions should be given to the user.

Issues If the satellite signal is not received correctly, there could be a problem in the
pointing of the satellite dish, or in the satellite cable, or in the DVB-IP installation.
Problems must be solved before proceeding.
Occasional loss of signal (e.g., in presence of heavy rain or wind) does not
represent a major problem; however, it may impact the fruition of service during
and after the problem.
It is recommended that the satellite dish installation be done by a professional.

11.1.2 B2B Client Customization
UCId UC11.1.2

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

102

Use case B2B Client Customization
Description The user installs the AXMEDIS Client Application
Actors The AXMEDIS professional user
Assumptions The B2B Client Installation has been done successfully.
Steps 1. The professional user configures local and external firewall

2. The professional user checks that previously installed software does not
interfere with the correct functioning of the AXMEDIS B2B Client
components (hardware and software)

3. The professional user modifies (if necessary) some configuration files
4. The professional user disables (if necessary) some complementary module

depending on the local configuration (e.g., operating system)
5. The professional user has a stable contact with the Satellite Data Broadcast

Provider technical team
6. The professional user keeps up to date the professional computer hosting the

B2B receiving station at different layers (drivers, antivirus, service packs,
additional modules)

7. The professional user keeps up to date the B2B Client Application Component
at different layers (drivers, software setup, additional modules)

8. The professional user installs (if it is not already present) a software in order
to remotely control the B2B receiving station in case of problems

Post-conditions The professional user will put a special label of quality in the B2B receiving
station, certifying the state of art of his installation

Variations Some scripts could check the correct status of the B2B receiving station and send
to a central server detected anomalies.

Asynchronous
actions

None.

Design suggestions None.
Issues None.

11.1.3 B2B Client Registration
UCId UC11.1.3
Use case B2B Client Registration
Description The professional installer registers the B2B Client Application in order to access

the AXMEDIS B2B service
Actors The AXMEDIS professional user
Assumptions The professional user has successfully installed the hardware and software

AXMEDIS components.
Steps 9. The professional user runs the AXMEDIS Client Application registration

procedure
10. The AXMEDIS B2B Client Application may update its internal state by

receiving appropriate files from the Server (e.g., group memberships)
Post-conditions The B2B receiving station is ready to use the AXMEDIS B2B service and receive

the AXMEDIS B2B Object.
Variations The procedure to update the B2B receiving station profile could be automatic and

hidden for the system.
Asynchronous
actions

None.

Design suggestions The Server shall manage the B2B receiving station profiles useful to address the
content to a part of the B2B users.

Issues None.

11.2 Enabling a B2B receiving station

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

103

UCId UC11.2
Use case Enabling a B2B receiving station
Description The AXMEDIS Distributor registers a receiving station/device (controlled by him)

in order to enable the station receiving AXMEDIS Content from the AXMEDIS
B2B Carousel. The AXMEDIS B2B Client receives automatically the content by
push.

Actors The AXMEDIS Distributor
Assumptions The AXMEDIS Distributor knows exactly all needed information for registering

an authorized B2B station.
Steps 1. The AXMEDIS Distributors accesses to the AXMEDIS User Admin Interface

(AXUAI).
2. The AXMEDIS Distributor can manage (add/modify/delete) all receiving

station controlled by him
Post-conditions The AXMEDIS B2B Client, which was just enabled to receive the AXMEDIS

B2B carousel, will receive all needed notifications.
Variations The AXMEDIS Distributor can create one or more groups, and then can associate

a receiving station to one or more groups.
Asynchronous
actions

None.

Design suggestions Design a solid environment where the AXMEDIS B2B Client can be simply auto-
updated.

Issues None.

11.3 Downloading AXMEDIS Objects from AXEPTool by using Satellite Data
Broadcast on B2B

UCId UC11.3
Use case Download AXMEDIS Object from AXEPTool by using Satellite
Description The user chooses to download a selection of AXMEDIS objects available on the

P2P network and to push this content to his authorized B2B receiving stations by
using Satellite Data Broadcast on B2B

Actors The AXEPTool user.
Assumptions One or more objects are shown as available in the P2P network within a query

result list.
Steps 1. The Actor selects one or more objects

2. The Actor chooses the Download Transfer mode (P2P, Satellite Data
Broadcast)

3. The Actor (after choosing Satellite Data Broadcast) selects one or more B2B
receiving stations (controlled by him) for receiving the previously selected
Object

4. The Actor starts the download task in AXEPTool
5. Verification of DRM rules, protections and licensing aspects
6. Downloads status are showed in a particular view of the AXEPTool. The

AXEPTool obtains it from the Push Server, by calling a specified API.
Post-conditions The downloaded object is stored in the Satellite Data Broadcast storage server

before sending it.
Variations None
Asynchronous
actions

The Actor can start, suspend, cancel or resume the download task of an object

Design suggestions Feedback on download status must be implemented.
Issues None

11.3.1 Pushing an AXMEDIS Object by B2B Carousel

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

104

UCId UC11.3.1
Use case Pushing AXMEDIS Content by B2B Carousel
Description The distributor schedules the AXMEDIS Objects, received by the AXEPTool P2P

network, for pushing those to the B2B authorized receiving stations. The
AXMEDIS Content reaches multiple B2B sites simultaneously.

Actors The AXMEDIS Distributor.
Assumptions The AXMEDIS Distributor is authorized to use the Satellite Data Broadcast like

delivery means.
Steps 1. The Actor packages the downloaded content to be compatible with the

Satellite Data Broadcast system
2. The Actor selects the group of authorized receiving B2B stations to

associate with the AXMEDIS Content
3. The Actor associates the selected Object to a given Programme (the

programme is charged of transmitting the Carousel sequence)
4. The Actor schedules the Programme for transmission

Post-conditions None.
Variations None.
Asynchronous
actions

The Actor can start, suspend, cancel or resume the Programme transmission of the
Carousel.

Design suggestions None.
Issues None

11.3.2 Updating AXMEDIS Content by B2B Carousel
UCId UC11.3.2
Use case Updating AXMEDIS Content by B2B Carousel
Description The distributor schedules the AXMEDIS Objects, received by the AXEPTool P2P

network, for pushing those to the B2B authorized receiving stations. The
AXMEDIS Content reaches multiple B2B sites simultaneously.

Actors (TBD) The AXMEDIS Synchronizer (?)
Assumptions The AXMEDIS Synchronizer produces the AXMEDIS Updates to send to

distributors. Updates could be produced with daily/weekly basis.
Steps 1. The Actor produces the periodic update

2. The Actor uploads updates packages to the Satellite Data Broadcast
storage server (by HTTP, FTP)

3. The Actor packages the uploaded content to be compatible with the
Satellite Data Broadcast system

4. The Actor selects the group of receiving B2B stations, dedicated to
AXMEDIS Distributor, in order to authorize who has to receive the
AXMEDIS Content

5. The Actor associates the selected Object to a given Programme (the
Programme is charged of transmitting the Carousel sequence)

6. The Actor schedules the Programme for transmission
Post-conditions None.
Variations None.
Asynchronous
actions

The Actor can start, suspend, cancel or resume the Programme transmission of the
Carousel.

Design suggestions None.
Issues None

11.4 Automatic Content Reception via Satellite
UCId UC11.4
Use case Automatic Content Reception via Satellite

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

105

Description The AXMEDIS B2B Client Application has detected an AXMEDIS Object
addressed to him. He receives automatically the content by push.

Actors The AXMEDIS B2B Client Application
Assumptions The AXMEDIS B2B Client Application runs permanently on the AXMEDIS

Distributor remote station like a daemon.
Steps 1. The AXMEDIS B2B Client detects an AXMEDIS Object in the Electronic

Programme Guide of the Satellite Data Broadcast
2. The AXMEDIS B2B Client checks if it has all rights to listen the incoming

transmission of the Object
3. The AXMEDIS B2B Client launches all needed operations in order to receive

the AXMEDIS Content
Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

None.

Design suggestions Design a solid environment where the AXMEDIS B2B Client can be simply auto-
updated. The AXMEDIS Action Manager it is capable to do different actions on
the basis of the different type of object received.

Issues None.

11.5 Content Delivery via Satellite
UCId UC11.5
Use case Content Delivery via Satellite
Description The AXMEDIS B2B Client Application has successfully received an AXMEDIS

Object addressed to him. He runs, either directly or by calling other applications,
all actions associated with the Object. All actions should be executed at the end of
the reception.

Actors The AXMEDIS B2B Client Application and other Applications charged of
applying actions on the AXMEDIS Object.

Assumptions None.
Steps 1. The AXMEDIS Client Application receives the last bit of the current

transmission and completes the AXMEDIS Object
2. The AXMEDIS Client Application checks the correctness of the received

Object (checksum, version numbering)
3. The AXMEDIS Client Application loads the actions to be executed on the

Object after reception
4. The AXMEDIS Client Application parses the action list and checks if it is

able to treat the content of the action list
5. The AXMEDIS Client Application runs all actions that it can execute

directly
6. The AXMEDIS Client Application forwards to other applications

(explicitly indicated with the action to execute) all actions that it cannnot
execute directly

7. The AXMEDIS Object reaches its final destination
Post-conditions Typical actions are copy, move, play, apply the AXMEDIS Object.
Variations Actions on the AXMEDIS Object could be applied before the end of transmission.
Asynchronous
actions

The loss of satellite signal in particular weather conditions

Design suggestions None.
Issues None.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

106

11.6 Content Protection for Satellite distribution
UCId UC11.6
Use case Content Protection for Satellite distribution
Description During the Satellite Data Broadcast the AXMEDIS Object is further protected at

transport level
Actors The AXMEDIS B2B Distributor.
Assumptions Transport uses TCP protocol encapsulated in the DVB-MPE standard
Steps 1. The AXMEDIS Client Application identifies an incoming AXMEDIS

Object like encrypted content
2. The AXMEDIS Client Application launches the Application to decrypt

the incoming packets, using the Conditional Access System (CAS)
developed internally by EUTELSAT.

3. Encrypted packets of AXMEDIS Object are sent to the ‘Decrypting Box’
for decrypting packets

4. Decrypted packets of AXMEDIS Object are assembled by the AXMEDIS
Client Application in order to re-build the original Object

Post-conditions The AXEMDIS Object should respect the DRM rules, even when the AXMEDIS
Object has been rebuilt.

Variations The ‘Decrypting Box’ is represented either by an internal software component or
by an external component (e.g., smart card reader)

Asynchronous
actions

The ‘Decrypting Box’ could have some problems and stop receiving encrypted
packets

Design suggestions None.
Issues None.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

107

12 AXMEDIS Protection Tools

12.1 Super AXCS

12.1.1 AXMEDIS Registration of AXCSs

UCId UC12.1.1
Use case AXMEDIS Registration of AXCSs
Description An actor wants to register an AXCS in the AXMEDIS system
Actors Distributor, a company specifically doing that work
Assumptions The AXCS to be registered is already installed on a machine
Steps 1. The AXCS to be registered is started by the Actor

2. The AXCS contacts the AXMEDIS Registration of AXCSs Web Service
providing all the data required for the registration on the Super AXCS.

3. The AXMEDIS Registration of AXCSs Web Service verifies the received
data and answer to the requesting AXCS providing a new ID and other
needful data, it verify also the integrity of the tools, etc.

4. the AXCS store the received data
Post-conditions The requesting AXCS is registered in the system
Variations If the data received by AXMEDIS Registration of AXCSs Web Service is rejected

the requesting AXCS is not registered in the system and a communication is sent
to the requesting Actor

Asynchronous actions None
Design suggestions None
Issues None

12.1.2 Tool/device off-line registration

UCId UC12.1.2
Use case Tool/device off-line registration
Description An Actor wants to register a new kind of tool in the AXMEDIS network
Actors AXMEDIS tool producer (i.e. a software house producing a specified tool to use it

in the AXMEDIS system)
Assumptions The tool is not already registered in the system
Steps 1 Reception of the tool that wants to be registered in the AXMEDIS system

2 Off-line checking and test that tool accomplishes AXMEDIS guidelines
3 If the tool accomplishes AXMEDIS guidelines

3.1 The tool is registered and certified, i.e. tool fingerprint is estimated and
other major parameters are extracted and stored into the Super AXCS for
verification at each transactions.

3.2 The tool is registered in the AXCS Registration and Certification
Database with all the information collected at the step 3.1 using the
AXMEDIS SW Tools off-line Registration

Post-conditions • The tool is registered in the AXCS Registration and Certification Database
• A new tool type id is generated and bounded to the tool type
• The requester receives notification about the registration

Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.1.3 AXMEDIS Object ID Generation

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

108

12.1.3.1 Generation of unique Object ID
UCId UC12.1.3.1
Use case Generation of unique object ID
Description An actor wants to associate an AXMEDIS Object ID to the newly created object.
Actors Integrator, Designer
Assumptions AXMEDIS Editor is opened (or tool using AXOM)
Steps 1 The use case begins when an object creator requests a “New object ID” in the

user interface
2 AXOM sends request to PMS Client (DRM support component) to get

authorisation for the operation
3 DRM Support component of PMS sends operation request to AXMEDIS OID

generator together with information on the object which the identifier is
requested for

4 AXMEDIS OID Generator generates the OID with respect to the information
received.

5 The OID is returned to the AXOM by DRM Support
Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues To have OID does not mean that the objects has been protected. In fact the object

does not have the final shape and thus its final fingerprint. When the object is
protected the final fingerprints have to be sent to the AXCS for storing them into
the database associated to the AXOID, etc. The fingerprint can be at level of
single resource and thus the Resource ID internal to the object is needed. In
addition a global fingerprint for the whole object could be estimated.

12.1.4 Global Object List WEB Service

12.1.4.1 Search of AXMEDIS Objects
UCId UC12.1.4.1
Use case Search of AXMEDIS Objects
Description An Actor wants to perform a search in the AXMEDIS database to retrieve a set of

AXMEDIS Objects satisfying several conditions
Actors Users
Assumptions The search can be performed “by hand” using the web interface provided by the

service or using an AXMEDIS Tool. In the first case the query is composed using
the web interface, in the latter case the query is composed inside the tool.

Steps 1. The Actor contacts the Global Object List WEB Service using an AXMEDIS
Tool or a Web browser. In the following statements the programme used to
interact with the Global Object List WEB Service is referred as “Client”

2. The Actor compose the query using the client
3. The query is submitted to the Global Object List WEB Service
4. The Global Object List WEB Service contacts the AXCS Database Interface to

submit the received query
5. The AXCS Database Interface perform the query over the database and send

the retrieved data to the AXCS Database Interface
6. The AXCS Database Interface send the received data to the Global Object List

WEB Service
7. The Global Object List WEB Service send the received data to the requesting

client

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

109

Post-conditions The Client receives a list of AXMEDIS Objects (according with the sent query)
with the pertinent links to retrieve them

Variations None
Asynchronous actions None
Design suggestions Web service
Issues None

12.1.5 Super AXCS Collector

12.1.5.1 On-line transfer between AXCS and Super AXCS
UCId UC12.1.5.1
Use case On-line transfer between AXCS and Super AXCS
Description Some information managed by AXCS during an AXMEDIS Object usage has to

be transferred to Super AXCS. This transfer involves AXCS Synchronizer and
Super AXCS Collector

Actors End user
Assumptions None
Steps 1 End user uses an AXMEDIS tool to operate on AXMEDIS Protected Objects

that are on different distribution channels
2 Protection Manager Support allows only authorized operations on the objects
3 Objects are accessed on different channels and each AXCS stores its Action-

Logs
4 Via AXCS synchronizer general information on Objects or information that

allow Super AXCS to recover Action-Logs from the different AXCSs are
transferred to Super AXCS Collector

5 Super AXCS collects and sores the received information
Post-conditions Object usage information are transferred from AXCS to Super AXCS
Variations 4a. If connection between AXCS and Super AXCS is not active, AXCS

synchronizer store the information to be transferred in a queue called AXCS
Synchronizer Queue. Information stored in that queue are transferred to
SuperAXCS Collector when the connection returns active.

Asynchronous actions None
Design suggestions None
Issues None

12.1.5.2 Off-line synchronization between AXCS and Super AXCS
UCId UC12.1.5.2
Use case Off-line synchronization between AXCS and Super AXCS
Description Some information collected by AXCS during an AXMEDIS Object usage has to

be transferred to Super AXCS even if the connection between AXCS and
SuperAXCS is interrupted. In this case the transfer doesn’t occur on-line during
the Object usage, but off-line in a second time. This use case describes the line-up
between the AXCS database and the SuperAXCS database.

Actors Super AXCS Collector
Assumptions None
Steps 1. Super AXCS Collector retrieve the list of all the AXCS registered in the system

(performing a query to Active AXCS List Database)
2. Super AXCS Collector slides every entry in that list and, for each AXCS, sends

a Queue Pull Request, i.e. a request for data present in the AXCS Synchronizer
Queue.

3. The contacted AXCS Synchronizer respond providing the requested data (if
present) and empty the AXCS Synchronizer Queue.

Post-conditions Object usage information are transferred from AXCS to SuperAXCS

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

110

Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.2 AXMEDIS Certifier and Supervisor

12.2.1 AXMEDIS Registration Service

12.2.1.1 End User registration in a distribution channel

UCId UC12.2.1.1
Use case User registration in a distribution channel
Description An actor wants to register in a channel
Actors All AXMEDIS Users (we can include: End User, Distributor, Content Provider,

Collecting Society and so on)
Assumptions None
Steps 1 The Actor registers his/her data together with the payment method

2 The Actor’s email and DID (Distributor ID) are transferred to the AXMEDIS
registration service

3 The AXMEDIS User ID is generated and acknowledged by AXCS
4 An acknowledge with the definitive ID is sent back to the distributor
5 The Actor data are stored into distributor user database
6 A confirmation email is sent back to the Actor

Post-conditions None
Variations None

AXCS
of channel

Distributor

Registration
Desk

WEB PortalEND
USER

1. Registration and
paiment method def

6. Confirmation via
email address with
definitive UID

2. Email +DID+ TMPUID
(random gen)

3. Email +DID+
definitive UID

3. ACK

4. ACK with
definitive UID

AXMEDIS
Registration Web

Service

5. definitive UID
+ personal info
+ pay info

The registration is referred to a specific AXCS referred to a given
channel manage by the DID (Distributor ID).

Instead of a definitive UID we can use a “Certificate” or what we can
call the AXMEDIS Personal Identity Card (AXPIC). It can be a
certificate that one can exhibit to authenticate himself/herself in the
AXMEDIS circuit, a check is typically done with that ID and the email
,etc...

AXCS
database

AXCS
of channel
AXCS
of channel

Distributor

Registration
Desk

WEB Portal

Distributor

Registration
Desk

WEB PortalEND
USER

1. Registration and
paiment method def

6. Confirmation via
email address with
definitive UID

2. Email +DID+ TMPUID
(random gen)

3. Email +DID+
definitive UID

3. ACK

4. ACK with
definitive UID

AXMEDIS
Registration Web

Service

5. definitive UID
+ personal info
+ pay info

The registration is referred to a specific AXCS referred to a given
channel manage by the DID (Distributor ID).

Instead of a definitive UID we can use a “Certificate” or what we can
call the AXMEDIS Personal Identity Card (AXPIC). It can be a
certificate that one can exhibit to authenticate himself/herself in the
AXMEDIS circuit, a check is typically done with that ID and the email
,etc...

AXCS
database

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

111

Asynchronous
actions

None

Design suggestions None
Issues None

12.2.1.2 End User registration in a different distribution channel

UCId UC12.2.1.2
Use case User registration in a second channel
Description An actor wants to register in a second channel
Actors End User
Assumptions None
Steps 1 The Actor registers his/her data together with the payment method. UID is

sent to the system
2 The Actor’s email, DID and UID are transferred to the AXMEDIS registration

service
3 The AXMEDIS User ID in conjunction with new DID and email is sent to

AXCS
4 The AXMEDIS User ID in conjunction with new DID and email is sent also

to the Super AXCS
5 Super AXCS acknowledge
6 AXCS acknowledge
7 AXMEDIS registration service acknowledges the request
8 User ID is store with other user data in the Distributor user database
9 The Actor receives confirmation of the registration to the distribution channel

Post-conditions None
Variations None

AXCS
of channel 2

Distributor 2

Registration
Desk

(web portal)END
USER

1. Registration and
paiment method def
with UID exposed

9. Confirmation via
email address

2. Email +DID2+ UID

3. Email + UID
+ DID2

6. ACK

7. ACK

AXMEDIS
Registration Web

Service

8. UID +
personal info
+ pay info

The registration is migrated from a specific AXCS to a second
AXCS managed by the DID2 (Distributor 2).

If the AXMEDIS Personal Identify Card is used, the user has to
provide it during the any additional registration of the user to
another distribution channel.

Super
AXCS

4. Email + UID
+ DID2

5. OK, + status of
all the devices

AXCS
database

AXCS
of channel 2
AXCS
of channel 2

Distributor 2

Registration
Desk

(web portal)

Distributor 2

Registration
Desk

(web portal)END
USER

1. Registration and
paiment method def
with UID exposed

9. Confirmation via
email address

2. Email +DID2+ UID

3. Email + UID
+ DID2

6. ACK

7. ACK

AXMEDIS
Registration Web

Service

8. UID +
personal info
+ pay info

The registration is migrated from a specific AXCS to a second
AXCS managed by the DID2 (Distributor 2).

If the AXMEDIS Personal Identify Card is used, the user has to
provide it during the any additional registration of the user to
another distribution channel.

Super
AXCS
Super
AXCS

4. Email + UID
+ DID2

5. OK, + status of
all the devices

AXCS
database

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

112

Asynchronous
actions

None

Design suggestions None
Issues None

12.2.1.3 Registration of a new Teacher/School or Student

UCId UC12.2.1.3
Use case Registration of a new Teacher/School or Student
Description An Actor wants to register in the AXMEDIS network
Actors Teacher/Technician
Assumptions None
Steps 1. The Actor registers his/her data together with the payment method

2. The Actor’s email and DID (Distributor ID) are transferred to the AXMEDIS
registration service

3. The AXMEDIS User ID is generated and acknowledged by AXCS
4. An acknowledge with the definitive ID is sent back to the distributor
5. The Actor data are stored into distributor user database
6. A confirmation email is sent back to the Actor

Post-conditions • The tool is registered in the AXCS Registration and Certification Database
• A new tool type id is generated and bounded to the tool type
• The requester receives notification about the registration

Variations None
Asynchronous actions None
Design suggestions None
Issues • The Teacher/Technician can register himself and all his/her students, may be

giving the same email for all the accounts of the students. In that way he/she
can disable those accounts when he/she likes.

• Different UID (or AXMEDIS Personal Identify Cards) will be received by the
Teacher, that has to save all the info (emails)

AXCS
of channel AXCS

database

SEJER
Registration

Desk,
WEB portal Teacher

1. Registration and
paiment method

6. Confirmation via
email address with
definitive UID

2. Email +DID+ TMPUID
(random gen)

3. Email +
definitive UID

3. ACK

4. ACK with
definitive UID

AXMEDIS
Registration Web

Service

5. definitive UID +
personal info+ pay info

TThhee TTeeaacchheerr//TTeecchhnniicciiaann ccaann rreeggiisstteerr hhiimmsseellff aanndd aallll
hhiiss//hheerr ssttuuddeennttss,, mmyy bbee ggiivviinngg tthhee ssaammee eemmaaiill ffoorr aallll tthhee
aaccccoouunnttss ooff tthhee ssttuuddeennttss.. IInn tthhaatt wwaayy hhee ccaann ddiissaabbllee tthhoossee
aaccccoouunnttss wwhheenn hhee//sshhee lliikkeess..

TTeeaacchheerr:: <<UUIIDD335544113355>>
SSttuuddeenntt ssddhhffgghh:: <<UUIIDD113344551144>>
SSttuuddeenntt aaffssddhhKKLLFFHH:: <<UUIIDD667755773377>>
SSttuuddeenntt ddggaagg:: <<UUIIDD443377667733>>
SSttuuddeenntt rrttyywwuuyyeerrtt:: <<UUIIDD3366777733667733>>

DDiiffffeerreenntt UUIIDD ((oorr AAXXMMEEDDIISS PPeerrssoonnaall IIddeennttiiffyy CCaarrddss)) wwiillll
bbee rreecceeiivveedd bbyy tthhee TTeeaacchheerr,, tthhaatt hhaass ttoo ssaavvee aallll tthhee iinnffoo
((eemmaaiillss))

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

113

12.2.1.4 Registration of an old User of the Channel on AXMEDIS

UCId UC12.2.1.4
Use case Registration of an old User of the Channel on AXMEDIS
Description An Actor wants to register an End User in the AXMEDIS network. This use case

is indented to facilitate the migration of Distributors of Channel to the AXMEDIS
system

Actors Distributor
Assumptions None
Steps 1 The Distributor retrieves the User’s information from its database

2 The Distributor sends a registration request to the service filled with data
about the user to be registered in the system (see mentioned data in use case
“End User registration in a distribution channel”)

3 The service checks and validates the data received. Then the service generate
a user id, a login, a password for the new user

4 The service sends to the requester the generated data
5 The User receives confirmation of the registration from the Distributor

Post-conditions • The user is registered in the AXCS Registration and Certification Database
• The User receives notification about the registration and user id, login and

password
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.2.1.5 User password modification
UCId UC12.2.1.5
Use case User password modification
Description An Actor wants to change a user password
Actors Content Provider, Distributor
Assumptions The user is already registered in the system

AXCS
of channel

Distributor
Registration

Desk
WEB Portal END

USER

5. Confirmation via
email address with
definitive UID

2. Email +DID+ TMPUID
(random gen)

3. Email +DID+
definitive UID

3. ACK

4. ACK with
definitive UID

AXMEDIS
Registration Web

Service

1. registration +
personal info +
pay info

This registration allows to simplify the migration of a distrbutor
and its clients to an AXMEDIS-based derlivering system.

Instead of a definitive UID we can use a “Certificate” or what we
can call the AXMEDIS Personal Identity Card (AXPIC). It can be
a certificate that one can exhibit to authenticate himself/herself
in the AXMEDIS circuit, a check is typically done with that ID

AXCS
database

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

114

Steps 1 The Actor sends a password modification request to the service filled with the
user id, old password, new password

2 The service checks and validates the data received
3 The service update information related to the user in the database and change

the user password as specified
4 The service sends to the requester the confirmation of the password

modification
Post-conditions • The user password is stored in the AXCS Registration and Certification

Database
• The requester receives notification about the password modification

Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.2.2 AXMEDIS Certification and Verification

12.2.2.1 Authentication of a Device

UCId UC12.2.2.1
Use case Authentication of a Device
Description The Device/Tool needs to be authenticated while it communicates with PMS. The

authentication can be performed every gap of time, requested by PMS, AXCS,
AXOM (or others subjects) or in any other way it is convenient. This use case
show how the authentication occurs, not when nor why.

Actors AXMEDIS tool running on a device
Assumptions The specified tool has been already certified

PMS of
reference

1. DEVICE FP +
UID+email..+ Status

2. DEVICE FP
+ UID + status
+

AXCS of
channel

3. ACK

the device

AXMEDIS
SW Tool

4. ACK

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

115

Steps 1. The AXMEDIS Tool starts connection with the PMS of reference sending
him some information such as DEVICE FP, UID, email, Status and so on.

2. The PMS sends the received information to the AXCS of channel (eventually
adding other)

3. The AXCS (the AXMEDIS Certification and Verification) verifies the
received information (in particular the status is important) and sends the
response to the PMS

4. The mentioned PMS sends the response to the AXMEDIS Tool: in this way
the chain is closed

Post-conditions None
Variations If the AXMEDIS Certification and Verification doesn’t authenticate the Device

this must be deactivate immediately sending him a “Deactivation Signal” and
marking him as “blocked”

Asynchronous actions None
Design suggestions None
Issues None

12.2.2.2 Certification of AXMEDIS Tool and User

UCId UC12.2.2.2
Use case Certification of AXMEDIS tool and user
Description An Actor wants to certify a specified tool installed on a terminal (i.e. a PC, a

Palmtop, a Phone, a Kiosk and so on) that is used for the first time
Actors AXMEDIS User (can be end user, distributor or whoever uses a tool), AXMEDIS

Tool, AXCS Database Interface, PMS
Assumptions A User wants to use an AXMEDIS tool

The specified tool is not already certified: it’s the first time it is used

PMS of reference

end
USER

1. Registration, email
+ UID + description
of the device+ name
of the login

6. OK,
your device is ok
and enabled, You
can add as many
devices you like
to your account !

2. DEVICE FP (HW+SW)
+ UID+email..+Status+
time+date….. +
description of the device
+ name of the log in +++

3. DEVICE FP
+ UID + status +
time+date+ Domain
if any+ description of
the device …..

AXCS of
channel

4. ACK+
ENABLE code
(for the TID
and TID fixed)

the device

AXMEDIS
SW Tool

5. ACK+
ENABLE code
(for the TID
and TID fixed)

Domain infoDomain info

4b. ENABLE
code (TID)

Domain Manager

The Protection Processor in the AXMEDIS Tool is capable of produThe Protection Processor in the AXMEDIS Tool is capable of producing the HW cing the HW
code, SW code, code, SW code, --….to estimate the DEVICE FP and management of the status ….to estimate the DEVICE FP and management of the status
depending on time, history of actions, etc. The ENABLE code actidepending on time, history of actions, etc. The ENABLE code activate the Tool vate the Tool
and will fix for ever the TID of the combination and will fix for ever the TID of the combination HW+SW+installationHW+SW+installation. .

As a limit case the information maintained on the device by the As a limit case the information maintained on the device by the Protection Protection
Processor could be encrypted with a different code for each Processor could be encrypted with a different code for each
transaction/verification, this could add dynamism to protection transaction/verification, this could add dynamism to protection model. model.

DRM
Support

PMS of referencePMS of reference

end
USER

1. Registration, email
+ UID + description
of the device+ name
of the login

6. OK,
your device is ok
and enabled, You
can add as many
devices you like
to your account !

2. DEVICE FP (HW+SW)
+ UID+email..+Status+
time+date….. +
description of the device
+ name of the log in +++

3. DEVICE FP
+ UID + status +
time+date+ Domain
if any+ description of
the device …..

AXCS of
channel
AXCS of
channel

4. ACK+
ENABLE code
(for the TID
and TID fixed)

the devicethe device

AXMEDIS
SW Tool

AXMEDIS
SW Tool

5. ACK+
ENABLE code
(for the TID
and TID fixed)

Domain infoDomain info

4b. ENABLE
code (TID)

Domain Manager

The Protection Processor in the AXMEDIS Tool is capable of produThe Protection Processor in the AXMEDIS Tool is capable of producing the HW cing the HW
code, SW code, code, SW code, --….to estimate the DEVICE FP and management of the status ….to estimate the DEVICE FP and management of the status
depending on time, history of actions, etc. The ENABLE code actidepending on time, history of actions, etc. The ENABLE code activate the Tool vate the Tool
and will fix for ever the TID of the combination and will fix for ever the TID of the combination HW+SW+installationHW+SW+installation. .

As a limit case the information maintained on the device by the As a limit case the information maintained on the device by the Protection Protection
Processor could be encrypted with a different code for each Processor could be encrypted with a different code for each
transaction/verification, this could add dynamism to protection transaction/verification, this could add dynamism to protection model. model.

DRM
Support

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

116

Steps 1 The user opens the tool for its certification
2 AXOM (as a part of the tool) calculates fingerprint or extracts other features

to identify the specified tool, the user and the terminal it is installed on
3 AXOM (as a part of the tool) contacts the pertinent PMS sending all the

needful information for the registration
4 The mentioned PMS contacts the pertinent AXMEDIS Certification and

Verification sending him all the received information
5 Check that it is the first use of the tool by the user. Otherwise see

“Verification of AXMEDIS users using AXMEDIS tools during content
consumption” use case.

6 If the user and tool are registered (check that the user data and status are
correct and that the received Tool FP matches the original one)the AXMEDIS
Certification and Verification generates a TID (tool ID) and inserts it together
with all the received information in the AXCS Database, using the proper
interface, that is, the user is certified to have used the tool for the first time

7 The AXMEDIS Certification and Verification sends to PMS the generated
TID

8 The PMS sends to AXOM (as a part of the tool) a certification confirmation
message, including the TID

9 AXOM registers that the tool is certified and stores also the received TID
10 If the user or tool are not registered, the PMS and AXOM are sent a message

notifying the unsuccessful certification
Post-conditions If the user and tool are registered,

• The tool is certified in the AXMEDIS system
• The user is certified to have used the tool for the first time
• A new tool id is generated and bounded to the tool
• The requester receives notification about the certification

Variations If the tool is registered but the user is not, the user might be asked to register
Asynchronous actions None
Design suggestions None
Issues None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

117

12.2.2.3 Verification of AXMEDIS users using AXMEDIS tools

UCId UC12.2.2.3
Use case Verification of AXMEDIS users using AXMEDIS tools
Description Verification of AXMEDIS users using AXMEDIS tools on a Device during

content consumption
Actors Verify the user data, tool data and tool operation history consistency every time a

user wants to use an AXMEDIS tool not for the first time and/or every time the
Tool is connected

Assumptions AXMEDIS User, AXMEDIS Tool, AXCS Database Interface, PMS
Steps 1 A User wants to use an AXMEDIS tool

AXCS of reference

PMS of reference

end
USER

1. Action

9. Ok do it

2. Action+ TID+
DEVICE FP +
UID+e mail..+
Status+ domain

3. Action+DEVICE FP

+ UID+email..+Status +

Domain

5.OK Verified+key

the device

AXMEDIS
SW Tool

4. Get information for
verification

6. Grant
req.?

7. OK
Grant

8. OK Grant+key

Authorization
Support

AXMEDIS
Certification and

Verification

AXCS
Database
Interface

2b. Verif of TID-
Domain consistency

Domain Manager

DRM
Support

Domain infoDomain info

AXCS of referenceAXCS of reference

PMS of reference

end
USER

1. Action

9. Ok do it

2. Action+ TID+
DEVICE FP +
UID+e mail..+
Status+ domain

3. Action+DEVICE FP

+ UID+email..+Status +

Domain

5.OK Verified+key

the devicethe device

AXMEDIS
SW Tool

AXMEDIS
SW Tool

4. Get information for
verification

6. Grant
req.?

7. OK
Grant

8. OK Grant+key

Authorization
Support

AXMEDIS
Certification and

Verification

AXCS
Database
Interface

2b. Verif of TID-
Domain consistency

Domain Manager

DRM
Support

Domain infoDomain info

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

118

Post-conditions 2 An AXMEDIS User tries to perform an action on an AXMEDIS Object using
an AXMEDIS Tool running on a device

3 The AXMEDIS Tool (AXOM) sends some needful information to PMS, such
as: UID, TID, device FP, tool operation history and tool operation history FP,
and email

4 The DRM Support inside the PMS of reference contacts the AXCS sending
him the received information

5 The Certification and verification (inside AXCS) checks that it is not the first
use of the tool by the user. Otherwise see “Certification of AXMEDIS User
and Tool” use case

6 Retrieve the tool operation history fingerprint that is stored in the AXCS
database (using AXCS Database interface) and match it to the received one

7 If the fingerprints do not match, a new fingerprint is computed, derived from
the previous one (stored in the database) and the operation history (sent by the
user). The new fingerprint is compared to the fingerprint provided by the user.

8 If the new fingerprint matches the fingerprint provided by the user, the PMS is
notified that the user data, tool data and operation history have been verified
and is sent the Key

9 The DRM Support (inside the PMS) verifies the DRM using the Authorization
Support (inside PMS)

10 The DRM Support responds to AXMEDIS Tool with a Grant signal and the
key needed to use the perform the requested action on the AXMEDIS Object

The AXMEDIS Tool is now ready to perform the action requested by the
AXMEDIS User

Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.2.2.4 Verification of AXMEDIS users using AXMEDIS tools on a Device during content
consumption inside a domain

See as a reference the same figure of the previous scenarios. In this case the Domain is taken into account.

UCId UC12.2.2.4
Use case Verification of AXMEDIS users using AXMEDIS tools on a Device during

content consumption inside a domain
Description The Device/Tool is verified every time an user tries to perform an action
Actors All AXMEDIS User
Assumptions A User wants to use an AXMEDIS tool inside a Domain

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

119

Steps 1. An AXMEDIS User tries to perform an action on an AXMEDIS Object using
an AXMEDIS Tool running on a device

2. The AXMEDIS Tool (AXOM) sends some needful information to PMS, such
as: where UID, TID, device FP, tool operation history and tool operation
history FP, email and Domain

3. The DRM Support inside the PMS of reference contacts the Domain Manager
sending it the received information

4. The Domain Manager performs the verification of TID Domain Consistency
5. The DRM Support receives the response from the Domain Manager and sends

the information to AXCS (AXMEDIS Certification and Verification)
6. The AXMEDIS Certification and Verification verifies the received data

comparing them with the data retrieved from the AXCS Database (using
AXCS Database interface)

7. The AXMEDIS Certification and Verification responds to the PMS sending
the Key

8. The DRM Support (inside the PMS) verifies the DRM using the
Authorization Support (inside PMS)

9. Insert Action Log into AXCS reporting database
10. The DRM Support responds to AXMEDIS Tool with a Grant signal and the

key needed to use the perform the requested action on the AXMEDIS Object
11. The AXMEDIS Tool is now ready to perform the action requested by the

AXMEDIS User
Post-conditions None
Variations (A) If the AXMEDIS Certification and Verification doesn’t authenticate the

Device, the device must be deactivated immediately sending it a “Deactivation
Signal” and marking it as “blocked”
(B) If the DRM Support verifies that the AXMEDIS User is not allowed (not
granted) to perform the requested action, the key is not sent to the AXMEDIS
Tool and the user remains able to use the system (unless the condition (A) is
verified!!!)

Asynchronous actions None
Design suggestions None
Issues None

12.2.3 AXMEDIS Supervisor
We have two kinds of blocking manual and automatic.

12.2.3.1 User blocking
UCId UC12.2.3.1
Use case User blocking
Description An Actor wants to block a user in the AXMEDIS network
Actors Content provider, distributor
Assumptions The user is already registered in the system
Steps 1 The Actor sends a blocking request to the service filled with the user id

2 The service checks and validates the data received
3 The service update information related to the user in the database to prevent

him/her using the AXMEDIS network
4 The service sends to the requester the confirmation of the blocking of the user

Post-conditions • The user is marked as blocked in the AXCS Registration and Certification
Database

• The requester receives notification about the blocking
Variations None
Asynchronous actions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

120

Design suggestions I suggest to allow the blocking from a the WEB service accessed by the
Distributor or from a user interface to be done personally by a human.

Issues None

12.2.3.2 User unblocking
UCId UC12.2.3.2
Use case User unblocking
Description An Actor wants to unblock a user in the AXMEDIS network
Actors Content provider, distributor
Assumptions The user is already registered in the system

The user is marked as blocked
Steps 1 The Actor sends an unblocking request to the AXMEDIS Supervisor filled

with the user id
2 The AXMEDIS Supervisor checks and validates the data received
3 The AXMEDIS Supervisor update information related to the user in the

database to unblock him/her. The user may restart using the AXMEDIS
network

4 The service sends to the requester the confirmation of the unblocking of the
user

Post-conditions • The user is unmarked as blocked in the AXCS Registration and Certification
Database

• The requester receives notification about the unblocking
Variations None
Asynchronous actions None
Design suggestions suggest to allow the unblocking from a the WEB service accessed by the

Distributor or from a user interface to be done personally by a human.
Issues None

12.2.3.3 Tool blocking
As stated above we may have manual and automatic blocking of tools. On the other hand, we need additional
variations. Blocking a tool can have different “rules”:

• Blocking a specific version belonging to one user (e.g. due to manipulations).
• Blocking a specific version (e.g. a new version is available). It is a way to suggest to download a

new version. An example of this behaviour is adobe acrobat reader, which informs you about new
versions and you decide if you want to download them.

• Blocking a specific version in a mandatory manner only if that version has been cracked. It is a way
to force downloading a new version.

• Blocking all versions (e.g. this tool is a general threat to the security)

UCId UC12.2.3.3
Use case Tool blocking
Description An Actor wants to block a tool in the AXMEDIS network
Actors Content provider, distributor
Assumptions The tool is already registered in the system
Steps 1 The Actor sends a blocking request to the service filled with the tool id

2 The service checks and validates the data received
3 The service update information related to the tool in the database to prevent it

accessing the AXMEDIS network and AXMEDIS Objects
4 The service sends to the requester the confirmation of the blocking of the tool

Post-conditions • The tool is marked as blocked in the AXCS Registration and Certification
Database

• The requester receives notification about the blocking

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

121

Variations Blocking all versions of a tool (e.g. this tool is a general threat to the security)
Blocking a specific version of a tool if this version has been cracked

Asynchronous actions None
Design suggestions None
Issues Who is responsible of the blocking of the tools? The Super AXCS has to

guarantee the security thus if a tool fails is blocked.

12.2.3.4 Tool unblocking
UCId UC12.2.3.4
Use case Tool unblocking
Description A content provider or a distributor wants to unblock a tool in the AXMEDIS

network
Actors Content provider, distributor
Assumptions The tool is already registered in the system

The tool is marked as blocked
Steps 1 An content provider or distributor sends a unblocking request to the service

filled with the tool id
2 The service checks and validates the data received
3 The service update information related to the tool in the database to unblock

it. The tool may restart accessing the AXMEDIS network
4 The service sends to the requester the confirmation of the unblocking of the

tool
Post-conditions • The tool is unmarked as blocked in the AXCS Registration and Certification

Database
• The requester receives notification about the unblocking

Variations None
Asynchronous actions None
Design suggestions It is probable that this feature is not needed if a tool has been blocked for some

reason and the reason is real there is no reason to unblock, a new version of the
tool is needed. That version cannot be used anymore.

Issues Who is responsible of the unblocking of the tools? The Super AXCS has to
guarantee the security thus if a tool fails is blocked.

12.2.3.5 AXMEDIS Protection Information delivery
UCId UC12.2.3.5
Use case AXMEDIS Protection Information delivery
Description AXMEDIS protection Information delivery for supporting protection of

AXMEDIS objects
Actors AXMEDIS User
Assumptions The Actor has the object
Steps 1 The Actor wants to perform an action over a protected AXMEDIS Object

2 the AXMEDIS Certification and Verification verifies the AXMEDIS Client
credentials via PMS

3 PMS calls license manager in order to check if client has the appropriate
licenses

4 the AXMEDIS Certifier and Supervisor records the AXMEDIS Client
operation in the AXCS Accounting Database

5 the AXMEDIS Supervisor sends the key to the PMS
6 The PMS sends the key to the requesting Actor

Post-conditions • The Actor has a valid Information for content fruition

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

122

Variations None
Asynchronous actions None
Design suggestions None
Issues Please note that into the protection information is contained. Key,

algorithms/rules, etc., for descrambling, or other information, for the protection
processor, etc.

12.2.3.6 Storage of protection information of an AXMEDIS Object to the AXCS

UCId UC12.2.3.6
Use case Association of protection information to an AXMEDIS Object
Description Protection information are stored and associated to a given AXMEDIS Object
Actors None
Assumptions An AXMEDIS User has protected an AXMEDIS object and generated the related

protection information
Steps 1 AXMEDIS Supervisor receives a store request containing the AXOID of the

protected object and the related protection information
2 AXMEDIS Supervisor verifies the request validity
3 The protection information are stored in the AXCS database and linked to the

given AXOID.
Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.2.3.7 Requesting of protection information of an AXMEDIS Object
UCId UC12.2.3.7
Use case Get protection information of an AXMEDIS Object
Description Protection information of an AXMEDIS Object is retrieved
Actors None
Assumptions None
Steps 1 Protection information regarding an AXMEDIS object has been requested to

the AXMEDIS Database
2 PMS checks that operation is permitted
3 Protection information is returned

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.2.4 AXMEDIS Reporting Web Service

12.2.4.1 Object usage reporting
UCId UC12.2.4.1
Use case Object usage reporting
Description An Actor wants a report on object usage
Actors Content provider, distributor, collecting society
Assumptions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

123

Steps 1 The Actor sends a report request to the service
2 The service checks and validates the data received
3 The service collects and sends back to the Actor the information related to the

object usage
Post-conditions The Actor has the report
Variations None
Asynchronous actions None
Design suggestions None
Issues The Actor uses Accounting Manager and reporting tool to communicate with

AXMEDIS Reporting Web Service

12.2.5 Accounting Manager and Reporting Tool

12.2.5.1 List of all operations performed on an object
UCId UC12.2.5.1
Use case List of all operations performed on an object
Description An Actor wants to know all operations performed on an object
Actors Content provider, distributor, collecting society
Assumptions None
Steps 1 An Actor sends the request for having the list of all operation of an object: the

request contain the Object ID and the code of the operation to be performed,
and time window related to the period

2 The service checks and validates the data received
3 The service collects and sends back information related to the object in the

database
Post-conditions The Actor has the list
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.2.5.2 List of all operations performed by a user
UCId UC12.2.5.2
Use case List of all operations performed by a user
Description An Actor wants to know all operations performed by a user
Actors Distributor
Assumptions None
Steps 1 An Actor sends the request for having the list of all operation performed by an

user: the request contain the User ID, the Actor ID and the code of the
operation to be performed, and time window related to the period

2 The service checks and validates the data received
3 The service collects and sends back Action-Logs related to the user

Post-conditions The Distributor has the list
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.2.5.3 Usage report about an object
UCId UC12.2.5.3
Use case Usage report about an object
Description An Actor wants to know usage statistic about an object
Actors Distributor, Collecting society, content owner, content provider

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

124

Assumptions None
Steps 1 An Actor sends the request for having the statistic about an object usage: the

request contain the Object ID, the Actor ID and the code of the operation to be
performed, and time window related to the period

2 The service checks and validates the data received
3 The service collects and sends back information related to the object usage

Post-conditions The Actor obtains the statistic
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.2.5.4 Usage report about a distributor
UCId UC12.2.5.4
Use case Usage report about a distributor
Description An Actor wants to know usage statistic about a distributor
Actors Distributor, Collecting society, content owner, content provider
Assumptions None
Steps 1 The Actor sends a request to the service: the request contains the Distributor

ID, the Actor ID and the operation to be performed, and time window related
to the period

2 The service checks and validates the data received
3 The service collects and sends back information related to the distributor

Post-conditions The Actor obtains the statistic
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.2.5.5 Usage report about a provider
UCId UC12.2.5.5
Use case Usage report about a provider
Description An Actor wants to know usage statistic about a provider
Actors Distributor, Collecting society, content owner, content provider
Assumptions None
Steps 1 The Actor sends a request to the service: the request contains the Provider ID,

the Actor ID and the operation to be performed, and time window related to
the period

2 The service checks and validates the data received
3 The service collects and sends back information related to the provider

Post-conditions The Actor obtains the statistic
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.2.5.6 List objects for which an administrative account can be requested
UCId UC12.2.5.6
Use case List objects which an administrative account can be requested
Description An Actor wants to obtain and consult the list of objects for which an

administrative account can be requested, e.g. all the objects for which the Actor
has the eligibility to obtain an administrative report)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

125

Actors Content creators, distributors, collecting society, content providers
Assumptions None
Steps 1 An Actor requests the list of objects for which an administrative account can

be requested
2 The reporting tool searches in the corresponding database all the AXMEDIS

objects for which the actor is eligible to ask a report.
3 The reporting tool lists all the results.

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.2.5.7 Listing AXMEDIS clients of a distributor/channel
UCId UC12.2.5.7
Use case Listing all AXMEDIS clients
Description An Actor wants to consult the AXMEDIS clients list that has been connected to

the distributor or on a channel.
Actors Distributors.
Assumptions None
Steps 1 The Actor asks for the list of AXMEDIS clients that have been connected to a

distributor of a channel
2 The reporting tool searches in the corresponding database all the AXMEDIS

clients satisfying point 1.
3 The reporting tool lists all the results.

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.2.5.8 Listing distributors
UCId UC12.2.5.8
Use case Listing all distributors of AXMEDIS objects, those that have redistributed its

objects.
Description An Actor wants to consult the distributors of AXMEDIS objects.
Actors Content creators, Distributors, End users, Content Providers.
Assumptions None
Steps 1 An actor asks for a list of distributors of AXMEDIS objects

2 The reporting tool searches in the corresponding database all the distributors
of AXMEDIS objects

3 The reporting tool lists all the results.
Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

126

12.2.6 AXCS Synchronizer

1. End user uses an AXMEDIS tool to operate on an AXMEDIS Protected Objects that are on different
distribution channels
2. Protection Manager Support allow only authorized operations on the object
3. Objects are accessed on different channels and each AXCS stores its Action-Logs
4. Via the AXCS sync general information on objects or information that allow SuperAXCS to recover
Action-Logs from the different AXCSs are transferred to the SuperAXCS Collector
5. SuperAXCS collects information
6. Administrative reports are created
7. Administrative Information Integrator transfer Action-Logs on CMS

12.3 Protection Tool Engine
Protection tool engine use cases regarding DRM support are defined in section 12.5 Protection Manager
Support / Server.

11\\ End user

1 AXMEDIS
TOOL

AXCS

PMS
AXCS

AXCS

AXCS Sync.

AXCS Sync.

AXCS Sync.

Super AXCS Super AXCS
Collector

Administrative
Information Integrator

Collecting Society
Creator CMS

2

3
4

5 6
7

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

127

12.3.1 Content protection
UCId UC12.3.1
Use case Content protection
Description An AXMEDIS object is protected. The Protection tools engine allows the

protection of a large set of objects. Here, protection includes adaptation of PAR
and the creation of Licenses. Licenses are created according to the given rules.
The right to create a specific license is evaluated by considering the PARs. Also,
objects are connected with Licenses resulting in a Governed AXMEDIS Object.

Actors Content creator and content distributor.
Assumptions AXMEDIS object exists and is uniquely identified.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

128

Steps 1 The Protection Tool Engine is initiated to protect an object. This can be done
via the WF manager or the Protection Info Editor (with the Protection Rules
Repository.

2 Parameters are verified and rule is loaded
3 Content is selected via the Query Support.
4 Content is accessed via the AXOM.
5 The PAR are estimated on the basis of the licenses of the included resources

and then the PAR is included in the AXInfo contained into the protected and
non protected parts of the object.

6 PMS Domain factory creates/adaptes the license from the rules or the user
input.

7 Verification of PAR or License against given rights
8 PMS Domain factory creates required keys (e.g. for encryption or hash

functions).
9 Creation of the protection information
10 Protection the object (resulting in a new object or a new version of the object).

Encryption support (see use case Encryption) is used via the AXOM.
11 If the protection is successful and the protection information has been

generated to protect this object, the protection information has to be stored
(see use case Storage of security information)

12 Sending the license and the Protection information to the PMS. The PMS
forwards the Protection Information to the AXCS.

Post-conditions AXMEDIS object(s) is (are) encrypted and stored in the AXMEDIS database
together with relevant information

Variations The request can originate from different sources, e.g.
• Protection Info Editor (AXMEDIS Editor)
• via the AXOM, e.g. from the AXEPTool
• via the WF-Manager: This allows the automatic protection of content after its

production by the Formatting Tools Engine.

Different parameters can be given:
• Selection of AXMEDIS object(s) and all protection parameters explicitly
• Selection of AXMEDIS object(s) and rules

This is the general case including:

• Rule based protection of single and multiple objects
• Automatic protection during publication via AXEPTool or other tools

(e.g. editor)
Asynchronous actions None
Design suggestions None
Issues None

12.3.2 Create a new protection rule
UCId UC12.3.2
Use case Create a new protection rule
Description An Actor wants to create a new protection rule
Actors Content creator and content distributor
Assumptions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

129

Steps 1 The Actor creates a Selection of digital resources by making queries to the
AXMEDIS Database

2 The Actor rules how these resources have to be protected
3 The Actor stores the created rule into Protection rules Database[FHGIGD:

Where are the protection rules stored?]
Post-conditions None
Variations 1) The Actor defines a Selection by writing in the rule the scripting code

(Protection rule Language) for queries to be executed when the rule will be run
2) The Actor can define a rule or writing it as scripting code (Protection rule
Language) or in a Visual way.

Asynchronous
actions

None

Design suggestions None
Issues None

12.3.3 Search and Select a protection rule
UCId UC12.3.3
Use case Search and Select a protection rule
Description An Actor wants to Select a specific protection rule he should be enabled to make

some search or browsing.
Actors Content creator and content distributor
Assumptions None
Steps 5 The Actor searches in the Protection rules database for a specific protection

rule
6 If the Actor finds the rule he can :

6.1 Use it to create a protected AXMEDIS object
6.2 Modify it

6.2.1 Then the Actor store the new rule into the Repository by
Protection tool user interface and rule editor

6.2.2 Use the new rule to create a protected AXMEDIS object
7 If the Actor does not find the rule, he can create a new one

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

12.3.4 Activating a protection rule
UCId UC12.3.4
Use case Activating a protection rule
Description An Actor wants to activate a protection rule
Actors Content creator and content distributor
Assumptions The Protection tool user interface and rule editor can access the Protection Rules

Database
Steps 4 The Actor searches in the Protection rules database for a specific protection

rule
5 If the Actor does not find the rule

5.1 The Actor can create a new one
6 The Actor selects “Activate Rule” function
4 The rule is put as active rule into the Protection Rules Database

Post-conditions The rule is added to the set of Active Rule

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

130

Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

12.3.5 Removing a protection rule
UCId UC12.3.5
Use case Removing a protection rule
Description An Actor wants to remove a protection rule
Actors Content creator and content distributor
Assumptions The Protection tool user interface and rule editor can access the Protection Rules

Database
Steps 5 The Actor requests the list of Active Rules in the Protection Rules Database

6 The Actor selects the active rule to be disabled
7 The Actor selects “Remove Rule” function
8 The rule is Removed

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

12.3.6 Debugging a protection rule
UCId UC12.3.6
Use case Debugging/Simulation a protection rule
Description An Actor wants to debug a protection rule
Actors Content creator and content distributor
Assumptions A protection rule is available.
Steps 4 The Use Case starts when the Actor wants to debug a rule

5 The Rule Editor enters in the Debugging/Simulation Mode
6 During the debugging mode the Actor can:

6.1 Check the statements of rule step by step
6.2 Control the values of current variables
6.3 Exit from the debugging mode

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

12.3.7 Editing protection rules
UCId UC12.3.2
Use case Editing protection rules
Description A user creates or edits a protection rule.
Actors Content creator and content distributor..
Assumptions AXMEDIS object exists and is uniquely identified.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

131

Steps 1 User opens a new or an existing protection rule.
2 User adds, edits, or removes new rules.
3 Protection rule is stored.

Post-conditions New or modified rules are stored
Variations None
Asynchronous actions None
Design suggestions Rules are created with a Protection Tool Editor and executed by the Protection

Tool Engine. Rules are stored in a separate database or file system and have to be
ready to be activated and executed and searched by the Protection Tool Editor.

Issues None

12.3.8 Printing protection rules
UCId UCXXX
Use case Content protection
Description A user prints the protection rule.
Actors Content creator and content distributors
Assumptions eules exists.
Steps 1 The user requests to print the protection rules.

2 Protection rules are printed.
Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

The following aspects and use cases have not been produced in time and will be produced for the next
version.

From the WF is possible to control both the Editor and the Engine. This allows passing from Formatting to
Protection according to some defined flow.

The Protection Tool has to:

 protect AXMEDIS objects in large set, adapting the DRM, PAR, Licenses, etc.
 merge a license and an object to create a Governed AXMEDIS Objects
 generate licenses in automatic according to some rules

The Protection Tool Engine is an instance of the Comp/Form Engine with specific support to work with
protection functionalities
The Protection Tool Editor is an instance of the Comp/Form Engine with specific support to work with
protection functionalities

The functionalities that have to be available from the Script and from the Editor are mainly:

 Verification of PAR, internal and external against the License
 Generation of the License from PAR (internal and or external)
 Verification of any PAR or License against some RIGHTS written in clear such as: the play on the

AXOID 34 in July 2005 for 5 times, the print of AXOID 56 in Spain in May 2006 at least one, etc.
 Addition/remove of rights from a given License/PAR
 Adaptation of a license/PAR removing some rights, scaling down…
 Production of the Protection Information
 Writing the Protection Information sequence of commands to protect the object (see IPMP standard

of MPEG21, plus start-end segment, etc…
 Save the Protection Information sequence to the database

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

132

 Save the License into the database
 Send the License to the PMS
 Send the Protection Information to the AXCS via the PMS
 Load from the database of a License Model via the License Model ID
 Code from 0 the rights and other fields that compose a license
 Exploitation of libraries for encryption/decrypt, scramble/descramble, compress/uncompress, etc., as

native functionalities into the script and for defining the Protection Information sequence of
commands

 Exploitation of lib and DRM support for key generation for Enc/dec Algorithms, couples of keys,
etc., different size, etc…

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

133

12.4 Administrative Information Integrator

12.4.1 Integrating Distributor administrative information of the basis of End User actions

UCId UC12.4.1
Use case Integrating Distributor administrative information of the basis of End User actions
Description In response to an user action, the administrative information are transferred to the

CMS of distributor
Actors End user
Assumptions None
Steps 1. End User requests to perform an action on an AXMEDIS Protected Object

2. AXMEDIS Player asks PMS to perform an Action (assuming client has been
already certified)
3. PMS checks in the LicenceDB if the Action is allowed (assuming OK)
4. PMS sends AXCS the action performed
5. AXCS gives back the key to access the content (if necessary)
6. PMS gives the grant to access the content and possibly the key to the
AXMEDIS Player
7. Accounting & Rep. Tool retrieves from AXCS the actions performed by all the
End Users on objects distributed by the distributor
8. A&R Tool stores the transactions in the AXDB
9. Adm. Integrator gets transactions performed from the DB
10. Administrative information are mapped into the Distributor CMS

EndUser

1 AXMEDIS
Player

AXMEDIS
OBJECT

AXCS

5

Actions done 4

Administrative
Information
Integrator

Administrative
Information
Integrator

Distributor
CMS

9

10

PMS
Server
PMS

Server
2

Core accounting
manager and
reporting tool

AXDB

4
6

8

7

Distributor Site

End User Site

7a

9a

3 Licences
DB External Sites

EndUser

1 AXMEDIS
Player

AXMEDIS
Player

AXMEDIS
OBJECT

AXCSAXCS

5

Actions doneActions done 4

Administrative
Information
Integrator

Administrative
Information
Integrator

Distributor
CMS

9

10

PMS
Server
PMS

Server
2

Core accounting
manager and
reporting tool

Core accounting
manager and
reporting tool

AXDB

4
6

8

7

Distributor Site

End User Site

7a

9a

3 Licences
DB External Sites

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

134

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.4.2 Integrating Collecting Society administrative information of the basis of End User
actions

UCId UC12.4.2
Use case Integrating Collecting Society administrative information of the basis of End User

actions
Description In response to an user action, the administrative information are transferred to the

CMS of collecting society
Actors End user
Assumptions None
Steps 1 End user uses an AXMEDIS tool to operate on an AXMEDIS Protected

Objects that are on different distribution channels
2 Protection Manager Support allow only authorized operations on the object
3 Objects are accessed on different channels and each AXCS stores its Action-

Logs
4 Via the AXCS sync general information on objects or information that allow

Super AXCS to recover Action-Logs from the different AXCSs are
transferred to the Super AXCS Collector

5 Super AXCS collects information
6 Administrative reports are created
7 Administrative Information Integrator transfer Action-Logs on CMS

Post-conditions None
Variations None
Asynchronous actions None

11\\ End user

1 AXMEDIS
TOOL

AXCS

PMS
AXCS

AXCS

AXCS Sync.

AXCS Sync.

AXCS Sync.

Super AXCS Super AXCS
Collector

Administrative
Information Integrator

Collecting Society
Creator CMS

2

3
4

5 6
7

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

135

Design suggestions None
Issues None

12.4.3 Distributor asks for administrative information

UCId UC12.4.3
Use case Distributor asks for administrative information
Description In response to the distributor request, the administrative information are

transferred to the CMS of distributor
Actors Distributor
Assumptions None
Steps 1 A Distributor wants to recover information on actions performed on the

objects he has rights.
2 Core accounting manager and reporting tool query the reporting webservice

for obtaining the Action-Logs
3 AXMEDIS Statistic or reporting tools query AXCS
4 AXCS extracts the required Action-Logs and communicate them to the

reporting tool
5 Accounting report is generated.
6 Accounting report is passed to the Administrative Information Integrator
7 Data are loaded in the Distributor CMS

Post-conditions None
Variations None

Distributor

Action-Logs

Core accounting
manager and
reporting tool

Accounting reports

AXMEDIS reporting,
Web Service

AXCS 1 2 3

4

6

Administrative
Information Integrator

Distributor
CMS

5

7

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

136

AXMEDIS
Publisher

 AAXXEEPPTTooooll

User CMS User CMS User CMS

Publisher
CMS

User local
Authors & Publishers

Collecting Society

Performance
rights

Mechanical
rights

Reproduction Communication
Public performance
Transmission etc

Publisher local
Authors & Publishers

Collecting Society

AXMEDIS reporting
tool

consumers

AXCS AXCS AXCS

AXMEDIS
TOOL

SuperAXCS

PMS

Administrative
Information Integrator

AXMEDIS
Producer

 AAXXEEPPTTooooll

User CMS User CMS User CMS

Producer
CMS

AXMEDIS reporting
tool

consumers

AXCS AXCS AXCS

AXMEDIS
TOOL

SuperAXCS

PMS

Administrative
Information Integrator

User local
Producers rights

Collecting Society

Neighbouring
rights

Public use of sound
recordings

Producer local
Collecting Society

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

137

12.4.4 Administrative information retrieval for distributors
UCId UC12.4.4
Use case Administrative information retrieval for distributors
Description A content distributor requests administrative information about its own

AXMEDIS objects
Actors Content distributor
Assumptions Content provider is registered and has distributed his/her AXMEDIS objects, users

have used objects
Steps 1 A content distributor requests administrative information about its own

AXMEDIS objects.
2 the administrative information integrator asks the AXCS to verify the content

provider
3 the AXCS certificates the content provider
4 the administrative information integrator collects all Action-Logs related to

the distributor objects
5 the administrative information integrator records all collected data into the

distributor CMS
Post-conditions Administrative information is inside the content provider database
Variations 3a. content provider is not registered:

3a.1. the AXCS doesn’t validate the content provider
3a.2. the AXCS blocks the operation in progress

Asynchronous actions None
Design suggestions None
Issues None

12.4.5 Administrative information retrieval for collecting societies
UCId UC12.4.5
Use case Administrative information retrieval for collecting
Description A collecting society requests administrative information about the objects under

its territorial responsibility
Actors Collecting society
Assumptions Collecting society is registered and has to collect rights for objects distributed by

different distributors on different channels
Steps 1 A collecting society requests administrative information about AXMEDIS

objects under its authority.
2 The administrative information integrator asks the AXCS to verify the

collecting society
3 the AXCS certificates the collecting society
4 The SuperAXCS collects informations from the different AXCS that are on

the different channels in order to collect Actions-Logs performed on objects
for which the collecting society is authorized to collect rights

5 the administrative information integrator collects from the SuperAXCS all
Action-Logs related to the objects

6 the administrative information integrator records all collected data into the
collecting society CMS

Post-conditions Administrative information is inside the content provider database
Variations 4a. content provider is not registered:

4a.1. the AXCS doesn’t validate the content provider
4a.2. the AXCS blocks the operation in progress

Asynchronous actions None
Design suggestions None
Issues None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

138

12.5 Protection Manager Support/Server general

12.5.1 Protection Manager Support / Server

12.5.1.1 Consumption of a protected and governed AXMEDIS object in a connected
environment

UCId UC12.5.1.1
Use case Consumption of a protected and governed AXMEDIS object in a connected

environment
Description A user wants to consume a protected and governed AXMEDIS object
Actors End-user
Assumptions User is registered.

The user is connected.
Steps 1 A user tries to consume a protected and governed AXMEDIS object.

2 As the AXMEDIS object is governed, the PMS obtains the status information
from AXMEDIS Certifier and Supervisor.

3 The PMS request the authorisation to the authorisation server. It sends an
authorisation request that includes the user identification, the right, the
resource, optionally the license(s) or its(their) identifier(s) and the status
information. The authorisation server obtains the licenses associated to the
user from the database of DRM licenses, if necessary, and performs the
authorisation.

4 If the result of the authorisation is negative, it returns the reasons why not and
the user cannot consume the AXMEDIS object.

5 If the result of the authorisation is positive:
5.1 the PMS checks with AXCS if user has got the keys for decrypting object.
5.2 If not, the PMS obtains the secret information (decryption keys) needed to

unprotect the object from the AXCS. This information is delivered to the
user over a secure channel.

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.5.1.2 Consumption of a protected and governed AXMEDIS object in a unconnected
environment

UCId UC12.5.1.2
Use case Consumption of a protected and governed AXMEDIS object in a unconnected

environment
Description A user wants to consume a protected and governed AXMEDIS object
Actors End-user
Assumptions User is registered and has previously downloaded the AXMEDIS object.

The user does not have connection.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

139

Steps 1 A user tries to consume a protected and governed AXMEDIS object.
2 As the AXMEDIS object is governed, the PMS obtains the status information

from its Content Consumption status manager.
3 The PMS request the authorisation to the License Interpreter. It sends an

authorisation request that includes the user identification, the right, the
resource, the license(s) and the status information. The license interpreter
performs the authorisation.

4 If the result of the authorisation is negative, it returns the reasons why not and
the user cannot consume the AXMEDIS object.

5 If the result of the authorisation is positive:
5.1 The PMS obtains the secret information (decryption keys) needed to

unprotect the object from the Key Manager.
Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.5.1.3 Protection of an AXMEDIS object
UCId UC12.5.1.3
Use case Protection of an AXMEDIS object
Description A user wants to protect an AXMEDIS object
Actors AXMEDIS Object creator, Protection tool engine
Assumptions The user has logged in and his identity has been validated.

AXMEDIS Editor is running and an AXMEDIS object is opened at the editor
Steps 1 A user wants to protect an AXMEDIS object.

2 AXMEDIS editor makes use of Encryption support (see use case Encryption)
3 If the encryption is correct, and the encryption information has been generated

to protect this object, it has to be stored (see use case Storage of security
information)

4 PMS sends the protection information to the AXCS, which stores it in the
database (See Storage of security information use case)

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.5.1.4 Protection and association of licenses of/to an AXMEDIS object
UCId UC12.5.1.4
Use case Protection and association of licenses of/to an AXMEDIS object
Description A user wants to protect an AXMEDIS object and to associate to it license(s).
Actors AXMEDIS Object creator, Protection Tool engine
Assumptions The user has logged in and his identity has been validated.

AXMEDIS Editor is running and an AXMEDIS object is opened at the editor

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

140

Steps 1 A user wants to protect an AXMEDIS object and to associate to the
AXMEDIS object a set of licenses.

2 AXMEDIS editor makes use of Encryption support (see use case Encryption)
3 If the encryption is correct, and the encryption information has been generated

to protect this object, it has to be stored (see use case Storage of security
information)

4 PMS generates the appropriate rights expressions that contain:
4.1 The license(s) that the user wants to associate to this AXMEDIS object.

The licenses can be associated including them within the AXMEDIS
object, or references, or a license service referenced within the AXMEDIS
object.

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.5.1.5 Renewal of IPMP information after the detection of a succeed attack (connected)
UCId UC12.5.1.5
Use case

Renewal of IPMP information after the detection of a succeed attack
Description The protection of an AXMEDIS object has been violated, and a renewal of it is

needed
Actors AXCS, PMS
Assumptions
Steps 1 A succeed attack over the protection of an AXMEDIS object has been

detected by AXCS (or external detection).
2 New key for protecting the object is generated
3 The AXMEDIS object is re-protected with the new key (new algorithm)
4 The AXMEDIS object, together with its protection information are stored in

the database. It is also indicated that the protection method has changed in
order to inform the users accessing the protected AXMEDIS object

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.5.2 DRM Support

12.5.2.1 License creation for new content
UCId UC12.5.2.1
Use case License creation for new content.
Description An actor requests a license to consume or distribute content.
Actors Content creator, Distributor, Integrator
Assumptions AXMEDIS object exists and is uniquely identified

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

141

Steps 1 The use case begins when an actor requests a license.
2 The License Generator obtains the relevant parameters to generate the license

(principal, right/s, resource and conditions).
3 The License Generator creates the license
4 The License Verifier validates the license
5 If the license is valid, the License Manager stores the license in the database

of DRM licenses. If not, returns an alert with an explicative message.
6 The License Generator returns to the actor the license ID or the license in

clear-text or both.
Post-conditions None
Variations None
Asynchronous actions None
Design suggestions Implement it as a web service interface.
Issues None

12.5.2.2 License creation for cross-media content
UCId UC12.5.2.2
Use case License creation for cross-media content.
Description An actor requests a license to consume, create or distribute cross-media content.
Actors Content Creator, Distributor, Integrator
Assumptions AXMEDIS objects that have to be integrated exist, are uniquely identified and

have some licenses associated
Steps 1 The use case begins when an actor wants to create a license for cross-media

content from several existing AXMEDIS objects
2 The License Generator obtains from the License Manager all the licenses

associated to the original AXMEDIS objects
3 The License Generator derives a new license from the obtained licenses
4 The License Verifier validates the new license
5 The License Verifier verifies that the derived conditions are consistent
6 If the license is valid and the conditions are consistent the License Manager

stores the license in the database of DRM licenses. If not, returns an alert with
an explicative message.

7 The License Generator returns to the actor the license ID or the license in
clear-text or both.

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions Implement it as a web service interface.
Issues None

12.5.2.3 License migration
UCId UC12.5.2.3
Use case Content license migration between user domain devices
Description A user wants to migrate a license from one device to another.
Actors End-users.
Assumptions The license contains the information about the user devices it can be transferred to

(if no user devices specified, it is valid for all the devices of the user).
Steps 1 If the user has a license, it is transferred unaltered to the device.

2 If not, as it is stored in the license database, the user only has to identify him
in the system.

Post-conditions None
Variations None
Asynchronous actions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

142

Design suggestions None
Issues The migration process does not check if the license is usable in the destination

device.

12.5.2.4 User authorisation
UCId UC12.5.2.4
Use case User authorisation based on licenses
Description When a user wants to perform an action over a resource, the authorisation server

checks if the user has the appropriate permissions according to the license terms.
Actors Distributors, end-users.
Assumptions Licenses are expressed in MPEG-21 REL.
Steps 1 The authorisation server receives an authorisation request that includes the

user identification, the right, the resource and optionally the license(s) or
its(their) identifier(s).

2 The authorisation server obtains the licenses associated to the user from the
database of DRM licenses.

3 The authorisation server creates the authorisation request and story.
4 The authorisation server performs the authorisation.
5 If the result of the authorisation is positive the user is authorised. If not, it

returns the reasons why not.
Post-conditions None
Variations Use of ODRL licenses.
Asynchronous actions None
Design suggestions Implement it as a web service interface.
Issues None

12.5.2.5 Navigation of licensing information
UCId UC15.5.2.5
Use case Navigation on the licensing information
Description A user wants to view graphically the information related to his licenses.
Actors Content creators, distributors and end-users.
Assumptions None
Steps 1 A user requests to see graphically the information within his licenses.

2 The list of licenses associated to this user is shown.
3 The user chooses one of his licenses.
4 The license is shown graphically
5 The user navigates on the information of the license.

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.5.2.6 Rights Expression Translator
UCId UC12.5.2.6
Use case Rights Expression Translator
Description The system wants to translate a valid license (for instance, a mobile profile) from

a REL into another, providing interoperability.
Actors System

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

143

Assumptions A valid license exists
Steps 1 The use case begins when the system detects that a REL translation is needed.

2 Selection of a supported REL destination from a list
3 Translate the license
4 Check if the destination license is valid or not

Post-conditions None
Variations If the destination license is not valid, the translation will not be possible and the

system will show a message informing of this.
Asynchronous
actions

None

Design suggestions None
Issues None

12.6 Encryption/Decryption Support

12.6.1 Encryption
UCId UC12.6.1
Use case Encryption of AXMEDIS object
Description An actor wants to save a protected AXMEDIS object
Actors Any that can save an AXMEDIS object
Assumptions AXMEDIS Editor is running and an AXMEDIS object is opened at the editor
Steps 1 The use case begins when an actor wants to protect an AXMEDIS object

2 Check if actor has permission to protect the object
3 If actor has permission, the key for encrypting the object is recovered from its

storage (license, etc)
4 The object is encrypted and can be saved in a protected manner

Post-conditions None
Variations The key for encrypting the object does not exist and it has to be created by calling

AXMEDIS certifier
The Protection Engine wants to protect some objects

Asynchronous actions None
Design suggestions Library providing symmetric encryption functionalities
Issues None

12.6.2 Decryption
UCId UC12.6.2
Use case Decryption of AXMEDIS object
Description An actor wants to open a protected AXMEDIS object
Actors Any that can open an AXMEDIS object
Assumptions AXMEDIS Editor or AXMEDIS Viewer is running or the actor double clicks on

an AXMEDIS object to open it (Windows Systems)
Steps 1 The use case begins when an actor calls the “Open object” button on

AXMEDIS Editor or AXMEDIS Viewer
2 Check if actor has permission to open the object
3 If actor has permission, the key for decrypting the object is recovered
4 The object is decrypted and AXMEDIS Editor or Viewer can show it

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions Library providing symmetric decryption functionalities
Issues None

12.6.3 Encryption of symmetric key
UCId UC12.6.3

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

144

Use case Encryption of AXMEDIS object symmetric key using public key techniques
Description A symmetric key for an AXMEDIS object is encrypted with asymmetric

encrypting techniques for secure storage
Actors The creator of the AXMEDIS object whose symmetric key is going to be

encrypted
Assumptions A symmetric key for an AXMEDIS object has been generated

A pair of public key – private key have been generated for the creator actor
Steps 1 Symmetric key for AXMEDIS object is encrypted with the public component

of the creator’s asymmetric key
Post-conditions None
Variations None
Asynchronous actions None
Design suggestions Library providing asymmetric key encryption
Issues None

12.6.4 Decryption of symmetric key
UCId UC12.6.4
Use case Decryption of AXMEDIS object symmetric key using public key techniques
Description A symmetric key for an AXMEDIS object is decrypted using asymmetric

encrypting techniques to allow AXMEDIS object decryption
Actors The actor that wants to use protected AXMEDIS object
Assumptions The actor that wants to use the protected AXMEDIS object has received the

symmetric key for decrypting the object.
This symmetric key is encrypted with the public component of the actor’s
asymmetric key.
Actor has got the corresponding private component to decrypt the symmetric key
and then be able to open AXMEDIS object

Steps 1 Symmetric key for AXMEDIS object is decrypted with the private component
of the actor’s asymmetric key

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions Library providing asymmetric key encryption
Issues None

12.6.5 Storage of security information
UCId UC12.6.5
Use case Storage of encryption/decryption information for a protected AXMEDIS object
Description The encryption/decryption information of a given AXMEDIS object is stored
Actors None
Assumptions An actor has requested to save a protected AXMEDIS object
Steps 1 Symmetric key is encrypted by means of public key techniques (see

Encryption of symmetric key use case)
2 Cryptographic information regarding protected AXMEDIS object has to be

stored
3 Symmetric key for encrypting / decrypting AXMEDIS object
4 Algorithm used

Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

12.6.6 Retrieval of security information

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

145

UCId UC12.6.6
Use case Retrieval of encryption/decryption information for a protected AXMEDIS object
Description The encryption/decryption information of a given AXMEDIS object is retrieved
Actors None
Assumptions An actor has requested to open a protected AXMEDIS object
Steps 1 Cryptographic information regarding protected AXMEDIS object has to be

retrieved
2 Symmetric key for encrypting / decrypting AXMEDIS object
3 Algorithm used
4 Symmetric key is decrypted by means of public key techniques (see

Decryption of symmetric key use case)
Post-conditions None
Variations None
Asynchronous actions None
Design suggestions None
Issues None

13 AXMEDIS Player
As mainly a subset in functionality of an AXMEDIS Editor, and strongly interacting with distribution to end
users, the AXMEDIS Player shares some of the most common use cases that are also identified for the Editor
and common distribution scenarios. These use cases apply when a Player is considered instead of an Editor.
These use cases are:
UC3.1.9 Acquisition of AXMEDIS objects
UC3.1.10 Viewing/Using of AXMEDIS objects
UC4.1.2 Load and save AXMEDIS objects
UC 4.2.1 Invoking an internal viewer (/editor)
UC 4.2.2 Managing a digital resource by respecting the DRM in an Internal Viewer/Editor
UC 4.2.3 Closing an internal viewer (/editor)
UC 4.3.1 Invoking an external tool with a digital resource belonging to the AXMEDIS object
UC 4.3.5 Transferring a digital resource to an external tool
UC 12.6.2 Decryption
UC 12.6.4 Decryption of symmetric key
UC 14.2.1 User Software Installation
UC 14.2.2 User Registration
Among the above listed use cases, some apply only to a PC platform, or platform with considerable
resources and functionality: 4.3.1, 4.3.5, 14.2.1, 14.2.2
The other use cases apply more in general to different Players, including portable devices, by considering
suitable adaptations (for instance a suitable pointing/clicking device may be available instead of the mouse).

13.1 AXMEDIS Player on PC, Tablet PC
This section contains additional use cases which are more specific of a Player tool. While “Local adaptation
of Content in Internal Players/Viewers” and “Annotate for personal use” may be more suitable for devices
with considerable resources and more sophisticated interfaces like PCs, the other use cases apply as well to
less powerful portable devices like PDAs or mobile Players

13.1.1 Content Recording for Playtime Shift
UCId UC13.1.1
Use case Content Recording for Playtime Shift
Description The user can store some content in a backup support to possibly play content with a

time shift from the moment when it was downloaded.
Actors The Content Consumer (user)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

146

Assumptions The user has a function in the terminal that allows the operation of backup (or
record; the function must ensure the integrity of the copied AXMEDIS Object,
taking into account that an Object could be internally combined with other Objects).
The Backup Function has to be expressly authorized in the license terms.

Steps 1 The user select from a content distributor catalogue an AXMEDIS Object to
download

2 The client terminal, if license terms for the Object allow this, activate the
Backup Function

3 The user specifies the “title” with which the AXMEDIS Content has to be
recorded.

4 The user execute the Backup/Record Function
5 At a later time, the Player can be started in playback mode to play a selected

recorded “title”.
Post-conditions None.
Variations None.
Asynchronous
actions

The AXMEDIS Content can be deleted during the playback operation, according to
the license terms.

Design suggestions The Player should have a playback function allowing access to stored “titles”
without an explicit path access for the user.

Issues None.

13.1.2 Fast-forward of Content in Internal Players/Viewers
UCId UC13.1.2
Use case Fast-forward of Content in Internal Players/Viewers
Description The User wants to play a digital resource faster for a quick preview or for fast access

to a later sequence
Actors The Content Consumer (user)
Assumptions • AXMEDIS Player is open

• An object is opened within the AXMEDIS Player
Steps 1 The User select the Play command

2 The system activates the proper internal player/viewer.
3 The User select the fast-forward command
4 The activated viewer/player inside the AXMEDIS Player starts skipping frames

at appropriate rate to speed-up playback speed.
5 When the User releases the fast-forward command, the viewer/player returns to

normal playback mode.
Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues End User usually can only “play” an AXMEDIS object, so only internal

“players/viewers” should be invoked, not editors.

13.1.3 Local adaptation of Content in Internal Players/Viewers
UCId UC13.1.3
Use case Local adaptation of Content in Internal Players/Viewers
Description The User wants to play more digital resources possibly requiring a resource

management in real-time
Actors The Content Consumer (user)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

147

Assumptions • AXMEDIS Player is open
• One or more objects are opened by the user within the AXMEDIS Player

Steps 1 The User select the Play command
2 The system activates the proper internal player/viewer.
3 The User select again the Play command for a second Object
4 The activated viewers/players inside the AXMEDIS Player monitor the resource

availability: they possibly start skipping frames at appropriate rate to maintain
system stability.

5 When the User stops one of the object playbacks, the viewer/player returns to
normal playback mode.

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues End User usually can only “play” an AXMEDIS object, so only internal

“players/viewers” should be invoked, not editors.

13.1.4 Annotate for personal use
UCId UC13.1.4
Use case Annotate for personal use
Description The end user is able to add personal annotations to content by using the Player. The

annotations can be text, graphics, recorded voice etc. that refer to content. The
annotations do not modify the original content. The annotations are stored locally
and separated from the content. The Player has the capacity to associate the
annotations with the content so that the user knows to which content the annotations
belong. The user can play the content and take the notes at the same time. When the
content is a moving picture or a song the Player can add time stamps to the
annotations.
The Player can also handle the use of spatial stamps to accompany the user
annotations. A spatial stamp could be used to associate an annotation to a certain
position of a still picture.

Actors The Content Consumer (user)
Assumptions
Steps 1 The end user starts playing content.

2 The end user exploits the Player reduced editing functions to add some
annotation related to the played content.

3 The player takes care of associating the annotations with the content without
modifying the content itself. The Player records the time and space coordinates
of the annotation respect to the content.

4 The final user finishes playing and annotating the content.
5 Annotations are stored independently from AXMEDIS Objects containing the

content but keeping a reference to them.
Post-conditions None
Variations None

Asynchronous
actions

None

Design suggestions This can be realized by adding a limited part of the editor functionality and allowing
to save notes in a different way

Issues None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

148

13.1.5 Local User Profiles
UCId UC13.1.5
Use case Local User Profiles
Description The Player is able to handle local user profiles. Different users may use the same

Player configured in a slightly different manner so that the Player behaves or looks
different. The profile can specify general settings of the player for instance:
language of the user interface, default volume, default decoder if several of them are
available or default skin. The users are able to configure their own profile.

Actors The Content Consumer (user)
Assumptions
Steps 1 The end user configures and saves a user profile.

2 Every time the Player is opened it checks the user profile and adapts itself to the
user preferences.

Post-conditions None
Variations A privileged user could set the profile for one or more non-privileged users. For

instance the user Parent could define the Child profile. The Child profile could state
that e.g. no content rated R (Restricted in American movies) can be played or that
no content can be played after a given time.

Asynchronous
actions

None

Design suggestions None
Issues None

13.1.6 History of the last played contents
UCId UC13.1.6
Use case User profiles
Description The Player is able to record the name and location of last played contents. The list

of the last played contents is available to the end user. The list is stored locally in
the user platform. The length of the list is defined by the end user. The end user
can disable this functionality.

Actors End User
Assumptions
Steps 1 Every time the user plays content the Player keeps track of it in a local list.

2 The user can know what the last played contents are.
Post-conditions none
Variations none
Asynchronous
actions

none

Design suggestions
Issues

14 AXMEDIS for Distribution via Internet

14.1 Back Office Management

14.1.1 Creating a New Mediaclub

UCId UC14.1.1
Use case Creating a new Mediaclub setup
Description Set up a new mediaclub in the cms

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

149

Actors System Manager (sys mng)
Assumptions The system is up and running and fully configured;

Actors have network access to the management interface (web).
All techinical info needed to configure the mediaclub are provided by the Content
distributor

Steps 1 (sys mng) log in to the system and add a new project (name and description)
2 (sys mng) configure the mediaclub website publishing targets and publishing

modes (static pages, dynamic, etc)
3 (sys mns) create the projects content repository witch will contains the

contents types definition and all contents that will be included in the project
4 (sys mng) creat the project media repository witch contains binaries content as

images, video stream, audio stream, etc
5 (sys mng) Define feed import rules
6 (sys mng) Define referred publishing rules, if needed
7 (sys mng) configure the project administrator
8 (sys mng) Save configuration

Post-conditions Test page should be displayed in the website publishing targets and prj mng
successfully log in

Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

14.1.2 Mediaclub Setup

UCId UC14.1.2
Use case Mediaclub set up
Description Define all mediaclub feactures in the cms
Actors Project Manager (prj mng)
Assumptions The system is up and running and fully configured; actors have network access to

the management interface (web)
Steps 1 (prj mng) log in to the system and load the project settings form (name and

description)
2 (prj mng) configure the mediaclub website sections
3 (prj mng) create the projects content types (xsl schema; xsl target and taget

layout)
4 (prj mng) create content categories and media categories three

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

14.1.3 Mediaclub Accounts and Permission Management

UCId UC14.1.3
Use case Mediaclub accounts and permissions
Description Manage a mediaclub accounts and their permissions
Actors Project Manager (prj mng)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

150

Assumptions The system is up and running and fully configured; actors have network access to
the management interface (web)

Steps 1 (prj mng) log in to the system and load the project account management form
(n

2 (prj mng) Create a new project account defining personal details, user id,
password

3 (prj mng) Define account permission (Editor, publish authorizer, project
manager …..)

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

14.1.4 Mediaclub Project Uploading and publishing contents

UCId UC14.1.4
Use case Mediaclub publishing
Description Upload contents in the cms and publish them in the related mediaclub site
Actors (editor) actors allowed to put contents in the mediaclub, (publisher) actors allowed

to autorize content publishing
Assumptions The system is up and running and fully configured; actors have network access to

the management interface (web)
Steps 1 (editor) log in to the system and loads the select new content action

2 (editor) choose the content type and define a content name
3 (editor) fill all fields required from the defined content type
4 (editor) save content and choose one or more publishing targets
5 (editor) submit content to authorization for publishing
6 (publisher) authorize or reject the publish request

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

14.1.5 Mediaclub Project Acquiring AXMEDIS content

UCId UC14.1.5
Use case Mediaclub and AXMEDIS content
Description Set up a new mediaclub in the cms
Actors Project Manager (prj mng)
Assumptions The system is up and running and fully configured; actors have network access to

the management interface (web)
Steps 1 (prj mng) search a specific content on a AXMEDIS p2p network

2 (prj mng) select AXMEDIS content and view all meta data infos
3 (prj mng) acquire license (if needed) and refer the object in the mediaclub

contents
Post-conditions None
Variations None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

151

Asynchronous
actions

None

Design suggestions None
Issues None

14.1.6 Mediaclub Project define payment gateway entry

UCId UC14.1.6
Use case Mediaclub payments system setup
Description Enable the payment gateway to provide payment service to the specific mediaclub
Actors System Manager (sys mng)
Assumptions The system is up and running and fully configured; actors have network access to

the management interface (web)
Steps 1 (sys mng) log in to the system and go in to payment management section

2 (sys mng) configure a new mediaclub shop in the payment gateway giving
(name, description, other details)

3 (sys mng) Define payment methods available for the mediaclub
4 (sys mng) configure the shop administrator
5 (sys mng) Save configuration

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

14.1.7 Mediaclub Shop payment Management

UCId UC14.1.7
Use case Mediaclub shop payments configuration
Description Configure a mediaclub shop in the payment gateway
Actors Shop Manager (shop mng)
Assumptions The system is up and running and fully configured; actors have network access to

the management interface (web)
Steps 1 (shop mng) log in to the system and go in to payment management section

2 (sys mng) configure mediaclub call back URL for success, failure and error
transaction

3 (shop mng) Choose payment methods available for the mediaclub
4 (sys mng) upload schema and graphical components needed to build the

payments transaction pages that will be shown to the end user
Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

14.1.8 Mediaclub Shop Management refound a transaction

UCId UC14.1.8
Use case Mediaclub refound management

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

152

Description refound a payment transaction in a mediaclub shop
Actors Shop Manager (shop mng)
Assumptions Customer have provided transaction details and is proven that he hasn’t had the

digital goods
Steps 1 (shop mng) search the transaction id and or the user id in the transaction list

2 (shop mng) load the transaction details and check if everithing is ok
3 (shop mng) starts transaction refound process

Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

14.2 End User Client configuration

14.2.1 User Software Installation
UCId UC14.2.1
Use case User Software Installation
Description The user installs the AXMEDIS Client Application
Actors The Content Consumer (user)
Assumptions User has PC or STB based on most common Operating Systems: Windows XP,

2000, ME; MacOS X; Linux.
User has an Internet connection (DSL preferably)

Steps 1 The user obtains the AXMEDIS Client Application Setup (e.g., from the
Internet, from a CD, ...)

2 The user runs the AXMEDIS Client Application Setup
3 The user follows the steps of the installation
4 Some information entered by the user is used to create his profile, that is

securely communicated via Internet to MediaClub installation
Post-conditions The system shall have entered the next procedural step
Variations The exact form of the Setup, and the installation steps, could depend on the exact

operating system of the user’s PC, and on its configuration. Also, the user profile
(country, language, gender, ...) may influence some steps (e.g., subscription to
language-specific services).

Asynchronous
actions

None.

Design suggestions Different Setups applications could be distributed according to country, bundling
with Tiscali DSL set-up packages, commercial promotions, etc.
The Setups should contain minimal ‘intelligence’ and be driven by the client
management server, in order to make updates easier.
The client media Server shall implement algorithms to detect the user language
and provide him useful information on the service.

Issues None.

14.2.2 User Registration
UCId UC14.2.2
Use case User Registration
Description The user register himself in order to access the MediaClub service
Actors The Content Consumer (user)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

153

Assumptions The user has successfully installed the software AXMEDIS components and has
an email address

Steps 1 The user runs the MediaClub web service registration procedure
2 The user enters or updates his personal profile, including user e-mail and

marketing information, that is securely stored in the MediaClub
3 The user obtains via email required authorizations (e.g., login/password) to

access the MediaClub. (This could require paying a subscription fee, a pre-
paid amount, etc.)

4 The user replys via email to confirm registration
5 The AXMEDIS Client Application may update its internal state by receiving

appropriate files from the Server (e.g., group memberships)
Post-conditions The user is ready to use the MediaClub service and access the published Content

catalogue. (Access can be restricted only to some components)
Variations The user may re-run the procedure to update his profile.

In some situations this procedure could be automatic and hidden to the user.
If the user already has a profile on the Server, his profile is restored in the local
installation (e.g., user preferences, history, rights ...). This may occur, e.g., if the
user is installing the Client Application on a different computer.

Asynchronous
actions

None.

Design suggestions user profile may be used in order to personalize content presentation, messages,
etc.

Issues None.

14.3 User login

14.3.1 Authentication trough AXMEDIS client
UCId UC14.3.1
Use case User Login
Description The user authenticate itself into the AXMEDIS system, via the AXMEDIS client

(player/editor etc.)
Actors Any kind of user
Assumptions User has a properly installer AXMEDIS client on his Device

User is already registered in the AXMEDIS system
Steps 1. The user launch the AXMEDIS client software

2. The software prompt the User for its login/password/certificate path or
whatever is used to authenticate him
3. The User authenticate itself
4. The AXMEDIS Client application starts a Session for this user, granting the
rights associated to his profile

Post-conditions
Variations Models where the player is certified for a given device only and can run

unrestricted on this device ?
Asynchronous
actions

None.

Design suggestions
Issues None.

14.3.2 Authentication trough an external SSO system
UCId UC14.3.2
Use case User Login

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

154

Description This Case take place in a system where the AXMEDIS client belongs to a wider
software system which provides its own SSO authentication mechanism. This will
typically be the case in a school, where a VLE (Virtual Learning Environment)
uses such mechanism to control access to each one of its modules. In such a
system a second authentication step into the AXMEDIS system is not desirable.

Actors End users
Assumptions The distributor of the VLE integrates the AXMEDIS player into his own software.

The VLE distributor has deal an agreement with a Distributor to provide some
resources to its users, and to automatically make the VLE users be registered
AXMEDIS users

Steps 1. The user launch the VLE client software (?)
2. The software prompt the User for its login/password/certificate path or
whatever is used to authenticate him into the VLE
3. The User authenticate itself
4. The VLE checks authorisations and grant rights Accordingly.

4.1 if the User belongs to the Agreement with the AXMEDIS content
provider, the VLE opens a session for him into the AXMEDIS system.
AXMEDIS player grants rights according to the user’s profile in its own
registered users DB.

4.2 If the User does not belong to the Agreement with AXMEDIS content
provider, the VLE does not open a session for him into the AXEMDIS
system. When the User tries to access AXMEDIS player, the player
request authentication.

Post-conditions
Variations The agreement between the VLE and content provider may take many forms :

1. Agreement on a per user basis : e.g. each student user may be registered by
itself into the AXMEDIS content provider system, thus allowing a fine grained
tuning on which content is available for each one. This is the preferred solution
2. Agreement on domain basis : e.g. the domain is a school and whoever logs in
from this domain has access to the whole pre-agreed content.

Asynchronous
actions

The VLE maintains a DB of its user. This DB must be synchronized in some ways
with the AXMEDIS registered user’s DB (either a batch process or a live bridge
between the two DBs)

Design suggestions
Issues AXMEDIS DB of users must be able at least to import users from the VLE DB.

Maybe a dynamic bridge between the two DB may be a better solution (that is, the
AXMEDIS DB is able to interrogate another DB when not finding the user in its
own DB).
This disposal should not break any AXMEDIS security rule.

14.4 Catalogue Browsing

14.4.1 Catalogue Listing

UCId UC14.4.1
Use case Catalogue Listing
Description The user accesses a MediaClub web page containing the catalogue list of

AXMEDIS content in order to select and playback content. He browses and
previews the content listed in order to find the interesting content for him. Content
may be delivered in uncast or multicast mode depending if content is on demand
or live.

Actors The Content Consumer (user)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

155

Assumptions The user shall have an active Internet Connection needed to reach the MediaClub
web page where the proposed AXMEDIS Content Web List is published.
The user shall know the URL where the MediaClub is published.

Steps 1 The user reaches the AXMEDIS Catalogue List
2 AXMEDIS content is displayed according to various criteria (type, author,

content producer, production date)
3 user selects and accesses content by clicking on the reference

Post-conditions User accesses Content Access or sub-catalogue List
Variations The catalogue list is used also for listing sub-catalogue listings such as content

categories or search results
This AXMEDIS Content catalogue List could be published by third party
distributor (e.g., OD2, iLabs, Sejer, etc.). XML data will enable lay-out flexibility
on the third party distributor website.

Asynchronous
actions

User must be opted with FAQ, HELP and customer care forms urls

Design suggestions The user may search catalogue based on key words or free text search
Possible previews related to the AXMEDIS Object may be provided

Issues None.

14.4.2 Catalogue Searching
UCId UC14.4.2
Use case Catalogue Searching
Description The user searches content in the MediaClub or Content on P2P network
Actors The Content Consumer (user)
Assumptions The user shall have an active Internet Connection needed to reach the MediaClub

web page where the proposed AXMEDIS Content Web List is published.
The user shall know the URL where the MediaClub is published.

Steps 1 The user accesses a form within the AXMEDIS Client plug-in where he can
operate keyword or free-text searches

2 Search results of AXMEDIS content is displayed according to various criteria
(type, author, content producer, production date) and wether content is
available in MediaClub or on the P2P network

3 user selects and accesses content by clicking on the reference
Post-conditions User accesses Content Access
Variations This AXMEDIS catalogue Search could be published by third party distributor

(e.g., OD2, iLabs, Sejer, etc.). XML data will enable lay-out flexibility on the
third party distributor website.

Asynchronous
actions

none

Design suggestions none

Issues None.

14.4.3 Available resources listing
UCId UC14.4.3
Use case Available resources listing
Description This Use Case describes a typical resources listing performed by a student through

the distribution portal available in its school’s VLE . After logging in, the portal
only displays the content he already bought, for rapid access.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

156

Actors The Content Consumer (user)
Assumptions The user has an account on the content distribution system ; his client environment

is properly configured to list his available content after logged in.
Steps 1. The User logs in the system through the AXMEDIS login client

2. Once login is accepted, the client displays the list of AXMEDIS object
available to this user

Post-conditions Once logged in, each time the user reaches the portal, the list of resources
available to him is displayed

Variations
Asynchronous
actions

Design suggestions
Issues None.

14.4.4 Content Access
UCId UC14.4.4
Use case Catalogue Content Access
Description The user selects the Catalogue content
Actors The Content Consumer (user)
Assumptions The user has selected content from a Catalogue listing
Steps 1 The user accesses the Catalogue Content page with editorial and product

information
2 The user is prompted with two options: pre-download or purchase
3 If user opts for pre-download the user clicks on the AXMEDIS Object

reference URL in order to fetch the content. If user opts for immediate
purchase the user is sent to the MediaClub acquisition procedure for the
AXMEDIS Object selected

Post-conditions Depending if content is free of charge or requires a transaction, the user will be
directed open the AXMEDIS Object or to the MediaClub Payment Gateway

Variations This AXMEDIS Content Access could be managed by third party distributor (e.g.,
OD2, iLabs, Sejer, etc.). XML data will enable lay-out flexibility on the third
party distributor website.

Asynchronous
actions

none

Design suggestions Catalogue Content page may include editorial text, picture data
Issues None.

14.4.5 User Page
UCId UC14.4.5
Use case User Profiling
Description
Actors The Content Consumer (user)
Assumptions The user has successfully registered in order to access the MediaClub
Steps 1 user accesses MediaClub user page

2 user selects product profiling option
3 user selects content preferences
4 user can view all content purchased, transactions, validity of licenses
5 user can view suggested content

Post-conditions On subsequent access to the MediaClub user is prompted with customized pages
that are assembled based on content preferences and on marketing profile

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

157

Variations The user may re-run the procedure to update his content preferences.

Asynchronous
actions

none

Design suggestions (TBD)
Issues Legal disclaimer for privacy

14.5 Catalogue Content Purchase

14.5.1 Content Fetching
UCId UC14.5.1
Use case Content Fetching
Description As the user selects content fetching the AXMEDIS plug-in opens and Content

delivery starts. User can select the 3 different delivery modes:
• Streaming. Similar to a broadcast experience, user acquires license and

subsequently starts streaming content. Recommended only for higher
bandwidth (450kb/s or above).

• Download. After acquiring a license, the user can download the media (up to
10Mb/s encoding). Media can be viewd from the user’s computer after the
downloading process (can take 1-8 hours according to user access)

• Pre-Download. User can first download content and then is prompted to
purchase license.

The user can check any time that the progress bar, indicating the download state,
is advancing.

Actors The Content Consumer (user)
AXMEDIS plug-in

Assumptions The user has selected an AXMEDIS Object distributed in the Content Catalogue.
This may happen directly after catalogue content access or after Catalogue
Content transaction.

Steps 1 The user selects delivery mode: pre-download, download, progressive
download, streaming

2 The AXMEDIS plug-in opens and content delivery starts according to the
delivery mode chosen by the user

3 The user opens the jobs panel where all current downloads are displayed
4 The user reads the remaining time for the end of transmission
5 The user can open the folder where the content is being received
6 The user can interrupt the reception of a given content

Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

The user, after opening the folder where the content is being received, deletes an
incomplete and/or temporary file. This could put the AXMEDIS Client
Application in an inconsistent state.
The use may also activate a previously purchased license while fetching content in
progressive download.

Design suggestions None.
Issues None.

14.5.2 User Authentication Form
UCId UC14.5.2
Use case User Authentication Form

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

158

Description The user will be requested to authenticate in order to start any content fetch or
transaction

Actors The Content Customer (user) (involved in the purchase/rental operation)
The MediaClub (entity performing all required checks to ensure that
purchase/rental operations are valid and legal)

Assumptions The user has access to the Catalogue
Steps 1 The user enters his identification information (this does not necessarily mean

personal details, it will be sufficient to have proper credentials, e.g.,
login/password)

2 The user credentials are sent to the MediaClub for verification
3 The user waits for the server response
4 If the user is identified as a regular one permission to proceed is granted and

user can access all restricted areas of the Mediaclub that enable to fetch,
purchase and acquire licenses for content, otherwise purchase procedure is
aborted and user is sent back to browsing

Post-conditions The system shall have entered the next procedural step
Variations This Authentication Form could be published by third party distributor (e.g., OD2,

iLabs, Sejer, etc.). XML data will enable lay-out flexibility on the third party
distributor website.

Asynchronous
actions

None

Design suggestions None.
Issues None

14.5.3 Catalogue Content Transaction

UCId UC14.5.3
Use case Catalogue Content Transaction
Description The user is prompted with multiple payment options. Te user confirms the

intention of purchasing the selected AXMEDIS Content. The user provides
payment related information along with data needed to ensure legal validity of
requested operation.

Actors The Content Consumer (user)
The MediaClub Payment Gateway

Assumptions The user has selected the Catalogue content

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

159

Steps 1 The MediaClub Payment Gateway shows to the user all billing information
available including:

o Price
o Conditions for each selected item
o Related use licence
o Scope and limitations
o Possible constraints

2 The MediaClub Payment Gateway asks the user to verify and accept presented
terms

3 If the user accepts procedure continues otherwise is aborted and user is sent
back to browsing

4 The user shall finalise billing information
5 Once billing information are provided the user is requested to select the

payment method (credit card, electronic wallet, pre paid card, pre assigned
tokens or similar)

6 The MediaClub Payment Gateway requires clearance to the AXMEDIS
Distributor for the provided payment ID.

7 If payment ID is cleared the user will be charged the cost
8 The MediaClub Payment Gateway provides the system the proper clearance

and the license delivery is authorized.
9 The user receives confirmation of transaction OK on a web page
10 The user receives an email notification that transaction has been succesful
11 User can start fetching content and come back subsequently in the user page

for license activation. Alternatively the user can immediately activate license
and start viewing content during content fetching

Post-conditions The system shall have entered the next procedural step
Variations
Asynchronous
actions

None.

Design suggestions A supplementary actor could be a bank or other institution that will handle the
money transaction and has to be a third trusted party for both the user and the
AXMEDIS Certifier.

Issues None.

14.5.4 Content Access
UCId UC14.5.4
Use case Content Access
Description The user accesses his local cache containing several AXMEDIS Objects.
Actors The Content Consumer (user)
Assumptions The AXMEDIS Content is successfully received.
Steps 1 The user accesses the AXMEDIS Object for playing it

2 The AXMEDIS Object is delivered to either the AXMEDIS Viewer or the
standard application (with an additional AXMEDIS plug-in)

3 The application detects if the Object needs to acquire a license
4 The application finds a pre-acquired license for the Object and play it
5 The application needs a new license for the Object and tries to contact the

MediaClub.
Post-conditions The system shall have entered the next procedural step
Variations
Asynchronous
actions

None.

Design suggestions

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

160

Issues None.

14.5.5 Content Preview
UCId UC14.5.5
Use case Content Preview
Description The user browses one/more AXMEDIS Object(s). The user opens and plays some

short previews (if they are available) integrated with the received AXMEDIS
Object. The user decides to buy or not the received AXMEDIS Content.

Actors The Content Consumer (user)
Assumptions The AXMEDIS Object has been integrally received.
Steps 1 The user opens the AXMEDIS Object locally stored in his local cache

2 The user browses the AXMEDIS Object, using the AXMEDIS Info associated
to the Object

3 The user reaches a preview available for the Object
4 The user plays the AXMEDIS Object Preview

Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

None.

Design suggestions One or more previews (depending on the internal structure of the AXMEDIS
Object) should be available for the final user, in order to help him in the content
evaluation before purchasing it.

Issues None.

14.5.6 License Acquisition
UCId UC14.5.6
Use case License Acquisition
Description The user receives a license for playing the content
Actors The Content Consumer (user)
Assumptions The user is logged-in to the MediaClub

The user has selected to play an AXMEDIS content
Steps 1 The user opens the protected part of the AXMEDIS Object

2 The Object is delivered to the application/viewer charged to open/play it
3 The Application/Viewer has an internal plug-in able to detect if the Object to

open needs a license
4 The AXMEDIS Viewer, using the internal plug-in, contacts the MediaClub in

a protected mode (a secure connection is established with the MediaClub)
5 The MediaClub authorizes the AXMEDIS Certifier and Supervisor to provide

the user with a license corresponding to the business rule associated to product
purchased by the user

6 The user receives the AXMEDIS license useful to open the protected part of
the AXMEDIS Object

7 The user receives a confirmation page that license has been successfully
issued

8 The user consumes the AXMEDIS Object following the rules contained in the
AXMEDIS license

Post-conditions The user plays the content
Variations None
Asynchronous
actions

None

Design suggestions None.
Issues Security, privacy and transparency are key requirements.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

161

14.5.7 Multi-device license activation and back-up
UCId UC14.5.7
Use case Multi-device license activation and back-up
Description The user copies some interesting content in a device other than initial PC
Actors The Content Consumer (user)
Assumptions The device must be supported by the AXMEDIS Client plug-in

Any Content copy or backup has to be expressly authorized in the license terms.
Steps 1 The user opens the copy/backup interface of the AXMEDIS Client plug-in

2 The user selects all Objects involved in the copy operation
3 The user specifies the device where the AXMEDIS Content has to be copied.
4 the user can start a new license activation procedure (if he has right to activate

license on new device) or else purchase new license for new device
Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

None

Design suggestions None
Issues None.

14.5.8 Pre-ordering and registration for a group of students

UCId UC14.5.8a
Use case Pre-ordering for a group of students
Description This case describe the specific procedure used by a “master user” (teacher) to buy

content licenses for multiple other user.
Actors The teacher
Assumptions The teacher has to be registered in the system. The students (users) may not be

registered in the system ;
Steps 1.The teacher orders the product and request N licenses

2.Through the commercial service, or a web server, or a pre-registered account
etc, the teacher pays the bill
3. Pre-ordering is saved in the Pre order database, waiting for activation
4. The teacher receives an e-mail confirming its order, and containing the
Activation Number

Post-conditions
Variations Parameters given at pre-ordering time may change the kind of license waiting for

activation : license per user/product, license per device, license per domain
Asynchronous
actions

None

Design suggestions None
Issues None.

UCId UC14.5.8b
Use case Automatic registering for a group of students
Description This case describe the automatic registering of students (user) when they use the

content pre-ordered by their teacher for the first time
Actors The teacher

The students

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

162

Assumptions The teacher has pre-ordered enough licenses for all of its students ;
The students are not yet registered in the system
The students are using a dedicated client

Steps 1 The teacher gives to the students the URL to access the content ;
2 The teacher gives the Activation Number for this content to the students ;
3 Through the dedicated client, the student access the URL given by the teacher
4 The system ask the student for the Activation Number for this product
5 The student enter the Activation Number
6 The dedicated client associate automatically computed user/device

identification data and send them along with the Activation Number
7 The system creates an AXMEDIS user/device with the identification data
8 The system creates an AXMEDIS License corresponding to the parameters

given at pre-ordering time, for the previously created user/device
9 The license is made available trough AXMEDIS for the user to be able to

view the requested content
Post-conditions
Variations Depending on the initial parameters, the license is granted for a user, for a device

or for a combination of both.
Asynchronous
actions

None

Design suggestions None
Issues None.

14.6 Business Models

14.6.1 Rental

UCId UC14.6.1
Use case Rental
Description User pays to view a media in streaming or download mode before he can access to

it. After having acquired a license for a media download, this license remains
valid for a limited time before it expires. After having rented a media in streaming
or download mode, the user will be able to see it as often as he likes within the
validity period.

Actors The Content Consumer (user)
Assumptions See catalogue Content Transaction
Steps 1 the customer chooses the content

2 he provides minimal personal information, chooses the payment
3 the distributor confirms the successful payment transaction
4 the customer downloads the content
5 after the content expiration date the content is not accessible anymore

Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

None

Design suggestions (TBD)
Issues None.

14.6.2 pay per download

UCId UC14.6.2
Use case pay per download

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

163

Description The end user pays to download a content that will be seen only once.
Actors The Content Consumer (user)
Assumptions See catalogue Content Transaction
Steps 1 the customer chooses the content

2 he provides minimal personal information, chooses the payment
3 the distributor confirms the successful payment transaction
4 the customer downloads the content
5 if the customer wants to access again to the content he has to replicate this

procedure
Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

None

Design suggestions (TBD)
Issues None.

14.6.3 Sell-through

UCId UC14.6.3
Use case Sell-through
Description User acquires a permanent license and owns the media after the download, just as

a purchased DVD (including the right to watch it without limitations and to burn
it). Equivalent to a content offer of the shelf (CD, DVD, book etc.)

Actors The Content Consumer (user)
Assumptions See catalogue Content Transaction
Steps like pay per download
Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

None

Design suggestions (TBD)
Issues None.

14.6.4 subscription

UCId UC14.6.4
Use case subscription
Description Based on a recurrent fee. User purchases either full access to a set of contents that

can be viewed throughout the period he pays for. Or he gets a defined number of
credits every month for that the subscription is valid.

Actors The Content Consumer (user)
Assumptions See catalogue Content Transaction
Steps 1 the customer chooses the subscription

2 provide personal information, chooses the payment system and the invoice
method (paper mail)

3 the distributor confirms the subscription success and the customer can start
using the service

4 the renewal is automatically done until the customer terminates the
subscription

Post-conditions The system shall have entered the next procedural step
Variations None.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

164

Asynchronous
actions

None

Design suggestions (TBD)
Issues None.

14.6.5 pay per minute
UCId UC14.6.5
Use case pay per minute
Description The customer is charged for the time the content is streamed
Actors The Content Consumer (user)
Assumptions See catalogue Content Transaction
Steps 1 the customer chooses the content

2 he provides personal information, chooses the payment and invoice method
(mail / paper)

3 the distributor confirms the successful payment transaction
4 the customer can start see/use the content
5 based on the recurrency defined by the distributor, the customer receives the

invoice and he is automatically charged for the number of minutes where he
used the content

Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

None

Design suggestions AXMEDIS has to provide information of the minutes required
Issues None.

14.6.6 pay per Kb downloaded
UCId UC14.6.6
Use case Pay per Kb downloaded
Description The customer is charged for the Kb downloaded
Actors The Content Consumer (user)
Assumptions See catalogue Content Transaction
Steps same procedure as pay per minute where the measure unit is the Kb instead of the

minutes
Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

None

Design suggestions AXMEDIS has to provide information of the minutes required
Issues None.

14.6.7 pay per day
UCId UC14.6.7
Use case pay per day
Description The customer is charged for the number of days he access to the content

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

165

Actors The Content Consumer (user)
Assumptions See catalogue Content Transaction
Steps same procedure as pay per minute where the measure unit is the number of days

when the customer use the content instead of the minutes
Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

None

Design suggestions AXMEDIS has to provide information of the minutes required
Issues None.

14.6.8 pay per credits
UCId UC14.6.8
Use case pay per credits
Description All contents are associated to a set of credits which are translated into currency in

the case of PPV, or are visualized as mere credits for prepaid users. example
implementation could ser an equivalence of 100 credits = 1 euro. Technically
speaking the users always purchases a set of credits. This enables to provide ease
of communication for all offers with users able to easily asses the value of their
purchase. Credits provide also and easy mean of negotiation with content owners.
Experience with music prepaid credits show that the model is very adapted to
Internet use.

Actors The Content Consumer (user)
Assumptions See catalogue Content Transaction
Steps 1 User can purchase in advance (prepaid) credits.

2 Every time he rents or buys a media, a certain number of credits will be
deducted from his account.

3 Prepaying a higher number of credits results in a volume discount for the user
Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

None

Design suggestions
Issues None.

14.6.9 Grouped licenses
UCId UC14.6.9
Use case Grouped Licenses
Description As part of some packaged offers (e.g. a VLE(1) provider wants to include

educational content in his offer for a school/group of school), license for a group
of products can be granted for whole schools for multiple school years.
(1) VLE = Virtual Learning Environment

Actors VLE Provider, Content Provider, Users
Assumptions VLE Provider includes AXMEDIS client into his VLE offer
Steps 1. VLE Provider concludes a deal with Content Provider for including N products

with specific license conditions into his VLE offer
2. Content Provider create the licences corresponding to the grouped offer : mostly
license for domains, where a domain can be a school, group of school
3. Inside the domain, the Users can access the contents

Post-conditions

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

166

Variations None.
Asynchronous
actions

None

Design suggestions
Issues Precise the concept of “domain”

14.6.10 Packaged offers
UCId UC14.6.10
Use case Packaged offers
Description On one distribution portal, multiple content providers associate themselves to

provide one priced packaged offer. The package contains objects from each
content provider, each under specific licensing conditions

Actors Distributor, Contents providers
Assumptions
Steps 1. Multiple Content providers agrees on a packaged offer including some of their

products under specific licensing terms at an agreed price, for a specific
distribution channel
2. The distributor creates the package on its portal
3. Customer buys the package on the portal
4. The distributor split the money between content publishers present in the
packaged offer, according to predefined rules
5. Content provider create licenses according to the package content

Post-conditions
Variations None
Asynchronous
actions

None

Design suggestions
Issues None.

14.7 Advanced Payment methods

14.7.1 Gift Certificates
UCId UC14.7.1
Use case Gift Certificates
Description Gift certificates allow a customer to buy a credit and to gift them to another

customer. The credit is bought in a shop and can be used only in that shop.
Actors The Content Consumer (end user);
Assumptions

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

167

Steps Definition
CustomerA: buys a credit for a friend
CustomerB: is the friend who receive the gift

Procedure to Purchase a Gift Certificate
Step 1: start
In the web site shop customerA clicks on a link ‘Buy a gift certificate’. This link is
part of the portal.

Step 2: payment details
The distributor application asks to the customer:
• the amount to buy
• mail address of the friend
• payment details

(these information are stored by the Distributor adding a PIN code)

Step 3: mail delivery to customerB
An application send an email to customerB providing information about the gift
and how to redeem it. This text can be partially typed by customerA
Instruction contains a link to the website where customerB can redeem the gift and
(embedded in the link) a PIN code that will be burn once the customer redeem the
gift.

Procedure to redeem the gift certificates
CustomerB clicks on the link present in the mail reaching the Distributor
application that recognize the PIN and knows the credit related; the credit is
shown to the customer inviting him to start the standard purchase procedure
(selection of staff to buy and ok to the kart content)

When customerB approves the Kart content, there is a control about the amount to
pay and the value of the kart with 3 different situation:

1) gift value=value to purchase
the customer sees a confirmation page + receives an email

2) gift value>value of the kart
the customer can use the credit available in following purchases. Technically
the value of the PIN code assigned to the customer is decreased

ex. Gift certificate value = 50 € (that is the value associated to the PIN
generated for that gift)
customerB buys 30 € in Tiscali music club
the new value of the PIN code is 20 € available for new purchases

the customer sees a confirmation page reminding the credit available +
receives an email with the link where to redeem the credit available

3) gift value<value of the kart

the customer is required to chose a payment method to pay the difference or to
come back to the kart to remove some items.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

168

Post-conditions The gift certificates has an expiration date
The distributor application supports the possibility for the customer to check the
gift certificates already available

Variations None.
Asynchronous
actions

?

Design suggestions The gift certificates application is stand alone
Issues None.

14.7.2 Wallet

UCId UC14.7.2
Use case Wallet
Description Wallet is a payment account the customer opens with the Distributor for paying

transactional services.
The wallet creation needs a first deposit by the customer and can be used
immediately. The wallet can be recharged with following deposits.
The wallet saves the payment method used by the customer that is proposed for
following deposit.

Actors The Content Consumer (user)
Assumptions

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

169

Steps Wallet creation
The customer in the distributor application ask for wallet registration providing
authentication information (mail and password) and receives a security key to be
used for all the transactions.
Afterwards made the first deposit using the payment methods allowed by the
distributor

Wallet ecare
The customer can:
• Check the balance
• Recharge
• Check the statement (List of deposits, List of the purchases done)
• Change the secure key
• Change payment method used
To access to the wallet ecare, to make payments, and to recharge the wallet, the
security key is always requested.

Payments
if the customer decides to pay with wallet and the balance is NOT enough to cover
the new purchase he is asked for recharge.

Wallet termination
• Expiration
The credit of the customer expires after a period defined by the distributor. After
this period the customer credit is flagged as ‘suspended’ but can be used by the
customer making another deposit.

• Termination
The customer can ask to close his wallet removing the payment information. No
refund applicable

Post-conditions
Variations None.
Asynchronous
actions

Design suggestions
Issues None.

15 AXMEDIS for Distribution towards Mobiles

15.1 General Assumptions and Notes to Architecture
1) The AXMEDIS enabled Comverse distribution system includes:

a) An AXMEDIS network node, which:
i) Automatically fetches all AXMEDIS objects matching pre-set criteria; licensing attributes,

content type, time-span, etc.
ii) Makes all fetched content and assets available for immediate use, providing online availability of

ready-to-use files in specific formats (WMA, MIDI, etc).
iii) Maintains a list of all files available for use from local storage.
iv) Automatically synchronizes object and content expiration, and license changes with the

AXMEDIS network.
b) The Comverse APS (Application Server), with integrated Personalization (PE) and Handset

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

170

Management engines (HME).
c) A plug-in that interacts with the AXMEDIS platform, encapsulating and simplifying the platform

functionality for the Comverse servers and components.
2) The AXMEDIS enabled Comverse Transcoding Server includes:

a) A Transcoding Server, which manages the transcoding logic and routines.
b) A plug-in that interacts with the AXMEDIS platform, encapsulating and simplifying the platform

functionality for the Comverse servers and components.
c) A Transcoding platform including Codecs, configuration and Interface.

3) Categories:
a) Categories are AXMEDIS objects stored in the AXMEDIS DB.
b) Each category can contain or reference several content items (text for menus, audio for IVR, etc.).
c) The Categories are arranged in a tree structure. Each Category has only one parent Category (with

the exception of the root Category).
d) Each Category can contain/reference an AXMEDIS Selection that defines the content referenced by

the Category.

15.2 Use Cases

15.2.1 Transcoding New Content
UCId UC15.2.1
Use case Transcoding new Content
Description The Transcoding Server makes newly published AXMEDIS objects available in

formats required by the Comverse distribution system. The server fetches the
objects, extracts and converts the content to the required formats, and publishes
them as new AXMEDIS objects.

Actors 1. Transcoding Server: manages the conversion process, configuration and
reporting.

2. Transcoding Plug-in: A platform (interface + codecs + configuration) for
converting content format.

3. AXMEDIS Plugin: Interacts with the AXMEDIS network and platform
on behalf of the Transcoding Server.

4. AXMEDIS Query Support.
5. AXEPTool: AXMEDIS server that notifies of new objects matching a

Selection.
Assumptions 1. The Transcoding Server processes objects that match a well defined

Selection. The criteria includes, but is not limited to, license attributes,
content type (audio, video), format type (WAV, WMA, JPG), date range,
etc.

2. When the Transcoding Server re/starts, the plugin requests the AXEPTool
to be notified when new objects match the desired Selection.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

171

Steps 1 The AXEPTool identifies a new match to the Active Selection.
2 The AXEPTool notifies the plugin that a new match is ready for transcoding.
3 The plugin forwards the event to the Transcoding Server.
4 The Transcoding Server initiates a query for new AXMEDIS items via the

AXMEDIS plugin.
5 The plugin hits the Query Support service with a predefined selection, where

the criteria are: license that agrees with the Comverse distribution system;
content type and format (e.g. audio: WAV, WMA); time range; the max size
of the result in rows; etc.

6 The Query Support returns a list of AXMEDIS objects to the plugin.
7 The plugin fetches all the listed objects from the AXMEDIS DB, and stores

them locally, unprotected in a ready to use format (for conversion).
8 The plugin returns the list of objects and their physical location in the local

storage to the Transcoding Server.
9 The Transcoding server sends the list to the Transcoding plugin and initiates

the conversion sequence.
10 The Transcoding plugin converts each and every file in the list to the desired

format(s) as required by the configuration.
11 When done, the Transcoding plugin returns a list of all the conversions made

to the Transcoding server.
12 The Transcoding server generates a list of new AXMEDIS objects to create,

with reference to the newly created files, and passes it to the AXMEDIS
plugin for publication.

13 The plugin creates new AXMEDIS objects out of the converted files and
publishes them to AXMEDIS DB.

14 The Transcoding server purges the local storage of the remains of original and
converted files.

15 The Transcoding server writes an activity log reporting all actions made on
the fetched AXMEDIS objects (fetch, convert, etc).

Post-conditions None
Variations 1. The transcoding procedure is typically triggered by a new-match

notification from the AXEPTool, but can also be triggered by a scheduled
event.

2. Selection of objects to convert may be added with the list of objects that
previously failed transcoding X times or expired by T time-range.

3. The OID of AXMEDIS objects that failed transcoding for X times or
expired by T time-range will be added to a Rejected list.

Asynchronous
actions

None

Design suggestions None
Issues 1. Transcoding a large number of items may take a long time (e.g. hours,

days). Meanwhile, the properties and attributes of the object (e.g. license)
may change, making the conversion irrelevant or illegal.

15.2.2 The APS Loads the Content Tree
UCId UC15.2.2
Use case The APS Loads Content Tree.
Description The Comverse APS loads the tree of Categories which subscribers browse in

search of content, and the content that is associated with the Categories.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

172

Actors 1. APS (Comverse Application Server)
2. AXMEDIS plugin: Interacts with the AXMEDIS network and platform

on behalf of the APS.
3. AXMEDIS node: An AXMEDIS network node storing all required

objects and providing AXMEDIS services with online (high, immediate)
availability.

4. AXMEDIS Query Support.
Assumptions 1. The root Category OID is known to the APS.
Steps 1 The APS calls the AXMEDIS plugin to load the content tree, beginning with

the root Category OID.
2 The plugin retrieves all the Category objects to form the Categories tree from

the local AXMEDIS node DB.
3 The plugin calls the Query Support with the Selection of each Category.
4 The Query support returns the result for each selection.
5 The plugin returns a complete content tree – categories and content listing – to

the APS.
6 The Plugin removes objects that are not stored on the local AXMEDIS node

from the content list (as they are not available).
Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues 1. (relevant only if step 6 is not applicable) The result of the selections may

reference objects that are not yet stored on the local AXMEDIS node –
they will not be available for immediate use by the APS.

15.2.3 Subscriber Browses the Content Tree
UCId UC15.2.3
Use case The Subscriber browses the content tree.
Description The Subscriber begins browsing the Category tree for content. The system

modifies the content tree according to the subscriber’s previous preferences,
handset capabilities and DRM rules.

Actors 1. Subscriber – End consumer.
2. APS (Comverse Application Server)
3. PE (Comverse Personalization Engine)
4. HME (Comverse Handset Management Engine)

Assumptions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

173

Steps 1 The Subscriber starts browsing for content via a UI (Web, WAP, IVR, etc).
2 The APS creates a copy of the content tree to be modified according to

subscriber’s profile.
3 If the destination device type is known, then

3.1 The APS sends the content tree to the HME.
3.2 The HME removes from the content tree items that:

3.2.1 The Subscriber’s handset does not support
3.2.2 Their license prohibits distribution to the Subscriber’s handset

or handset type.
3.3 The HME returns the filtered content tree to the APS.

4 The APS sends the content tree to the PE.
5 The PE loads the Subscriber’s profile, and rearranges the content tree

according to his/her preferences. (Suggested: favorites and last purchased
artists/genre, UI language, sort tree by, sort order, removal of items for limited
UIs (e.g. IVR), etc.

6 The PE returns the personalized content tree to the APS.
7 The Subscriber browses the personalized content tree.
8 The APS monitors the Subscribers browsing behavior and data to be added to

the user browsing.
Post-conditions None
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

15.2.4 The Subscriber Samples Content
UCId UC15.2.4
Use case The Subscriber samples content.
Description The Subscriber requests to sample content on his/her handset.
Actors 1. Subscriber

2. APS
Assumptions 1. The Subscriber can only sample audio content.
Steps 1 The Subscriber requests to sample a specific item from the content list.

2 The APS verifies that the relevant sample file is available and ready.
3 The APS loads and pushes the sample file to the subscriber’s handset.

Post-conditions
Variations 1. If the handset type is not determined, then the sample with optimal/lowest

quality (configurable) is played.
2. If the sample is not available, the APS alerts the Subscriber that a sample

is not available.
Asynchronous
actions

None

Design suggestions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

174

Issues 1. It is possible that some media will be playable in the destination handset,
but not available for the subscriber’s handset. The Subscriber may
browse content that he/she would not be able to sample before purchasing
for another person.

2. The subscriber’s sample may be at higher quality than that which the
destination handset can handle. It may mislead the subscriber to buy a
low quality item although the sample was at high quality. In this case the
APS must notify the Subscriber of the issue.

3. If the object’s license dis/allows actions on specific handset types, it must
also specify what is dis/allowed when the handset type is not determined -
a “general handset” scenario. If there are no specifications for general
handset, what actions are dis/allowed by default?

15.2.5 The Subscriber Purchases Content
UCId UC15.2.5
Use case The Subscriber purchases content.
Description The Subscriber purchases content.
Actors 1. Subscriber.

2. APS.
3. HME.

Assumptions
Steps 1 The Subscriber requests to sample a specific item from the content list.

2 The Subscriber provides the MSISDN (ID) of the destination device.
3 The APS calls the HME to determine the type of the destination device.
4 The APS verifies that the purchase transaction is applicable, considering:

4.1 Availability of the content file in the format supported by the Handset.
4.2 Subscriber’s status and credit.
4.3 DRM allowing distribution to the handset.

5 The APS pushes the content to the destination device.
Post-conditions None
Variations 1. If the HME is unable to determine the destination device type, then the

Subscriber can provide it.
Asynchronous
actions

None

Design suggestions None
Issues 1. If the object’s license dis/allows actions on specific handset types, it must

also specify what is dis/allowed when the handset type is not determined -
a “general handset” scenario. If there are no specifications for general
handset, what actions are dis/allowed by default?

16 AXMEDIS for Distribution towards i-TV

16.1 User Terminal Installation and Configuration

16.1.1 User Hardware Installation

UCId UC16.1.1
Use case User Hardware Installation
Description The user installs the required hardware in his PC
Actors The Content Consumer (user)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

175

Assumptions The user’s PC is connected to a satellite dish, correctly pointed to the satellite
providing the Data Broadcast.
The user’s PC has a PCI slot, an Ethernet port, or an USB connector free for
installing the DVB-IP adapter.

Steps 1 The user buys or obtains a DVB-IP satellite adapter suitable for his PC
configuration (depending on operating system, available ports, etc.) and
supported by the AXMEDIS Client Application

2 The user physically installs the DVB-IP adapter according to the installation
instructions provided by the manufacturer

3 The user connects the DVB-IP adapter to the satellite dish
4 The user boots the PC and installs any required software, driver or application,

as specified by the manufacturer in the installation instructions, and in the
AXMEDIS Client Application user manual

5 The user configures the DVB-IP adapter according to instructions
6 The user checks that the satellite signal is received correctly

Post-conditions The system shall have entered the next procedural step
Variations Some DVB-IP cards might not support all AXMEDIS functionalities. It is

recommended that the user obtains a supported DVB-IP adapter.
Asynchronous
actions

Interactions with operating system components (e.g., firewall) or installed
software (e.g., antivirus) could stop the DVB-IP adapter from working correctly.
Installation of out-of-date drivers, or installation procedure not compliant with
instructions, might stop the DVB-IP adapter from working correctly.

Design suggestions A list of compatible adapters should be prepared.
Full installation instructions should be given to the user.

Issues If the satellite signal is not received correctly, there could be a problem in the
pointing of the satellite dish, or in the satellite cable, or in the DVB-IP installation.
Problems must be solved before proceeding.
Occasional loss of signal (e.g., in presence of heavy rain or wind) does not
represent a major problem; however, it may impact the fruition of service during
and after the problem.
It is recommended that the satellite dish installation be done by a professional.

16.1.2 User Software Installation
UCId UC16.1.12
Use case User Software Installation
Description The user installs the AXMEDIS Client Application
Actors The Content Consumer (user)
Assumptions The DVB-IP hardware is correctly installed and configured.

The user PC has a working connection to the Internet.
Steps 1 The user obtains the AXMEDIS Client Application Setup (e.g., from the

Internet, from a CD, ...)
2 The user runs the AXMEDIS Client Application Setup
3 The user follows the steps of the installation
4 Some information entered by the user is used to create his profile, that is

securely communicated via Internet to a server
Post-conditions The system shall have entered the next procedural step
Variations The exact form of the Setup, and the installation steps, could depend on the exact

operating system of the user’s PC, and on its configuration. Also, the user profile
(country, language, gender ...) may influence some steps (e.g., subscription to
language-specific services).

Asynchronous
actions

None.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

176

Design suggestions Different Setups applications could be distributed according to country, bundling
with DVB-IP adapters, commercial promotions, etc.
These Setups should contain minimal ‘intelligence’ and should be driven by the
server, in order to make updates easier.
The Server shall implement algorithms to detect the user language and provide
him useful information on the service.

Issues None.

16.1.3 User Registration
UCId UC16.1.3
Use case User Registration
Description The user registers himself in order to access the AXMEDIS service
Actors The Content Consumer (user)
Assumptions The user has successfully installed the hardware and software AXMEDIS

components.
Steps 1 The user runs the AXMEDIS Client Application registration procedure

2 The user enters or updates his personal profile, that is securely stored on the
Server

3 The user obtains required authorizations (e.g., login/password) to access the
AXMEDIS system. (This could require paying a subscription fee, a pre-paid
amount, etc.)

4 The AXMEDIS Client Application may update its internal state by receiving
appropriate files from the Server (e.g., group memberships)

Post-conditions The user is ready to use the AXMEDIS service and access the published Content.
(Access can be restricted only to some components)

Variations The user may re-run the procedure to update his profile.
In some situations this procedure could be automatic and hidden to the user.
If the user already has a profile on the Server, his profile is restored in the local
installation (e.g., user preferences, history, rights ...). This may occur, e.g., if the
user is installing the Client Application on a different computer.

Asynchronous
actions

None.

Design suggestions The Server shall store the user profile and use it to personalize content
presentation, messages, etc.

Issues None.

16.1.3.1 Application Selection
UCId UC16.1.3.1
Use case Application Selection
Description The user selects the preferred Application model
Actors The Content Consumer (user)
Assumptions The user has successfully registered himself in order to fully access the

AXMEDIS service.
Steps 1 The user runs the AXMEDIS Client Application

2 The user select the desired Application model between the three available:
o Standard application
o Cache-based Distribution on i-TV
o Cached-based Personalised Content Distribution

Post-conditions None
Variations The user can change the selected Application with no restrictions
Asynchronous
actions

None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

177

Design suggestions The Application selection should be easy and fast to perform
Issues None

16.1.3.2 User Profiling
UCId UC16.1.3.2
Use case User Profiling
Description The user provides his/her preferences about AXMEDIS contents
Actors The Content Consumer (user)
Assumptions The user has successfully registered himself in order to fully access the

AXMEDIS service.
Steps 1 The user runs the AXMEDIS Client Application User Profiling procedure

2 The user provides or updates his/her preferences about AXMEDIS contents
3 The user decides if let the client application to automatically include the

personal choices related to the AXMEDIS objects in the cache and his/her
choices

4 The user is aware of the profiling information that is sent back to the server
and may decide to avoid the disclosure of personal information

5 The user saves the his/her User Profile
6 The user connects to the Internet to update his/her User Profile stored in the

Server
Post-conditions None
Variations The user may re-run the procedure to update his/her profile. The User profile is

also automatically updated depending on the actual behaviour of the user (which
content has been played, how many times it has been played, saved in the file
system, etc.). When the user connects to the Internet, his/her user profile on the
server is updated as well.

Asynchronous
actions

None

Design suggestions None
Issues None

16.2 Content Listing

16.2.1 Content Web Listing

UCId UC16.2.1
Use case Content Web Listing
Description The user accesses a web page containing the list of the proposed AXMEDIS

content in order to express his interest. He browses and previews the content listed
in order to find the interesting content for him. He expresses his preference by
voting. He can receive a given content either by push (if the content has received a
lot of preferences) or by pull (if the content has not been selected for entering in
the most voted top-list).

Actors The Content Consumer (user)
Assumptions The user shall have an Internet Connection, needed to reach the web page where

the proposed AXMEDIS Content Web List is published.
The user shall know the URL where the Web List is published.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

178

Steps 1 The user reaches the AXMEDIS Content Web List
2 The user displays the proposed content using different criteria (type, author,

content producer, production date)
3 The user inserts some key words for filtering Object potentially interesting for

him
4 The user reads all available information (contained in the AXMEDIS Info)

associated to the AXMEDIS Object, helpful for voting
5 The user plays, by downloading needed data, some short previews (if this

option is available)
Post-conditions The system shall have entered the next procedural step (Content Voting)
Variations This AXMEDIS Content Web List could be published by another distributor (e.g.,

Tiscali, OD2, iLabs, Sejer, etc.). Eutelsat could synchronize his AXMEDIS library
after getting the most voted top-list (this could optimise the use of the shared
bandwidth in the Satellite Data Broadcast).

Asynchronous
actions

None.

Design suggestions Possible previews related to the AXMEDIS Object should be simply extracted in
order to provide a short preview to the user in the listing phase before voting.

Issues None.

16.2.2 Content Carousel Listing
UCId UC16.2.2
Use case Content Carousel Listing
Description The user consults the list from the AXMEDIS Client Application of the

AXMEDIS Carousel currently in transmission. He accesses in any moment (by
opening his AXMEDIS Client Application Interface) to the current carousel list
proposed for all AXMEDIS users. He browses and previews the content listed in
order to find the interesting content for him.

Actors The Content Consumer (user).
Assumptions The user knows the type of search that he wants to start (generic, advanced,

personalized, pre-stored, etc.)
Steps 1 The user uses some pre-defined functionalities to filter the content

2 The user applies its own profile (locally stored) to the AXMEDIS offer to best
match his interest in the offered content

3 The user enters some key words in the content browsing
4 The user reads all available information (contained in the AXMEDIS Info)

associated to the AXMEDIS Object, helpful for selection
5 The user plays some short previews (if this option is available) associated to

the AXMEDIS Object, previously extracted from the AXMEDIS Info and
added to the Electronic Program Guide (constantly transmitted to AXMEDIS
users) of the AXMEDIS Service.

Post-conditions The system shall have entered the next procedural step (Content Selection)
Variations None
Asynchronous
actions

Some changes in the internal sequence of the transmitting carousel could alter the
expected start date of the AXMEDIS Objects. A specific notification should be
provided to users those voted for a given content (e.g., by sending an email). A
general notification could be generally sent in multicast for all users, having an
AXMEDIS Client currently listening, to warn about the variation of the expected
dates.

Design suggestions Some enriched content contained in the AXMEDIS Info (metadata) should be
simply extracted to be presented in the Electronic Program Guide as an instrument
to personalise the content browsing.

Issues None.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

179

16.3 Content Voting
UCId UC16.3
Use case Content Voting
Description The user expresses one or more preferences (depending on the number of

preferences he can express on a daily/weekly/monthly basis) about some
AXMEDIS Objects contained in the AXMEDIS Content Web List.

Actors The Content Consumer (user)
Assumptions The user still has available preferences to vote Content in the proposed web list.
Steps 1 The user chooses one or more AXMEDIS Objects he wishes to receive by

push inside the AXMEDIS Carousel
2 The user sends his preferences to the server side
3 The user receives a receipt about his vote expression
4 The user receives a notification saying if his AXMEDIS voted Object has

entered in the AXMEDIS Carousel
Post-conditions Most voted AXMEDIS Objects will be pushed directly to final users. Who has

voted the content will receive it automatically. Others can manually select a given
content from the carousel list from the AXMEDIS Client Application.

Variations None.
Asynchronous
actions

The voting action could affect the user profile. A synchronisation between the
local stored and the server stored user profiles could be done.

Design suggestions None.
Issues None.

16.4 Content Selection

16.4.1 Manual Content Selection
UCId UC16.4.1
Use case Manual Content Selection
Description The user selects (manually) the scheduled content that will be received at the

indicated time by push.
Actors The Content Consumer (user)
Assumptions The user leaves the computer and the AXMEDIS Client Application turned on

during the time window of the selected transmission.
Steps 1 The user double clicks on the AXMEDIS Object in order to select it for

reception
2 The user retrieves his selected AXMEDIS Object in the Downloading panel of

the Client Application Interface. It means that the content has been scheduled
for reception

Post-conditions The system shall have entered the next procedural step
Variations The user could select his AXMEDIS Object from a remote computer and the order

could be passed to his local AXMEDIS Client Application.
Asynchronous
actions

The user could turn off the AXMEDIS Client Application (or the PC) and the
reception could not be successful.
Incompatible request done on a forbidden transponder.

Design suggestions None.
Issues None.

16.4.2 Automatic Content Selection
UCId UC16.4.2
Use case Automatic Content Selection

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

180

Description The user has voted for an AXMEDIS Object that has been added to the
AXMEDIS Carousel. He receives automatically the voted content by push.

Actors The Content Consumer (user)
Assumptions The user has turned on his AXMEDIS Client Application in the recommended

time window to receive the Content correctly.
Steps 1 The user receives a message notifying the expected start date of his previously

voted AXMEDIS Object
2 The user turns on his AXMEDIS Client before the transmission starts

Post-conditions The system shall have entered the next procedural step
Variations The user can select automatically some other contents, typically system files or

AXMEDIS Client Application updates.
Asynchronous
actions

None.

Design suggestions Design a solid environment where the AXMEDIS Client can be simply auto-
updated.

Issues None.

16.5 Content Reception
UCId UC16.5
Use case Content Reception
Description The user can check any time that the progress-bar, indicating the download state,

is advancing.
Actors The Content Consumer (user)
Assumptions The user has selected, either manually or automatically, an AXMEDIS Object

distributed in the AXMEDIS Carousel.
Steps 1 The user opens the jobs panel where all current downloads are displayed

2 The user reads the remaining time for the end of transmission
3 The user can open the folder where the content is being received
4 The user can interrupt the reception of a given content

Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

The user, after opening the folder where the content is being received, deletes an
incomplete and/or temporary file. This could put the AXMEDIS Client
Application in an inconsistent state.

Design suggestions None.
Issues None.

16.6 Content Reparation
UCId UC16.6
Use case Content Reparation
Description The user receives the AXMEDIS Object, but in the access panel the demanded

Content has a specific icon, indicating that the transmission is incomplete. The
remaining lost packets can be downloaded in unicast by pull.

Actors The Content Consumer (user)
Assumptions The user has an Internet Connection, needed to contact the server in order to repair

the incomplete AXMEDIS Object.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

181

Steps 1 The user tries to open an AXMEDIS Object from the access panel provided
from the Client Application Interface

2 The user receives a pop-up saying that some packets were lost during the
multicast transmission

3 The user decides either to repair the Object via unicast or to wait for a next
retransmission or to delete the incomplete Object.

Post-conditions The system shall have entered the next procedural step
Variations The user receives a corrupted Object. No packets were lost but the checksum at

the server side does not match with that one calculated at the client side. The user
can try to open anyway the Object.
The lost packets during the transmission of AXMEDIS Objects that have been
explicitly requested by a user shall be notified to the server; the server shall decide
the most effective recovery technique, either based on the retransmission of
packets in unicast (via Internet) or redelivering the packets in the subsequent data
carousel.

Asynchronous
actions

The user tries to repair an AXMEDIS Object too old.The AXMEDIS Object could
be not more available for repairing.

Design suggestions Definition of a strategy to combine Push/Pull technologies.
Issues None.

16.7 Content Access
UCId UC16.7
Use case Content Access
Description The user accesses his local cache containing several AXMEDIS Objects.
Actors The Content Consumer (user)
Assumptions The AXMEDIS Content is successfully received.
Steps 1 The user accesses the AXMEDIS Object for playing it

2 The AXMEDIS Object is delivered to either the AXMEDIS Viewer or the
standard application (with an additional AXMEDIS plug-in)

3 The application detects if the Object needs to acquire a license
4 The application finds a pre-acquired license for the Object and play it
5 The application needs a new license for the Object and tries to contact the

AXCS.

6 The user asks corresponding PMS for authorisation of operation
7 The PMS sends authorisation result to the user, and keys for unprotecting

them, if needed

Post-conditions The system shall have entered the next procedural step
Variations If the user is not authorised because she has no license, then it contacts PMS for

acquiring it.
Asynchronous
actions

None.

Design suggestions
Issues None.

16.8 Content Preview
UCId UC16.8
Use case Content Preview

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

182

Description The user browses one/more AXMEDIS Object(s). The user opens and plays some
short previews (if they are available) integrated in the received AXMEDIS Object.
The user decides to buy or not the received AXMEDIS Content.

Actors The Content Consumer (user)
Assumptions The AXMEDIS Object has been integrally received.
Steps 1 The user opens the AXMEDIS Object locally stored in his local cache

2 The user browses the AXMEDIS Object, using the AXMEDIS Info associated
to the Object

3 The user reaches a preview available for the Object
4 The user plays the AXMEDIS Object Preview

Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

None.

Design suggestions One or more previews (depending on the internal structure of the AXMEDIS
Object) should be available for the final user, in order to help him in the content
evaluation before purchasing it.

Issues None.

16.9 License Acquisition
UCId UC16.9
Use case License Acquisition
Description A user tries to acquire a license for consuming a protected and governed

AXMEDIS Object.
Actors The Content Consumer (user)
Assumptions The user should have an Internet connection (well functioning) in order to reach

the AXCS and obtain the license for playing an AXMEDIS Object.
The user belongs to the AXMEDIS community authorized to receive the
AXMEDIS Content. The user has obtained required authorizations (e.g.,
login/password) to access the AXMEDIS system.
The user station should support all secure protocols.

Steps 1 The user wants to acquire an AXMEDIS object to play the protected resources
within it

2 The AXMEDIS Object is delivered to the application/viewer charged to
open/play it

3 As the AXMEDIS Object is protected and governed, the user is informed that
he has to purchase the appropriate license for playing it

4 The user requests the appropriate license
5 The license server generates the license with the relevant parameters

(principal, right/s, resource and conditions) and validates the license
6 If the license is valid, the license server stores the license in the database of

DRM licenses. If not, returns an alert with an explicative message.
7 If the license has been generated and is valid, the license server returns to the

actor the license ID or the license in clear-text or protected.
Post-conditions The user shall respect the rules contained in the received authorization.
Variations Silent license acquisition (contact a web site to have a license, after asking the

user authorization). The License Acquisition could be for free in order to promote
some special events.
The acquiring computer could not be the same of the consuming computer
(license could be acquired in a desktop, but the content could be played by a PDA)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

183

Asynchronous
actions

The user could not be authorized to acquire licenses. The user can ask to enter in
the AXMEDIS Community even after the reception of the AXMEDIS Object.
Periodic system checks should be performed and in case of negative result system
should be not more operational.

Design suggestions None.
Issues E-commerce backend and transactional functionalities should be available and in

place. Security, privacy and transparency should be some fundamental basis.

16.9.1 User Identification
UCId UC16.9.1
Use case User Identification
Description The user will be requested to identify and provide credentials needed to ensure

that the requested transaction (purchase/rental) is valid and legal.
Actors The Content Customer (user) (involved in the purchase/rental operation)

The AXMEDIS Certifier (entity performing all required checks to ensure that
purchase/rental operations are valid and legal)

Assumptions See License Acquisition Use Case.
Steps 1 The user enters his identification information (this does not necessarily mean

personal details, it will be sufficient to have proper credentials, e.g.,
login/password)

2 The user credentials are sent to the AXCS for verification
3 The user waits for the server response
4 If the user is identified as a regular one permission to proceed is granted,

otherwise purchase procedure is aborted and user is sent back to browsing
Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

See License Acquisition.

Design suggestions None.
Issues See License Acquisition.

16.9.2 Billing
UCId UC16.9.2
Use case Billing
Description The user confirms the intention of purchasing the selected AXMEDIS Content.

The user provides payment related information along with data needed to ensure
legal validity of requested operation.
The user accesses to the service on a prepaid subscription basis.
If the user has enough credits to purchase the content the transaction is performed
and the system can delivery the license for the AXMEDIS Object.

Actors The Content Customer (user) (involved in the purchase/rental operation)
The AXMEDIS Certifier (entity performing all required checks to ensure that
purchase/rental operations are valid and legal)

Assumptions See License Acquisition Use Case.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

184

Steps 1 The AXCS shows to the user all billing information available including:
o Price
o Conditions for each selected item
o Related use licence
o Scope and limitations
o Possible constraints

2 The AXCS asks the user to verify and accept presented terms
3 If the user accepts procedure continues otherwise is aborted and user is sent

back to browsing
4 The user shall finalise billing information
5 Once billing information are provided the user is requested to select the

payment method (credit card, electronic wallet, pre paid card, pre assigned
tokens or similar)

6 The AXCS requires clearance to the AXMEDIS Distributor for the provided
payment ID.

7 If payment ID is cleared the user will be charged the cost
8 The AXCS provides the system the proper clearance and the license delivery

starts.
Post-conditions The system shall have entered the next procedural step
Variations A supplementary actor could be a bank or other institution that will handle the

money transaction and has to be a third trusted party for both the user and the
AXMEDIS Certifier.

Asynchronous
actions

See License Acquisition

Design suggestions None.
Issues See License Acquisition.

16.10 Content Backup
UCId UC16.10
Use case Content Backup
Description The user copies some interesting content in a backup support (either external or

internal).
Actors The Content Consumer (user)
Assumptions The user can have some functionalities (API) that can make sure this operation of

backup (the utility should ensure the integrity of the copied AXMEDIS Object,
taking into account that an Object could be internally combined with other
Objects).
The Backup Operation has to be expressly authorized in the license terms.

Steps 6 The user opens the backup interface of the AXMEDIS Client Application
7 The user selects all Objects involved in the backup operation
8 The user specifies the backup unit where the AXMEDIS Content has to be

copied.
Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

The AXMEDIS Content could be automatically deleted during the backup
operation.

Design suggestions The Backup operation should interact with the Intelligent Cache Manager before
starting.

Issues None.

16.11 Content Restore
UCId UC16.11
Use case Content Restore

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

185

Description The user restores some previously backup AXMEDIS Object from the backup
support (either external or internal).

Actors The Content Consumer (user)
Assumptions The user can have some functionalities (API) that can make sure this operation of

restore (the utility should ensure the integrity of the restored AXMEDIS Object,
taking into account that an Object could be internally combined with other
Objects).
The Backup Operation has to be expressly authorized in the license terms.

Steps 1 The user opens the restore interface of the AXMEDIS Client Application
2 The user selects all Objects involved in the restore operation
3 The user specifies the backup unit where the AXMEDIS Content from which

the Content has to be restored.
Post-conditions The system shall have entered the next procedural step
Variations None.
Asynchronous
actions

None.

Design suggestions The Restore operation should interact with the Intelligent Cache Manager after
restoring.

Issues None.

16.11.1 Cache Preloading
UCId UC16.11.1
Use case Cache Preloading
Description The user activates the Cache loading (the first time the Application is activating

and after a Cache Cleaning)
Actors The Content Consumer (user)
Assumptions The user has already set up the User Profile. The Cache is empty.
Steps 1 The user switches on the AXMEDIS Client Application

2 The user activates the Cache preloading functionality
3 The user waits for the Cache to be filled

Post-conditions
Variations
Asynchronous
actions

None.

Design suggestions
Issues None.

16.12 Cache Cleaning
UCId UC16.12
Use case Cache Cleaning
Description The user emptiesthe local cache
Actors The Content Consumer (user)
Assumptions The Cache has some AXMEDIS objects
Steps 1 The user runs the AXMEDIS Client Set Up application

2 The user activates the Empty Cache functionality
3 The user may immediately asks for a new Cache Preloading

Post-conditions
Variations
Asynchronous
actions

None.

Design suggestions
Issues None.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

186

16.13 Cache-Based Personalised Content Distribution specific Use Cases

16.13.1 Automatic Content Access Set Up
UCId UC16.13.1
Use case Automatic Content Access Set Up
Description The user makes the Cache-Based Personalised Content Distribution Application

set up.
Actors The Content Consumer (user)
Assumptions The user has payed a subscription (yearly, monthly or weekly). The user has

already set up the User Profile and activated the Cache Preloading
Steps 1 The user switches on the AXMEDIS Client Application

2 The user selects the Cache-Based Personalised Content Distribution
Application

3 The user waits for the AXMEDIS default Channels to be composed
Post-conditions
Variations
Asynchronous
actions

None.

Design suggestions
Issues None.

16.13.2 AXMEDIS Channel personalisation
UCId UC16.13.2
Use case Content Access
Description The user personalises an AXMEDIS Channel
Actors The Content Consumer (user)
Assumptions The user has already made the Automatic Content Access set up
Steps 1 The user switches on the AXMEDIS Client Application

2 The user selects the Cache-Based Personalised Content Distribution
Application

3 The user changes the personal profile
4 The user waits for the Cache preloading
5 The user waits for the personalised AXMEDIS Channels to be composed

according to the new user profile configuration
Post-conditions
Variations
Asynchronous
actions

None.

Design suggestions
Issues None.

16.13.3 Automatic Content Access
UCId UC16.13.3
Use case Content Access
Description The user plays an AXMEDIS Channel
Actors The Content Consumer (user)
Assumptions The user has already made the Automatic Content Access set up

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

187

Steps 1 The user switches on the AXMEDIS Client Application
2 The user selects the Cache-Based Personalised Content Distribution

Application
3 The user selects an AXMEDIS channel
4 The user plays the AXMEDIS channel

Post-conditions
Variations
Asynchronous
actions

None.

Design suggestions
Issues None.

16.13.4 AXMEDIS Channel PVR functionalities
UCId UC16.13.4
Use case Content Access
Description The user activates the PVR functionalities graphic interface
Actors The Content Consumer (user)
Assumptions The user has already made the Automatic Content Access set up
Steps 1 The user switches on the AXMEDIS Client Application

2 The user selects the Cache-Based Personalised Content Distribution
Application

The user activates the PVR functionalities:
• play
• fast forward
• rewind
• record (the user records some content from an AXMEDIS channel to the hard

disk)
• pause

Post-conditions
Variations
Asynchronous
actions

None.

Design suggestions The rewind functionality greater than a prefixed range of time (e.g. half an hour)
will not be allowed (the content could not be present in the cache any more).

Issues None.

17 AXMEDIS for Distribution to PDA via Kiosks

17.1 Content Catalogue Creation

UCId UC17.1
Use case Content Catalogue Creation
Description The kiosk manager creates a catalogue
Actors The kiosk manager, AXMEDIS Content Production
Assumptions The kiosk manager is a registered AXMEDIS user with a specific UID and has all

the right and tools to perform the operation (this operation is performed in the
kiosk factory)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

188

Steps 1 The kiosk manager logs into the system.
2 The kiosk manager performs a query with the query user interface to retrieve

the list of object suitable for being acquired and reported in the kiosk content
catalogue: Select From AXEPTool (Where {Key1=XYZ, Key2=KKK…)

3 The query support system returns a AXOID list
4 The Kiosk manager browse the list and identifies the needed objects accessing

to public metadata and preview samples stored in AXINFO for each AXOID
of the received list.

5 The kiosk manager performs a new query to retrieve the wanted objects: Get
From AXEPTool (Where {AXOID1=X, AXOID2=Y…)

6 The query support system returns a AXMEDIS objects list
7 The kiosk manager checks with the Composition Rules Editor presently

available composition rules
8 If available rules are adequate proceeds to next step
9 If available rules need to be modified or are lacking then modifies / defines

Composition Rules
10 The kiosk manager checks with the Formatting Rules Editor presently

available formatting rules
11 If available rules are adequate proceeds to next step
12 If available rules need to be modified or are lacking then modifies / defines

Formatting Rules
13 The kiosk manager activates the Composition Engine that creates a new

AXMEDIS object starting from the collected objects
14 The kiosk manager activates the Formatting Engine that creates a new

AXMEDIS object
Post-conditions The system shall have returned in operational mode
Variations The procedure may be launched remotely from the kiosk management server or on

a timed base exploiting all functionalities of the composition, formatting and
publication engines

Asynchronous
actions

None

Design suggestions None
Issues Backend and transfer functionalities should be available and in place

17.2 Content Catalogue Loading (publication)
UCId UC17.2
Use case Content Catalogue Loading (publication)
Description The kiosk manager publishes a catalogue
Actors The kiosk manager, local AXDB, AXMEDIS Publication environments
Assumptions The kiosk manager is a registered AXMEDIS user with a specific UID and has all

the right and tools to perform the operation

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

189

Steps 1 The kiosk manager logs into the system.
2 The kiosk manager checks with the Publication Rules Editor presently

available publication rules
2.a If available rules are adequate proceeds to next step
2.b If available rules need to be modified or are lacking then modifies /

defines Publication Rules
3 The kiosk manager verifies clients view profiles and eventually updates them
4 The kiosk manager activates the Publication Engine that uses the Publication

Rules defined in conjunction with the Client View Profiles to access the local
AXDB (end eventually the Formatting Engine) to feed the Distributor server
with the catalogue and top ten AXMEDIS object to be distributed

Post-conditions The system shall have returned in operational mode
Variations The procedure may be launched remotely from the kiosk management server
Asynchronous
actions

None

Design suggestions None
Issues Backend and transfer functionalities should be available and in place

17.3 Content Catalogue Loading Update
UCId UC17.3
Use case Content Catalogue Loading Update
Description The kiosk manager logs into the system and loads the new version of the content

list that will enable the end-user to select and buy AXMEDIS developed/delivered
content thanks to browsing and previewing.

Actors The kiosk manager accessing the kiosk starts the application that loads locally to
the kiosk the presently available content catalogue and launches the content
updating interface & procedures.

Assumptions The kiosk should be connected to the backend and all components should be well
functioning. Data transfer will be operated via FTP on a scheduled basis with an
expected change rate of 3-4 weeks.

Steps 1 The kiosk manager logs into the system.
2 The kiosk manager perform a “switch to maintenance mode” for the target

kiosk
3 The target kiosk system exits normal operational and enters in maintenance

mode.
4 The application front-end loads all system maintenance application.
5 The kiosk manager launches the catalogue upload procedure which:

5.a Contacts the Distribution Server requesting the send of the catalogue
5.b Receives the catalogue
5.c The procedure extracts from the catalogue the list of the top ten

AXMEDIS objects
6 The kiosk manager activate the Content Top ten check procedure

6.a The procedure retrieves the list o the top ten content
6.b The procedure automatically removes from local storage all AXMEDIS

objects out of the new top ten list
6.c Contacts the Distribution Server requesting the send of the specified list of

AXMEDIS objects
6.d Receives the requested AXMEDIS objects
6.e Once new top ten AXMEDIS objects are received locally the local storage

is updated and the procedure ends
7 The kiosk manager launches the local system check procedure to verify if all

is in order
8 The kiosk manager exits the maintenance mode

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

190

Post-conditions The system shall have returned in operational mode
Variations The procedure may be managed by satellite (see later on) and is foreseen to handle

problems in the data load & publication
Asynchronous
actions

None

Design suggestions None
Issues Backend and transfer functionalities should be available and in place

17.4 Kiosk start-up
UCId UC17.4
Use case Kiosk start-up
Description The system is starting up and loads applications & data that will enable the end-

user to select and buy AXMEDIS developed/delivered content thanks to browsing
and previewing.

Actors The end user accessing the kiosk starts the application that loads locally to the
kiosk the presently available content catalogue and launches the content browsing
& previewing interface.

Assumptions The kiosk should be connected to the backend and all components should be well
functioning. Anomalies in functioning should be classified and checked in order to
inhibit functioning when operational conditions will not ensure proper kiosk /
service functioning

Steps 1 The system at start-up shall load the application front-end.
2 The application front-end loads all application modules and performs a full

system check encompassing:
2.a Verify network connectivity
2.b Verify backend availability
2.c Verify local appliances functionality

3 Depending on system check results the system performs what follows:
3.a The system is ready to be used or
3.b signalling out of service condition

Post-conditions The system shall have entered the next procedural step
Variations None
Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues e-commerce backend and transactional functionalities should be available and in

place

17.5 User registration to kiosk

UCId UC17.5
Use case User registration to kiosk
Description The system is fully functional and end-users interacts with the system to register

and access the kiosk application
Actors The end user accessing the kiosk, the kiosk authentication application
Assumptions As in previous case

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

191

Steps 1 The system presents the user a registration form with the following data:
o First Name [mandatory],
o Last Name [mandatory],
o Age [mandatory],
o Address [mandatory]:

 mail address, phone, mobile, e-mail, VAT code
 …

o Default Language [mandatory],
o Preferred payment method:

 pre-paid-cards, credit card
 … this is a set of optional data to be loaded if the customer

wants the info to be permanently offered as default solution),
o Payment method:

 card #, validity from, validity to, type
 … this is a set of optional data to be inserted only if the user

is willing to directly acquire a service from the kiosk or if the
kiosk service is considered to be a pay per use service),

o Billing info:
 mail address, phone, mobile, e-mail,
 VAT code
 … this data has to be provided if different from the one in the

address data section, if left empty billing system will default
values from user address),

o Preferred device:
o PDA,
o Smart phone,
o Other

2 The user provides the required data
3 The user confirms input operation ending either pressing a button on the

interface or any other widget.
4 The kiosk performs a check on data provided to verify completeness and

correctness (as far as possible like for e-mail formats or number of digits for a
VAT code or credit card…)

5 Depending on check results the system performs either operation:
5.1 Requires the user to re-input/correct data or add missing mandatory items
5.2 The kiosk presents the user a filled in form to require data confirmation or

change
6 The user modifies or confirms provided data (in case modification apply steps

1-5 have to be re-iterated)
7 The kiosk local application server properly formats the data and send a request

to the AXMEDIS Registration Service
8 The kiosks prompts the user to wait for registration clearance
9 In case of success the AXMEDIS Registration Service sends back to the kiosk

user final UID
10 The kiosks retrieves the registration clearance, informs the user of performed

registration, stores provided UID and sends the confirmation e-mail to the user
specified account

Post-conditions The system shall have entered the next procedural step
Variations None
Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

192

Issues In the kiosk scenario the case of a user registering for the 1st time has the major
drawback that is not possible to provide the user with a direct access to his mail
account to check the confirmation send back via mail. The usage of sms instead
can be limited by environmental factors that are too risky to be left out.

17.6 User login
UCId UC17.6
Use case User login
Description The system is fully functional and end-users interacts with the system to register

and access the kiosk application
Actors The end user accessing the kiosk, the user device (PDA or mobile) and the kiosk

authentication application
Assumptions As far as the system is concerned all should be as in previous case. As far as the

user interaction is concerned this may happen as follows: The user interacts with
system locally (this means operating from the kiosk screen…) or remotely (via
PDA or mobile) in “ad hoc network” mode using own device browser

Steps 1 The user interacts with the application front-end (selecting registration from
language selection case)

2 The application front end invokes the local user login
3 The kiosk user management sends to the application front end the user data

structure to be filled
4 The application front end asks the user to provide the login data (UID)
5 The user inserts the data and confirms.
6 Filled in data structure is sent back to the kiosk user management
7 The kiosk user management checks user information locally
8 The kiosk user management retrieves user related data via UID (in case the

UID is not present the user will be requested to register)
9 The kiosk user management sends user data to the AXCS for verification (via

AXCS web service interface)
10 The AXCS checks received info
11 The AXCS logs the registration event
12 The AXCS sends back to the kiosk user management a ACK
13 The kiosk user management confirms the login to the application front end
14 The application front end grants access to available services: application front-

end presents the user a screen with the possible activities
14.a Browse the catalogue
14.b Modify own data
14.c View support information
14.d Logout

Post-conditions The system shall have entered the next procedural step
Variations NA
Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues In the kiosk scenario if something happens and the user is forced to log on anew

on the system but has not yet accessed to the confirmation mail is necessary to use
locally stored data to grant access if the initial registration procedure has been
successful. Therefore the system will have to keep track of this and beheave as
previously specified.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

193

17.7 Content Browsing & Previewing

UCId UC17.7
Use case Content Browsing & Previewing
Description The system is fully functional and end-users can browse and preview the content

listed in order to select and buy AXMEDIS developed/delivered.
Actors The end user uses the kiosk application to brows and preview the presently

available content listed in the catalogue and eventually launches the selection
process

Assumptions As in previous case
Steps 1 The system presents the content list

2 The end user browses the list
3 The end user selects an item
4 The end user asks for content preview
5 Depending on content format a preview is presented as follows:

5.a Brief description for text
5.b Thumbnail for images
5.c X sec sample for Audio (X will depend on IPR rules)
5.d X sec sample for Video (X will depend on IPR rules)
5.e X sec sample for Animations (X will depend on IPR rules)
5.f X sec sample for Multimedia (X will depend on IPR rules)

6 The end users decides next step between:
6.a Activate acquiring procedure
6.b Returning to browsing

Post-conditions The system shall have entered the next procedural step
Variations None
Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues As in previous case

17.8 Content Selection and Chart Management

UCId UC17.8
Use case Content Selection And Chart Management
Description The end user selects a content and either proceeds to check out or goes back

browsing
Actors The end user operates selections that condition the check out process
Assumptions As in previous case
Steps 1 The end user selects a specific content (it could be both in browsing or

previewing mode)
2 The user requests content addition to the chart
3 The user requests to proceed either to check out or to continue browsing
4 Depending on previous step results the system enters one of the following to

states:
4.a Check out procedure activation
4.b Browsing & previewing mode

Post-conditions The system shall have entered the next procedural step
Variations In case of rental the chart can also be composed of a single item chart. Once the

selection is operated the checkout procedure is automatically started in order to
bring the user soon to fruition.

Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

194

Design suggestions None
Issues As in previous case

17.9 Check Out Procedure Initiation

UCId UC17.9
Use case Check Out Procedure Initiation
Description In this phase the system prepared subsequent steps in order to ensure that checkout

procedure can be either terminated with a successful content purchase or with a
full restoring of previous state and the user can either continue browsing or
abandon interaction with the kiosk

Actors The end user that is finalising the check out procedure
Assumptions As in previous case
Steps 1 The system enters protected mode

2 A secure connection is established with the certification authority
Post-conditions The system shall have entered the next procedural step
Variations None
Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues As in previous case

17.10 Purchasing / Acquiring / Renting

UCId UC17.10
Use case Purchasing / Acquiring / Renting
Description In this phase the customer confirms own will to purchase/acquire/rent selected

content and is requested to provide payment related information along with data
needed to ensure legal validity of requested operation. If provided data and
payment ID are valid the transaction is performed and the system will start
delivery process (corresponding to next phase)

Actors Customer (involved in the purchase/rental operation), Certifier (entity performing
all required checks to ensure that purchase/rental operation is valid and legal) and
a bank or other institution that will handle the money transaction and has to be a
third trusted party for both the customer and the certification authority.

Assumptions As in previous case plus the availability of valid certifications for ensuring proper
handling of money transaction. All operation will be performed passing through
the kiosk backend that is properly interfaced with the AXEMDIS framework.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

195

Steps 1 The system present the customer billing information available (including price
and conditions for each selected item, related use licence, scope and
limitations, possible constraints…).

2 The system asks the customer to verify and accept presented terms
3 If the customer accepts procedure continues otherwise is aborted and customer

is sent back to browsing
4 Once accepted purchase/acquisition/renting conditions, the customer is

requested to finalise billing information
5 The customer shall finalise billing information
6 Once billing information are provided the customer is requested to select the

payment method (credit card, electronic wallet, pre paid card or similar)
7 The customer is requested to provide a valid ID for payment (credit card,

electronic wallet, pre paid card or similar)
8 The Certification authority requires clearance to the third trusted party for the

provided payment ID.
9 The thirds trusted party should provide clearance on payment ID (if this fails

operation is aborted)
10 If payment ID is cleared the customer will charged the cost (including the

third trusted party commission for service)
11 Certification authority provides the system the proper clearance and the

delivery process can start.
Post-conditions The system shall have entered the next procedural step
Variations None
Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues As in previous case

17.11 Repository Selection

UCId UC17.11
Use case Repository Selection
Description The system determines whether content is available locally (inside the kiosk being

part of the locally stored top ten content) or has to be downloaded from the kiosk
server or the AXEPTool

Actors The local system, AXMEDIS Certification Authority and any remote AXMEDIS
database belonging to the federation and reachable form the local system

Assumptions As in previous case
Steps 1 The system checks each selected item for local / remote availability

2 In case of remote availability a secure channel is established and data cashed
locally

Post-conditions The system shall have entered the next procedural step (in case of remotely
available content, local cashed content will have to be removed)

Variations NA
Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues As in previous case

17.12 Destination Target Identification (Unique Id For Target – Wifi)

UCId UC17.12
Use case Destination Target Identification (Unique Id For Target – Wifi)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

196

Description The system has to identify the end delivery platform and, via a unique ID generate
the required licence for fruition.

Actors The local system and the PDA / mobile device
Assumptions As in previous case.
Steps 1 The system identifies the end-user device and extracts a unique ID

2
Post-conditions The system shall have entered the next procedural step
Variations None
Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions none
Issues As in previous case

17.13 Delivery Template Selection (Depending On Device)

UCId UC17.13
Use case Delivery Template Selection (Depending On Device)
Description The system elects the proper delivery template for the end use device
Actors The local system, the end user fruition device
Assumptions As in previous case
Steps 1 The system identifies the class of delivery device

2 The system selects the template to be used for delivery (for example if the
viewer has to be downloaded with the object…)

Post-conditions The system shall have entered the next procedural step
Variations In case a cross channel delivery is requested it will be necessary to access to

additional info in order to properly secure delivery and fruition process on a
device that is not available at transaction time

Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues As in previous case

17.14 Delivery Format Selection (Depending On Content)

UCId UC17.14
Use case Delivery Format Selection (Depending On Content)
Description Once delivery fruition device has been selected along with delivery template the

system has to select the best possible format to ensure highest possible fruition
quality.

Actors The local system, the end user fruition device
Assumptions As in previous case
Steps 1 Based on the end-user device identification and delivery template the system

selects the delivery format
2 The system verifies if the availability of all components
3 The system combines the required components of the delivery template to

complete the delivery format
4 The system starts the preliminary checks necessary to ensure proper delivery

Post-conditions The system shall have entered the next procedural step
Variations In case a cross channel delivery is requested it will be necessary to ensure that safe

delivery conditions can be met

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

197

Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues As in previous case

17.15 Device Compatibility (Roll Back In Case Of Failure)

UCId UC17.15
Use case Device Compatibility (Roll Back In Case Of Failure)
Description The system checks that the end-use device and the delivery are not blocked by

some factor that does not depend by delivery template or format and performs
(eventually) necessary recovery actions

Actors The local system, the end user fruition device, the AXMEDIS certification
authority

Assumptions As in previous case
Steps 1 Given the combination of selected content, fruition device, delivery template

and format the systems performs a final consistency check
2 According to check results the system proceeds either:

2.a In the delivery process or
2.b Performs a roll back request (including billing cancelling and money

refund)
Post-conditions The system shall have entered the next procedural step
Variations In case a cross channel delivery is requested it will be necessary to ensure that safe

delivery conditions can be met. A customer feedback will be necessary within a 8
day from transaction execution date. Timestamps for this should be provided to
the customer and stored both locally and at the AXMEDIS certification authority

Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues As in previous case

17.16 Storage Availability (Roll Back In Case Of Failure)

UCId UC17.16
Use case Storage Availability (Roll Back In Case Of Failure)
Description The system should verify that the final destination device has enough storage

room to accommodate the selected object delivery.
Actors The local system, the end user fruition device
Assumptions As in previous case
Steps 1 The system checks if the end-fruition device has enough storage to host the

selected content
2 According to check results the system proceeds either:

2.a In the delivery process or
2.b Performs a roll back request (including billing cancelling and money

refund)
Post-conditions The system shall have entered the next procedural step
Variations In case a cross channel delivery is requested it will be necessary to ensure that safe

delivery conditions can be met
Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues As in previous case

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

198

17.17 Billing

UCId UC17.17
Use case Billing
Description The system finalises the purchase / acquisition process and produces the billing

related information (this step is performed in parallel to the delivery)
Actors The local system, the AXMEDIS certification authority and the end user fruition

device
Assumptions As in previous case
Steps 1 The system formalises the economic transaction into a proper bill

2 The system sends the billing info to the end-user (according to provided
billing info)

3 The system sends the billing info to the AXMEDIS certification authority for
the required subsequent processing steps

Post-conditions The system shall have entered the next procedural step
Variations None
Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues As in previous case

17.18 Data Delivery

UCId UC17.18

Use case Data Delivery
Description The selected data is loaded onto the end-user device (this step is performed in

parallel to the billing one)
Actors The local system, the end user fruition device, the customer
Assumptions As in previous case
Steps 1 The system requires the customer to initiate the content download

2 The customer selects the final storage target destination (if possible)
3 The customer activates the download procedure

Post-conditions The system shall have entered the next procedural step
Variations None
Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues As in previous case

17.19 Check Out Procedure Closure

UCId UC17.19
Use case Check Out Procedure Closure
Description The check out procedure is closed either because content has been acquired or the

procedure has been aborted (either by the customer or by the system)
Actors The system or the end user that is finalising the check out procedure
Assumptions As in previous case
Steps 1 The system notifies the customer that the checkout procedure has been

terminated
2 The secure connection with the certification authority is released
3 The system exits protected mode

Post-conditions The system shall have entered the next procedural step

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

199

Variations None
Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues As in previous case

17.20 Successful Delivery Check (Recovery In Case Of Failure)
UCId UC17.20
Use case Successful Delivery Check (Recovery In Case Of Failure)
Description As the download process may require some time the system should verify that no

problem occur during the delivery phase if so a recovery phase should be started
including (in the worst case) the transaction cancelling and customer refund

Actors The local system, the end user fruition device, the customer
Assumptions As in previous case
Steps 1 The local system should monitor the download process to ensure a smooth

delivery
2 The kiosk delivery module identifies the target device
3 Depending on target device the Kiosk delivery module acts as follows:

3.a The target device is a terminal (POP)
3.a.1 The Kiosk delivery module adapts the content to the fruition

device (if necessary)
3.a.2 The Kiosk delivery module returns to the application front end the

info needed to retrieve the locally cached AXMEDIS object(s)
3.a.3 The application front end loads a page to confirm delivery and

grant access to the AXMEDIS object(s)
3.b The target device is a user PDA

3.b.1 Adapts the content to the fruition device (if necessary)
3.b.2 The Kiosk delivery module retrieves device data (kind, storage,

certificate...)
3.b.3 The Kiosk delivery module performs required check on received

device data
3.b.4 If checks are positive the Kiosk delivery module loads a page to

ask downlad activation
3.b.5 The user activates the download (a positive result to previous step

is assumed here and the user should be free to decide the local
storage position on the PDA)

3.b.6 The kiosk delivery module takes the cached content from the local
storage

3.b.7 The kiosk delivery module retrieves from the local storage the
kind of operation requested on the AXMEDIS object. If the
requested operation is a purchase acts as follows:

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

200

Steps 3.b.7.1 If the AXMEDIS object is a NOT governed one the kiosk
delivery module requires the Local License generator to
generate a “device based” license

3.b.7.2 The Local License generator generates a “device based”
license

3.b.7.3 The Local License generator returns the kiosk delivery
module the generated “device based” license

3.b.7.4 Kiosk delivery module requires the AXCS to generate the
due keys

3.b.7.5 The AXCS retrieves the due keys
3.b.7.6 The AXCS returns the kiosk delivery module the retrieved

due keys
3.b.8 The kiosk delivery module loads data onto the PDA (AXMEDIS

object, keys and license for not governed objects)
3.b.9 The kiosk delivery module monitors the download

4 The kiosk delivery module notifies the Kiosk Application front end of
successful closure of the check out procedure

5 The user can now use the content according to acquired rights via the
AXMEDIS viewer, while in case of problems the system should p erform at lest
3 retries

6 Inform the customer of the incurred problem
7 Ask the customer which choice is preferred among:

7.a New set of delivery retry
7.b Deferred delivery
7.c Delivery cancel

8 The system should take note of customer decision and consequently proceed to:
8.a Activate a new set of delivery retry (maximum 3)
8.b Deferred delivery

8.b.1 Ask the customer the time of next delivery
8.b.2 Schedule next delivery
8.b.3 Flag the process for possible cancellation & refund

8.c Delivery cancel
8.c.1 Enter secure mode
8.c.2 Establish a secure connection with the AXMEDIS certification

authority
8.c.3 Performs a roll back request (including billing cancelling and

money refund)
8.c.4 The system notifies the customer that the delivery and related

transaction has been annulated
8.c.5 The system notifies the customer that refund procedure has been

activated
8.c.6 The secure connection with the certification authority is released
8.c.7 The system exits protected mode

9 The system goes back to normal operation mode allowing the customer to
browse and select content

Post-conditions The system shall have entered the next procedural step
Variations None
Asynchronous
actions

Periodic system checks should be performed and in case of negative result system
should be placed in NON OPERATIONAL mode

Design suggestions None
Issues As in previous case

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

201

17.21 Content fruition after download on PDA or Mobile
UCId UC17.21
Use case Content fruition after download
Description This step has to be performed every time the content is accessed in order to ensure

proper fruition and full respect of DRM rules and constraints
Actors The local system, the AXOM, the domain PMS, the AXMEDIS Certification

Supervisor, the end user and the fruition device
Assumptions The device has enough computational power, the connectivity among all involved

actors is granted and stable, required elaboration time per request is below a
reasonable threshold to ensure user acceptance

Steps 1 The user requests access to the downloaded content
2 The local viewer gets the license from the governed object
3 The local viewer gets the AXOID from the governed object
4 The local viewer gets the UID
5 The local viewer gets the device ID
6 The local viewer requires the PMS domain (via AXOM) the consistency of

the required operation for the specified AXOID by the UID on the specific
device with the given licence

7 The viewer informs the user of being performing a licensing check and enters
a wait state for either the keys or a NACK

8 The domain PMS requires to the AXMEDIS Certification Supervisor to
perform the check and if positive generate the related user keys

9 The domain PMS waits for the either the keys or a NACK
10 The AXMEDIS Certification Supervisor performs a license check on the basis

of the requested usage, identified object, device and UID and decides whether
the operation is feasible or not. According to check results it either:
10.a Sends back to the requesting PMS domain needed user keys (in case

of positive result)
10.b Sends back to the requesting PMS domain a NACK

11 The PMS domain receives the reply and forwards it to the requesting viewer
(via AXOM)

12 Depending on check results the viewer proceeds as follows:
12.a Allows content fruition
12.b Blocks content fruition

Post-conditions The user is free to perform further requests on the object, return to browse the
catalogue, acquire new objects and / or leave the system.

Variations none
Asynchronous
actions

None

Design suggestions None
Issues If the object is purchased for personal use even once out of the Kiosk

infrastructure the purchased license should be a device based one and the control
should be able to find on the same device the following data: license, key and
control data ensuring that license and key are related to the specifi end user device
only

17.22 Client Based Content License Verification (Access Deny In Case Of
Failure)

UCId UC17.22
Use case Client Based Content License Verification (Access Deny In Case Of Failure)

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

202

Description This is a complementary step that has to be performed on the local device every
time the content is accessed in order to ensure proper fruition and full respect of
DRM rules and constraints

Actors The local system, the end user fruition device
Assumptions The device has enough computational power to manage at least a few security

operation related to licensing check and operate consequently
Steps 1 The user tries access to a protected and governed AXMEDIS object

2 As the AXMEDIS object is governed, the domain PMS receives an
authorisation request that includes the user identification, the right, the
resource and optionally the license(s) or its(their) identifier(s).

3 The domain PMS obtains the licenses associated to the user from the database
of DRM licenses.

4 The domain PMS performs the authorisation.
5 If the result of the authorisation is positive the user is authorised. If not, it

returns the reasons why not.
6 Depending on results of the authorization proceeds as follows:

6.1 If the authorization has been positive, the object is unprotected and
content fruition is allow

6.1.1 Decrements the iteration count
6.1.2 Informs customer of remaining iterations

6.2 If the authorization is negative, blocks content fruition
1.a.1 Informs customer of reasons why

Post-conditions Depending on the content of the license (single/multiple fruition…) the licensing
management module should proceed to allow/block further content fruition

Variations None
Asynchronous
actions

None

Design suggestions None
Issues If the object is purchased for personal use even once out of the Kiosk

infrastructure the purchased license should be a device based one and the control
should be able to find on the same device the following data: license, key and
control data ensuring that license and key are related to the specifi end user device
only

17.23 Application Frontend Installation On End User Device
UCId UC17.23
Use case AXMEDIS viewer installation on end user device
Description The end user is logged-on and using the kiosk to install the Application Frontend

(including the AXMEDIS viewer).
Actors The end user and the Kiosk Manager
Assumptions The kiosk application is up and running, the back end is connected and functional.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

203

Steps 1. The user selects in the Content List the option “Other Services”
2. The syspem presents the user a menu with the following options:

a. Change profile
b. Application Frontend install

3. The user selects on the kiosk GUI the option “Application Frontend
install”

4. The system presents instructions for installation and how to connect
wirelessly to the kiosk

5. The system asks the user to connect via web to a specific URL from his
device

6. The user accesses the specified URL
7. The page loaded initiates the download of the application & viewer
8. The system informs the user of download results.

Post-conditions The application front end is properly installed
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

17.24 User Profile Change
UCId UC17.24
Use case User Profile Change
Description The end user is logged-on and willing to change own profile.
Actors The end user and the Kiosk Manager
Assumptions The kiosk application is up and running, the back end is connected and functional.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

204

Steps 1 The application front end has granted access to available services including:
1.a Browse the catalogue
1.b Modify own data
1.c View support information
1.d Logout

2 The user selects in the Content List the option “Modify own data”
3 The system presents the user the profile form with the following data:

• First Name [mandatory],
• Last Name [mandatory],
• Age [mandatory],
• Address [mandatory]:

• mail address, phone, mobile, e-mail, VAT code
• …

• Default Language [mandatory],
• Preferred payment method:

• pre-paid-cards, credit card
• …

• Payment method:
• card #, validity from, validity to, type
• …

• Billing info:
• mail address, phone, mobile, e-mail, VAT code
• …

• Preferred device:
• PDA,
• Smartphone,
• Other

4 The user provides the required data
5 The user confirms input operation ending either pressing a button on the

interface or any other widget.
Expected results 1. The user should be registered

2. The user should be assigned an AXMEDIS UID
3. The system should be notified of the registration (via mail/sms)
4. The user should be logged into the system

Post-conditions The user profile is successfully updated
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

17.25 Interface Language selection
UCId UC17.25
Use case Interface Language Selection
Description The user selects the interface language
Actors The end user, the Kiosk Front end application
Assumptions The kiosk front end application is fully functional.

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

205

Steps 1 The application front end exits from idle mode when a user interacts
2 The application front-end presents the user a screen with the flags of the

supported languages for the GUI
3 The user presses the selected language
4 The application front end sets-up the environment variable stating the GUI

language
5 The application front end presents the user a page for log-in / registration

Post-conditions The kiosk application front end shall have adopted the selected language for the
user interface

Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

17.26 User Device Configuration
UCId UC17.26
Use case User Device Configuration
Description The end user configures own device (PDA…)
Actors The end user, the Kiosk Front end application, the user fruition device (PDA…)
Assumptions The kiosk front end application is fully functional.
Steps 1 The user has access to a page (either printed or in push) with the following

info:
1.a How to connect the PDA / Tablet to the kiosk via WiFi (including how to

test the connection)
1.b How to download the Application client on the device (including how to

test the client)
2 The user performs on the device the required operation to configure the WiFi

connection
3 The user performs the suggested check to ensure that WiFi configuration is

successful
4 Device connects to the kiosk application front end
5 The application front end returns a test display page
6 The user performs on the device the required operation to download the

application client (following a specific URL returned in the previously
provided test page)

7 The device downloads the application client
8 The user install the downloaded client
9 The user performs the suggested check to ensure that application client install

is successful
10 Device connects to the kiosk application front end
11 The application front end returns a test display object and a link to bookmark

for future access via device
12 The application client displays the test object
13 The application client bookmarks the provided URL to access via device
14 The installed AXMEDIS client connects to the domain PMS to perform the

requested “Registration” & “Authentication” as described in overall scenarios
V3.9 (slide 219-220)

Post-conditions The end user device is properly configured
Variations None
Asynchronous
actions

None

Design suggestions None

DE2.1.1b – User Requirements and Use Cases

AXMEDIS Project

206

Issues None

17.27 Content Update (via Satellite)
UCId UC17.27
Use case Content Update (via Satellite)
Description The kiosk content is updated via satellite
Actors The kiosk manager, the Kiosk and the AXMEDIS framework
Assumptions The kiosk and all its application are fully functional.
Steps 1 The checking time is over a Down-Link channel check has to be performed

2 The AXMEDIS B2B Satellite Reception Listener checks for data availability
and behaves as follows:
2.a Data is not available yet so a further check is scheduled and the

application enters wait mode (cycling back to point 1)
2.b Data is available therefore is downloaded (2.b.1) and progressively cached

locally (2.b.2)
2.c Received data is stored locally

3 The AXMEDIS B2B Satellite Reception Listener activates the AXMEDIS
Action Manager to decide how to proceed

4 The AXMEDIS Action Manager invokes the AXMEDIS B2B Satellite
Reception Content Checker to verify consistency check on received data

5 The AXMEDIS B2B Satellite Reception Content Checker proceeds as follows
5.a Performs consistency check on received data
5.b If result is positive returns ACK and control to the AXMEDIS Action

Manager
5.c If result is negative requires the distribution server to resend the damaged

packages via Up-link as detailed here after:
5.c.1 Satellite Reception Content Checker requires missing or

damaged packages via Up-Link
5.c.2 Satellite Reception Content Checker receives missing or

damaged packages via Up-Link
5.c.3 Satellite Reception Content Checker returns ACK and control to

the AXMEDIS Action Manager
6 The AXMEDIS Action Manager retrieves the data from the local storage
7 The AXMEDIS Action Manager extracts the content form the OpenSky

package
8 The AXMEDIS Action Manager checks the received data to determine what it

is and behaves consequently:
8.a Received data are AXMEDIS Object: data is stored in the AXDB
8.b Received data are system / application updates: invoke the kiosk data

manager to store data locally according to needs
8.b.1 The kiosk data manager stores the received data locally in plain

format
Post-conditions The kiosk content is properly updated
Variations None
Asynchronous
actions

None

Design suggestions None
Issues None

